JP2011153214A - Conductive resin composition and conductive sheet - Google Patents

Conductive resin composition and conductive sheet Download PDF

Info

Publication number
JP2011153214A
JP2011153214A JP2010015480A JP2010015480A JP2011153214A JP 2011153214 A JP2011153214 A JP 2011153214A JP 2010015480 A JP2010015480 A JP 2010015480A JP 2010015480 A JP2010015480 A JP 2010015480A JP 2011153214 A JP2011153214 A JP 2011153214A
Authority
JP
Japan
Prior art keywords
conductive
mass
copolymer
resin composition
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010015480A
Other languages
Japanese (ja)
Other versions
JP5430420B2 (en
Inventor
Toru Arai
亨 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2010015480A priority Critical patent/JP5430420B2/en
Publication of JP2011153214A publication Critical patent/JP2011153214A/en
Application granted granted Critical
Publication of JP5430420B2 publication Critical patent/JP5430420B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive resin composition of high conductivity and heat resistance, and improved in flexibility of a conventional conductive resin, to substitute a conventional metal electrode, wiring and soldering connection, and a conductive sheet comprising the composition. <P>SOLUTION: This conductive resin composition contains a hydrocarbon elastomer resin having specified dynamic physical properties and a fixed level or less of crystallinitiy, and a conductive carbon filler such as carbon black, at a fixed ratio thereof, can keep flexibility even when filling the conductive carbon filler at high density to impart conductivity, and is suitable for substituting the metal electrodes of various batteries made conventionally of metal, having a problem of corrosion or the like, and required to be light-weighted, the wiring and the soldering connection, since an obtained film is flexible and is highly heat-resistant and/or solvent-proof. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高い導電性と耐熱性、安定性、フレキシブル性を有する樹脂組成物及びシ−トに関する。 The present invention relates to a resin composition and a sheet having high conductivity, heat resistance, stability, and flexibility.

導電性熱可塑性樹脂の製造方法としては、樹脂に対しカーボンブラックを充填する方法が知られている(特許文献1)。開示されている組成物は、カ−ボンブラックの配合量が比較的少なく、体積抵抗も比較的高い。
一方、燃料電池のセパレータとしては、導電性炭素フィラ−がより高充填された樹脂組成物が開示されている(特許文献2)。得られた高充填樹脂組成物は低い体積抵抗率を示すが、剛直でフレキシビリティに乏しい。
As a method for producing a conductive thermoplastic resin, a method of filling a resin with carbon black is known (Patent Document 1). The disclosed composition has a relatively low carbon black content and a relatively high volume resistance.
On the other hand, as a separator for a fuel cell, a resin composition filled with a higher conductive carbon filler is disclosed (Patent Document 2). The resulting highly filled resin composition exhibits a low volume resistivity but is rigid and poor in flexibility.

特開昭60−65064号JP 60-65064 A 特開2004−131551号JP 2004-131551 A

本発明の目的は、高い導電性と耐熱性を有し従来の導電性樹脂のフレキシブル性を改良した導電性樹脂組成物及びこれからなる導電性シ−トを提供することである。本導電性シートは、従来の金属電極、配線やハンダ接続を代替する可能性を有している。例えば、太陽電池、また、各種電池、二次電池の金属電極の代替として、あるいは、有機PTC材料、パッキン等のシール材料としての可能性も有している。例えば太陽電池用の配線材料や電池の電極として使用する場合、その製造工程中の折り曲げや変形、使用中の振動に耐える必要があり、フレキシブル性は重要である。また、本質的に腐食しない導電性樹脂組成物からなる配線は、これら用途にとって極めて重要であると考えられる。 An object of the present invention is to provide a conductive resin composition having high conductivity and heat resistance and improved flexibility of a conventional conductive resin, and a conductive sheet comprising the same. This conductive sheet has the potential to replace conventional metal electrodes, wiring and solder connections. For example, it has a possibility as a substitute for a metal electrode of a solar battery, various batteries, or a secondary battery, or as a sealing material such as an organic PTC material or packing. For example, when used as a wiring material for a solar cell or an electrode of a battery, it is necessary to withstand bending and deformation during the manufacturing process and vibration during use, and flexibility is important. Moreover, it is thought that the wiring which consists of a conductive resin composition which does not corrode essentially is very important for these uses.

特定の炭化水素系エラストマ−樹脂と導電性炭素フィラ−からなる樹脂組成物であり、導電性を付与すべく導電性炭素フィラ−を高充填しても、驚くべき事に軟質性を維持し、得られたフィルムはフレキシブルであり、かつ高い耐熱性を有する。 It is a resin composition comprising a specific hydrocarbon elastomer resin and a conductive carbon filler. Even if the conductive carbon filler is high-filled to give conductivity, surprisingly softness is maintained, The obtained film is flexible and has high heat resistance.

電気機器、電子機器、太陽電池用の配線材料やリチウムイオン電池の電極材料として有用な高い導電率とフレキシブル性、力学強度、耐熱性を有する導電性樹脂組成物及びシ−トを提供する。 Provided are a conductive resin composition and a sheet having high electrical conductivity, flexibility, mechanical strength, and heat resistance, which are useful as wiring materials for electric devices, electronic devices, solar cells, and electrode materials for lithium ion batteries.

引張初期弾性率100MPa以下、引張破断点伸び300%以上、引張破断強度10MPa以上、総結晶融解熱が80J/g以下の炭化水素系エラストマ−樹脂100質量部と、導電性炭素フィラ−50〜200質量部、好ましくは導電性炭素フィラ−80〜200質量部からなる樹脂組成物である。
ここで、総結晶融解熱とは、DSC測定により求められる50℃〜300℃の範囲で観察される結晶融解ピ−クの結晶融解熱の総和である。本発明に用いられる炭化水素系エラストマ−樹脂とは、例えばエチレン−αオレフィン共重合体、プロピレン−αオレフィン共重合体、エチレン−環状オレフィン共重合体等のオレフィン系共重合体や、エチレン−スチレン共重合体等のオレフィン−芳香族ビニル化合物共重合体、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸エステル共重合体等のエチレン−極性モノマー共重合体、ランダム性スチレン−ジエン共重合体、例えばSBR等、またはブロック性スチレン−ジエン共重合体、例えばSBS、SIS等、やこれらの水素添加物、例えば、水添SBR、SEBSやSEPSが例示できる。またこれらの共重合体のグラフト共重合体やクロス共重合体も使用することが出来る。ここで、エチレン−αオレフィン共重合体のαオレフィンとは、エチレンを含まない炭素数3〜20までのαオレフィンであり、プロピレン−αオレフィン共重合体のαオレフィンとは、プロピレンを含まない、エチレンまたは炭素数4〜20までのαオレフィンを示す。
また、環状オレフィンとは、ノルボルネン、エチリデンノルボルネン、ジシクロペンタジエン等、炭素数5〜20までの環状オレフィンである。また、芳香族ビニル化合物とは、スチレン、パラメチルスチレン、ジビニルベンゼン等、炭素数8〜20までの芳香族ビニル化合物である。また、極性モノマーとは、アクリル酸メチル等のアクリル酸エステル、メタクリル酸メチル等のメタクリル酸エステル、酢酸ビニル、アクリロニトリル等の炭素数3〜20までの、他に酸素原子または窒素原子を分子内に1〜3個有する極性モノマーである。
Initial tensile modulus of elasticity of 100 MPa or less, tensile elongation at break of 300% or more, tensile break strength of 10 MPa or more, total crystal fusion heat of 80 J / g or less of hydrocarbon elastomer resin, conductive carbon filler 50 to 200 It is a resin composition consisting of 80 parts by mass, preferably 80 to 200 parts by mass of conductive carbon filler.
Here, the total heat of crystal melting is the sum of the heat of crystal melting of the crystal melting peak observed in the range of 50 ° C. to 300 ° C. determined by DSC measurement. The hydrocarbon elastomer resin used in the present invention is, for example, an olefin copolymer such as ethylene-α olefin copolymer, propylene-α olefin copolymer, ethylene-cyclic olefin copolymer, or ethylene-styrene. Olefin-aromatic vinyl compound copolymer such as copolymer, ethylene-vinyl acetate copolymer, ethylene-polar monomer copolymer such as ethylene-acrylic acid ester copolymer, random styrene-diene copolymer, For example, SBR and the like, or block styrene-diene copolymers such as SBS and SIS, and hydrogenated products thereof such as hydrogenated SBR, SEBS, and SEPS can be exemplified. In addition, graft copolymers and cross copolymers of these copolymers can also be used. Here, the α-olefin of the ethylene-α-olefin copolymer is an α-olefin having 3 to 20 carbon atoms not containing ethylene, and the α-olefin of the propylene-α-olefin copolymer does not contain propylene, Ethylene or an α-olefin having 4 to 20 carbon atoms is shown.
The cyclic olefin is a cyclic olefin having 5 to 20 carbon atoms such as norbornene, ethylidene norbornene, and dicyclopentadiene. The aromatic vinyl compound is an aromatic vinyl compound having a carbon number of 8 to 20, such as styrene, paramethylstyrene, divinylbenzene and the like. Moreover, polar monomers are acrylic acid esters such as methyl acrylate, methacrylic acid esters such as methyl methacrylate, vinyl acetate, acrylonitrile and the like having 3 to 20 carbon atoms, in addition to oxygen atoms or nitrogen atoms in the molecule. 1 to 3 polar monomers.

本樹脂組成物に含まれて良い他の樹脂としては特に限定はされないが、例えば、フッ素樹脂、ポリエーテルエーテルケトン樹脂ポリエーテルイミド樹脂、ポリアミドイシド樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルスルホン樹脂、ポリエーテルケトン樹脂、ポリオキシベンゾイルエステル樹脂、ポリエステル、ポリアセタール、ポリアミド、ポリアリレート、ポリアリルスルホン、ポリベンゾイミダゾール、ポリエーテルニトリル、ポリチオエーテルスルホン、ポリイミド、ポリアミノビスマレイミド、ポリケトン、ポリフェニレンエーテル、ポリスルホン、液晶ポリエステル樹脂に代表される液晶ポリマー等が挙げられる。これらの添加は導電性炭素フィラ−との親和性を低下させ力学物性の低下や脆性の発現、導電率の低下をもたらす可能性があり、炭化水素系エラストマ−樹脂の総質量に対しこれら他の樹脂の総質量は30質量%以下、好ましくは10質量%以下である必要がある。
用いられる炭化水素系エラストマ−樹脂の総結晶融解熱が上記範囲より高い場合、最終的に得られる導電性樹脂組成物のフレキシブル性が低下し、剛直化してしまい、また導電性炭素フィラ−との親和性を低下させ、成形加工性や力学物性の低下、脆性の発現、ひいては導電率の低下をもたらす可能性があり好ましくない。
さらに用いられる炭化水素系エラストマ−樹脂の引張破断点伸び、引張破断強度が上記範囲を外れると、最終的に得られる樹脂組成物の力学物性が低下してしまうため好ましくない。
本炭化水素系エラストマ−樹脂の流動性は、導電性炭素フィラ−との混練を考慮した場合、上記条件を満たした上で高い方が好ましく、例えば190℃、荷重2.16Nで測定したMFR値として1g/10分以上であることが好ましい。
Other resins that may be included in the resin composition are not particularly limited. For example, fluororesin, polyether ether ketone resin, polyetherimide resin, polyamidoside resin, polyphenylene sulfide resin, polyethersulfone resin, Ether ketone resin, polyoxybenzoyl ester resin, polyester, polyacetal, polyamide, polyarylate, polyallyl sulfone, polybenzimidazole, polyether nitrile, polythioether sulfone, polyimide, polyamino bismaleimide, polyketone, polyphenylene ether, polysulfone, liquid crystal polyester Examples thereof include liquid crystal polymers represented by resins. These additions may reduce the affinity with the conductive carbon filler, resulting in the deterioration of mechanical properties, the occurrence of brittleness, and the decrease in conductivity. Other than the total mass of the hydrocarbon elastomer resin, The total mass of the resin needs to be 30% by mass or less, preferably 10% by mass or less.
When the total heat of crystal fusion of the hydrocarbon elastomer resin used is higher than the above range, the flexibility of the conductive resin composition finally obtained is lowered and becomes rigid, and the conductive carbon filler and It is not preferable because the affinity may be lowered, resulting in a decrease in molding processability and mechanical properties, the occurrence of brittleness, and a decrease in conductivity.
Further, if the elongation at break and the tensile strength at break of the hydrocarbon elastomer resin used are out of the above ranges, the mechanical properties of the finally obtained resin composition will be unfavorable.
The fluidity of the present hydrocarbon-based elastomer resin is preferably higher after satisfying the above conditions in consideration of kneading with a conductive carbon filler. For example, the MFR value measured at 190 ° C. and a load of 2.16 N 1 g / 10 min or more is preferable.

例えば導電性樹脂組成物からなるフレキシブル導電性フィルムが、リチウムイオン電池の金属電極(集電極)の代替として使用される場合には、炭酸エステル系溶媒に対する耐性が要求される。具体的には300ミクロン厚さのシ−トを炭酸エチレン、炭酸ジエチル、炭酸ジメチルの1:1:1の質量比からなる混合溶媒に60℃、1週間浸漬した際に、重量増加率(膨潤度)は20%以下である必要がある。
さらに、同用途に用いられる場合、電極用の炭素材料や活物質、結着剤をコーティングする際、Nメチルピロリドンが溶媒として用いられるが、コーティング工程中の加熱処理に耐える耐性が要求される。具体的には、300ミクロン厚さのシ−トを100℃の金属プレ−ト上に置き、Nメチルピロリドン1滴を滴下する。1分後、その表面をガ−ゼで拭き取り、シ−ト表面状態とガ−ゼへの炭素質の付着具合(黒色度)から判断し、シ−ト表面状態については溶解、膨潤が認められないこと、ガ−ゼには目視で炭素質が付着しないことが必要である。
For example, when a flexible conductive film made of a conductive resin composition is used as an alternative to a metal electrode (collector electrode) of a lithium ion battery, resistance to a carbonate ester solvent is required. Specifically, when a sheet having a thickness of 300 microns is immersed in a mixed solvent having a mass ratio of 1: 1: 1 of ethylene carbonate, diethyl carbonate, and dimethyl carbonate at 60 ° C. for 1 week, the weight increase rate (swelling) Degree) needs to be 20% or less.
Further, when used in the same application, N-methylpyrrolidone is used as a solvent when coating a carbon material, an active material, or a binder for electrodes, but resistance to heat treatment during the coating process is required. Specifically, a sheet having a thickness of 300 microns is placed on a metal plate at 100 ° C., and one drop of N methylpyrrolidone is dropped. After 1 minute, the surface was wiped off with a gauze and judged from the sheet surface condition and the carbonaceous adhesion to the gauze (blackness). It is necessary that the carbonaceous material does not adhere to the gauze visually.

これら溶媒に対する耐性を満たすためには、スチレン等の芳香族ビニル化合物成分を有するオレフィン−芳香族ビニル化合物共重合体の場合、芳香族ビニル化合物の含有量は50質量%以下である必要がある。エチレン−αオレフィン共重合体、プロピレン−αオレフィン共重合体、エチレン−環状オレフィン共重合体等のオレフィン系共重合体の場合、その組成にかかわらず、本溶媒に対する耐性は高いため好ましい。これらの炭化水素系エラストマ−樹脂100質量部と導電性炭素フィラ−80質量部以上200質量部以下からなる樹脂組成物が上記溶媒に対する耐性を示すことが出来る。上記エチレン−極性モノマー共重合体の場合、極性モノマー含量が10質量%よりも高い場合、上記溶媒に対する耐性を満たすことは困難となり、好ましくない。
ランダム性スチレン−ジエン共重合体、またはブロック性スチレン−ジエン共重合体やこれらの水素添加物の場合、本耐性は十分ではなく好ましくない。
In order to satisfy the resistance to these solvents, in the case of an olefin-aromatic vinyl compound copolymer having an aromatic vinyl compound component such as styrene, the content of the aromatic vinyl compound needs to be 50% by mass or less. In the case of an olefin copolymer such as an ethylene-α olefin copolymer, a propylene-α olefin copolymer, and an ethylene-cyclic olefin copolymer, the resistance to the present solvent is high regardless of the composition thereof. Resin compositions comprising 100 parts by mass of these hydrocarbon elastomer resins and 80 parts by mass or more and 200 parts by mass or less of conductive carbon filler can exhibit resistance to the solvent. In the case of the ethylene-polar monomer copolymer, when the polar monomer content is higher than 10% by mass, it is difficult to satisfy the resistance to the solvent, which is not preferable.
In the case of a random styrene-diene copolymer, a block styrene-diene copolymer, or a hydrogenated product thereof, this resistance is not sufficient and is not preferable.

本樹脂組成物の耐熱性としては、粘弾性スペクトル測定により得られる貯蔵弾性率が10Paまで低下する温度が150℃以上、好ましくは200℃以上であるが、電気機器、電子機器用の導電材料、配線材料として使用する場合、金属材料との接点でのハンダ耐性やその他プロセス上の耐熱性を考慮すると、最も好ましくは250℃以上である。最も好ましい250℃以上の耐熱性を発現する場合には、炭化水素系エラストマ−樹脂として、オレフィン−芳香族ビニル化合物共重合体を用い、かつ炭化水素系エラストマ−樹脂100質量部と導電性炭素フィラ−80質量部以上200質量部以下からなる樹脂組成物が好ましい。さらに、用いるオレフィン−芳香族ビニル化合物共重合体は、芳香族ビニル化合物含量10質量%以上80質量%以下が好ましく、上記溶媒耐性の観点からは、芳香族ビニル化合物含量10質量%以上50質量%以下であることが好ましい。 As the heat resistance of the resin composition, the temperature at which the storage elastic modulus obtained by measuring the viscoelastic spectrum is reduced to 10 7 Pa is 150 ° C. or higher, preferably 200 ° C. or higher. When used as a material or wiring material, it is most preferably 250 ° C. or higher in consideration of solder resistance at a contact point with a metal material and heat resistance in other processes. When the most preferable heat resistance of 250 ° C. or higher is expressed, an olefin-aromatic vinyl compound copolymer is used as the hydrocarbon elastomer resin, and 100 parts by mass of the hydrocarbon elastomer resin and the conductive carbon filler are used. A resin composition comprising -80 parts by mass or more and 200 parts by mass or less is preferred. Further, the olefin-aromatic vinyl compound copolymer used preferably has an aromatic vinyl compound content of 10% by mass to 80% by mass, and from the viewpoint of the solvent resistance, the aromatic vinyl compound content of 10% by mass to 50% by mass. The following is preferable.

本発明に用いられるオレフィン−芳香族ビニル化合物共重合体としては、EP0416815A2、JP3659760、EP872492B1公報記載の共重合体が例示できる。
またWO2000/37517、USP6559234、またはWO2007139116に記載されているクロス共重合体のうち、主鎖がオレフィン−芳香族ビニル化合物−芳香族ポリエン(ジエン)共重合体であり、かつ芳香族ビニル化合物鎖(ポリスチレン鎖)の含まれる割合が50質量%未満であるものはオレフィン−芳香族ビニル化合物共重合体の概念に含まれる。
本発明にもちいられる炭化水素系エラストマ−樹脂は、必ずしも単独である必要はなく、複数の炭化水素系エラストマ−樹脂からなる樹脂組成物でも良く、上記の各条件は、炭化水素系エラストマ−樹脂の組成物全体に対しての条件として規定される。
Examples of the olefin-aromatic vinyl compound copolymer used in the present invention include copolymers described in EP0416815A2, JP3659760, EP872492B1.
Of the cross copolymers described in WO2000 / 37517, USP6559234, or WO2007139116, the main chain is an olefin-aromatic vinyl compound-aromatic polyene (diene) copolymer, and an aromatic vinyl compound chain ( Those containing less than 50% by mass of polystyrene chains are included in the concept of olefin-aromatic vinyl compound copolymer.
The hydrocarbon-based elastomer resin used in the present invention does not necessarily need to be a single material, and may be a resin composition composed of a plurality of hydrocarbon-based elastomer resins. Each of the above conditions is the same as that of the hydrocarbon-based elastomer resin. It is defined as a condition for the entire composition.

本発明に用いられる導電性炭素フィラ−としては、例えば、カーボンブラック、黒鉛またはこれらの混合物が挙げられる。用いる黒鉛としては、例えば、膨張黒鉛や粒状黒鉛が挙げられる。黒鉛の平均粒径は、分散性等の点から、5〜100μmのものが好ましい。
また、用いるカーボンブラックとしては、例えば、オイルファーネスブラック、アセチレンブラック、ファーネスブラック、サーマルブラックが挙げられる。これらの平均粒径は分散性等の点から、30〜50nmが好ましい。これらカ−ボンブラックは、導電率向上のため5質量%までの硼素を含んでも良い。
Examples of the conductive carbon filler used in the present invention include carbon black, graphite or a mixture thereof. Examples of the graphite used include expanded graphite and granular graphite. The average particle diameter of graphite is preferably 5 to 100 μm from the viewpoint of dispersibility.
Moreover, as carbon black to be used, oil furnace black, acetylene black, furnace black, and thermal black are mentioned, for example. These average particle diameters are preferably 30 to 50 nm from the viewpoint of dispersibility and the like. These carbon blacks may contain up to 5% by weight of boron to improve conductivity.

本発明の導電性樹脂組成物からなる導電性シートは、高導電率(低体積抵抗率)とフレキシブル性、耐熱性が特徴である。
具体的には0.5S/cm以上、好ましくは0.8S/cm以上、300S/cm以下の導電率を有する。
また、フレキシブル性としては、具体的には初期引張弾性率2000MPa以下、好ましくは1000MPa以下、かつ引張破断点伸び5%以上、好ましくは10%以上、引張破断強度5MPa以上、
好ましくは10MPa以上である。
The conductive sheet made of the conductive resin composition of the present invention is characterized by high conductivity (low volume resistivity), flexibility and heat resistance.
Specifically, it has a conductivity of 0.5 S / cm or more, preferably 0.8 S / cm or more and 300 S / cm or less.
Further, as the flexibility, specifically, the initial tensile modulus of elasticity is 2000 MPa or less, preferably 1000 MPa or less, and the tensile breaking point elongation is 5% or more, preferably 10% or more, the tensile breaking strength is 5 MPa or more,
Preferably it is 10 MPa or more.

本発明の導電性樹脂組成物は、加熱ロール、押出機、バンバリミキサー等の混練機を用いて混合することができる。さらに本発明の組成物は、添加物として公知のヒンダートフェノール系、硫黄系、燐系等の酸化防止剤、ヒンダートアミン系、トリアゾール系、ベンゾフェノン系、ベンゾエート系、ニッケル系、サリチル系等の光安定剤、帯電防止剤、滑剤、過酸化物等の分子調整剤、金属不活性化剤、有機及び無機系の核剤、中和剤、制酸剤、防菌剤、蛍光増白剤、充填剤、難燃剤、難燃助剤等を一種類以上を添加することができる。
本発明の導電性シートは、公知の成型方法、すなわちTダイ成形、カレンダ−成形、ロ−ル成形、あるいはキャスト成形などの成形法により製造できる。本発明のフィルムは、用途に応じて他の適当なフィルム、例えば、フッ素樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルイミド樹脂、ポリアミドイシド樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルスルホン樹脂、ポリエーテルケトン樹脂、ポリオキシベンゾイルエステル樹脂、ポリエステル、ポリアセタール、ポリアミド、ポリイミド、ポリアリレート、ポリアリルスルホン、ポリベンゾイミダゾール、ポリエーテルニトリル、ポリチオエーテルスルホン、ポリイミド、ポリアミノビスマレイミド、ポリケトン、ポリフェニレンエーテル、ポリスルホン、液晶ポリエステル樹脂に代表される液晶ポリマー、ポリプロピレン、ポリエチレン、ポリスチレンやシンジオタクティクポリスチレン等の各種フィルムと多層化することができる。
The conductive resin composition of the present invention can be mixed using a kneader such as a heating roll, an extruder, or a Banbury mixer. Further, the composition of the present invention includes known hindered phenol-based, sulfur-based, phosphorus-based antioxidants, hindered amine-based, triazole-based, benzophenone-based, benzoate-based, nickel-based, salicyl-based and the like as additives. Light stabilizers, antistatic agents, lubricants, molecular modifiers such as peroxides, metal deactivators, organic and inorganic nucleating agents, neutralizing agents, antacids, antibacterial agents, fluorescent whitening agents, One or more fillers, flame retardants, flame retardant aids and the like can be added.
The conductive sheet of the present invention can be produced by a known molding method, that is, a molding method such as T-die molding, calendar molding, roll molding, or cast molding. The film of the present invention may be another suitable film depending on the application, such as a fluororesin, a polyetheretherketone resin, a polyetherimide resin, a polyamidoside resin, a polyphenylene sulfide resin, a polyethersulfone resin, a polyetherketone resin. Polyoxybenzoyl ester resin, polyester, polyacetal, polyamide, polyimide, polyarylate, polyallylsulfone, polybenzimidazole, polyethernitrile, polythioethersulfone, polyimide, polyaminobismaleimide, polyketone, polyphenylene ether, polysulfone, liquid crystal polyester resin Multi-layered with various films such as liquid crystal polymer, polypropylene, polyethylene, polystyrene and syndiotactic polystyrene. Can.

本発明の導電性樹脂組成物及び導電性シートはさらなる耐熱性向上や耐溶媒性向上のため、電子線架橋や架橋剤による架橋処理を行うことが出来る。電子線架橋の場合、公知の電子線架橋装置、照射条件を用いることが出来る。また、イソシアヌル酸化合物等の架橋促進剤を添加してもよい。架橋剤による架橋処理の場合も、公知の架橋材、架橋助剤、架橋方法を用いることができる。 The conductive resin composition and conductive sheet of the present invention can be subjected to electron beam crosslinking or crosslinking treatment with a crosslinking agent in order to further improve heat resistance and solvent resistance. In the case of electron beam crosslinking, a known electron beam crosslinking apparatus and irradiation conditions can be used. Moreover, you may add crosslinking accelerators, such as an isocyanuric acid compound. Also in the case of crosslinking treatment with a crosslinking agent, known crosslinking materials, crosslinking assistants, and crosslinking methods can be used.

本発明の導電性樹脂組成物及び導電性シートは、電気機器、電子機器等の金属電極、配線やハンダ接続を代替する可能性を有している。特に太陽電池材料として、従来の金属配線に変わる配線、電極材料として有用と考えられる。例えば太陽電池においては20年から30年の高い耐久性、信頼性が要求されている。この点、腐食による劣化や接続強度、製造工程の煩雑さの点で課題がある従来の金属配線やハンダ接続と比較し、フレキシブルな導電性樹脂の採用による耐久性や接続安定性向上、製造工程の簡略化可能性が期待されている。また、導電性シ−トからなる裏面電極を用いることでセル表面の配線をなくし、発電効率の向上も図ることが出来る。またコンパウンド型導電性樹脂に特有の、温度上昇により抵抗値が増加する性質、いわゆるPTC特性を活用することで、太陽電池のホットスポット防止機能や異常セルの自動遮断機能を付与することも可能である。 The conductive resin composition and the conductive sheet of the present invention have a possibility of replacing metal electrodes, wiring, and solder connection of electric devices and electronic devices. In particular, as a solar cell material, it is considered useful as a wiring or electrode material replacing a conventional metal wiring. For example, solar cells are required to have high durability and reliability of 20 to 30 years. Compared to conventional metal wiring and solder connection, which has problems in terms of corrosion, deterioration due to corrosion, connection strength, and complexity in the manufacturing process, the use of flexible conductive resin improves durability and connection stability, and the manufacturing process. The possibility of simplification is expected. Further, by using a back electrode made of a conductive sheet, wiring on the cell surface can be eliminated, and power generation efficiency can be improved. It is also possible to provide a solar cell hot spot prevention function and an abnormal cell automatic shut-off function by utilizing the so-called PTC characteristic, which is a characteristic of a compound type conductive resin that increases the resistance value due to temperature rise. is there.

リチウムイオン電池は、EVやHEV自動車市場の伸長に伴い、より高性能、軽量化が求められている。リチウムイオン電池の金属電極(集電極)を導電性樹脂組成物及び導電性シートで代替できれば、大きく軽量化に貢献できるためメリットが大きい。また、従来アルミニウムや銅金属の表面に炭素材を含む活物質をコ−トすることで電極形成を行っていたが、金属電極との界面の接着性に課題があり、より炭素材を含む活物質とより親和性が高い本導電性樹脂組成物及び導電性シートを採用することで本課題の改善も可能と考える。
また太陽電池、特に受光面に電極のない,いわゆる裏面電極型,またはバックコンタクトと呼ばれるタイプの高効率太陽電池のセル間の接続用としての利用の可能性を有している(例えばシャープ技報、第93号、2005年12月)。この場合、接続の信頼性や、腐食に対する長期にわたる耐久性が利点となる。
さらに、将来伸長が期待される各種フレキシブル電子デバイスにおいても、想定されるロ−ルトウロ−ルプロセスに適合するフレキシブルかつ信頼性の高い配線材料が期待されている。さらに溶媒に良好に分散し、各種印刷による配線が可能な導電性材料としても、利用の可能性を有している。
Lithium ion batteries are required to have higher performance and lighter weight as the EV and HEV automobile markets grow. If the metal electrode (collector electrode) of the lithium ion battery can be replaced with a conductive resin composition and a conductive sheet, it can greatly contribute to weight reduction, which is advantageous. Conventionally, an electrode is formed by coating an active material containing a carbon material on the surface of aluminum or copper metal. However, there is a problem in adhesion at the interface with the metal electrode, and an active material containing a carbon material is more difficult. It is considered that this problem can be improved by adopting the conductive resin composition and the conductive sheet having higher affinity with the substance.
In addition, solar cells, particularly so-called back electrode types that do not have electrodes on the light receiving surface, or high-efficiency solar cells of the type called back contacts, have the potential to be used for connection between cells (for example, Sharp Technical Report). 93, December 2005). In this case, reliability of the connection and long-term durability against corrosion are advantageous.
Furthermore, in various flexible electronic devices that are expected to grow in the future, flexible and highly reliable wiring materials that are compatible with the assumed roll-roll process are expected. Furthermore, it can be used as a conductive material that is well dispersed in a solvent and can be wired by various printing methods.

以下、実施例により、本発明を説明するが、これらの実施例は本発明を限定するものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, these Examples do not limit this invention.

以下のようにして、導電性樹脂組成物を得た。
<原料樹脂>
実施例、比較例に用いた原料樹脂は以下の通りである。
エチレン−スチレン共重合体1
スチレン含量41質量%(16モル%)、Mw=92000、Mw/Mn=2.2
上記エチレン−スチレン共重合体はJP3659760号公報記載の製造方法で製造した。
下記クロス共重合体は、WO2000/37517、またはWO2007139116号公報記載の製造方法で製造したもので、下記組成は、同様にこれら公報記載の方法で求めた。これらのクロス共重合体は配位重合により得られるエチレン−スチレン−ジビニルベンゼン共重合体とスチレンモノマーの共存下でアニオン重合を行うことにより得られる、エチレン−スチレン−ジビニルベンゼン共重合体鎖とポリスチレン鎖を有する共重合体である。以下、クロス共重合体を規定するために、用いられるエチレン−スチレン−ジビニルベンゼン共重合体のスチレン含量、ジビニルベンゼン含量、重量平均分子量(Mw)、分子量分布(Mw/Mn)、クロス共重合体中のポリスチレン鎖の含量、ポリスチレン鎖の分子量(Mw)、分子量分布(Mw/Mn)を示す。また、全スチレン含量は、クロス共重合体に含まれるエチレン−スチレン−ジビニルベンゼン共重合体鎖とポリスチレン鎖に含まれるスチレン含量を合計した含量である。

クロス共重合体1
エチレン−スチレン−ジビニルベンゼン共重合体のスチレン含量10モル%、ジビニルベンゼン含量0.045モル%、Mw=98000、Mw/Mn=2.3
ポリスチレン鎖の含量15質量%、Mw=22000、Mw/Mn=1.3
全スチレン含量41質量%

クロス共重合体2
エチレン−スチレン−ジビニルベンゼン共重合体のスチレン含量6モル%、ジビニルベンゼン含量0.030モル%、Mw=80000、Mw/Mn=2.4
ポリスチレン鎖の含量35質量%、Mw=19000、Mw/Mn=1.2
全スチレン含量47質量%

クロス共重合体3
エチレン−スチレン−ジビニルベンゼン共重合体のスチレン含量8モル%、ジビニルベンゼン含量0.035モル%、Mw=110000、Mw/Mn=2.3
ポリスチレン鎖の含量11質量%、Mw=24000、Mw/Mn=1.2
全スチレン含量32質量%、

クロス共重合体4
エチレン−スチレン−ジビニルベンゼン共重合体のスチレン含量16モル%、ジビニルベンゼン含量0.083モル%、Mw=100000、Mw/Mn=2.2
ポリスチレン鎖の含量17質量%、Mw=28000、Mw/Mn=1.2
全スチレン含量52質量%、

クロス共重合体5
エチレン−スチレン−ジビニルベンゼン共重合体のスチレン含量25モル%、ジビニルベンゼン含量0.070モル%、Mw=115000、Mw/Mn=2.2
ポリスチレン鎖の含量17質量%、Mw=18000、Mw/Mn=1.2
全スチレン含量63質量%

クロス共重合体6
エチレン−スチレン−ジビニルベンゼン共重合体のスチレン含量30モル%、ジビニルベンゼン含量0.090モル%、Mw=135000、Mw/Mn=2.3
ポリスチレン鎖の含量21質量%、Mw=29000、Mw/Mn=1.2
全スチレン含量69質量%

エチレン−オクテン共重合体:ダウケミカル社エンゲ−ジ8100
水素化スチレン−ブタジエンブロック共重合体:旭化成社製H1053
エチレン−プロピレン共重合体/ポリプロピレンコンパウンド:三井化学社製NOTIO PN2070
エチレン−酢酸ビニル共重合体:三井−デユポン社製EV-260
高密度ポリエチレン:プライムポリマー社ハイゼックス7800M
直鎖低密度ポリエチレン:ダウケミカル社アフィニティFM1570
以上の樹脂のMFR値、力学物性、総結晶融解熱を表1に示す。
A conductive resin composition was obtained as follows.
<Raw resin>
The raw material resins used in Examples and Comparative Examples are as follows.
Ethylene-styrene copolymer 1
Styrene content 41% by mass (16 mol%), Mw = 92000, Mw / Mn = 2.2
The ethylene-styrene copolymer was produced by the production method described in JP3659760.
The following cross-copolymer was produced by the production method described in WO2000 / 37517 or WO2007139116, and the following composition was similarly determined by the method described in these publications. These cross copolymers are obtained by conducting anionic polymerization in the presence of an ethylene-styrene-divinylbenzene copolymer obtained by coordination polymerization and a styrene monomer, and an ethylene-styrene-divinylbenzene copolymer chain and polystyrene. A copolymer having a chain. Hereinafter, in order to define a cross copolymer, the styrene content, divinylbenzene content, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn) of the ethylene-styrene-divinylbenzene copolymer used, the cross copolymer The polystyrene chain content, the molecular weight (Mw) of the polystyrene chain, and the molecular weight distribution (Mw / Mn) are shown. The total styrene content is a total content of the styrene contents contained in the ethylene-styrene-divinylbenzene copolymer chain and the polystyrene chain contained in the cross copolymer.

Cross copolymer 1
Ethylene-styrene-divinylbenzene copolymer styrene content 10 mol%, divinylbenzene content 0.045 mol%, Mw = 98000, Mw / Mn = 2.3
Polystyrene chain content 15% by mass, Mw = 22000, Mw / Mn = 1.3
Total styrene content 41% by mass

Cross copolymer 2
Ethylene-styrene-divinylbenzene copolymer styrene content 6 mol%, divinylbenzene content 0.030 mol%, Mw = 80000, Mw / Mn = 2.4
Polystyrene chain content 35% by mass, Mw = 19000, Mw / Mn = 1.2
Total styrene content 47% by mass

Cross copolymer 3
Ethylene-styrene-divinylbenzene copolymer styrene content 8 mol%, divinylbenzene content 0.035 mol%, Mw = 110000, Mw / Mn = 2.3
Polystyrene chain content 11% by mass, Mw = 24000, Mw / Mn = 1.2
Total styrene content 32% by mass,

Cross copolymer 4
Ethylene-styrene-divinylbenzene copolymer styrene content 16 mol%, divinylbenzene content 0.083 mol%, Mw = 100000, Mw / Mn = 2.2
Polystyrene chain content 17% by mass, Mw = 28000, Mw / Mn = 1.2
Total styrene content 52 mass%,

Cross copolymer 5
Ethylene-styrene-divinylbenzene copolymer styrene content 25 mol%, divinylbenzene content 0.070 mol%, Mw = 15000, Mw / Mn = 2.2
Polystyrene chain content 17% by mass, Mw = 18000, Mw / Mn = 1.2
Total styrene content 63% by mass

Cross copolymer 6
Ethylene-styrene-divinylbenzene copolymer having a styrene content of 30 mol%, a divinylbenzene content of 0.090 mol%, Mw = 135,000, Mw / Mn = 2.3
Polystyrene chain content 21% by mass, Mw = 29000, Mw / Mn = 1.2
Total styrene content 69% by mass

Ethylene-octene copolymer: Dow Chemical Company Engage 8100
Hydrogenated styrene-butadiene block copolymer: H1053 manufactured by Asahi Kasei Corporation
Ethylene-propylene copolymer / polypropylene compound: Mitsui Chemicals, Inc. NOTIO PN2070
Ethylene-vinyl acetate copolymer: EV-260 manufactured by Mitsui-Deupon
High-density polyethylene: Prime Polymer Hi-Zex 7800M
Linear low density polyethylene: Dow Chemical affinity FM1570
Table 1 shows the MFR value, mechanical properties, and total crystal melting heat of the above resins.

Figure 2011153214
Figure 2011153214

<導電性炭素フィラ−>
デンカブラック 粒状品:電気化学工業(株)製
デンカブラック 硼素含有品、硼素含量1質量%:電気化学工業(株)製
<混練法>
表1に記載した樹脂とデンカブラック 粒状品、またはデンカブラック 硼素
含有品を以下のようにして混練しコンパウンドを得た。
ブラベンダ−プラスチコ−ダ−(ブラベンダ−社製PL2000型)を使用し、樹脂と導電性炭素フィラ−の合計約45gを250℃、30rpm、30分間混練し樹脂組成物を作製した。酸化防止剤としてはチバ・ジャパン社製イルガノックス1076を0.1質量部用いた。
物性評価用のフィルムは加熱プレス法(温度270℃、時間10分間、圧力100kg/cm2)により成形した厚さ約300ミクロンのフィルムを用いた。
<Conductive carbon filler>
Denka Black Granular product: Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd. Boron-containing product, boron content 1% by mass: manufactured by Denki Kagaku Kogyo Co., Ltd. <Kneading method>
The resin described in Table 1 and Denka Black granular product or Denka Black boron-containing product were kneaded as follows to obtain a compound.
Using a Brabender plasticizer (PL2000 model manufactured by Brabender Co.), a total of about 45 g of resin and conductive carbon filler was kneaded at 250 ° C., 30 rpm for 30 minutes to prepare a resin composition. As an antioxidant, 0.1 part by mass of Ciba Japan Irganox 1076 was used.
As a film for evaluating physical properties, a film having a thickness of about 300 microns formed by a hot press method (temperature: 270 ° C., time: 10 minutes, pressure: 100 kg / cm 2) was used.

<キャスト法>
表1に記載した樹脂とデンカブラック 粒状品を加温したトルエン溶媒に溶解/分散させ、ガラス板上にブレ−ドを用いキャストし、で室温、一晩風乾してキャストフィルムを作成した。
<Cast method>
The resin and Denka black granular material shown in Table 1 were dissolved / dispersed in a heated toluene solvent, cast on a glass plate using a blade, and air-dried at room temperature overnight to prepare a cast film.

<引張試験>
JIS K−6251に準拠し、得られたフィルムを2号1/2号型テストピース形状にカットし、島津製作所AGS−100D型引張試験機を用い、引張速度500mm/minにて初期引張弾性率、破断点伸び、破断強度を測定した。
<Tensile test>
In accordance with JIS K-6251, the obtained film was cut into No. 2 1/2 type test piece shape, and the initial tensile elastic modulus was used at a tensile speed of 500 mm / min using a Shimadzu AGS-100D type tensile tester. The elongation at break and the strength at break were measured.

<導電率測定>
三菱アナリテック社製の低抵抗率計ロレスターGPを用いて導電率の測定を行った。用いた四端針プロ−ブは、試料フィルムの厚さによりASPとESPを使い分けた。
<Conductivity measurement>
The conductivity was measured using a low resistivity meter Lorester GP manufactured by Mitsubishi Analitech. The four-end needle probe used was either ASP or ESP depending on the thickness of the sample film.

<粘弾性スペクトル>
上記加熱プレス法により得た厚み約0.5mmのフィルムから測定用サンプル(3mm×40mm)を切り出し、動的粘弾性測定装置(レオメトリックス社RSA−III)を使用し、周波数1Hz、温度領域−50℃〜+250℃の範囲で測定した。
その他測定パラメ−タ−は以下の通り
測定周波数1Hz
昇温速度4℃/分
サンプルチャック間長さ(測定長)10mm
Initial Static Force 5.0g
Auto Tension Sensitivity 1.0g
Max Auto Tension Rate 0.033mm/s
Max Applied Strain 1.5%
Min Allowed Force 1.0g

本明細書で、耐熱性の指標としては、本条件の粘弾性スペクトル測定により得られる貯蔵弾性率(E‘)が10Paまで低下する温度であり、150℃以上、好ましくは200℃以上、最も好ましくは250℃以上である。更に好ましくは本測定条件下、測定中サンプルの引張方向の長さ変化(δL)が10%以下を保つ温度であり、150℃以上、好ましくは200℃以上、最も好ましくは250℃以上である。
<Viscoelastic spectrum>
A sample for measurement (3 mm × 40 mm) was cut out from a film having a thickness of about 0.5 mm obtained by the above-mentioned hot press method, and a dynamic viscoelasticity measuring apparatus (Rheometrics RSA-III) was used. It measured in the range of 50 degreeC-+250 degreeC.
Other measurement parameters are as follows: Measurement frequency 1Hz
Temperature rising speed 4 ° C / min Sample chuck length (measurement length) 10mm
Initial Static Force 5.0g
Auto Tension Sensitivity 1.0g
Max Auto Tension Rate 0.033mm / s
Max Applied Strain 1.5%
Min Allowed Force 1.0g

In the present specification, the heat resistance index is a temperature at which the storage elastic modulus (E ′) obtained by measuring the viscoelastic spectrum under these conditions is reduced to 10 7 Pa, and is 150 ° C. or higher, preferably 200 ° C. or higher, Most preferably, it is 250 degreeC or more. More preferably, it is a temperature at which the length change (δL) in the tensile direction of the sample during measurement is maintained at 10% or less under the present measurement conditions, and is 150 ° C. or higher, preferably 200 ° C. or higher, and most preferably 250 ° C. or higher.

<電解液耐性試験>
300ミクロン厚さのシ−トを炭酸エチレン、炭酸ジエチル、炭酸ジメチルの1:1:1の質量比からなる混合溶媒に60℃、1週間浸漬し、シ−トの状態、重量増加率(膨潤度)を求めた。膨潤度は20%以下である必要がある。
<Electrolytic solution resistance test>
A sheet having a thickness of 300 microns was immersed in a mixed solvent having a mass ratio of 1: 1: 1 of ethylene carbonate, diethyl carbonate, and dimethyl carbonate at 60 ° C. for 1 week, and the sheet state, weight increase rate (swelling Degree). The degree of swelling needs to be 20% or less.

<Nメチルピロリドン(NMP)耐性試験>
300ミクロン厚さのシ−トを100℃の金属プレ−ト上に置き、Nメチルピロリドン1滴を滴下する。1分後、その表面をガ−ゼで拭き取り、シ−ト表面状態とガ−ゼへの炭素質の付着具合(黒色度)から判断する。
シ−ト表面状態については溶解、膨潤が認められないこと、ガ−ゼには目視で炭素質が付着しないことが必要である。
○:シ−ト表面に溶解や変形がない。ガ−ゼに炭素質の付着が認められない。
△:シ−ト表面に溶解はないが変形が認められる。ガ−ゼに炭素質の付着が僅かに認められる。
×:シ−ト表面に溶解や変形が認められる。ガ−ゼに炭素質の付着が認められる。
○を合格とする。
<N-methylpyrrolidone (NMP) resistance test>
A 300 micron thick sheet is placed on a 100 ° C. metal plate and a drop of N-methylpyrrolidone is added dropwise. After 1 minute, the surface is wiped with a gauze and judged from the surface condition of the sheet and the degree of carbonaceous adhesion to the gauze (blackness).
It is necessary that the surface state of the sheet is not dissolved or swelled, and that the carbonaceous matter does not adhere to the gauze visually.
○: There is no dissolution or deformation on the sheet surface. No carbonaceous deposits are observed on the gauze.
Δ: There is no dissolution on the sheet surface, but deformation is observed. Slight carbonaceous deposits are observed on the gauze.
X: Dissolution or deformation is observed on the sheet surface. Carbonaceous deposits are observed on the gauze.
○ is accepted.

実施例の配合と測定結果を表2、3に、比較例の配合と測定結果を表4に示す。 The formulations and measurement results of the examples are shown in Tables 2 and 3, and the formulations and measurement results of the comparative examples are shown in Table 4.

Figure 2011153214
Figure 2011153214

Figure 2011153214
Figure 2011153214

Figure 2011153214
Figure 2011153214

実施例の樹脂組成物は、いずれも導電性、フレキシブル性、力学物性、耐熱性を示す。一方、導電性炭素フィラ−の割合が一定以下の場合、導電性のみならず、耐熱性や耐溶媒性も低下してしまう。本発明の条件を満たさない炭化水素系エラストマ−樹脂の場合、得られる樹脂組成物は硬く、脆く、成形加工が著しく困難であった。さらに、オレフィン−芳香族ビニル化合物共重合体を用い、樹脂100質量部に対し導電性炭素フィラ−80質量部以上200質量部以下からなる樹脂組成物が250℃以上の耐熱性を示すことが出来るため、特にハンダ耐熱を必要とする電気的接続回路等に好ましい。
リチウムイオン電池の金属電極(集電極)の代替を想定した耐溶媒試験の結果を考慮すると、エチレン−αオレフィン共重合体、プロピレン−αオレフィン共重合体、及び芳香族ビニル化合物の含有量が50質量%以下のオレフィン−芳香族ビニル化合物共重合体を用い、これら樹脂100質量部に対し導電性炭素フィラ−80質量部以上200質量部以下からなる樹脂組成物が条件を満たす。

The resin compositions of the examples all show conductivity, flexibility, mechanical properties, and heat resistance. On the other hand, when the ratio of the conductive carbon filler is below a certain level, not only the conductivity but also the heat resistance and solvent resistance are lowered. In the case of a hydrocarbon-based elastomer resin that does not satisfy the conditions of the present invention, the resulting resin composition is hard and brittle, and molding is extremely difficult. Furthermore, using an olefin-aromatic vinyl compound copolymer, a resin composition consisting of 80 parts by mass or more and 200 parts by mass or less of conductive carbon filler with respect to 100 parts by mass of the resin can exhibit heat resistance of 250 ° C. or more. Therefore, it is particularly preferable for an electrical connection circuit that requires soldering heat resistance.
Considering the result of the solvent resistance test assuming the replacement of the metal electrode (collector electrode) of the lithium ion battery, the content of the ethylene-α olefin copolymer, the propylene-α olefin copolymer, and the aromatic vinyl compound is 50. A resin composition consisting of 80 parts by mass or more and 200 parts by mass or less of conductive carbon filler with respect to 100 parts by mass of these resins is satisfied using an olefin-aromatic vinyl compound copolymer of mass% or less.

Claims (9)

引張初期弾性率100MPa以下、引張破断点伸び300%以上、引張破断強度10MPa以上、総結晶融解熱が80J/g以下の炭化水素系エラストマ−樹脂100質量部と、導電性炭素フィラ−50〜200質量部からなる導電性樹脂組成物。 Initial tensile elastic modulus of 100 MPa or less, tensile elongation at break of 300% or more, tensile fracture strength of 10 MPa or more, total mass melting heat of 80 J / g or less of hydrocarbon elastomer resin, conductive carbon filler 50 to 200 A conductive resin composition comprising parts by mass. 炭化水素系エラストマ−樹脂がオレフィン系共重合体、エチレン−極性モノマー共重合体、オレフィン−芳香族ビニル化合物共重合体、ランダム性スチレン−ジエン共重合体またはブロック性スチレン−ジエン共重合体やこれらの水素添加物であることを特徴とする請求項1記載の導電性樹脂組成物。 Hydrocarbon elastomer resin is olefin copolymer, ethylene-polar monomer copolymer, olefin-aromatic vinyl compound copolymer, random styrene-diene copolymer or block styrene-diene copolymer The conductive resin composition according to claim 1, wherein the conductive resin composition is a hydrogenated product. 炭化水素系エラストマ−樹脂がオレフィン−芳香族ビニル化合物共重合体であり、樹脂100質量部に対し導電性炭素フィラ−80質量部以上200質量部以下であり、粘弾性スペクトル測定により得られる、貯蔵弾性率が10Paまで低下する温度が250℃以上であることを特徴とする請求項2記載の導電性樹脂組成物。 The hydrocarbon-based elastomer resin is an olefin-aromatic vinyl compound copolymer, the conductive carbon filler is 80 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the resin, and is obtained by viscoelastic spectrum measurement. The conductive resin composition according to claim 2, wherein the temperature at which the elastic modulus decreases to 10 7 Pa is 250 ° C or higher. 0.5S/cm以上300S/cm以下の導電率、引張初期弾性率2000MPa以下かつ引張破断点伸び5%以上、引張破断強度5MPa以上であることを特徴とする、請求項1〜3のいずれか一項記載の樹脂組成物からなる導電性シ−ト。 The electrical conductivity of 0.5 S / cm or more and 300 S / cm or less, the tensile initial elastic modulus 2000 MPa or less, the tensile breaking point elongation 5% or more, and the tensile breaking strength 5 MPa or more. A conductive sheet comprising the resin composition according to one item. 請求項1〜3のいずれか一項記載の導電性樹脂組成物からなる電気配線材料。 The electrical wiring material which consists of a conductive resin composition as described in any one of Claims 1-3. 請求項5記載の電気配線材料を含む太陽電池。 A solar cell comprising the electrical wiring material according to claim 5. 炭化水素系エラストマ−樹脂がエチレン−αオレフィン共重合体、プロピレン−αオレフィン共重合体、芳香族ビニル化合物の含有量が50質量%以下のオレフィン−芳香族ビニル化合物共重合体から選ばれ、樹脂100質量部に対し導電性炭素フィラ−80質量部以上200質量部以下であることを特徴とする請求項1記載の導電性樹脂組成物。 The hydrocarbon elastomer resin is selected from an ethylene-α olefin copolymer, a propylene-α olefin copolymer, and an olefin-aromatic vinyl compound copolymer having an aromatic vinyl compound content of 50% by mass or less. 2. The conductive resin composition according to claim 1, wherein the conductive carbon filler is 80 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass. 0.5S/cm以上300S/cm以下の導電率、引張初期弾性率2000MPa以下かつ引張破断点伸び5%以上、引張破断強度5MPa以上であることを特徴とする、請求項7記載の導電性樹脂組成物からなる導電性シート。 The conductive resin according to claim 7, wherein the conductive resin has an electrical conductivity of 0.5 S / cm or more and 300 S / cm or less, an initial tensile modulus of 2000 MPa or less, an elongation at break of 5% or more, and a tensile strength at break of 5 MPa or more. A conductive sheet made of the composition. 請求項8記載の導電性シ−トを用いたリチウムイオン電池用集電極。

A collector electrode for a lithium ion battery using the conductive sheet according to claim 8.

JP2010015480A 2010-01-27 2010-01-27 Conductive resin composition and conductive sheet Expired - Fee Related JP5430420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010015480A JP5430420B2 (en) 2010-01-27 2010-01-27 Conductive resin composition and conductive sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010015480A JP5430420B2 (en) 2010-01-27 2010-01-27 Conductive resin composition and conductive sheet

Publications (2)

Publication Number Publication Date
JP2011153214A true JP2011153214A (en) 2011-08-11
JP5430420B2 JP5430420B2 (en) 2014-02-26

Family

ID=44539411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010015480A Expired - Fee Related JP5430420B2 (en) 2010-01-27 2010-01-27 Conductive resin composition and conductive sheet

Country Status (1)

Country Link
JP (1) JP5430420B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058168A1 (en) * 2011-10-18 2013-04-25 デクセリアルズ株式会社 Conductive adhesive, solar cell module using same, and method for manufacturing solar cell module
WO2015156087A1 (en) * 2014-04-11 2015-10-15 株式会社クラレ Composition
JP2016050779A (en) * 2014-08-28 2016-04-11 日産自動車株式会社 Electrode evaluation method
KR20160049407A (en) * 2014-10-27 2016-05-09 롯데케미칼 주식회사 Resin composition for composite electrode and composite electrode using the same
WO2019045030A1 (en) * 2017-09-01 2019-03-07 デンカ株式会社 Electroconductive resin composition
CN112913054A (en) * 2018-10-22 2021-06-04 三洋化成工业株式会社 Method for producing resin collector for negative electrode, method for producing negative electrode for lithium ion battery, and method for producing lithium ion battery
KR20220122898A (en) * 2021-02-26 2022-09-05 조인셋 주식회사 Cathode for secondary battery having flexibility and stretch, and secondary battery using the same
JP7432383B2 (en) 2020-02-04 2024-02-16 三洋化成工業株式会社 Resin current collector for positive electrode and lithium ion battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040435A1 (en) * 1997-03-11 1998-09-17 Nippon Zeon Co., Ltd. Conductive elastomer film, method for production thereof, and conductive elastomer composition
JP2002100237A (en) * 2000-09-20 2002-04-05 Toyo Ink Mfg Co Ltd Conductive resin composition and molding thereof
JP2004059651A (en) * 2002-07-25 2004-02-26 Asahi Kasei Chemicals Corp Resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040435A1 (en) * 1997-03-11 1998-09-17 Nippon Zeon Co., Ltd. Conductive elastomer film, method for production thereof, and conductive elastomer composition
JP2002100237A (en) * 2000-09-20 2002-04-05 Toyo Ink Mfg Co Ltd Conductive resin composition and molding thereof
JP2004059651A (en) * 2002-07-25 2004-02-26 Asahi Kasei Chemicals Corp Resin composition

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058168A1 (en) * 2011-10-18 2013-04-25 デクセリアルズ株式会社 Conductive adhesive, solar cell module using same, and method for manufacturing solar cell module
WO2015156087A1 (en) * 2014-04-11 2015-10-15 株式会社クラレ Composition
JP2016050779A (en) * 2014-08-28 2016-04-11 日産自動車株式会社 Electrode evaluation method
KR20160049407A (en) * 2014-10-27 2016-05-09 롯데케미칼 주식회사 Resin composition for composite electrode and composite electrode using the same
KR101653767B1 (en) 2014-10-27 2016-09-02 롯데케미칼 주식회사 Resin composition for composite electrode and composite electrode using the same
JPWO2019045030A1 (en) * 2017-09-01 2020-08-20 デンカ株式会社 Conductive resin composition
WO2019045030A1 (en) * 2017-09-01 2019-03-07 デンカ株式会社 Electroconductive resin composition
JP7158388B2 (en) 2017-09-01 2022-10-21 デンカ株式会社 Conductive resin composition
CN112913054A (en) * 2018-10-22 2021-06-04 三洋化成工业株式会社 Method for producing resin collector for negative electrode, method for producing negative electrode for lithium ion battery, and method for producing lithium ion battery
CN112913054B (en) * 2018-10-22 2024-02-02 三洋化成工业株式会社 Method for producing resin current collector for negative electrode, method for producing negative electrode for lithium ion battery, and method for producing lithium ion battery
JP7432383B2 (en) 2020-02-04 2024-02-16 三洋化成工業株式会社 Resin current collector for positive electrode and lithium ion battery
KR20220122898A (en) * 2021-02-26 2022-09-05 조인셋 주식회사 Cathode for secondary battery having flexibility and stretch, and secondary battery using the same
KR102575021B1 (en) 2021-02-26 2023-09-07 조인셋 주식회사 Cathode for secondary battery having flexibility and stretch, and secondary battery using the same

Also Published As

Publication number Publication date
JP5430420B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5430420B2 (en) Conductive resin composition and conductive sheet
Wu et al. Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes
JP6184056B2 (en) Resin composition
Ji et al. PIM‐1 as a multifunctional framework to enable high‐performance solid‐state lithium–sulfur batteries
Fan et al. Functionalized Nanocomposite Gel Polymer Electrolyte with Strong Alkaline‐Tolerance and High Zinc Anode Stability for Ultralong‐Life Flexible Zinc–Air Batteries
EP3284782B1 (en) Electrically conductive resin composition, and film produced from same
KR20160025020A (en) Dispersant for resin collectors, material for resin collectors, and resin collector
TW201031710A (en) Composition comprising propylene-olefin-copolymer waxes and carbon black
JP2016041806A (en) Resin composition, method for producing resin composition, powdery mixture, bipolar plate for redox flow cell, and separator for fuel cell
JP3659226B2 (en) Conductive polymer composition and PTC element
JP2012204292A (en) Conductive film and manufacturing method thereof
Song et al. Breathable Artificial Interphase for Dendrite‐Free and Chemo‐Resistive Lithium Metal Anode
JP7055059B2 (en) A method for manufacturing a resin collector, a method for manufacturing an electrode for a lithium ion battery, and a method for manufacturing a lithium ion battery.
JP7089374B2 (en) Resin current collectors and lithium-ion batteries
JP7194048B2 (en) Resin current collector and lithium ion battery
EP4015544A1 (en) Composition for electricity storage devices, slurry for electricity storage device electrodes, electricity storage device electrode, and electricity storage device
JP6246264B2 (en) Resin composition
JP7055694B2 (en) Resin collectors, electrodes for lithium-ion batteries, and lithium-ion batteries
JP5339751B2 (en) Methanol container
JP2021125337A (en) Negative electrode for lithium ion battery, and method for manufacturing the same
CN114830382A (en) Current collector for lithium ion battery and method for producing the current collector
JP7148275B2 (en) Method for manufacturing resin current collector
JP2021125313A (en) Positive electrode for lithium ion battery, and method for manufacturing the same
Si et al. A Highly Damping, Crack‐Insensitive and Self‐Healable Binder for Lithium‐Sulfur Battery by Tailoring the Viscoelastic Behavior
TW201446855A (en) Resin composition and conductive resin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

R151 Written notification of patent or utility model registration

Ref document number: 5430420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees