JP2011151909A - Core for rotors and rotor - Google Patents

Core for rotors and rotor Download PDF

Info

Publication number
JP2011151909A
JP2011151909A JP2010009849A JP2010009849A JP2011151909A JP 2011151909 A JP2011151909 A JP 2011151909A JP 2010009849 A JP2010009849 A JP 2010009849A JP 2010009849 A JP2010009849 A JP 2010009849A JP 2011151909 A JP2011151909 A JP 2011151909A
Authority
JP
Japan
Prior art keywords
temperature
temperature pattern
core
rotor
radial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010009849A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takagi
浩之 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2010009849A priority Critical patent/JP2011151909A/en
Publication of JP2011151909A publication Critical patent/JP2011151909A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a core for rotors and a rotor for motors that are obtained by pressure-forming a mixture of magnetic powder and binder, wherein mechanical strength is ensured to suppress breakage and increase in iron loss and cost reduction is achieved. <P>SOLUTION: A dust core 1 includes a yoke portion 1b having a center hole 1a into which a rotating shaft 2 is press fit, multiple winding barrel bodies 1c that are provided on the outer circumferential surface 1bo of the yoke portion 1b and on which a wire is wound, and tooth portions 1d provided in 1co outside of the winding barrel bodies 1c in the radial direction. The dust core is formed by pressure-forming a mixture of magnetic powder and binder. The yoke portion 1b is set to any of the following temperature distributions and heated and bonded: a first temperature pattern in which temperature is gradually lowered from the inner circumferential surface 1bi to the outer circumferential surface 1bo of the yoke portion 1b in the radial direction; a second temperature pattern in which temperature is lowered stepwise; and a third temperature pattern obtained by combining the first temperature pattern and the second temperature pattern. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、モータに使用される回転子用鉄心および回転子に関する。   The present invention relates to a rotor core and a rotor used in a motor.

従来技術のモータの回転子用鉄心(コア)として、図16に示すように、回転軸103と、回転軸103に固定した連結部材102と、連結部材102の外周面が圧入される中心孔105を形成したコア101と、連結部材102の図16における上端面に配置され回転軸103に固定した整流子104とを備える直流モータ(図示せず)の電機子100が開示されている。コア101は、第1コア部110と、第1コア部110と同一形状、同一寸法の第2コア部120とから構成される。図17は図16の第1コア部110の平面図を示し、図18は図17のFF断面図である。図19は図16の第2コア部120の平面図を示し、図20は図19のGG断面図である。   As shown in FIG. 16, as a rotor core (core) of a conventional motor, as shown in FIG. 16, a rotating shaft 103, a connecting member 102 fixed to the rotating shaft 103, and a center hole 105 into which an outer peripheral surface of the connecting member 102 is press-fitted. An armature 100 of a direct current motor (not shown) is disclosed that includes a core 101 formed with a connecting member 102 and a commutator 104 disposed on the upper end surface in FIG. The core 101 includes a first core part 110 and a second core part 120 having the same shape and the same dimensions as the first core part 110. 17 is a plan view of the first core part 110 of FIG. 16, and FIG. 18 is a cross-sectional view of the FF of FIG. 19 is a plan view of the second core portion 120 of FIG. 16, and FIG. 20 is a GG cross-sectional view of FIG.

図17および図18に示すように、第1コア部110は、リング部111と、リング部111の外周面113に等分に設けた複数のティース部112とを備え、ティース部112には巻線130が巻回される。図19および図20に示すように、第2コア部120は、リング部121と、リング部121の外周面123に等分に設けた複数のティース部122とを備え、ティース部122には巻線130が巻回される。   As shown in FIGS. 17 and 18, the first core portion 110 includes a ring portion 111 and a plurality of teeth portions 112 provided equally on the outer peripheral surface 113 of the ring portion 111, and the teeth portion 112 is wound around the teeth portion 112. The wire 130 is wound. As shown in FIG. 19 and FIG. 20, the second core portion 120 includes a ring portion 121 and a plurality of teeth portions 122 equally provided on the outer peripheral surface 123 of the ring portion 121. The wire 130 is wound.

そして、各ティース部112、122に巻線130を巻回した第1コア部110と第2コア部120とを互いに対向させて、各ティース部112、122が重なるように軸線方向の位置を一致させる。さらに、各ティース部112、122の位置を円周方向に45度ずらした状態で、第1コア部110と第2コア部120とを互いに組付ける。この時、第1コア部110おけるリング部111が第2コア部120おけるリング部121の内側に嵌め込まれ、第2コア部120おけるリング部121が第1コア部110おけるリング部111の内側に嵌め込まれる。   Then, the first core part 110 and the second core part 120 in which the windings 130 are wound around the tooth parts 112 and 122 are opposed to each other, and the positions in the axial direction are matched so that the tooth parts 112 and 122 overlap each other. Let Further, the first core portion 110 and the second core portion 120 are assembled to each other in a state where the positions of the tooth portions 112 and 122 are shifted by 45 degrees in the circumferential direction. At this time, the ring part 111 in the first core part 110 is fitted inside the ring part 121 in the second core part 120, and the ring part 121 in the second core part 120 is inside the ring part 111 in the first core part 110. It is inserted.

より詳しくは、第1コア部110におけるリング部111の外周面113(図17)と第2コア部120におけるリング部121の内側面124(図20)とが当接され、その当接部位が接着剤等により固定される。一方、第2コア部120におけるリング部121の外周面123(図19)と第1コア部110におけるリング部111の内側面114(図18)とが当接され、その当接部位が接着剤等により固定される。   More specifically, the outer peripheral surface 113 (FIG. 17) of the ring part 111 in the first core part 110 and the inner side surface 124 (FIG. 20) of the ring part 121 in the second core part 120 are brought into contact with each other. It is fixed with an adhesive or the like. On the other hand, the outer peripheral surface 123 (FIG. 19) of the ring part 121 in the second core part 120 and the inner side surface 114 (FIG. 18) of the ring part 111 in the first core part 110 are brought into contact with each other, and the contact part is an adhesive. It is fixed by etc.

図16に示すように、第1コア部110と第2コア部120が一体となって、第1コア部110の中心孔115と第2コア部120の中心孔125とにより形成される中心孔105に連結部材102が圧入される。さらに、連結部材102の中心部に設けた貫通孔106に軸103が圧入される。(例えば、特許文献1参照。)
また、絶縁材によりその表面がコーティングされた磁性体粒子を成形して得られ、その内部に磁石が配置され、且つその外周部に円筒状の補強層を有するモータ用ロータが開示されている。このモータ用ロータは、その外周部に設けた補強層によって圧粉磁性体の弱点である脆性が補強される。その結果、ロータの機械的強度が向上し、衝撃(急回転、急制動等)や高速回転時の大きな遠心力等による破壊、飛散が阻止される(例えば、特許文献2参照。)。
As shown in FIG. 16, the first core portion 110 and the second core portion 120 are integrated to form a center hole formed by the center hole 115 of the first core portion 110 and the center hole 125 of the second core portion 120. The connecting member 102 is press-fitted into 105. Further, the shaft 103 is press-fitted into a through hole 106 provided in the central portion of the connecting member 102. (For example, refer to Patent Document 1.)
Also disclosed is a motor rotor obtained by molding magnetic particles whose surfaces are coated with an insulating material, having magnets disposed therein, and having a cylindrical reinforcing layer on the outer periphery thereof. In this motor rotor, the brittleness, which is a weak point of the dust magnetic material, is reinforced by the reinforcing layer provided on the outer periphery thereof. As a result, the mechanical strength of the rotor is improved, and breakage and scattering due to impact (rapid rotation, rapid braking, etc.) and large centrifugal force during high-speed rotation are prevented (for example, see Patent Document 2).

また、複数のティースと、複数のティースのそれぞれに巻回されるコイルと、ティースを嵌合させるための嵌合孔を有するヨークとを備える電動機ステータであって、ティースは、磁性材料を含む圧粉磁心材料によって成形されるティース本体と、ティース本体に比べて高い機械的強度を有するティース補強材とを含み、ティース本体の表面の少なくとも一部にティース補強材が一体成形され、ヨークの嵌合孔の壁面と、ティース補強材とが接するように、ヨークにティースが嵌合される電動機ステータが開示されている。より具体的には、ティース本体は略T字形状をなし、T字の上側に張りでた部分であるティース頭部(電動機のロータに対面する部分)と、T字の下側に突き出た部分であるティース底部とを備える。ティースは、ティース底部の端面の全体がティース補強材によって覆われるように、ティース補強材とティース本体とが一体成形される。ヨークは、鋼材からなるリング状の鋼板が積層され、円筒状をなす(例えば、特許文献3参照。)。   An electric motor stator comprising a plurality of teeth, a coil wound around each of the plurality of teeth, and a yoke having a fitting hole for fitting the teeth, the teeth being a pressure containing a magnetic material. Includes a teeth body formed of a powder magnetic core material and a teeth reinforcement material having higher mechanical strength than the teeth body. The teeth reinforcement material is integrally formed on at least a part of the surface of the teeth body, and the yoke is fitted. An electric motor stator is disclosed in which a tooth is fitted to a yoke so that a wall surface of a hole and a tooth reinforcing material are in contact with each other. More specifically, the teeth body has a substantially T-shape, and a teeth head portion (a portion facing the rotor of the electric motor) that is a portion extending above the T shape, and a portion protruding below the T shape. And a teeth bottom. In the teeth, the teeth reinforcing material and the teeth main body are integrally formed so that the entire end surface of the bottom portion of the teeth is covered with the teeth reinforcing material. The yoke is formed in a cylindrical shape by laminating ring-shaped steel plates made of steel (see, for example, Patent Document 3).

また、コイルが装着されたティースと、ティースの一端側に設けるヨーク部とを備える複数の分割コアが円環状に配置され、これら分割コイルのヨーク部を連結してモータのステータを構成するために、各分割コアの外周に焼き嵌めされる焼嵌リングであり、少なくとも周方向に複数の貫通孔が形成される焼嵌リングおよびステータが開示されている。この分割コアは、圧粉成形により成形されており、例えば、純鉄粉表面を無機絶縁物で絶縁し、少量の有機樹脂バインダで混合した後、加圧成形される(例えば、特許文献4参照。)。   A plurality of split cores each having a tooth with a coil and a yoke portion provided at one end of the tooth are arranged in an annular shape, and the yoke portions of the split coils are connected to form a stator of the motor. A shrink-fit ring and a stator that are shrink-fit rings that are shrink-fitted to the outer periphery of each split core and that have at least a plurality of through holes in the circumferential direction are disclosed. The split core is formed by compacting. For example, the surface of pure iron powder is insulated with an inorganic insulator, mixed with a small amount of an organic resin binder, and then compacted (see, for example, Patent Document 4). .)

特許第3920740号公報Japanese Patent No. 3920740 特開2005−318760号公報JP 2005-318760 A 特開2007−325362号公報JP 2007-325362 A 特開2008−86172号公報JP 2008-86172 A

しかしながら、特許文献1によれば、鉄損を低減するために磁性粉体と樹脂バインダとを混合して加圧成形により第1コア部110および第2コア部120を製造するため、第1コア部110と第2コア部120とから構成されるコア101は脆弱である。このため、連結部材102をコア101(第1コア部110と第2コア部120)のリング部111、121の中心孔115、125によって形成された中心孔105に圧入する際に、コア101が破損し易い問題がある。また、コア101の強度を確保するために加圧成形時におけるコア101の温度を高くすると、コア101の鉄損が増大する問題がある。   However, according to Patent Document 1, in order to reduce the iron loss, the first core part 110 and the second core part 120 are manufactured by mixing the magnetic powder and the resin binder and performing pressure molding. The core 101 composed of the part 110 and the second core part 120 is fragile. Therefore, when the connecting member 102 is press-fitted into the center hole 105 formed by the center holes 115 and 125 of the ring portions 111 and 121 of the core 101 (the first core portion 110 and the second core portion 120), There is a problem that is easy to break. Moreover, when the temperature of the core 101 at the time of pressure molding is increased in order to ensure the strength of the core 101, there is a problem that the iron loss of the core 101 increases.

また、特許文献2によれば、モータ用ロータは、その外周部に設けた補強層によって圧粉磁性体の弱点である脆性が改善されるが、中心孔は補強されていないため、モータ用ロータの中心部に設けた中心孔に回転軸を圧入する際に、中心孔近傍が破損するおそれがあるといった問題がある。さらに、モータ回転時、モータ用ロータに生じる遠心力によって中心孔近傍が破損するおそれがある。また、接着材を塗布した回転軸を中心孔に挿入して接着材固定する方法も考えられるが、接着工程が増え、モータ用ロータのコストが高くなる問題が生じる。   Further, according to Patent Document 2, the motor rotor is improved in brittleness, which is a weak point of the powder magnetic material, by the reinforcing layer provided on the outer peripheral portion thereof, but since the central hole is not reinforced, the motor rotor When the rotary shaft is press-fitted into the center hole provided at the center of the shaft, the vicinity of the center hole may be damaged. Further, when the motor rotates, the vicinity of the center hole may be damaged by the centrifugal force generated in the motor rotor. A method of fixing the adhesive by inserting the rotation shaft coated with the adhesive into the center hole is also conceivable, but there is a problem that the number of bonding steps increases and the cost of the motor rotor increases.

また、特許文献3によれば、ティースのティース底部に備えられたティース補強材料と、ヨークに形成された嵌合孔の側面とが接するように嵌合され、圧粉磁心材料によって形成されたティース本体の表面は、ティース補強材料により保護されている。その結果、ティースをヨークの嵌合孔に嵌合させる際に、ティースの表面の破損が抑制されるが、ティース補強材料の部品がティースの個数分必要になり、電動機ステータのコストが高くなる問題がある。   Further, according to Patent Document 3, the teeth reinforcing material provided at the teeth bottom portion of the teeth and the side surface of the fitting hole formed in the yoke are fitted so as to be in contact with each other, and the teeth formed by the powder magnetic core material are used. The surface of the main body is protected by a tooth reinforcing material. As a result, when the teeth are fitted into the fitting holes of the yoke, damage to the surface of the teeth is suppressed, but the number of teeth reinforcing material parts is required for the number of teeth, which increases the cost of the motor stator. There is.

また、特許文献4によれば、焼嵌リングを用いたステータは、貫通を有する焼嵌リングにより、所定の締付力で分割コアを締付けているので、分割コアを圧粉成形体としても、ステータの破損は起こらない。しかし、焼嵌のための加熱工程が必要となると共に、焼嵌リングには少なくとも周方向に複数の貫通孔が設けられているため、焼嵌リングのコストが高くなり、これに伴いステータのコストが高くなる問題がある。   Further, according to Patent Document 4, the stator using the shrink-fit ring is tightened with the predetermined tightening force by the shrink-fit ring having a penetration, so even if the split core is used as a green compact, The stator will not be damaged. However, a heating process for shrink fitting is required, and the shrink fitting ring is provided with a plurality of through holes at least in the circumferential direction, which increases the cost of the shrink fitting ring. There is a problem that becomes high.

本発明は上記問題点に鑑みてなされたものであり、磁性体粉とバインダとを混合して加圧成形するモータの回転子用鉄心および回転子であって、その破損を抑制するよう機械的強度を確保しつつ、鉄損の増大が抑制されると共に、低コストの回転子用鉄心および回転子を提供することを目的とする。   The present invention has been made in view of the above problems, and is a rotor core and a rotor of a motor for mixing and pressing magnetic powder and a binder, and mechanically suppressing the breakage. An object of the present invention is to provide an iron core for a rotor and a rotor that are low in cost while suppressing an increase in iron loss while ensuring strength.

上記課題を解決するために講じた第1の課題解決手段は、内周部に回転軸を圧入可能な中心孔が形成されたヨーク部と、ヨーク部の外周部に突設され巻線を巻回可能な複数の巻線胴体部と、各々の巻線胴体部の径方向外側に設けられるティース部と、を備えた回転子用鉄心であって、回転子用鉄心は、磁性体粉およびバインダを加圧成形することにより形成され、ヨーク部は、内周部から外周部へと至る径方向に徐々に温度が低められる第一温度パターン、内周部から外周部へと至る径方向に段階的に温度が低められる第二温度パターン、および第一温度パターンと第二温度パターンとを組み合わせた第三温度パターンのうちいずれか一つの温度分布で加熱接着される、ことである。   The first problem-solving means taken to solve the above problems is a yoke part in which a central hole capable of press-fitting a rotation shaft is formed in the inner peripheral part, and a winding projecting from the outer peripheral part of the yoke part. A rotor core including a plurality of rotatable winding body portions and a tooth portion provided on a radially outer side of each winding body portion, the rotor core including a magnetic powder and a binder The yoke part has a first temperature pattern in which the temperature gradually decreases in the radial direction from the inner peripheral part to the outer peripheral part, and the yoke part has a step in the radial direction from the inner peripheral part to the outer peripheral part. In other words, heat bonding is performed with a temperature distribution of any one of a second temperature pattern in which the temperature is lowered and a third temperature pattern in which the first temperature pattern and the second temperature pattern are combined.

また、第2の課題解決手段は、巻線胴体部とティース部とは、径方向内側から径方向外側へと至る径方向に徐々に温度が低められる第一温度パターン、径方向内側から径方向外側へと至る径方向に段階的に温度が低められる第二温度パターン、および第一温度パターンと第二温度パターンとを組み合わせた第三温度パターンのうちいずれか一つの温度分布で加熱接着される、ことである。   Further, the second problem solving means is that the winding body portion and the tooth portion are a first temperature pattern in which the temperature gradually decreases in the radial direction from the radially inner side to the radially outer side, from the radially inner side to the radial direction. Heat bonding is performed with a temperature distribution of any one of a second temperature pattern in which the temperature is lowered stepwise in the radial direction leading to the outside and a third temperature pattern in which the first temperature pattern and the second temperature pattern are combined. That's it.

また、第3の課題解決手段は、ヨーク部と、ヨーク部の外周部に突設され巻線を巻回可能な複数の巻線胴体部と、各々の巻線胴体部の径方向外側に設けられるティース部とを備えた回転子用鉄心と、ヨーク部の中心部に設けた回転軸と、を備えた回転子であって、回転子は、磁性体粉およびバインダを加圧成形することにより形成され、回転軸とヨーク部とは、回転軸の中心軸からヨーク部の外周部へ至る径方向に徐々に温度が低められる第一温度パターン、回転軸の中心軸からヨーク部の外周部へ至る径方向に階段的に温度が低められる第二温度パターン、および第一温度パターンと第二温度パターンとを組み合わせた第三温度パターンのうちいずれか一つの温度分布で加熱接着される、ことである。   Further, the third problem solving means is provided on the outer side in the radial direction of each of the winding body parts, the yoke part, a plurality of winding body parts protruding from the outer periphery of the yoke part and capable of winding the windings. A rotor core including a tooth portion and a rotating shaft provided at a central portion of the yoke portion, wherein the rotor is formed by press-molding magnetic powder and a binder. The rotary shaft and the yoke portion are formed, a first temperature pattern in which the temperature gradually decreases in the radial direction from the central axis of the rotary shaft to the outer peripheral portion of the yoke portion, from the central axis of the rotary shaft to the outer peripheral portion of the yoke portion By heat-bonding at any one temperature distribution among the second temperature pattern in which the temperature is lowered stepwise in the radial direction and the third temperature pattern in which the first temperature pattern and the second temperature pattern are combined. is there.

また、第4の課題解決手段は、巻線胴体部とティース部とは、径方向内側から径方向外側へと至る径方向に徐々に温度が低められる第一温度パターン、径方向内側から径方向外側へと至る径方向に段階的に温度が低められる第二温度パターン、および第一温度パターンと第二温度パターンとを組み合わせた第三温度パターンのうちいずれか一つの温度分布で加熱接着される、ことである。   The fourth problem solving means is that the winding body portion and the tooth portion are a first temperature pattern in which the temperature gradually decreases in the radial direction from the radially inner side to the radially outer side, from the radially inner side to the radial direction. Heat bonding is performed with a temperature distribution of any one of a second temperature pattern in which the temperature is lowered stepwise in the radial direction leading to the outside and a third temperature pattern in which the first temperature pattern and the second temperature pattern are combined. That's it.

本発明によれば、ヨーク部の内周部からヨーク部の外周部へ至る径方向に沿った各場所は、徐々に温度が低くなる第一温度パターンと、段階的に温度が低くなる第二温度パターンと、第一温度パターンと第二温度パターンとが組み合わされた第三温度パターンのうちいずれかの一つの温度分布に設定され、加熱接着される。一般に、バインダを用いて粉体を加圧成型する際、粉体を構成する粒子同士の接着強度は加熱温度に依存するため、加熱接着後、ヨーク部の径方向内側からヨーク部の径方向外側へ至る径方向に沿った各場所の機械的強度は、徐々に低くなる第一強度分布と、段階的に低くなる第二強度分布と、第一強度分布と第二強度分布とが組み合わされた第三強度分布のうちいずれかの強度分布の機械的強度が得られる。従って、ヨーク部の径方向内側近傍の機械的強度は、ヨーク部の他の場所より高いので、中心孔に回転軸を圧入する際、ヨーク部の径方向内側近傍および中心孔の内周面の破損が抑制される。また、モータ回転時、ヨーク部の径方向外側からヨーク部の内周面に近づくほど、遠心力によって生じる回転子用鉄心の応力は高くなるが、第一強度分布、第二強度分布、第三強度分布により機械的強度の方も高くなるので、ヨーク部の中心孔周辺の破損が抑制される。   According to the present invention, each location along the radial direction from the inner peripheral portion of the yoke portion to the outer peripheral portion of the yoke portion has the first temperature pattern in which the temperature gradually decreases and the second temperature in which the temperature gradually decreases. The temperature distribution is set to any one of the temperature patterns and the third temperature pattern in which the first temperature pattern and the second temperature pattern are combined, and is bonded by heating. In general, when pressure-molding powder using a binder, the bonding strength between the particles constituting the powder depends on the heating temperature, so after heat-bonding, the yoke part radially outside the yoke part radially outside The mechanical strength of each location along the radial direction leading to the first strength distribution that gradually decreases, the second strength distribution that gradually decreases, the first strength distribution and the second strength distribution are combined The mechanical strength of any one of the third strength distributions is obtained. Accordingly, since the mechanical strength in the vicinity of the yoke portion in the radial direction is higher than that in other portions of the yoke portion, when the rotary shaft is press-fitted into the center hole, the vicinity of the yoke portion in the radial direction and the inner peripheral surface of the center hole is provided. Damage is suppressed. Further, when the motor rotates, the closer to the inner peripheral surface of the yoke portion from the outer side in the radial direction of the yoke portion, the higher the stress of the rotor core caused by centrifugal force, but the first strength distribution, second strength distribution, third Since the mechanical strength is higher due to the strength distribution, the damage around the central hole of the yoke portion is suppressed.

また、上述のヨーク部の温度により、成形接着後、ヨーク部の径方向内側からヨーク部の径方向外側へ至る径方向に沿った各場所の電気抵抗は、徐々に高くなる第一抵抗分布と、段階的に高くなる第二抵抗分布と、第一抵抗分布と第二抵抗分布とが組み合わされた第三抵抗分布のうちいずれかの抵抗分布の電気抵抗が得られる。従って、ヨーク部の径方向外側からヨーク部の径方向内側に近づくほど、電気抵抗は減少するが、モータ回転時におけるヨーク部の交番磁束による磁束密度の方も減少するので、ヨーク部の鉄損の増大は抑制される。   In addition, the electrical resistance at each location along the radial direction from the radially inner side of the yoke part to the radially outer side of the yoke part after molding and bonding is gradually increased by the temperature of the yoke part described above and the first resistance distribution. The electrical resistance of any one of the resistance distributions among the second resistance distribution that increases stepwise and the third resistance distribution in which the first resistance distribution and the second resistance distribution are combined is obtained. Therefore, the closer to the inner side of the yoke part from the radial outer side of the yoke part, the electric resistance decreases, but the magnetic flux density due to the alternating magnetic flux of the yoke part during motor rotation also decreases. The increase of is suppressed.

また、第2の課題解決手段では、加圧成形の際または加圧成形後、巻線胴体部の径方向内側からティース部の径方向外側へ至る径方向に沿った巻線胴体部とティース部の各場所は、徐々に温度が低くなる第一温度パターンと、段階的に温度が低くなる第二温度パターンと、第一温度パターンと第二温度パターンとが組み合わされた第三温度パターンとのいずれかの一つの温度分布に設定され、加熱接着される。これにより、巻線胴体部の径方向内側からティース部の径方向外側へ至る径方向に沿った巻線胴体部とティース部の機械的強度は、徐々に低くなる第一強度分布と、段階的に低くなる第二強度分布と、第一強度分布と第二強度分布とが組み合わされた第三強度分布のうちいずれかの強度分布の機械的強度が得られる。そして、ティース部の径方向外側から巻線胴体部の径方向内側に近づくほど、モータ回転時の遠心力によって生じる巻線胴体部とティース部の応力は高くなるが、第一、第二、第三強度分布により機械的強度の方も高くなるので、巻線胴体部とティース部の破損が阻止される。   Further, in the second problem solving means, the winding trunk portion and the tooth portion along the radial direction from the radially inner side of the winding trunk portion to the radially outer side of the teeth portion during or after the pressure molding. Each of the locations includes a first temperature pattern in which the temperature gradually decreases, a second temperature pattern in which the temperature gradually decreases, and a third temperature pattern in which the first temperature pattern and the second temperature pattern are combined. It is set to any one of the temperature distributions and is heat bonded. As a result, the mechanical strength of the winding body part and the tooth part along the radial direction from the radially inner side of the winding body part to the radially outer side of the tooth part is gradually reduced, and stepwise The mechanical strength of any one of the second intensity distribution and the third intensity distribution obtained by combining the first intensity distribution and the second intensity distribution is obtained. And the closer to the radially inner side of the winding body part from the radially outer side of the teeth part, the higher the stress of the winding body part and the teeth part caused by the centrifugal force during motor rotation, the first, second, second The mechanical strength is also increased by the three strength distribution, so that the winding body portion and the tooth portion are prevented from being damaged.

また、上述の巻線胴体部とティース部の温度により、巻線胴体部の径方向内側からティース部の径方向外側へ至る径方向に沿った巻線胴体部とティース部の電気抵抗は、徐々に高くなる第一抵抗分布と、段階的に高くなる第二抵抗分布と、第一抵抗分布と第二抵抗分布とが組み合わされた第三抵抗分布のうちいずれかの抵抗分布の電気抵抗が得られる。巻線胴体部とティース部の各場所は、交番磁束による磁束密度がヨーク部の径方向内側近傍より高い。しかし、ティース部の径方向外側から巻線胴体部の径方向内側に近づくほど、第一、第二、第三抵抗分布により電気抵抗は減少すると共に、巻線胴体部の径方向内側近傍の電気抵抗はヨーク部の径方向内側近傍の電気抵抗より高いので、巻線胴体部とティース部の鉄損の増大は抑制される。結果、巻線胴体部、ティース部、およびヨーク部における各々の鉄損の増大は抑制され、鉄損の増大が抑制された回転子用鉄心が提供できる。以上により、回転子用鉄心の破損を抑制する機械的強度を確保しつつ、鉄損の増大が抑制される回転子用鉄心を提供できる。   In addition, the electrical resistance of the winding body part and the tooth part along the radial direction from the radially inner side of the winding body part to the radially outer side of the tooth part gradually increases depending on the temperature of the winding body part and the tooth part. The electrical resistance of any one of the first resistance distribution, the second resistance distribution that increases stepwise, and the third resistance distribution that is a combination of the first resistance distribution and the second resistance distribution is obtained. It is done. In each place of the winding body part and the tooth part, the magnetic flux density due to the alternating magnetic flux is higher than that in the vicinity of the radially inner side of the yoke part. However, the closer to the radially inner side of the winding body portion from the radially outer side of the teeth portion, the electric resistance decreases due to the first, second, and third resistance distributions, and the electric power near the radially inner side of the winding body portion is reduced. Since the resistance is higher than the electric resistance in the vicinity of the radially inner side of the yoke portion, an increase in iron loss between the winding body portion and the tooth portion is suppressed. As a result, an increase in each iron loss in the winding body portion, the tooth portion, and the yoke portion is suppressed, and a rotor core in which an increase in iron loss is suppressed can be provided. As described above, it is possible to provide a rotor core in which an increase in iron loss is suppressed while ensuring mechanical strength that suppresses damage to the rotor core.

さらに、回転子用鉄心は、破損を防止するための補強部材が不要で、部品点数が削減されるので、低コストになる。   Furthermore, the rotor iron core does not require a reinforcing member for preventing breakage, and the number of parts is reduced, so that the cost is reduced.

また、回転子は、回転子用鉄心の中心孔に回転軸を圧入して構成されるので、複数種類の回転軸に対して適した回転子用鉄心を使用でき、汎用性のある回転子用鉄心を提供できる。   In addition, the rotor is configured by press-fitting a rotation shaft into the center hole of the rotor core. Therefore, a rotor core suitable for multiple types of rotation shafts can be used, and a versatile rotor core can be used. An iron core can be provided.

また、第3の課題解決手段では、回転軸とヨーク部とが第一温度パターンと、第二温度パターンと、第三温度パターンのうちいずれか一つの温度パターンの温度に設定され、加熱接着される。従って、成形接着後、回転軸とヨーク部において、回転軸の軸からヨーク部の径方向外側へ至る径方向に沿った各場所は、徐々に低くなる第一強度分布と、段階的に低くなる第二強度分布と、第一強度分布と第二強度分布とを組み合わせた第三強度分布のうちいずれかの強度分布の機械的強度が得られる。モータ回転時、回転軸とヨーク部において、ヨーク部の径方向外側から回転軸の軸に近づくほど、回転子の遠心力によって生じる各場所の応力は高くなるが、第一、第二、第三強度分布により機械的強度の方も高くなるので、回転軸とヨーク部の破損が抑制できる。   Further, in the third problem solving means, the rotating shaft and the yoke portion are set to a temperature of any one of the first temperature pattern, the second temperature pattern, and the third temperature pattern, and are bonded by heating. The Therefore, after molding and bonding, each location along the radial direction from the axis of the rotating shaft to the radially outer side of the yoke portion in the rotating shaft and the yoke portion gradually decreases with the first strength distribution gradually decreasing. The mechanical strength of any one of the second strength distribution and the third strength distribution obtained by combining the first strength distribution and the second strength distribution is obtained. As the motor rotates, the stress at each location generated by the centrifugal force of the rotor increases as it approaches the axis of the rotating shaft from the radially outer side of the rotating shaft and the yoke portion. Since the mechanical strength is higher due to the strength distribution, the breakage of the rotating shaft and the yoke portion can be suppressed.

また、成形接着後、ヨーク部の軸からヨーク部の径方向外側へ至る径方向に沿ったヨーク部の各場所は、徐々に高くなる第一抵抗分布と、段階的に高くなる第二抵抗分布と、第一抵抗分布と第二抵抗分布とを組み合わせた第三抵抗分布のうちいずれかの抵抗分布の電気抵抗が得られる。従って、モータ回転時、ヨーク部の軸からヨーク部の径方向外側に近づくほど、交番磁束によって生じるヨーク部の各場所の磁束密度は高くなるが、第一、第二、第三抵抗分布により電気抵抗の方も高くなるので、ヨーク部の鉄損の増大は抑制される。   In addition, after molding and bonding, each location of the yoke portion along the radial direction from the yoke portion axis to the outside in the radial direction of the yoke portion is gradually increased, and the second resistance distribution is gradually increased. And the electrical resistance of any one of the third resistance distributions obtained by combining the first resistance distribution and the second resistance distribution is obtained. Therefore, as the motor rotates, the magnetic flux density at each location of the yoke portion generated by the alternating magnetic flux increases as it approaches the outer side in the radial direction of the yoke portion from the shaft of the yoke portion. Since the resistance is also increased, an increase in the iron loss of the yoke portion is suppressed.

また、第4の課題解決手段では、成形時、巻線胴体部とティース部とが、第一温度パターンと、第二温度パターンと、第三温度パターンのうちいずれか一つの温度分布に設定され、加熱接着される。従って、成形接着後、巻線胴体部とティース部において、巻線胴体部の径方向内側からティース部の径方向外側へ至る径方向に沿った各場所は、徐々に低くなる第一強度分布と、段階的に低くなる第二強度分布と、第一強度分布と第二強度分布とを組み合わせた第三強度分布のうちいずれかの強度分布の機械的強度が得られる。そして、巻線胴体部とティース部において、ティース部の径方向外側から巻線胴体部の径方向内側に近づくほど、回転子の遠心力によって生じる各場所の応力は高くなるが、第一、第二、第三強度分布により機械的強度の方も高くなるので、巻線胴体部とティース部の破損が抑制できる。以上により、回転軸と、ヨーク部と、巻線胴体部と、ティース部との破損が抑制されるので、回転子の破損が抑制できる。   In the fourth problem solving means, at the time of molding, the winding body part and the tooth part are set to any one of the temperature distribution of the first temperature pattern, the second temperature pattern, and the third temperature pattern. And heat-bonded. Therefore, after molding and bonding, each location along the radial direction from the radially inner side of the winding trunk portion to the radially outer side of the teeth portion in the winding trunk portion and the teeth portion is gradually reduced as the first strength distribution. The mechanical strength of any one of the second intensity distribution that gradually decreases and the third intensity distribution obtained by combining the first intensity distribution and the second intensity distribution is obtained. And, in the winding body part and the tooth part, the closer to the radially inner side of the winding body part from the radially outer side of the tooth part, the higher the stress in each place caused by the centrifugal force of the rotor, The mechanical strength is also increased by the second and third strength distributions, so that the winding body portion and the tooth portion can be prevented from being damaged. As described above, damage to the rotating shaft, the yoke portion, the winding body portion, and the tooth portion is suppressed, so that damage to the rotor can be suppressed.

また、成形接着後、巻線胴体部とティース部において、巻線胴体部の径方向内側からティース部の径方向外側へ至る径方向に沿った各場所は、徐々に高くなる第一抵抗分布と、段階的に高くなる第二抵抗分布と、第一抵抗分布と第二抵抗分布とを組み合わせた第三抵抗分布のうちいずれかの抵抗分布で示される電気抵抗が得られる。   In addition, after forming and bonding, each location along the radial direction from the radially inner side of the winding body part to the radially outer side of the tooth part in the winding body part and the tooth part gradually increases with the first resistance distribution. The electric resistance indicated by any one of the second resistance distribution that increases stepwise and the third resistance distribution that combines the first resistance distribution and the second resistance distribution is obtained.

モータ回転時、巻線胴体部とティース部の交番磁束によって生じる各場所の磁束密度は、ヨーク部の中心近傍の交番磁束による磁束密度より高い。しかし、巻線胴体部とティース部の各部の電気抵抗は、第一、第二、第三抵抗分布により巻線胴体部の径方向内側からティース部の径方向外側に近づくほど高くなり、且つヨーク部の中心近傍の電気抵抗より高い。従って、巻線胴体部とティース部の鉄損の増大は抑制される。以上により、回転子の破損を抑制できる機械的強度を確保しつつ、鉄損の増大が抑制される回転子を提供できる。   When the motor rotates, the magnetic flux density at each location generated by the alternating magnetic flux between the winding body portion and the tooth portion is higher than the magnetic flux density due to the alternating magnetic flux near the center of the yoke portion. However, the electrical resistance of each part of the winding body part and the teeth part increases from the radially inner side of the winding body part to the radially outer side of the teeth part due to the first, second, and third resistance distributions, and the yoke. It is higher than the electrical resistance near the center of the part. Therefore, an increase in iron loss at the winding body and the tooth portion is suppressed. As described above, it is possible to provide a rotor in which an increase in iron loss is suppressed while ensuring mechanical strength capable of suppressing damage to the rotor.

さらに、回転子は、回転子用鉄心と回転軸とが一体成形されるので、回転軸の回転子用鉄心への圧入工程が不要であると共に、破損防止の補強部材が不要で部品点数が削減され、低コストになる。   Furthermore, since the rotor core and the rotating shaft are integrally formed in the rotor, there is no need to press-fit the rotating shaft into the rotor core, and there is no need for reinforcing members to prevent breakage and the number of parts is reduced. And low cost.

実施例1に係る圧粉コアの斜視図である。1 is a perspective view of a powder core according to Example 1. FIG. 図1の圧粉コアに圧入される回転軸の斜視図である。It is a perspective view of the rotating shaft press-fitted in the dust core of FIG. 実施例1に係る回転子の斜視図である。1 is a perspective view of a rotor according to Embodiment 1. FIG. 図3のMM断面図である。It is MM sectional drawing of FIG. 図1のLL断面図および加圧成形時の圧粉コアの温度を示す図である。It is a figure which shows the LL sectional drawing of FIG. 1, and the temperature of the powder core at the time of pressure molding. 図5の圧粉コア温度における圧粉コアの機械的強度を示す図である。It is a figure which shows the mechanical strength of the dust core in the dust core temperature of FIG. 図5の圧粉コア温度における圧粉コアの電気抵抗を示す図である。It is a figure which shows the electrical resistance of the dust core in the dust core temperature of FIG. 図1のLL断面図における加圧成形時の圧粉コアの他の温度を示す図である。It is a figure which shows the other temperature of the dust core at the time of the press molding in LL sectional drawing of FIG. 図8の圧粉コア温度における圧粉コアの機械的強度を示す図である。It is a figure which shows the mechanical strength of the dust core in the dust core temperature of FIG. 図8の圧粉コア温度における圧粉コアの電気抵抗を示す図である。It is a figure which shows the electrical resistance of the dust core in the dust core temperature of FIG. 図1のLL断面図における加圧成形時の圧粉コアの他の温度を示す図である。It is a figure which shows the other temperature of the dust core at the time of the press molding in LL sectional drawing of FIG. 図11の圧粉コア温度における圧粉コアの機械的強度を示す図である。It is a figure which shows the mechanical strength of the dust core in the dust core temperature of FIG. 図11の圧粉コア温度における圧粉コアの電気抵抗を示す図である。It is a figure which shows the electrical resistance of the dust core in the dust core temperature of FIG. 実施例2に係る回転子の斜視図である。6 is a perspective view of a rotor according to Embodiment 2. FIG. 図14のNN断面図である。It is NN sectional drawing of FIG. 従来技術のコアを備えた電機子の断面図である。It is sectional drawing of the armature provided with the core of a prior art. 図16の第1コアの平面図である。It is a top view of the 1st core of FIG. 図17のFF断面図である。It is FF sectional drawing of FIG. 図16の第2コアの平面図である。It is a top view of the 2nd core of FIG. 図19のGG断面図である。It is GG sectional drawing of FIG.

以下に本発明の実施例を図面を参照しつつ詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

図1は本発明の実施例1に係る圧粉コアの斜視図を示し、図2はモータの回転軸の斜視図である。図3は本発明の実施例1に係る回転子の斜視図を示し、図4は図3のMM断面図である。   1 is a perspective view of a dust core according to Embodiment 1 of the present invention, and FIG. 2 is a perspective view of a rotating shaft of a motor. FIG. 3 is a perspective view of the rotor according to the first embodiment of the present invention, and FIG. 4 is a cross-sectional view taken along line MM in FIG.

図1に示すように、圧粉コア(回転子用鉄心)1は、圧粉コア1の中心に中心孔1aを開口したヨーク部1b(矢印Pの範囲)と、ヨーク部1bの外周面(径方向外側)1bo(図4)に等分に設けた複数(例えば、3つ)の巻線胴体部1c(矢印Qの範囲)と、各々の巻線胴体部1cの外周面(径方向外側)1co(図4)に設けた円弧形状のティース部1d(矢印Rの範囲)とを備える。圧粉コア1は、磁性体粉(例えば、直径0.2mm程度の軟磁性粉)の表面に絶縁材が皮膜され、この皮膜された磁性体粉とバインダとを混合して加圧成形される。このとき、隣接する磁性体粉の絶縁材皮膜が互いに結合すると共に、隣接する磁性体粉によって形成される隙間に樹脂材などのバインダが流動して磁性体粉が接着される。図4に示すように、ヨーク部1bの外周面1boの一部は巻線胴体部1cの内周面(径方向内側)1ciを形成し、巻線胴体部1cの外周面1coはティース部1dの内周面1diの一部を形成する。また、ヨーク部1bの内周面(径方向内側)1biはヨーク部1bと中心孔1aの共通した内周面である。   As shown in FIG. 1, a dust core (rotor core) 1 includes a yoke portion 1b (in the range indicated by an arrow P) having a center hole 1a at the center of the dust core 1, and an outer peripheral surface of the yoke portion 1b. A plurality of (for example, three) winding body portions 1c (in the range of arrows Q) equally provided on 1bo (FIG. 4) and outer peripheral surfaces (outside in the radial direction) of the respective winding body portions 1c. ) An arc-shaped tooth portion 1d (range of arrow R) provided at 1co (FIG. 4). The dust core 1 is formed by coating an insulating material on the surface of a magnetic powder (for example, a soft magnetic powder having a diameter of about 0.2 mm), and press-molding the coated magnetic powder and a binder. . At this time, the insulating material films of the adjacent magnetic powders are bonded to each other, and a binder such as a resin material flows in a gap formed by the adjacent magnetic powders to adhere the magnetic powder. As shown in FIG. 4, a part of the outer peripheral surface 1bo of the yoke portion 1b forms an inner peripheral surface (radially inner side) 1ci of the winding body portion 1c, and the outer peripheral surface 1co of the winding body portion 1c is a tooth portion 1d. A part of the inner peripheral surface 1di is formed. Further, an inner peripheral surface (radially inner side) 1bi of the yoke portion 1b is a common inner peripheral surface of the yoke portion 1b and the center hole 1a.

加圧成形時、内周面1biから外周面1boへ至る径方向に沿ったヨーク部1bの各場所は、徐々に温度が低められる第一温度パターン(図5(a))と、段階的に温度が低められる第二温度パターン(図8)と、第一温度パターンと第二温度パターンとを組み合わせた第三温度パターン(図11)のうちいずれか一つの温度分布に設定される。   At the time of pressure molding, each location of the yoke portion 1b along the radial direction from the inner peripheral surface 1bi to the outer peripheral surface 1bo is stepwise with a first temperature pattern (FIG. 5A) in which the temperature is gradually lowered. The temperature distribution is set to any one of a second temperature pattern (FIG. 8) in which the temperature is lowered and a third temperature pattern (FIG. 11) in which the first temperature pattern and the second temperature pattern are combined.

さらに、加圧成形時、巻線胴体部1cの内周面1ci(ヨーク部1bの外周面1bo)からティース部1dの外周面(径方向外側)1doへ至る径方向に沿った巻線胴体部1cとティース部1dの各場所は、徐々に温度が低くなる第一温度パターン(図5(b))と、段階的に温度が低くなる第二温度パターン(図8)と、第一温度パターンと第二温度パターンとが組み合わされた第三温度パターン(図11)とのいずれか一つの温度分布に設定される。   Furthermore, at the time of pressure molding, the winding body portion along the radial direction from the inner peripheral surface 1ci of the winding body portion 1c (the outer peripheral surface 1bo of the yoke portion 1b) to the outer peripheral surface (radially outer side) 1do of the teeth portion 1d. Each location of 1c and teeth part 1d has a first temperature pattern (FIG. 5B) in which the temperature gradually decreases, a second temperature pattern (FIG. 8) in which the temperature gradually decreases, and a first temperature pattern. And a third temperature pattern (FIG. 11) in which the second temperature pattern is combined.

ところで、圧粉コア1の中心孔1aの内径は、回転軸2(図2)の外径より僅かに小さく、図3および図4に示すように回転子2は圧粉コア1の中心孔1aに圧入され、圧粉コア1と回転軸2により回転子3が構成される。   By the way, the inner diameter of the center hole 1a of the dust core 1 is slightly smaller than the outer diameter of the rotating shaft 2 (FIG. 2), and the rotor 2 has the center hole 1a of the dust core 1 as shown in FIGS. The rotor 3 is constituted by the dust core 1 and the rotating shaft 2.

圧粉コア1の巻線胴体部1cには巻線(図示せず)が巻回される。そして、圧粉コア1は、ティース部1dの外周面1doがステータ(図示せず)の内周面に対し所定の隙間を持って対面するように挿入され、回転軸2の両端側が軸受(図示せず)により回転可能に支持される。   A winding (not shown) is wound around the winding body 1 c of the powder core 1. The dust core 1 is inserted so that the outer peripheral surface 1do of the tooth portion 1d faces the inner peripheral surface of the stator (not shown) with a predetermined gap, and both ends of the rotary shaft 2 are bearings (see FIG. (Not shown) is rotatably supported.

尚、回転軸2が圧入される中心孔1aは貫通孔であるが、一端が閉じられた孔でも良い。この場合、回転軸の一端側が軸受に装着され、他端側が圧粉コア1の中心孔に圧入される。   The central hole 1a into which the rotary shaft 2 is press-fitted is a through hole, but may be a hole with one end closed. In this case, one end side of the rotating shaft is attached to the bearing, and the other end side is press-fitted into the center hole of the dust core 1.

次に、本発明の実施例1に係る圧粉コア1の作用と効果について説明する。表面に絶縁材の皮膜を施していない磁性体粉に熱を加えて加圧成形すると、磁性体粉同士の接触面が拡散接合され、磁性体粉間の機械的強度は高くなるが、磁性粒子間の電気抵抗値は低くなる。表面に絶縁材の皮膜を施した磁性体粉とバインダとを混合し熱を加えて加圧成形する場合は、前述の磁性体粉同士の拡散接合と比べ、一般的に絶縁材皮膜の介在により機械的強度は低下するが、電気抵抗は高くなる。この場合、機械的強度と電気抵抗の値は、加圧成形時の圧粉コア1の温度(以下、コア温度)に依存する。そして、コア温度を高くすると、表面に絶縁皮膜を施した磁性粒子間の接触部分の皮膜厚さが薄くなると共に、磁性粒子間の皮膜部分の接触面積が増大する。これにより、磁性粒子間の機械的強度は増大するが、電気抵抗は低下する。一方、コア温度を低くすると、表面に絶縁材の皮膜を施した磁性粒子間の接触部分の皮膜厚さは略加圧成形前の皮膜厚さになると共に、磁性粒子間の皮膜部分の接触面積が減少するので、磁性粒子間の電気抵抗は増大するが、磁性粒子間の機械的強度は減少する。また、コア温度が高過ぎると、磁性粒子表面の絶縁皮膜が破壊されて磁性粒子の金属同士が拡散接合し、磁性粒子間の機械的強度は大幅に増大するが、磁性粒子間の電気抵抗は著しく低下する。コア温度が低過ぎると、絶縁皮膜を施した磁性粒子の間に樹脂材などからなるバインダが多量に流れ込んで磁性粒子間の距離が増大し、電気抵抗値と磁気抵抗が著しく増大すると共に、機械的強度が著しく低下する。   Next, the operation and effect of the dust core 1 according to Example 1 of the present invention will be described. When heat is applied to magnetic powder that has not been coated with an insulating material on the surface, the contact surface between the magnetic powders is diffusion bonded and the mechanical strength between the magnetic powders increases. The electric resistance value between them becomes low. When magnetic powder with a coating of insulating material on the surface and a binder are mixed and heat-pressed to form, it is generally due to the presence of an insulating coating compared to the diffusion bonding of magnetic powders described above. The mechanical strength decreases, but the electrical resistance increases. In this case, the values of mechanical strength and electrical resistance depend on the temperature of the dust core 1 during pressure molding (hereinafter, core temperature). When the core temperature is increased, the thickness of the contact portion between the magnetic particles having an insulating coating on the surface is reduced, and the contact area of the coating portion between the magnetic particles is increased. This increases the mechanical strength between the magnetic particles, but decreases the electrical resistance. On the other hand, when the core temperature is lowered, the film thickness of the contact part between the magnetic particles with the insulating film applied on the surface is substantially the same as the film thickness before pressure molding, and the contact area of the film part between the magnetic particles. Decreases, the electrical resistance between the magnetic particles increases, but the mechanical strength between the magnetic particles decreases. Also, if the core temperature is too high, the insulating film on the surface of the magnetic particles is broken and the metal of the magnetic particles is diffusion bonded, and the mechanical strength between the magnetic particles is greatly increased, but the electrical resistance between the magnetic particles is It drops significantly. If the core temperature is too low, a large amount of a binder made of a resin material flows between magnetic particles coated with an insulating film, and the distance between the magnetic particles increases, and the electrical resistance value and the magnetic resistance increase remarkably. The mechanical strength is significantly reduced.

従って加圧成形時、圧粉コア1において、機械的強度が多少低くても高い電気抵抗を必要とする場所は、コア温度を適正に低くし、電気抵抗値が多少低くても高い機械的強度を必要とする場所は、コア温度を適正に高くする。そこで、本実施例1の圧粉コア1は、加圧成形後、各場所における機械的強度と電気抵抗が適正になるように、加圧成形時、圧粉コア1の各場所における温度を適正に設定される。   Therefore, at the time of pressure molding, in the dust core 1, a place where a high electrical resistance is required even if the mechanical strength is somewhat low, a high mechanical strength is obtained even if the core temperature is appropriately lowered and the electrical resistance value is somewhat low. Where the temperature is required, the core temperature is appropriately increased. Therefore, the dust core 1 of Example 1 has an appropriate temperature at each location of the dust core 1 at the time of pressure molding so that the mechanical strength and electrical resistance at each location are appropriate after the pressure molding. Set to

図5の(a)は図1のLL断面図であり、(b)は加圧成形時における圧粉コア1の温度分布を示す図である。図中、Oは中心孔1aの中心位置を示し、A、B、C、Dは圧粉コア1の半径位置を示す。加圧成形時の圧粉コア1の温度は、図5(a)のZ軸Z左側においては、ヨーク部1bの内周面1biからヨーク部1bの外周面1boへ向かって徐々に低められ、そして図5(a)のZ軸Z右側においては、ヨーク部1bの内周面1biからヨーク部1bと巻線胴体部1cを通過してティース部1dの外周面1doへ向かって徐々に低められる(第一温度パターン)。   (A) of FIG. 5 is LL sectional drawing of FIG. 1, (b) is a figure which shows the temperature distribution of the powder core 1 at the time of pressure molding. In the figure, O indicates the center position of the center hole 1 a, and A, B, C, and D indicate the radial positions of the dust core 1. The temperature of the powder core 1 during the pressure molding is gradually lowered from the inner peripheral surface 1bi of the yoke portion 1b toward the outer peripheral surface 1bo of the yoke portion 1b on the left side of the Z axis Z in FIG. Then, on the right side of the Z-axis Z in FIG. 5A, the yoke portion 1b is gradually lowered from the inner peripheral surface 1bi through the yoke portion 1b and the winding body portion 1c toward the outer peripheral surface 1do of the tooth portion 1d. (First temperature pattern).

図6と図7は、図5(b)に示すコア温度分布の下で加圧成形した圧粉コア1のLL断面図(図5(a))における機械的強度の分布と、電気抵抗の分布とを示す図である。   6 and 7 show the distribution of mechanical strength and the electrical resistance in the LL cross-sectional view (FIG. 5 (a)) of the dust core 1 that has been pressure-molded under the core temperature distribution shown in FIG. 5 (b). It is a figure which shows distribution.

上述の第一温度パターンでの加圧成形により、図6に示すように、ヨーク部1bの内周面1biから外周面1bo、および外周面1boを通過してティース部1dの外周面1doへ向かって、圧粉コア1の各場所の機械的強度は徐々に低下する(第一強度分布)。従って、ヨーク部1bの内周面1bi近傍は、機械的強度が高いので回転軸2を中心孔1aに圧入する際に、ヨーク部1bの内周面1bi近傍および中心孔1aの破損が抑制される。   As shown in FIG. 6, by pressing with the above-described first temperature pattern, the inner peripheral surface 1bi of the yoke portion 1b passes through the outer peripheral surface 1bo and the outer peripheral surface 1bo toward the outer peripheral surface 1do of the tooth portion 1d. Thus, the mechanical strength at each location of the dust core 1 gradually decreases (first strength distribution). Therefore, since the mechanical strength is high in the vicinity of the inner peripheral surface 1bi of the yoke portion 1b, breakage of the vicinity of the inner peripheral surface 1bi of the yoke portion 1b and the central hole 1a is suppressed when the rotary shaft 2 is press-fitted into the central hole 1a. The

また、モータ回転時において生じる遠心力に起因する圧粉コア1の各場所の応力は、ティース部1dの外周面1doからヨーク部1bの内周面1biへ向かうほど増大するが、圧粉コア1の機械的強度の方もヨーク部1bの内周面1biに近づくほど高くなるので、第一強度分布により圧粉コア1の遠心力による破損が抑制される。   Moreover, although the stress of each place of the dust core 1 resulting from the centrifugal force generated at the time of motor rotation increases from the outer peripheral surface 1do of the tooth portion 1d toward the inner peripheral surface 1bi of the yoke portion 1b, the dust core 1 Since the mechanical strength increases as it approaches the inner peripheral surface 1bi of the yoke portion 1b, the first strength distribution suppresses breakage of the dust core 1 due to centrifugal force.

また、モータ作動時において、圧粉コア1のティース部1dとステータ(図示せず)のティース部(図示せず)との間には交番磁束が交互に流出入する。そして、半サイクルにおいてステータのティース部から圧粉コア1のティース部1dへ流入した交番磁束は、巻線胴体部1cと、ヨーク部1bと、隣の巻線胴体部1cとを通過して隣のティース部1dからステータの隣のティース部へ流入し、次の半サイクルにおいて交番磁束が前述とは逆の方向へ流れる。   Further, during the motor operation, alternating magnetic flux alternately flows in and out between the tooth portion 1d of the dust core 1 and the teeth portion (not shown) of the stator (not shown). And the alternating magnetic flux which flowed into the teeth part 1d of the dust core 1 in the half cycle passes through the winding body part 1c, the yoke part 1b, and the adjacent winding body part 1c, and is adjacent to it. From the tooth portion 1d to the tooth portion adjacent to the stator, and in the next half cycle, the alternating magnetic flux flows in the opposite direction.

ところで、圧粉コア1を流れる交番磁束により、圧粉コア1内に誘導電流が発生して鉄損を生じるが、圧粉コア1の電気抵抗が低いほど誘導電流は増大し、誘導電流が増大するほど鉄損は増大する。上述の第一温度パターンにより、図7に示すように、ヨーク部1bの外周面1boから内周面1biへ向かって各場所の電気抵抗は徐々に減少し、さらに内周面1biを通過してティース部1dの外周面1doへ向かって、各場所の電気抵抗は徐々に増加する(第一抵抗分布)。従って、ヨーク部1bにおいて、ヨーク部1bの交番磁束による磁束密度はヨーク部1bの内周面1biに近づくほど減少するので、ヨーク部1bの鉄損の増大は抑制される。   By the way, the alternating magnetic flux flowing through the dust core 1 generates an induced current in the dust core 1 and causes iron loss. However, the lower the electrical resistance of the dust core 1, the more the induced current increases and the induced current increases. The iron loss increases as you do it. With the first temperature pattern described above, as shown in FIG. 7, the electrical resistance at each location gradually decreases from the outer peripheral surface 1bo of the yoke portion 1b toward the inner peripheral surface 1bi, and further passes through the inner peripheral surface 1bi. The electrical resistance at each location gradually increases toward the outer peripheral surface 1do of the tooth portion 1d (first resistance distribution). Therefore, in the yoke portion 1b, the magnetic flux density due to the alternating magnetic flux of the yoke portion 1b decreases as it approaches the inner peripheral surface 1bi of the yoke portion 1b, so that an increase in iron loss of the yoke portion 1b is suppressed.

また、巻線胴体部1cとティース部1dを流れる交番磁束による磁束密度は、ヨーク部1bの内周面1bi近傍の交番磁束による磁束密度より高い。しかし、巻線胴体部1cとティース部1dの各場所の電気抵抗は、ヨーク部1bの内周面1bi近傍の電気抵抗より大きいので、巻線胴体部1cとティース部1dの鉄損の増大は抑制される。以上により、ヨーク部1bと、巻線胴体部1cと、ティース部1dの鉄損の増大が抑制され、圧粉コア1の鉄損の増大は抑制される。   Further, the magnetic flux density due to the alternating magnetic flux flowing through the winding body portion 1c and the tooth portion 1d is higher than the magnetic flux density due to the alternating magnetic flux in the vicinity of the inner peripheral surface 1bi of the yoke portion 1b. However, since the electrical resistance at each location of the winding body portion 1c and the tooth portion 1d is larger than the electrical resistance in the vicinity of the inner peripheral surface 1bi of the yoke portion 1b, the increase in iron loss of the winding body portion 1c and the tooth portion 1d is not increased. It is suppressed. By the above, the increase in the iron loss of the yoke part 1b, the coil | winding trunk | drum 1c, and the teeth part 1d is suppressed, and the increase in the iron loss of the dust core 1 is suppressed.

図8は、ヨーク部1bの内周面1biからティース部1dの外周面1doへ至る径方向へ向かって、加圧成形時、圧粉コア1の温度を段階的に低めた第二温度パターンのLL断面図(図5(a))の圧粉コア1の温度分布を示す図である。図9および図10は、図8の圧粉コア温度分布の下での加圧成形後の圧粉コア1のLL断面図(図5(a))の機械的強度の分布と、電気抵抗の分布とを示す図である。図9および図10に示すように、ヨーク部1bの内周面1biから外周面1bo、およびティース部1dの外周面1doへ向かって、圧粉コア1の機械的強度は段階的に低下し(第二強度分布)、電気抵抗は段階的に増加する(第二抵抗分布)。この場合の圧粉コア1の作用および効果は、図6の機械的強度と図7の電気抵抗とを有する圧粉コア1と同じである。尚、図8〜図10中のA、B、C、D、Oは、図5(a)のA、B、C、D、Oを示す。   FIG. 8 shows a second temperature pattern in which the temperature of the dust core 1 is lowered stepwise during pressure molding in the radial direction from the inner peripheral surface 1bi of the yoke portion 1b to the outer peripheral surface 1do of the teeth portion 1d. It is a figure which shows the temperature distribution of the dust core 1 of LL sectional drawing (FIG. 5 (a)). 9 and 10 show the mechanical strength distribution of the LL cross-sectional view (FIG. 5 (a)) of the dust core 1 after pressure molding under the dust core temperature distribution of FIG. It is a figure which shows distribution. As shown in FIGS. 9 and 10, the mechanical strength of the dust core 1 gradually decreases from the inner peripheral surface 1bi of the yoke portion 1b toward the outer peripheral surface 1bo and the outer peripheral surface 1do of the teeth portion 1d. (Second intensity distribution), the electrical resistance increases stepwise (second resistance distribution). The action and effect of the dust core 1 in this case are the same as those of the dust core 1 having the mechanical strength of FIG. 6 and the electrical resistance of FIG. Note that A, B, C, D, and O in FIGS. 8 to 10 indicate A, B, C, D, and O in FIG.

図11は、ヨーク部1bの内周面1biからティース部1dの外周面1doへ至る径方向へ向かって、加圧成形時、圧粉コア1の温度を徐々に低める第一温度パターンと段階的に低める第二温度パターンとを組み合わせた第三温度パターンのLL断面図(図5(a))の圧粉コア1の温度分布を示す図である。図12および図13は、図11のコア温度分布の下での加圧成形後の圧粉コア1のLL断面図(図5(a))の機械的強度の分布と、電気抵抗の分布とを示す図である。図12および図13に示すように、ヨーク部1bの内周面1biから外周面1boおよびティース部1dの外周面1doへ向かって、圧粉コア1の機械的強度は徐々に、次に段階的に、再び徐々に低下し(第三強度分布)、そして電気抵抗は徐々に、次に段階的に、再び徐々に増加する(第三抵抗分布)。この場合の圧粉コア1の作用および効果は、図6の機械的強度と図7の電気抵抗とを有する圧粉コア1と同じである。尚、図11〜図13中のA、B、C、D、Oは、図5(a)のA、B、C、D、Oを示す。   FIG. 11 shows the first temperature pattern in which the temperature of the dust core 1 is gradually lowered during pressure molding in a radial direction from the inner peripheral surface 1bi of the yoke portion 1b to the outer peripheral surface 1do of the tooth portion 1d. It is a figure which shows the temperature distribution of the dust core 1 of LL sectional drawing (FIG. 5 (a)) of the 3rd temperature pattern which combined with the 2nd temperature pattern to lower to 2nd. 12 and 13 show the mechanical strength distribution and the electrical resistance distribution in the LL cross-sectional view (FIG. 5 (a)) of the dust core 1 after pressure molding under the core temperature distribution of FIG. FIG. As shown in FIGS. 12 and 13, the mechanical strength of the dust core 1 is gradually and gradually stepped from the inner peripheral surface 1bi of the yoke portion 1b toward the outer peripheral surface 1bo and the outer peripheral surface 1do of the teeth portion 1d. Then, it gradually decreases again (third strength distribution), and the electric resistance gradually increases, then gradually and again (third resistance distribution). The action and effect of the dust core 1 in this case are the same as those of the dust core 1 having the mechanical strength of FIG. 6 and the electrical resistance of FIG. In addition, A, B, C, D, and O in FIGS. 11 to 13 indicate A, B, C, D, and O in FIG.

さらに、圧粉コア1は、破損を防止するための補強部材が不要で、部品点数が削減されるので、低コストになる。   Further, the dust core 1 does not require a reinforcing member for preventing breakage, and the number of parts is reduced, so that the cost is reduced.

また、回転子3は、圧粉コア1の中心孔1aに回転軸2を圧入して構成されるので、複数種類の回転軸に対して圧粉コア1を使用でき、汎用性のある圧粉コア1が提供できる。   Moreover, since the rotor 3 is configured by press-fitting the rotary shaft 2 into the center hole 1a of the dust core 1, the dust core 1 can be used with respect to a plurality of types of rotary shafts, and versatile dust. The core 1 can be provided.

図14は本発明の実施例2に係る回転子の斜視図であり、図15は図14のNN断面図である。図14及び図15に示すように、回転子13は、圧粉コア11(回転子用鉄心)と、圧粉コア11の両端に設けた回転軸12、12からなり、表面に絶縁材を皮膜した磁性体粉(例えば、直径0.2mm程度の軟磁性粉)とバインダとを混合し熱を加え、加圧成形される。   FIG. 14 is a perspective view of a rotor according to Embodiment 2 of the present invention, and FIG. 15 is a cross-sectional view taken along line NN in FIG. As shown in FIGS. 14 and 15, the rotor 13 includes a dust core 11 (rotor core) and rotary shafts 12 and 12 provided at both ends of the dust core 11, and an insulating material is coated on the surface. The magnetic material powder (for example, soft magnetic powder having a diameter of about 0.2 mm) and a binder are mixed, heated, and pressed.

圧粉コア11は、ヨーク部11b(矢印Tの範囲)と、ヨーク部11bの外周面(径方向外側)11boに等分に設けた複数(例えば、3つ)の巻線胴体部11c(矢印Uの範囲)と、各々の巻線胴体部11cの外周面(径方向外側)11coに設けた各々のティース部11d(矢印Vの範囲)とを備える。回転軸12は、回転軸12の中心軸であるZ軸Zと圧粉コア11の軸とが一致するように圧粉コア11の中心部分に設けられる。ここで、巻線胴体部11cの外周面11coは円弧形状のティース部11dの内周面(径方向内側)11diの一部を形成する。   The dust core 11 includes a plurality of (for example, three) winding body portions 11c (arrows) provided equally on the yoke portion 11b (range of arrow T) and the outer peripheral surface (radially outer side) 11bo of the yoke portion 11b. U range) and teeth portions 11d (range of arrow V) provided on the outer peripheral surface (radially outer side) 11co of each winding body portion 11c. The rotating shaft 12 is provided at the center portion of the dust core 11 so that the Z axis Z, which is the central axis of the rotating shaft 12, coincides with the axis of the dust core 11. Here, the outer peripheral surface 11co of the winding body portion 11c forms a part of the inner peripheral surface (radially inner side) 11di of the arc-shaped tooth portion 11d.

そして、加圧成形の際、回転軸12とヨーク部11bにおいて、Z軸Zからヨーク部11bの外周面11boへ至る径方向に沿った各場所は、徐々に温度が低められる第一温度パターンと、段階的に温度が低められる第二温度パターンと、第一温度パターンと第二温度パターンとを組み合わせた第三温度パターンのうちいずれか一つの温度分布に設定される。   In the pressure molding, in the rotary shaft 12 and the yoke portion 11b, each location along the radial direction from the Z axis Z to the outer peripheral surface 11bo of the yoke portion 11b has a first temperature pattern in which the temperature is gradually lowered. The temperature distribution is set to any one of a second temperature pattern in which the temperature is lowered stepwise and a third temperature pattern in which the first temperature pattern and the second temperature pattern are combined.

さらに、巻線胴体部11cとティース部11dにおいて、巻線胴体部11cの内周面(径方向内側)11ci(ヨーク部11bの外周面11boの一部)からティース部11dの外周面(径方向外側)11doへ至る径方向に沿った各場所は、徐々に温度が低められる第一温度パターンと、段階的に温度が低められる第二温度パターンと、第一温度パターンと第二温度パターンとを組み合わせた第三温度パターンのうちいずれか一つの温度分布に設定される。   Further, in the winding body portion 11c and the tooth portion 11d, the outer peripheral surface (radial direction) of the tooth portion 11d from the inner peripheral surface (radially inner side) 11ci (a part of the outer peripheral surface 11bo of the yoke portion 11b) of the winding body portion 11c. Outer) Each location along the radial direction leading to 11do has a first temperature pattern in which the temperature is gradually lowered, a second temperature pattern in which the temperature is gradually lowered, a first temperature pattern, and a second temperature pattern. The temperature distribution is set to any one of the combined third temperature patterns.

上述の第一、第二、第三温度パターンの下での加圧成形により、成形後、回転軸12とヨーク部11bにおいて、Z軸Zからヨーク部11bの外周面11boへ至る径方向に沿った各場所は、徐々に低くなる第一強度分布と、段階的に低くなる第二強度分布と、第一強度分布と第二強度分布とを組み合わせた第三強度分布のうちいずれかの強度分布で示される機械的強度が得られる。   By pressure molding under the above first, second, and third temperature patterns, after molding, along the radial direction from the Z axis Z to the outer peripheral surface 11bo of the yoke portion 11b in the rotary shaft 12 and the yoke portion 11b. Each location is one of a first intensity distribution that gradually decreases, a second intensity distribution that gradually decreases, and a third intensity distribution that combines the first intensity distribution and the second intensity distribution. The mechanical strength indicated by is obtained.

モータ回転時、回転子13の遠心力によって生じるヨーク部11bおよび回転軸12の各場所の応力は、ヨーク部11bの外周面11boからZ軸Zに近づくほど高くなるが、第一、第二、第三強度分布によりZ軸Zに近づくにほど機械的強度の方も高くなる。結果、回転軸12とヨーク部11bの破損が抑制できる。   When the motor rotates, the stress at each location of the yoke part 11b and the rotary shaft 12 caused by the centrifugal force of the rotor 13 increases as it approaches the Z axis Z from the outer peripheral surface 11bo of the yoke part 11b. The mechanical strength increases as the third strength distribution approaches the Z-axis Z. As a result, damage to the rotating shaft 12 and the yoke portion 11b can be suppressed.

上述の第一、第二、第三温度パターンでの加圧成形により、巻線胴体部11cとティース部11dにおいて、巻線胴体部11cの内周面11ciからティース部11dの外周面11doへ至る径方向に沿った各場所は、徐々に低くなる第一強度分布と、段階的に低くなる第二強度分布と、第一強度分布と第二強度分布とを組み合わせた第三強度分布のうちいずれかの強度分布で示される機械的強度が得られる。   By the pressure molding in the first, second, and third temperature patterns described above, in the winding body 11c and the teeth 11d, the inner surface 11ci of the winding body 11c reaches the outer surface 11do of the teeth 11d. Each location along the radial direction is a first intensity distribution that gradually decreases, a second intensity distribution that gradually decreases, and a third intensity distribution that combines the first intensity distribution and the second intensity distribution. The mechanical strength indicated by the intensity distribution is obtained.

また、加圧成形後、巻線胴体部11cとティース部11dにおいて、回転子13の遠心力によって生じる各場所の応力は、ティース部11dの外周面11doから巻線胴体部11cの内周面11ciに近づくほど高くなる。しかし、上述の第一、第二、第三強度分布により内周面11ciに近づくにつれ機械的強度も高くなるので、巻線胴体部11cとティース部11dの破損が抑制できる。以上により、回転軸12と、ヨーク部11bと、巻線胴体部11cと、ティース部11dの破損が抑制できるので、回転子13の破損が阻止できる。   In addition, after pressure molding, in the winding body part 11c and the tooth part 11d, the stress in each place generated by the centrifugal force of the rotor 13 is caused from the outer peripheral surface 11do of the tooth part 11d to the inner peripheral surface 11ci of the winding body part 11c. It gets higher as you get closer to. However, since the mechanical strength increases as it approaches the inner peripheral surface 11ci due to the above-described first, second, and third strength distributions, damage to the winding body portion 11c and the tooth portion 11d can be suppressed. By the above, since damage to the rotating shaft 12, the yoke part 11b, the winding body part 11c, and the tooth part 11d can be suppressed, damage to the rotor 13 can be prevented.

また、前述の第一、第二、第三温度パターンの下での加圧成形により、成形後、Z軸Zからヨーク部11bの外周面11boへ至る径方向に沿ったヨーク部11bの各場所は、徐々に高くなる第一抵抗分布と、段階的に高くなる第二抵抗分布と、第一抵抗分布と第二抵抗分布とを組み合わせた第三抵抗分布のうちいずれかの抵抗分布で示される電気抵抗が得られる。   Further, each location of the yoke portion 11b along the radial direction from the Z axis Z to the outer peripheral surface 11bo of the yoke portion 11b after molding by the pressure molding under the first, second, and third temperature patterns described above. Is indicated by any one of the first resistance distribution that gradually increases, the second resistance distribution that gradually increases, and the third resistance distribution that combines the first resistance distribution and the second resistance distribution. Electrical resistance is obtained.

モータ回転時、交番磁束によって生じるヨーク部11bの各場所の磁束密度は、回転軸12のZ軸Zからヨーク部1bの外周面11boに近づくほど高くなるが、上述の第一、第二、第三抵抗分布によりZ軸Zから外周面11boに近づくほど電気抵抗が増加するので、ヨーク部11bにおける鉄損の増大は抑制される。   When the motor rotates, the magnetic flux density at each location of the yoke portion 11b generated by the alternating magnetic flux increases as it approaches the outer peripheral surface 11bo of the yoke portion 1b from the Z axis Z of the rotating shaft 12, but the first, second, and second mentioned above. Since the electrical resistance increases as it approaches the outer peripheral surface 11bo from the Z axis Z due to the three resistance distribution, an increase in iron loss in the yoke portion 11b is suppressed.

また、前述の第一、第二、第三温度パターンの下での加圧成形により、成形後、巻線胴体部11cとティース部11dにおいて、巻線胴体部11cの内周面11ciからティース部11dの外周面11doへ至る径方向に沿った各場所は、徐々に高くなる第一抵抗分布と、段階的に高くなる第二抵抗分布と、第一抵抗分布と第二抵抗分布とを組み合わせた第三抵抗分布のうちいずれかの抵抗分布で示される電気抵抗が得られる。   Further, by molding under the above-described first, second, and third temperature patterns, the teeth are formed from the inner peripheral surface 11ci of the winding body 11c in the winding body 11c and the teeth 11d after forming. Each location along the radial direction to the outer peripheral surface 11do of 11d is a combination of the first resistance distribution that gradually increases, the second resistance distribution that increases stepwise, the first resistance distribution, and the second resistance distribution. An electrical resistance indicated by any one of the third resistance distributions is obtained.

モータ回転時、巻線胴体部11cとティース部11dの交番磁束によって生じる各場所は、ヨーク部11bの中心近傍の交番磁束による磁束密度より高い。しかし、巻線胴体部11cとティース部11dの各部の電気抵抗は、上述の第一、第二、第三抵抗分布により巻線胴体部11cの内周面11ciからティース部11dの外周面11doに近づくほど増大し、且つヨーク部11bの中心近傍の電気抵抗より大きい。従って、巻線胴体部11cとティース部11dの鉄損は抑制される。さらには、巻線胴体部11cとティース部11dを流れる磁束に直交する断面の面積を増大することにより、巻線胴体部11cとティース部11dの鉄損を減少できる。   When the motor rotates, each location generated by the alternating magnetic flux between the winding body portion 11c and the tooth portion 11d is higher than the magnetic flux density due to the alternating magnetic flux near the center of the yoke portion 11b. However, the electrical resistance of each part of the winding body part 11c and the tooth part 11d is changed from the inner peripheral surface 11ci of the winding body part 11c to the outer peripheral surface 11do of the tooth part 11d by the first, second, and third resistance distributions described above. As it gets closer, it increases and is larger than the electric resistance near the center of the yoke portion 11b. Therefore, the iron loss of the winding body part 11c and the teeth part 11d is suppressed. Furthermore, the iron loss of the winding body part 11c and the tooth part 11d can be reduced by increasing the area of the cross section orthogonal to the magnetic flux flowing through the winding body part 11c and the tooth part 11d.

以上により、破損を抑制する機械的強度を確保しつつ、鉄損の増大が抑制され、鉄損の少ない回転子13が提供できる。   As described above, it is possible to provide the rotor 13 with less iron loss while suppressing the increase in iron loss while ensuring the mechanical strength to suppress breakage.

また、回転子13は圧粉コア11と回転軸12とが一体成形されので、回転軸12の圧粉コア11への圧入工程が不要であると共に、破損防止の補強部材が不要で、部品点数が削減され、コストが低減される。   Moreover, since the dust core 11 and the rotating shaft 12 are integrally molded, the rotor 13 does not require a press-fitting step of the rotating shaft 12 to the dust core 11 and does not require a reinforcing member for preventing breakage. Is reduced and costs are reduced.

尚、実施例1および実施例2では、各温度パターンは加圧成形時に圧粉コア1または回転子13に設定され、圧粉コア1または回転子13の成形と接着とをほぼ同時に行っている。しかし、圧粉コア1または回転子13の形状を成形した後に、圧粉コア1または回転子13各部を第一、第二、第三温度パターンうちのいずれかに一つの温度パターンに設定し、磁性体粉同士を加熱接着する加熱処理工程を設けても良い。この場合、成形により、圧粉コア1または回転子13全体に亘り一定の機械的強度と電気抵抗が得られるが、その後、加熱接着により、所定の機械的強度と所定の電気抵抗とが確保される。   In Example 1 and Example 2, each temperature pattern is set to the dust core 1 or the rotor 13 at the time of pressure molding, and the molding and adhesion of the dust core 1 or the rotor 13 are performed almost simultaneously. . However, after forming the shape of the dust core 1 or the rotor 13, each part of the dust core 1 or the rotor 13 is set to one temperature pattern among the first, second, and third temperature patterns, You may provide the heat processing process which heat-bonds magnetic powder. In this case, by molding, a certain mechanical strength and electrical resistance can be obtained over the whole of the dust core 1 or the rotor 13, but thereafter, a predetermined mechanical strength and a predetermined electrical resistance are ensured by heat bonding. The

また、実施例1および実施例2では、磁性体粉の表面に絶縁材が被膜され、さらにバインダを添加する構成となっているが、絶縁材をバインダとして利用する構成としてもよい。この場合、磁性体粉の表面に予めバインダからなる絶縁材を被覆してもよいし、磁性体分とバインダとを混合状態で成型して磁性体粉の表面に絶縁被膜が形成されるようにしてもよい。   Moreover, in Example 1 and Example 2, although the insulating material is coat | covered on the surface of magnetic body powder and it becomes the structure which adds a binder, it is good also as a structure which utilizes an insulating material as a binder. In this case, the surface of the magnetic powder may be coated with an insulating material made of a binder in advance, or the magnetic material and the binder are molded in a mixed state so that an insulating film is formed on the surface of the magnetic powder. May be.

また、バインダとして熱硬化性樹脂を使用してもよい。この場合、比較的高温に設定される径方向内側の強度を高くすることができ、温度パターンに対応した圧粉コア1または回転子13の強度分布をより適切に制御できる。   Moreover, you may use a thermosetting resin as a binder. In this case, the strength on the radially inner side set to a relatively high temperature can be increased, and the strength distribution of the dust core 1 or the rotor 13 corresponding to the temperature pattern can be controlled more appropriately.

1、11 圧粉コア(回転子用鉄心)
1a 中心孔
1b、11b ヨーク部
1c、11c 巻線胴体部
1d、11d ティース部
2、12 回転軸
13 回転子
Z Z軸(中心軸)
1, 11 Dust core (rotor core)
1a Center hole 1b, 11b Yoke part 1c, 11c Winding trunk part 1d, 11d Teeth part 2, 12 Rotating shaft 13 Rotor Z Z axis (central axis)

Claims (4)

内周部に回転軸を圧入可能な中心孔が形成されたヨーク部と、
前記ヨーク部の外周部に突設され巻線を巻回可能な複数の巻線胴体部と、
各々の前記巻線胴体部の径方向外側に設けられるティース部と、
を備えた回転子用鉄心であって、
前記回転子用鉄心は、磁性体粉およびバインダを加圧成形することにより形成され、
前記ヨーク部は、内周部から外周部へと至る径方向に徐々に温度が低められる第一温度パターン、内周部から外周部へと至る径方向に段階的に温度が低められる第二温度パターン、および前記第一温度パターンと前記第二温度パターンとを組み合わせた第三温度パターンのうちいずれか一つの温度分布で加熱接着されることを特徴とする回転子用鉄心。
A yoke part in which a central hole capable of press-fitting a rotation shaft is formed in the inner peripheral part;
A plurality of winding body portions protruding from the outer periphery of the yoke portion and capable of winding the winding;
A teeth portion provided on the radially outer side of each of the winding body portions;
An iron core for a rotor with
The rotor iron core is formed by pressure molding magnetic powder and a binder,
The yoke portion has a first temperature pattern in which the temperature gradually decreases in the radial direction from the inner peripheral portion to the outer peripheral portion, and a second temperature in which the temperature is decreased stepwise in the radial direction from the inner peripheral portion to the outer peripheral portion. An iron core for a rotor, wherein the core is heated and bonded with a temperature distribution of any one of a pattern and a third temperature pattern obtained by combining the first temperature pattern and the second temperature pattern.
前記巻線胴体部と前記ティース部とは、径方向内側から径方向外側へと至る径方向に徐々に温度が低められる第一温度パターン、径方向内側から径方向外側へと至る径方向に段階的に温度が低められる第二温度パターン、および前記第一温度パターンと前記第二温度パターンとを組み合わせた第三温度パターンのうちいずれか一つの温度分布で加熱接着されることを特徴とする請求項1に記載の回転子用鉄心。 The winding body portion and the teeth portion are stepped in a radial direction from the radially inner side to the radially outer side, a first temperature pattern in which the temperature gradually decreases in the radial direction from the radially inner side to the radially outer side. The heat-bonding is performed at any one of a second temperature pattern in which the temperature is lowered and a third temperature pattern in which the first temperature pattern and the second temperature pattern are combined. Item 2. The rotor iron core according to Item 1. ヨーク部と、前記ヨーク部の外周部に突設され巻線を巻回可能な複数の巻線胴体部と、各々の前記巻線胴体部の径方向外側に設けられるティース部とを備えた回転子用鉄心と、
前記ヨーク部の中心部に設けた回転軸と、
を備えた回転子であって、
前記回転子は、磁性体粉およびバインダを加圧成形することにより形成され、
前記回転軸と前記ヨーク部とは、前記回転軸の中心軸から前記ヨーク部の外周部へ至る径方向に徐々に温度が低められる第一温度パターン、前記回転軸の中心軸から前記ヨーク部の外周部へ至る径方向に階段的に温度が低められる第二温度パターン、および前記第一温度パターンと前記第二温度パターンとを組み合わせた第三温度パターンのうちいずれか一つの温度分布で加熱接着されることを特徴とする回転子。
A rotation provided with a yoke portion, a plurality of winding body portions projecting from the outer peripheral portion of the yoke portion and capable of winding a winding, and a tooth portion provided radially outside each of the winding body portions Child iron core,
A rotating shaft provided at the center of the yoke portion;
A rotor with
The rotor is formed by press molding magnetic powder and a binder,
The rotating shaft and the yoke portion are a first temperature pattern in which the temperature gradually decreases in the radial direction from the central axis of the rotating shaft to the outer peripheral portion of the yoke portion, and from the central axis of the rotating shaft to the yoke portion. Heat bonding with a temperature distribution of any one of a second temperature pattern in which the temperature is lowered stepwise in the radial direction to the outer periphery, and a third temperature pattern in which the first temperature pattern and the second temperature pattern are combined Rotor characterized by being made.
前記巻線胴体部と前記ティース部とは、径方向内側から径方向外側へと至る径方向に徐々に温度が低められる第一温度パターン、径方向内側から径方向外側へと至る径方向に段階的に温度が低められる第二温度パターン、および前記第一温度パターンと前記第二温度パターンとを組み合わせた第三温度パターンのうちいずれか一つの温度分布で加熱接着されることを特徴とする請求項3に記載の回転子。 The winding body portion and the teeth portion are stepped in a radial direction from the radially inner side to the radially outer side, a first temperature pattern in which the temperature gradually decreases in the radial direction from the radially inner side to the radially outer side. The heat-bonding is performed at any one of a second temperature pattern in which the temperature is lowered and a third temperature pattern in which the first temperature pattern and the second temperature pattern are combined. Item 4. The rotor according to item 3.
JP2010009849A 2010-01-20 2010-01-20 Core for rotors and rotor Pending JP2011151909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010009849A JP2011151909A (en) 2010-01-20 2010-01-20 Core for rotors and rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010009849A JP2011151909A (en) 2010-01-20 2010-01-20 Core for rotors and rotor

Publications (1)

Publication Number Publication Date
JP2011151909A true JP2011151909A (en) 2011-08-04

Family

ID=44538387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010009849A Pending JP2011151909A (en) 2010-01-20 2010-01-20 Core for rotors and rotor

Country Status (1)

Country Link
JP (1) JP2011151909A (en)

Similar Documents

Publication Publication Date Title
US5382859A (en) Stator and method of constructing same for high power density electric motors and generators
US7372181B2 (en) Rotor for brushless motor and brushless motor
US7262526B2 (en) Rotor for permanent magnet motor of outer rotor type
US8258668B2 (en) Stator and rotating electric machine employing the same
EP1865587B1 (en) Magnetic powder metal composite core for electrical machines
JP2012161226A (en) Rotor for rotary electric machine
JP2007074841A (en) Stator core, motor employing it and its manufacturing process
WO2010084672A1 (en) Dynamo electric machine
WO2019077983A1 (en) Axial gap-type dynamo-electric machine
US20120091852A1 (en) Electrical machine
JP2015082860A (en) Dynamo-electric machine and method of manufacturing rotor core
JP6591084B2 (en) Rotor and rotating electric machine
JP2006254561A (en) Rotary electric machine
JP2005261188A (en) Core for rotating machine and rotating machine
CA3055090A1 (en) Stator assembly with heat recovery for electric machines
WO2018207897A1 (en) Multi-phase claw-pole motor and stator as constituent of multi-phase claw-pole motor
JP5672149B2 (en) Rotating electric machine rotor and rotating electric machine using the same
US11223246B2 (en) Stator
JP2011151909A (en) Core for rotors and rotor
JP2004140951A (en) Permanent magnet-embedded motor
JP2008022593A (en) Electric motor
WO2017175461A1 (en) Axial gap rotary electric machine
JPS6259538B2 (en)
JP6819760B2 (en) How to manufacture the stator
CN102761219B (en) Rotating motor and rotor