JP2011150853A - Solid polymer fuel cell - Google Patents

Solid polymer fuel cell Download PDF

Info

Publication number
JP2011150853A
JP2011150853A JP2010010346A JP2010010346A JP2011150853A JP 2011150853 A JP2011150853 A JP 2011150853A JP 2010010346 A JP2010010346 A JP 2010010346A JP 2010010346 A JP2010010346 A JP 2010010346A JP 2011150853 A JP2011150853 A JP 2011150853A
Authority
JP
Japan
Prior art keywords
electrode
separator
fuel cell
oxidant gas
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010010346A
Other languages
Japanese (ja)
Other versions
JP5766916B2 (en
Inventor
Masaru Oda
優 小田
Ryuhei Ishimaru
竜平 石丸
Yasuhiro Watanabe
康博 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010010346A priority Critical patent/JP5766916B2/en
Priority to CN201010623104XA priority patent/CN102130353B/en
Publication of JP2011150853A publication Critical patent/JP2011150853A/en
Application granted granted Critical
Publication of JP5766916B2 publication Critical patent/JP5766916B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable to inhibit intensive detention of water in the vicinity of a lower end part of an electrolyte film and inhibiting degradation of the electrolyte film due to swelling as much as possible, in a simple and economical structure. <P>SOLUTION: The fuel cell 10 is structured by pinching an electrolyte film/electrode structure 12 with a first separator 14 and a second separator 16. The electrolyte film/electrode structure 12 is provided with a solid polymer electrolyte film 26, a cathode-side electrode 28, and an anode-side electrode 30. The first separator 14 is fitted with an oxidant gas flow channel 34, while, the second separator 16 is fitted with a fuel gas flow channel 40. A lower-end position of the fuel gas flow channel 40 and that of the oxidant gas flow channel 34 are to be set at positions different in a gravity direction. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電解質膜の両側に一対の電極を配設した電解質膜・電極構造体とセパレータとが積層される固体高分子型燃料電池に関する。   The present invention relates to a polymer electrolyte fuel cell in which an electrolyte membrane / electrode structure having a pair of electrodes disposed on both sides of an electrolyte membrane and a separator are laminated.

例えば、固体高分子型燃料電池は、高分子イオン交換膜からなる電解質膜の両側に、それぞれアノード側電極及びカソード側電極を配設した電解質膜・電極構造体(MEA)を、一対のセパレータによって挟持した発電ユニットを備えている。この種の燃料電池は、通常、所定の数(例えば、数百)の発電ユニットを積層することにより、例えば、車載用燃料電池スタックとして使用されている。   For example, in a polymer electrolyte fuel cell, an electrolyte membrane / electrode structure (MEA) in which an anode side electrode and a cathode side electrode are disposed on both sides of an electrolyte membrane made of a polymer ion exchange membrane is provided by a pair of separators. The power generation unit is sandwiched. This type of fuel cell is usually used as, for example, an in-vehicle fuel cell stack by stacking a predetermined number (for example, several hundreds) of power generation units.

上記の燃料電池では、燃料ガス流路を介してアノード側電極に供給された燃料ガス(例えば、主に水素を含有するガス)と、酸化剤ガス流路を介してカソード側電極に供給された酸化剤ガス(例えば、主に酸素を含有するガスあるいは空気)との電気化学反応により、電力が得られている。   In the above fuel cell, the fuel gas (for example, a gas mainly containing hydrogen) supplied to the anode side electrode via the fuel gas flow path and the cathode side electrode supplied to the cathode side electrode via the oxidant gas flow path. Electric power is obtained by an electrochemical reaction with an oxidant gas (for example, a gas containing mainly oxygen or air).

このため、燃料電池の発電時に、カソード側電極には水が生成される一方、アノード側電極には前記水が逆拡散により透過する。従って、酸化剤ガス流路及び燃料ガス流路は、特にそれぞれの下流側に結露水が滞留し易く、電極部と水滞留部とが重なる領域、通常、電極端部では、電解質膜が著しく膨潤してカソード側電極への燃料ガスのクロスリークが増大し、前記電解質膜が劣化するおそれがある。   For this reason, at the time of power generation of the fuel cell, water is generated in the cathode side electrode, while the water permeates through the anode side electrode by back diffusion. Therefore, in the oxidant gas flow channel and the fuel gas flow channel, particularly, the condensed water tends to stay on the downstream side of each, and the electrolyte membrane remarkably swells in the region where the electrode portion and the water retention portion overlap, usually at the electrode end. As a result, the cross leak of the fuel gas to the cathode side electrode increases, and the electrolyte membrane may be deteriorated.

そこで、例えば、特許文献1に開示された燃料電池のセルが知られている。この燃料電池のセルは、電解質膜と、該電解質膜の一面に接合されて空気が供給されるカソード極と、該電解質膜の他面に接合されて燃料が供給されるアノード極とを有する膜電極接合体と、該カソード極側に空気室を形成するとともに、該アノード極側に燃料室を形成するように該膜電極接合体を挟持する対をなす導電性材料製のセパレータとを備えている。   Thus, for example, a fuel cell disclosed in Patent Document 1 is known. The fuel cell includes a membrane having an electrolyte membrane, a cathode electrode joined to one surface of the electrolyte membrane and supplied with air, and an anode electrode joined to the other surface of the electrolyte membrane and supplied with fuel. An electrode assembly, and a separator made of a conductive material forming a pair that sandwiches the membrane electrode assembly so as to form an air chamber on the cathode electrode side and a fuel chamber on the anode electrode side. Yes.

そして、空気室及び燃料室の少なくとも一方の出口には、連通面積が絞られた絞り部が設けられている。例えば、空気室では、出口で空気の流速が大きくなり、空気室内の水滴を好適に排除するため、セルでは、動作条件が異なっても、カソード極への空気の供給が阻害され難く、これによってカソード極全体が好適に反応し、セル電圧が安定する、としている。   Further, at least one outlet of the air chamber and the fuel chamber is provided with a throttle portion having a reduced communication area. For example, in the air chamber, the flow rate of air at the outlet increases, and water droplets in the air chamber are suitably eliminated.Therefore, in the cell, the supply of air to the cathode electrode is hardly hindered even under different operating conditions. It is said that the entire cathode electrode reacts appropriately and the cell voltage is stabilized.

特開2007−234352号公報JP 2007-234352 A

しかしながら、上記の特許文献1では、空気室及び燃料室の少なくとも一方の出口に絞り部が設けられるため、この絞り部で圧損が増大し、燃料電池システムとしての効率が低下してしまう。しかも、構成が複雑化し、製造コストが高騰するという問題がある。   However, in Patent Document 1 described above, since the throttle part is provided at the outlet of at least one of the air chamber and the fuel chamber, the pressure loss increases at the throttle part, and the efficiency of the fuel cell system decreases. In addition, there is a problem that the configuration becomes complicated and the manufacturing cost increases.

本発明はこの種の問題を解決するものであり、簡単且つ経済的な構成で、電極発電部の端部近傍に水が集中して滞留することを阻止することができ、前記電極発電部の端部近傍に対応した電解質膜の膨潤による劣化を可及的に阻止することが可能な固体高分子型燃料電池を提供することを目的とする。   The present invention solves this type of problem, and can prevent water from concentrating and staying in the vicinity of the end of the electrode power generation unit with a simple and economical configuration. It is an object of the present invention to provide a polymer electrolyte fuel cell capable of preventing deterioration due to swelling of an electrolyte membrane corresponding to the vicinity of an end as much as possible.

本発明は、電解質膜の両側にアノード側電極及びカソード側電極を配設した電解質膜・電極構造体とセパレータとが積層されるとともに、前記アノード側電極と一方のセパレータとの間には、重力方向に燃料ガスを流通させる燃料ガス流路が形成され、前記カソード側電極と他方のセパレータとの間には、前記重力方向に酸化剤ガスを流通させる酸化剤ガスが形成される固体高分子型燃料電池に関するものである。   In the present invention, an electrolyte membrane / electrode structure in which an anode side electrode and a cathode side electrode are disposed on both sides of an electrolyte membrane and a separator are laminated, and a gravity is interposed between the anode side electrode and one separator. A solid polymer type in which a fuel gas flow path for flowing fuel gas in the direction is formed, and an oxidant gas for flowing oxidant gas in the direction of gravity is formed between the cathode side electrode and the other separator The present invention relates to a fuel cell.

この固体高分子型燃料電池は、燃料ガス流路の下端位置と、酸化剤ガス流路の下端位置とは、重力方向に異なる位置に設定されている。   In this polymer electrolyte fuel cell, the lower end position of the fuel gas passage and the lower end position of the oxidant gas passage are set at different positions in the direction of gravity.

また、電解質膜・電極構造体は、電極を構成する触媒塗布領域の下端位置が、燃料ガス流路の下端位置及び酸化剤ガス流路の下端位置よりも上方に離間する位置に設定されることが好ましい。   In the electrolyte membrane / electrode structure, the lower end position of the catalyst application region constituting the electrode is set at a position spaced above the lower end position of the fuel gas passage and the lower end position of the oxidant gas passage. Is preferred.

本発明によれば、燃料ガス流路の下端位置と、酸化剤ガス流路の下端位置とは、重力方向に異なるため、それぞれの水滞留位置が前記重力方向にずれている。従って、電極発電部の端部近傍に水が集中して滞留することを抑制することができ、簡単且つ経済的な構成で、前記電解質膜の膨潤による劣化を可及的に阻止することが可能になる。   According to the present invention, since the lower end position of the fuel gas flow path and the lower end position of the oxidant gas flow path are different in the direction of gravity, the respective water retention positions are shifted in the direction of gravity. Accordingly, water can be prevented from concentrating and staying in the vicinity of the end of the electrode power generation unit, and the deterioration due to swelling of the electrolyte membrane can be prevented as much as possible with a simple and economical configuration. become.

本発明の第1の実施形態に係る燃料電池の要部分解斜視説明図である。It is a principal part disassembled perspective explanatory drawing of the fuel cell which concerns on the 1st Embodiment of this invention. 前記燃料電池の、図1中、II−II線断面説明図である。FIG. 2 is a sectional view of the fuel cell taken along line II-II in FIG. 1. 前記燃料電池を構成する電解質膜・電極構造体の正面説明図である。It is front explanatory drawing of the electrolyte membrane and electrode structure which comprises the said fuel cell. 前記燃料電池を構成する第2セパレータの正面説明図である。It is front explanatory drawing of the 2nd separator which comprises the said fuel cell. 前記電解質膜・電極構造体の触媒塗布領域と酸化剤ガス流路及び燃料ガス流路との関係説明図である。FIG. 3 is an explanatory diagram of a relationship between a catalyst application region of the electrolyte membrane / electrode structure, an oxidant gas flow channel, and a fuel gas flow channel. 本発明の第2の実施形態に係る燃料電池の要部分解斜視説明図である。It is a principal part disassembled perspective explanatory drawing of the fuel cell which concerns on the 2nd Embodiment of this invention.

図1に示すように、本発明の第1の実施形態に係る燃料電池10は、電解質膜・電極構造体12を第1セパレータ14及び第2セパレータ16により挟持して構成される。   As shown in FIG. 1, the fuel cell 10 according to the first embodiment of the present invention is configured by sandwiching an electrolyte membrane / electrode structure 12 between a first separator 14 and a second separator 16.

燃料電池10の長辺方向(矢印C方向)の上端縁部には、矢印A方向に互いに連通して、酸化剤ガス、例えば、酸素含有ガスを供給するための酸化剤ガス入口連通孔20a、及び燃料ガス、例えば、水素含有ガスを供給するための燃料ガス入口連通孔22aが設けられる。   An oxidant gas inlet communication hole 20a for supplying an oxidant gas, for example, an oxygen-containing gas, communicates with each other in the arrow A direction at the upper edge of the long side direction (arrow C direction) of the fuel cell 10. And a fuel gas inlet communication hole 22a for supplying a fuel gas, for example, a hydrogen-containing gas.

燃料電池10の長辺方向(矢印C方向)の下端縁部には、矢印A方向に互いに連通して、燃料ガスを排出するための燃料ガス出口連通孔22b、及び酸化剤ガスを排出するための酸化剤ガス出口連通孔20bが設けられる。   The lower end edge of the long side direction (arrow C direction) of the fuel cell 10 communicates with each other in the direction of arrow A to discharge the fuel gas outlet communication hole 22b for discharging the fuel gas and the oxidant gas. The oxidant gas outlet communication hole 20b is provided.

燃料電池10の短辺方向(矢印B方向)の一端縁部には、矢印A方向に互いに連通して、冷却媒体を供給するための冷却媒体入口連通孔24aが設けられるとともに、前記燃料電池10の短辺方向の他端縁部には、前記冷却媒体を排出するための冷却媒体出口連通孔24bが設けられる。   At one edge of the fuel cell 10 in the short side direction (arrow B direction), there is provided a cooling medium inlet communication hole 24a that communicates with each other in the direction of arrow A and supplies a cooling medium. A cooling medium outlet communication hole 24b for discharging the cooling medium is provided at the other end edge in the short side direction.

図1〜図3に示すように、電解質膜・電極構造体12は、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜26と、前記固体高分子電解質膜26を挟持するカソード側電極28及びアノード側電極30とを備える。アノード側電極30は、カソード側電極28よりも小さな表面積を有する、所謂、段差型MEAを構成している。   As shown in FIGS. 1 to 3, the electrolyte membrane / electrode structure 12 includes, for example, a solid polymer electrolyte membrane 26 in which a perfluorosulfonic acid thin film is impregnated with water, and the solid polymer electrolyte membrane 26. The cathode side electrode 28 and the anode side electrode 30 are provided. The anode side electrode 30 constitutes a so-called stepped MEA having a smaller surface area than the cathode side electrode 28.

図2に示すように、カソード側電極28は、カーボンペーパ等からなるガス拡散層28aと、白金合金が表面に担持された多孔質カーボン粒子が前記ガス拡散層28aの表面に一様に塗布されて形成される電極触媒層28bとを有する。アノード側電極30は、カーボンペーパ等からなるガス拡散層30aと、白金合金が表面に担持された多孔質カーボン粒子が前記ガス拡散層30aの表面に一様に塗布されて形成される電極触媒層30bとを有する。   As shown in FIG. 2, the cathode side electrode 28 has a gas diffusion layer 28a made of carbon paper or the like, and porous carbon particles having a platinum alloy supported on the surface are uniformly applied to the surface of the gas diffusion layer 28a. The electrode catalyst layer 28b is formed. The anode-side electrode 30 includes a gas diffusion layer 30a made of carbon paper and the like, and an electrode catalyst layer formed by uniformly applying porous carbon particles carrying a platinum alloy on the surface of the gas diffusion layer 30a. 30b.

電極触媒層28b、30bは、固体高分子電解質膜26の両面に形成される。電極触媒層28b、30bのいずれか一方は、後述するように、固体高分子電解質膜26の両面に所定の触媒塗布領域H内に形成される(図3参照)。すなわち、電極触媒層28b、30bの下端位置は、重力方向に互いにずれており、一方が触媒塗布領域H内に形成され、他方が前記触媒塗布領域H外(下方)に形成される。具体的には、アノード側電極30を構成する電極触媒層30bは、触媒塗布領域H外に形成され、カソード側電極28を構成する電極触媒層28bは、前記触媒塗布領域H内に形成されることが好ましい。   The electrode catalyst layers 28 b and 30 b are formed on both surfaces of the solid polymer electrolyte membrane 26. One of the electrode catalyst layers 28b and 30b is formed in a predetermined catalyst application region H on both surfaces of the solid polymer electrolyte membrane 26 as described later (see FIG. 3). That is, the lower end positions of the electrode catalyst layers 28b and 30b are shifted from each other in the gravitational direction, one is formed in the catalyst coating region H, and the other is formed outside (downward) the catalyst coating region H. Specifically, the electrode catalyst layer 30b constituting the anode side electrode 30 is formed outside the catalyst application region H, and the electrode catalyst layer 28b constituting the cathode side electrode 28 is formed within the catalyst application region H. It is preferable.

第1セパレータ14及び第2セパレータ16は、例えば、鋼板、ステンレス鋼板、アルミニウム板、めっき処理鋼板、あるいはその金属表面に防食用の表面処理を施した縦長形状の金属板により構成される。第1セパレータ14及び第2セパレータ16は、平面が矩形状を有し、且つ縦長形状を有するとともに、金属製薄板を波形状にプレス加工することにより、断面凹凸形状に成形される。なお、第1セパレータ14及び第2セパレータ16は、金属セパレータに代えて、例えば、カーボンセパレータにより構成してもよい。   The first separator 14 and the second separator 16 are made of, for example, a steel plate, a stainless steel plate, an aluminum plate, a plated steel plate, or a vertically long metal plate obtained by performing a surface treatment for corrosion prevention on the metal surface. The first separator 14 and the second separator 16 have a rectangular planar shape and a vertically long shape, and are formed into a concavo-convex shape by pressing a metal thin plate into a wave shape. In addition, you may comprise the 1st separator 14 and the 2nd separator 16 with a carbon separator instead of a metal separator, for example.

図1に示すように、第1セパレータ14の電解質膜・電極構造体12に向かう面14aには、酸化剤ガス入口連通孔20aと酸化剤ガス出口連通孔20bとを連通する酸化剤ガス流路34が形成される。酸化剤ガス流路34は、矢印C方向(重力方向)に延在する複数の波状流路溝部34aを有する。酸化剤ガス流路34の入口近傍及び出口近傍には、それぞれ複数のエンボスを有する入口バッファ部36a及び出口バッファ部36bが設けられる。   As shown in FIG. 1, on the surface 14a of the first separator 14 facing the electrolyte membrane / electrode structure 12, an oxidant gas flow path that connects an oxidant gas inlet communication hole 20a and an oxidant gas outlet communication hole 20b. 34 is formed. The oxidant gas flow path 34 has a plurality of wave-shaped flow path grooves 34a extending in the direction of arrow C (the direction of gravity). An inlet buffer portion 36a and an outlet buffer portion 36b each having a plurality of embosses are provided in the vicinity of the inlet and the outlet of the oxidizing gas channel 34.

入口バッファ部36aと酸化剤ガス入口連通孔20aとの間には、複数の入口連結通路38aが形成される。出口バッファ部36bと酸化剤ガス出口連通孔20bとの間には、複数の出口連結通路38bが形成される。   A plurality of inlet connection passages 38a are formed between the inlet buffer portion 36a and the oxidant gas inlet communication hole 20a. A plurality of outlet connecting passages 38b are formed between the outlet buffer portion 36b and the oxidizing gas outlet communication hole 20b.

図4に示すように、第2セパレータ16の電解質膜・電極構造体12に向かう面16aには、燃料ガス入口連通孔22aと燃料ガス出口連通孔22bとを連通する燃料ガス流路40が形成される。燃料ガス流路40は、矢印C方向に延在する複数の波状流路溝部40aを有するとともに、前記燃料ガス流路40の入口近傍及び出口近傍には、それぞれ複数のエンボスを有する入口バッファ部42a及び出口バッファ部42bが設けられる。燃料ガスの流れ方向と酸化剤ガスの流れ方向とは、同じ方向に設定される。   As shown in FIG. 4, a fuel gas flow path 40 that connects the fuel gas inlet communication hole 22 a and the fuel gas outlet communication hole 22 b is formed on the surface 16 a of the second separator 16 facing the electrolyte membrane / electrode structure 12. Is done. The fuel gas channel 40 has a plurality of wave-like channel grooves 40a extending in the direction of arrow C, and an inlet buffer unit 42a having a plurality of embosses in the vicinity of the inlet and the outlet of the fuel gas channel 40, respectively. And an outlet buffer 42b. The flow direction of the fuel gas and the flow direction of the oxidant gas are set in the same direction.

第2セパレータ16は、燃料ガス入口連通孔22a及び燃料ガス流路40を連通する複数の供給孔部44aと、燃料ガス出口連通孔22b及び前記燃料ガス流路40を連通する複数の排出孔部44bとを有する。   The second separator 16 includes a plurality of supply holes 44 a that communicate the fuel gas inlet communication hole 22 a and the fuel gas flow path 40, and a plurality of discharge hole parts that communicate the fuel gas outlet communication hole 22 b and the fuel gas flow path 40. 44b.

図5に示すように、燃料ガス流路40の下端位置40bと酸化剤ガス流路34の下端位置34bとは、重力方向(矢印C方向)の位置が異なる。第1の実施形態では、燃料ガス流路40の下端位置40bは、酸化剤ガス流路34の下端位置34bよりも下方に距離h1だけ突出する位置に設定される。酸化剤ガス流路34の下端位置34bは、電解質膜・電極構造体12の触媒塗布領域Hの下端位置よりも下方に距離h2だけ突出する位置に設定される。   As shown in FIG. 5, the lower end position 40b of the fuel gas flow path 40 and the lower end position 34b of the oxidant gas flow path 34 are different in the position in the gravity direction (arrow C direction). In the first embodiment, the lower end position 40 b of the fuel gas channel 40 is set to a position that protrudes by a distance h 1 below the lower end position 34 b of the oxidant gas channel 34. The lower end position 34 b of the oxidant gas flow path 34 is set to a position that protrudes by a distance h 2 below the lower end position of the catalyst application region H of the electrolyte membrane / electrode structure 12.

具体的には、触媒塗布領域Hの上端位置は、酸化剤ガス流路34及び燃料ガス流路40の上端位置と同一位置に設定される。一方、触媒塗布領域Hの下端位置は、酸化剤ガス流路34の下端位置34b及び前記燃料ガス流路40の下端位置40bよりも上方に設定される。   Specifically, the upper end position of the catalyst application region H is set to the same position as the upper end positions of the oxidant gas passage 34 and the fuel gas passage 40. On the other hand, the lower end position of the catalyst application region H is set higher than the lower end position 34 b of the oxidant gas passage 34 and the lower end position 40 b of the fuel gas passage 40.

図1に示すように、第1セパレータ14の面14bと第2セパレータ16の面16bとの間には、冷却媒体入口連通孔24aと冷却媒体出口連通孔24bとを連通する冷却媒体流路46が形成される。冷却媒体流路46は、波状流路溝部34a、40aの裏面形状であり、これらが重なり合うことによって、矢印B方向に延在する流路溝部(図示せず)が設けられる。   As shown in FIG. 1, between the surface 14b of the first separator 14 and the surface 16b of the second separator 16, a cooling medium flow path 46 that communicates the cooling medium inlet communication hole 24a and the cooling medium outlet communication hole 24b. Is formed. The cooling medium flow path 46 has a back surface shape of the wavy flow path groove portions 34a and 40a, and a flow path groove portion (not shown) extending in the arrow B direction is provided by overlapping these.

図1及び図2に示すように、第1セパレータ14の面14a、14bには、この第1セパレータ14の外周端縁部を周回して第1シール部材50が、個別に又は一体に設けられる。第2セパレータ16の面16a、16bには、この第2セパレータ16の外周端縁部を周回して第2シール部材52が、個別に又は一体に設けられる。   As shown in FIGS. 1 and 2, first seal members 50 are individually or integrally provided on the surfaces 14 a and 14 b of the first separator 14 around the outer peripheral edge of the first separator 14. . On the surfaces 16a and 16b of the second separator 16, second seal members 52 are provided individually or integrally around the outer peripheral edge of the second separator 16.

第1シール部材50は、電解質膜・電極構造体12の外周外方を周回するとともに、酸化剤ガス入口連通孔20a及び酸化剤ガス出口連通孔20bと酸化剤ガス流路34とを連通する突起部50aを有する。第2シール部材52は、図2及び図4に示すように、電解質膜・電極構造体12を構成する固体高分子電解質膜26の外周縁部に沿って当接する突起部52aを有する。   The first seal member 50 circulates around the outer periphery of the electrolyte membrane / electrode structure 12, and is a protrusion that communicates the oxidant gas inlet communication hole 20 a and the oxidant gas outlet communication hole 20 b with the oxidant gas flow path 34. Part 50a. As shown in FIGS. 2 and 4, the second seal member 52 has a protrusion 52 a that abuts along the outer peripheral edge of the solid polymer electrolyte membrane 26 constituting the electrolyte membrane / electrode structure 12.

このように構成される燃料電池10の動作について、以下に説明する。   The operation of the fuel cell 10 configured as described above will be described below.

先ず、図1に示すように、酸化剤ガス入口連通孔20aには、酸素含有ガス等の酸化剤ガスが供給されるとともに、燃料ガス入口連通孔22aには、水素含有ガス等の燃料ガスが供給される。さらに、冷却媒体入口連通孔24aには、純水やエチレングリコール、オイル等の冷却媒体が供給される。   First, as shown in FIG. 1, an oxidant gas such as an oxygen-containing gas is supplied to the oxidant gas inlet communication hole 20a, and a fuel gas such as a hydrogen-containing gas is supplied to the fuel gas inlet communication hole 22a. Supplied. Further, a cooling medium such as pure water, ethylene glycol, or oil is supplied to the cooling medium inlet communication hole 24a.

このため、酸化剤ガスは、酸化剤ガス入口連通孔20aから第1セパレータ14の入口連結通路38aを通って酸化剤ガス流路34に導入される。この酸化剤ガスは、酸化剤ガス流路34に沿って矢印C方向(重力方向)に移動し、電解質膜・電極構造体12のカソード側電極28に供給される。   Therefore, the oxidant gas is introduced from the oxidant gas inlet communication hole 20a through the inlet connection passage 38a of the first separator 14 into the oxidant gas flow path 34. This oxidant gas moves in the direction of arrow C (the direction of gravity) along the oxidant gas flow path 34 and is supplied to the cathode side electrode 28 of the electrolyte membrane / electrode structure 12.

一方、燃料ガスは、燃料ガス入口連通孔22aから供給孔部44aを通って第2セパレータ16の面16a側に移動する。燃料ガスは、図4に示すように、燃料ガス流路40に沿って重力方向(矢印C方向)に移動し、電解質膜・電極構造体12のアノード側電極30に供給される(図1参照)。   On the other hand, the fuel gas moves from the fuel gas inlet communication hole 22a to the surface 16a side of the second separator 16 through the supply hole 44a. As shown in FIG. 4, the fuel gas moves along the fuel gas flow path 40 in the direction of gravity (arrow C direction) and is supplied to the anode electrode 30 of the electrolyte membrane / electrode structure 12 (see FIG. 1). ).

従って、電解質膜・電極構造体12では、カソード側電極28に供給される酸化剤ガスと、アノード側電極30に供給される燃料ガスとが、電極触媒層内で電気化学反応により消費されて発電が行われる。   Therefore, in the electrolyte membrane / electrode structure 12, the oxidant gas supplied to the cathode side electrode 28 and the fuel gas supplied to the anode side electrode 30 are consumed by an electrochemical reaction in the electrode catalyst layer to generate power. Is done.

次いで、電解質膜・電極構造体12のカソード側電極28に供給されて消費された酸化剤ガスは、酸化剤ガス出口連通孔20bに沿って矢印A方向に排出される。一方、電解質膜・電極構造体12のアノード側電極30に供給されて消費された燃料ガスは、排出孔部44bを通って第2セパレータ16の面16b側に導出される。面16b側に導出された燃料ガスは、燃料ガス出口連通孔22bに排出される。   Next, the oxidant gas supplied to and consumed by the cathode side electrode 28 of the electrolyte membrane / electrode structure 12 is discharged in the direction of arrow A along the oxidant gas outlet communication hole 20b. On the other hand, the fuel gas supplied to and consumed by the anode electrode 30 of the electrolyte membrane / electrode structure 12 is led to the surface 16b side of the second separator 16 through the discharge hole 44b. The fuel gas led out to the surface 16b side is discharged to the fuel gas outlet communication hole 22b.

また、冷却媒体入口連通孔24aに供給された冷却媒体は、図1に示すように、一方の燃料電池10を構成する第1セパレータ14と、他方の燃料電池10を構成する第2セパレータ16との間に形成された冷却媒体流路46に導入される。このため、冷却媒体入口連通孔24aから冷却媒体流路46に供給される冷却媒体は、矢印B方向に移動して燃料電池10を冷却した後、冷却媒体出口連通孔24bに排出される。   In addition, as shown in FIG. 1, the cooling medium supplied to the cooling medium inlet communication hole 24 a includes a first separator 14 constituting one fuel cell 10 and a second separator 16 constituting the other fuel cell 10. Are introduced into the cooling medium flow path 46 formed between the two. For this reason, the cooling medium supplied from the cooling medium inlet communication hole 24a to the cooling medium flow path 46 moves in the direction of arrow B to cool the fuel cell 10, and is then discharged to the cooling medium outlet communication hole 24b.

この場合、第1の実施形態では、図5に示すように、燃料ガス流路40の下端位置40bは、酸化剤ガス流路34の下端位置34bよりも下方に距離h1だけ突出している。このため、酸化剤ガス流路34及び燃料ガス流路40の下流側に形成され易い各水滞留部が、重力方向の同一高さ位置に重なることを確実に阻止することができる。   In this case, in the first embodiment, as shown in FIG. 5, the lower end position 40 b of the fuel gas flow path 40 protrudes by a distance h <b> 1 below the lower end position 34 b of the oxidant gas flow path 34. For this reason, each water retention part which is easy to be formed in the downstream of the oxidant gas flow path 34 and the fuel gas flow path 40 can be reliably prevented from overlapping at the same height position in the gravity direction.

従って、電解質膜・電極構造体12では、電極発電部の端部近傍に、各水滞留部に対応して水が集中して滞留することを抑制することが可能になる。これにより、固体高分子電解質膜26が著しく膨潤することがなく、多量の燃料ガスがカソード側電極28にクロスリークすることを確実に阻止することができる。   Therefore, in the electrolyte membrane / electrode structure 12, it is possible to prevent water from concentrating and staying in the vicinity of the end portion of the electrode power generation portion corresponding to each water retention portion. As a result, the solid polymer electrolyte membrane 26 does not swell significantly, and it is possible to reliably prevent a large amount of fuel gas from cross leaking to the cathode side electrode 28.

このため、簡単且つ経済的な構成で、固体高分子電解質膜26の劣化を可及的に阻止することが可能になる。従って、燃料電池10の発電性能の低下を抑制することができるという効果が得られる。   For this reason, it becomes possible to prevent deterioration of the solid polymer electrolyte membrane 26 as much as possible with a simple and economical configuration. Therefore, the effect that the fall of the electric power generation performance of the fuel cell 10 can be suppressed is acquired.

さらに、図5に示すように、酸化剤ガス流路34の下端位置34bは、電解質膜・電極構造体12の触媒塗布領域Hの下端位置よりも下方に距離h2だけ突出している。これにより、酸化剤ガス流路34の下端位置34bと触媒塗布領域Hの下端位置とがずれるため、水の滞留を抑制することができる。従って、酸化剤ガス流路34の下端位置34bに形成され易い水滞留部が、触媒塗布領域Hに重なることを確実に阻止することが可能になり、固体高分子電解質膜26の著しい膨潤を良好に阻止することができる。   Further, as shown in FIG. 5, the lower end position 34 b of the oxidant gas flow path 34 protrudes below the lower end position of the catalyst application region H of the electrolyte membrane / electrode structure 12 by a distance h <b> 2. Thereby, since the lower end position 34b of the oxidant gas flow path 34 and the lower end position of the catalyst application area | region H shift | deviate, retention of water can be suppressed. Accordingly, it is possible to reliably prevent the water retention portion that is likely to be formed at the lower end position 34b of the oxidant gas flow path 34 from overlapping the catalyst application region H, and the solid swelling of the solid polymer electrolyte membrane 26 is excellent. Can be prevented.

また、電極触媒層28b、30bの下端位置は、重力方向に互いにずれており、一方が触媒塗布領域H内に形成され、他方が前記触媒塗布領域H外(下方)に形成されている。具体的には、アノード側電極30を構成する電極触媒層30bは、触媒塗布領域H外に形成され、カソード側電極28を構成する電極触媒層28bは、前記触媒塗布領域H内に形成されている。このため、固体高分子電解質膜20の表裏に水が集中することを有効に防止することが可能になる。   Further, the lower end positions of the electrode catalyst layers 28b and 30b are shifted from each other in the gravity direction, one is formed in the catalyst application region H, and the other is formed outside (downward) the catalyst application region H. Specifically, the electrode catalyst layer 30b constituting the anode side electrode 30 is formed outside the catalyst application region H, and the electrode catalyst layer 28b constituting the cathode side electrode 28 is formed within the catalyst application region H. Yes. For this reason, it becomes possible to effectively prevent water from concentrating on the front and back of the solid polymer electrolyte membrane 20.

図6は、本発明の第2の実施形態に係る燃料電池60の要部分解斜視説明図である。なお、第1の実施形態に係る燃料電池10と同一の構成要素には同一の参照符号を付して、その詳細な説明は省略する。   FIG. 6 is an exploded perspective view of a main part of a fuel cell 60 according to the second embodiment of the present invention. The same components as those of the fuel cell 10 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

燃料電池60は、電解質膜・電極構造体62を第1セパレータ64及び第2セパレータ66により挟持して構成される。電解質膜・電極構造体62は、固体高分子電解質膜26をカソード側電極28及びアノード側電極30により挟持する。カソード側電極28とアノード側電極30とは、同一の表面積に設定されるとともに、固体高分子電解質膜26は、前記カソード側電極28及び前記アノード側電極30よりも大きな表面積に設定される。   The fuel cell 60 is configured by sandwiching an electrolyte membrane / electrode structure 62 between a first separator 64 and a second separator 66. The electrolyte membrane / electrode structure 62 sandwiches the solid polymer electrolyte membrane 26 between the cathode side electrode 28 and the anode side electrode 30. The cathode side electrode 28 and the anode side electrode 30 are set to have the same surface area, and the solid polymer electrolyte membrane 26 is set to have a larger surface area than the cathode side electrode 28 and the anode side electrode 30.

燃料ガス流路40の下端位置40bと酸化剤ガス流路34の下端位置34bとは、重力方向(矢印C方向)の位置が異なる。第2の実施形態では、酸化剤ガス流路34の下端位置34bは、燃料ガス流路40の下端位置40bよりも下方に距離h1だけ突出して構成される。   The lower end position 40b of the fuel gas passage 40 and the lower end position 34b of the oxidant gas passage 34 are different in the position in the direction of gravity (arrow C direction). In the second embodiment, the lower end position 34b of the oxidant gas flow path 34 is configured to protrude below the lower end position 40b of the fuel gas flow path 40 by a distance h1.

この第2の実施形態では、酸化剤ガス流路34及び燃料ガス流路40の下流側に形成され易い各水滞留部が、重力方向の同一高さ位置に重なることを確実に阻止することができる。このため、固体高分子電解質膜26が著しく膨潤することがなく、簡単且つ経済的な構成で、前記固体高分子電解質膜26の劣化を可及的に阻止することができる等、上記の第1の実施形態と同様の効果が得られる。   In the second embodiment, it is possible to reliably prevent the water retention portions that are likely to be formed on the downstream side of the oxidant gas passage 34 and the fuel gas passage 40 from overlapping at the same height position in the gravity direction. it can. For this reason, the solid polymer electrolyte membrane 26 does not swell significantly, the deterioration of the solid polymer electrolyte membrane 26 can be prevented as much as possible with a simple and economical configuration, etc. The same effect as in the embodiment can be obtained.

なお、第1及び第2の実施形態では、酸化剤ガス流路34及び燃料ガス流路40が波状に構成されているが、直線状に構成してもよい。   In the first and second embodiments, the oxidant gas flow path 34 and the fuel gas flow path 40 are configured in a wave shape, but may be configured in a linear shape.

10、60…燃料電池 12、62…電解質膜・電極構造体
14、16、64、66…セパレータ 20a…酸化剤ガス入口連通孔
20b…酸化剤ガス出口連通孔 22a…燃料ガス入口連通孔
22b…燃料ガス出口連通孔 24a…冷却媒体入口連通孔
24b…冷却媒体出口連通孔 26…固体高分子電解質膜
28…カソード側電極 28a、30a…ガス拡散層
28b、30b…電極触媒層 30…アノード側電極
34…酸化剤ガス流路 34a、40a…波状流路溝部
34b、40b…下端位置 36a、42a…入口バッファ部
36b、42b…出口バッファ部 40…燃料ガス流路
46…冷却媒体流路 50、52…シール部材
DESCRIPTION OF SYMBOLS 10, 60 ... Fuel cell 12, 62 ... Electrolyte membrane electrode assembly 14, 16, 64, 66 ... Separator 20a ... Oxidant gas inlet communication hole 20b ... Oxidant gas outlet communication hole 22a ... Fuel gas inlet communication hole 22b ... Fuel gas outlet communication hole 24a ... Cooling medium inlet communication hole 24b ... Cooling medium outlet communication hole 26 ... Solid polymer electrolyte membrane 28 ... Cathode side electrode 28a, 30a ... Gas diffusion layer 28b, 30b ... Electrode catalyst layer 30 ... Anode side electrode 34 ... Oxidant gas passage 34a, 40a ... Wave-like passage groove portions 34b, 40b ... Lower end position 36a, 42a ... Inlet buffer portion 36b, 42b ... Outlet buffer portion 40 ... Fuel gas passage 46 ... Cooling medium passage 50, 52 ... Seal member

Claims (2)

電解質膜の両側にアノード側電極及びカソード側電極を配設した電解質膜・電極構造体とセパレータとが積層されるとともに、前記アノード側電極と一方のセパレータとの間には、重力方向に燃料ガスを流通させる燃料ガス流路が形成され、前記カソード側電極と他方のセパレータとの間には、前記重力方向に酸化剤ガスを流通させる酸化剤ガスが形成される固体高分子型燃料電池であって、
前記燃料ガス流路の下端位置と、前記酸化剤ガス流路の下端位置とは、前記重力方向に異なる位置に設定されることを特徴とする固体高分子型燃料電池。
An electrolyte membrane / electrode structure in which an anode side electrode and a cathode side electrode are disposed on both sides of the electrolyte membrane, and a separator are laminated, and a fuel gas is interposed between the anode side electrode and one separator in the direction of gravity. A solid polymer fuel cell in which an oxidant gas for flowing an oxidant gas in the direction of gravity is formed between the cathode side electrode and the other separator. And
The solid polymer fuel cell, wherein a lower end position of the fuel gas flow path and a lower end position of the oxidant gas flow path are set at different positions in the gravity direction.
請求項1記載の固体高分子型燃料電池において、前記電解質膜・電極構造体は、電極を構成する触媒塗布領域の下端位置が、前記燃料ガス流路の下端位置及び前記酸化剤ガス流路の下端位置よりも上方に離間する位置に設定されることを特徴とする固体高分子型燃料電池。   2. The polymer electrolyte fuel cell according to claim 1, wherein the electrolyte membrane / electrode structure is configured such that a lower end position of a catalyst application region constituting the electrode is a lower end position of the fuel gas passage and an oxidant gas passage. A polymer electrolyte fuel cell, characterized in that the polymer electrolyte fuel cell is set at a position spaced above the lower end position.
JP2010010346A 2010-01-20 2010-01-20 Polymer electrolyte fuel cell Expired - Fee Related JP5766916B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010010346A JP5766916B2 (en) 2010-01-20 2010-01-20 Polymer electrolyte fuel cell
CN201010623104XA CN102130353B (en) 2010-01-20 2010-12-27 Solid high-polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010010346A JP5766916B2 (en) 2010-01-20 2010-01-20 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2011150853A true JP2011150853A (en) 2011-08-04
JP5766916B2 JP5766916B2 (en) 2015-08-19

Family

ID=44268306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010010346A Expired - Fee Related JP5766916B2 (en) 2010-01-20 2010-01-20 Polymer electrolyte fuel cell

Country Status (2)

Country Link
JP (1) JP5766916B2 (en)
CN (1) CN102130353B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5855540B2 (en) * 2012-07-03 2016-02-09 本田技研工業株式会社 Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6874725B2 (en) * 2018-03-28 2021-05-19 トヨタ自動車株式会社 Fuel cell
US11271223B2 (en) * 2018-03-30 2022-03-08 Honda Motor Co., Ltd. Fuel cell
JP7451377B2 (en) 2020-10-28 2024-03-18 本田技研工業株式会社 Fuel cells and fuel cell stacks

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08180883A (en) * 1994-12-26 1996-07-12 Fuji Electric Co Ltd Solid polymer electrolytic fuel cell
JPH09274926A (en) * 1996-04-05 1997-10-21 Fuji Electric Co Ltd Solid high polymer electrolyte type fuel cell
JP2000277128A (en) * 1999-03-24 2000-10-06 Sanyo Electric Co Ltd Solid polymer type fuel cell
JP2001155746A (en) * 1999-11-24 2001-06-08 Toyota Motor Corp Fuel cell and method of operating it
JP2002025584A (en) * 2000-07-04 2002-01-25 Fuji Electric Co Ltd Solid high polymer molecule electrolyte fuel cell and its humidifying method
JP2002373678A (en) * 2001-06-15 2002-12-26 Toyota Motor Corp Fuel cell and method of gas supply in fuel cell
JP2004253185A (en) * 2003-02-18 2004-09-09 Nissan Motor Co Ltd Fuel battery
JP2005302709A (en) * 2004-03-15 2005-10-27 Matsushita Electric Ind Co Ltd Polyelectrolyte type fuel cell
JP2007234543A (en) * 2006-03-03 2007-09-13 Honda Motor Co Ltd Fuel cell
JP2008235283A (en) * 2005-06-20 2008-10-02 Matsushita Electric Ind Co Ltd Method of manufacturing membrane-electrode assembly
JP2009211891A (en) * 2008-03-03 2009-09-17 Honda Motor Co Ltd Fuel cell, and drainage method therein

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1469542A1 (en) * 2003-04-09 2004-10-20 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
JP5090651B2 (en) * 2006-03-02 2012-12-05 本田技研工業株式会社 Fuel cell

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08180883A (en) * 1994-12-26 1996-07-12 Fuji Electric Co Ltd Solid polymer electrolytic fuel cell
JPH09274926A (en) * 1996-04-05 1997-10-21 Fuji Electric Co Ltd Solid high polymer electrolyte type fuel cell
JP2000277128A (en) * 1999-03-24 2000-10-06 Sanyo Electric Co Ltd Solid polymer type fuel cell
JP2001155746A (en) * 1999-11-24 2001-06-08 Toyota Motor Corp Fuel cell and method of operating it
JP2002025584A (en) * 2000-07-04 2002-01-25 Fuji Electric Co Ltd Solid high polymer molecule electrolyte fuel cell and its humidifying method
JP2002373678A (en) * 2001-06-15 2002-12-26 Toyota Motor Corp Fuel cell and method of gas supply in fuel cell
JP2004253185A (en) * 2003-02-18 2004-09-09 Nissan Motor Co Ltd Fuel battery
JP2005302709A (en) * 2004-03-15 2005-10-27 Matsushita Electric Ind Co Ltd Polyelectrolyte type fuel cell
JP2008235283A (en) * 2005-06-20 2008-10-02 Matsushita Electric Ind Co Ltd Method of manufacturing membrane-electrode assembly
JP2007234543A (en) * 2006-03-03 2007-09-13 Honda Motor Co Ltd Fuel cell
JP2009211891A (en) * 2008-03-03 2009-09-17 Honda Motor Co Ltd Fuel cell, and drainage method therein

Also Published As

Publication number Publication date
CN102130353B (en) 2013-12-18
JP5766916B2 (en) 2015-08-19
CN102130353A (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP5197995B2 (en) Fuel cell
JP2006252803A (en) Fuel cell
JP2004119121A (en) Fuel cell
JP5178673B2 (en) Polymer electrolyte fuel cell
JP2010287474A (en) Fuel cell
JP2007005235A (en) Fuel cell
JP4562501B2 (en) Fuel cell
JP2010009979A (en) Fuel cell stack
JP2010251068A (en) Fuel cell stack
JP2006236612A (en) Fuel cell
JP5766916B2 (en) Polymer electrolyte fuel cell
JP2013258107A (en) Fuel cell
JP5060169B2 (en) Fuel cell
JP5127422B2 (en) Fuel cell
JP5274908B2 (en) Fuel cell stack
JP5122865B2 (en) Fuel cell
JP2014078428A (en) Fuel cell stack
JP4069039B2 (en) Fuel cell
JP2010153175A (en) Fuel battery
JP2010272360A (en) Fuel cell
JP2004335179A (en) Fuel cell
JP4390513B2 (en) Fuel cell
JP5283520B2 (en) Fuel cell stack
JP5318715B2 (en) Polymer electrolyte fuel cell
JP5144388B2 (en) Fuel cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140618

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140625

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150618

R150 Certificate of patent or registration of utility model

Ref document number: 5766916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees