JP2011149639A - Heat storage device - Google Patents

Heat storage device Download PDF

Info

Publication number
JP2011149639A
JP2011149639A JP2010012016A JP2010012016A JP2011149639A JP 2011149639 A JP2011149639 A JP 2011149639A JP 2010012016 A JP2010012016 A JP 2010012016A JP 2010012016 A JP2010012016 A JP 2010012016A JP 2011149639 A JP2011149639 A JP 2011149639A
Authority
JP
Japan
Prior art keywords
heat
heat storage
storage material
heat transfer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010012016A
Other languages
Japanese (ja)
Inventor
Katsuya Komaki
克哉 小牧
Satoru Inoue
哲 井上
Hiroshi Saegusa
弘 三枝
Takuya Fuse
卓哉 布施
Hiroaki Wakayama
博昭 若山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2010012016A priority Critical patent/JP2011149639A/en
Publication of JP2011149639A publication Critical patent/JP2011149639A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat storage device which enables easy replacement of thermal storage media while improving the heat transfer performance between the thermal storage media and a heat transfer member. <P>SOLUTION: The heat storage device includes: the thermal storage media 2 including metal oxide, heating exhaust heat by reaction heat generated when forming a hydrate by reacting metal oxide with water and storing heat of the exhaust gas by separating hydrate into metal oxide and water; the heat transfer member 10 providing/receiving the heat between the thermal storage media 2 and exhaust gas; and pressing members 6 each pressing the thermal storage medium 2 against the heat transfer member 10 to reduce heat resistance on the interface between the thermal storage medium 2 and the heat transfer member 10. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、可逆の化学反応を利用し、吸熱反応によりその反応系外にて発生する熱(以下、外部熱ともいう)を蓄熱するとともに、発熱反応により熱交換対象物を加熱する蓄熱装置に関するものである。   The present invention relates to a heat storage device that uses a reversible chemical reaction, stores heat generated outside the reaction system by an endothermic reaction (hereinafter also referred to as external heat), and heats a heat exchange object by an exothermic reaction. Is.

従来、金属酸化物と水との化学反応に伴う水和熱を発生させる蓄熱装置が知られている。このような蓄熱装置としては、例えば車両エンジンの排気が流通する排気管の外周に蓄熱材を設けたものがあるが、排気の温度上昇に伴い、蓄熱材も高温になることが予想される。蓄熱材は高温となることにより劣化し、性能が低下するおそれがあるため、劣化した蓄熱材のみを交換するという要求がある。劣化した蓄熱材のみを交換することができれば、蓄熱装置の性能低下を防止できることはもちろん、長期に使用できるようになるので、経済的な面でも有利である。   Conventionally, a heat storage device that generates heat of hydration accompanying a chemical reaction between a metal oxide and water is known. As such a heat storage device, for example, there is one in which a heat storage material is provided on the outer periphery of an exhaust pipe through which the exhaust of a vehicle engine circulates. Since the heat storage material is deteriorated by high temperature and the performance may be lowered, there is a demand to replace only the deteriorated heat storage material. If only the deteriorated heat storage material can be replaced, not only can the performance of the heat storage device be prevented from being deteriorated, but also it can be used for a long period of time, which is also advantageous from an economical viewpoint.

これに対し、複数の蓄熱材ブロック片の集合から蓄熱体を構成することにより、蓄熱材を部分的に交換可能とする技術が提案されている(例えば、特許文献1参照)。   On the other hand, the technique which makes a heat storage material partially replaceable by comprising a heat storage body from the assembly | assembly of a some heat storage material block piece is proposed (for example, refer patent document 1).

特開平11−211370号公報JP-A-11-212370

しかしながら、上記特許文献1に記載の技術では、蓄熱材ブロック片を伝熱面に固定する接着剤として水ガラスを用いているため、蓄熱材と伝熱面との間の熱抵抗が大きくなり、伝熱性能が低下するという問題がある。さらに、水ガラスの扱いが煩雑になり、蓄熱材を容易に交換することができないという問題もある。   However, in the technique described in Patent Document 1, since water glass is used as an adhesive for fixing the heat storage material block piece to the heat transfer surface, the thermal resistance between the heat storage material and the heat transfer surface increases. There is a problem that the heat transfer performance decreases. Furthermore, there is a problem that handling of water glass becomes complicated and the heat storage material cannot be easily replaced.

本発明は上記点に鑑みて、蓄熱材と伝熱部材との間の伝熱性能を向上させつつ、蓄熱材を容易に交換することができる蓄熱装置を提案することを目的とする。   An object of this invention is to propose the heat storage apparatus which can replace | exchange a heat storage material easily, improving the heat transfer performance between a heat storage material and a heat transfer member in view of the said point.

上記目的を達成するため、請求項1に記載の発明では、第1反応物を有して構成されており、第1反応物および第2反応物を反応させて化合物を生成する際に生じる反応熱によって熱交換対象物を加熱し、化合物を第1反応物および第2反応物に分離させることによって反応の系外にて発生する熱である外部熱を蓄熱する蓄熱材(2)と、蓄熱材(2)と熱交換対象物との間で熱の授受を行う伝熱部材(10)と、蓄熱材(2)を伝熱部材(10)に向けて押圧し、蓄熱材(2)と伝熱部材(10)との界面における熱抵抗を低減させる押圧部材(6)とを備えることを特徴としている。   In order to achieve the above object, the invention according to claim 1 is configured to have a first reactant, and a reaction that occurs when a compound is formed by reacting the first reactant and the second reactant. A heat storage material (2) that stores external heat, which is heat generated outside the reaction system, by heating the heat exchange object with heat and separating the compound into a first reactant and a second reactant, and heat storage The heat transfer member (10) that transfers heat between the material (2) and the heat exchange object, and the heat storage material (2) are pressed toward the heat transfer member (10), and the heat storage material (2) And a pressing member (6) for reducing the thermal resistance at the interface with the heat transfer member (10).

これによれば、蓄熱材(2)は押圧部材(6)の押圧力により伝熱部材(10)に固定されているので、蓄熱材(2)をネジや接着剤等により伝熱部材(10)に固定する従来の蓄熱装置と比較して、蓄熱材(2)を容易に交換することが可能となる。また、押圧部材(6)によって蓄熱材(2)が伝熱部材(10)に向けて押圧されることにより、蓄熱材(2)と伝熱部材(10)との界面における熱抵抗を低減させることができるので、蓄熱材(2)と伝熱部材(10)との間の伝熱性能を向上させることが可能となる。   According to this, since the heat storage material (2) is fixed to the heat transfer member (10) by the pressing force of the pressing member (6), the heat storage material (2) is fixed to the heat transfer member (10 by a screw or an adhesive). It is possible to easily replace the heat storage material (2) as compared to the conventional heat storage device fixed to (3). Moreover, the heat storage material (2) is pressed toward the heat transfer member (10) by the pressing member (6), thereby reducing the thermal resistance at the interface between the heat storage material (2) and the heat transfer member (10). Therefore, the heat transfer performance between the heat storage material (2) and the heat transfer member (10) can be improved.

また、請求項2に記載の発明では、押圧部材(6)は、伝熱部材(10)と熱的に接触していることを特徴としている。   In the invention according to claim 2, the pressing member (6) is in thermal contact with the heat transfer member (10).

これによれば、蓄熱材(2)の反応熱によって熱交換対象物を加熱する際に、蓄熱材(2)と伝熱部材(10)とが押圧部材(6)を介しても熱交換を行うことができるようになるので、熱交換対象物への反応熱の伝達を促進することが可能となる。   According to this, when the heat exchange object is heated by the reaction heat of the heat storage material (2), the heat storage material (2) and the heat transfer member (10) exchange heat even through the pressing member (6). Therefore, it becomes possible to promote the transfer of reaction heat to the heat exchange object.

また、請求項3に記載の発明では、伝熱部材(10)には、伝熱部材(10)の表面の温度が予め定めた基準伝熱部材温度(T)以上になった場合に、押圧部材(6)から蓄熱材(2)に作用する押圧力を低減させる押圧力低減部材(7)が設けられており、押圧力低減部材(7)は、伝熱部材(10)の表面の温度が基準伝熱部材温度(T)より低い場合には、押圧力低減部材(7)の伝熱部材(10)の表面からの高さが、蓄熱材(2)および押圧部材(6)の伝熱部材(10)の表面における押圧力低減部材(7)が配置されている部分(10a)からの高さより低くなるとともに、伝熱部材(10)の表面の温度が基準伝熱部材温度(T)以上になった場合には、押圧力低減部材(7)の伝熱部材(10)の表面からの高さが、蓄熱材(2)および押圧部材(6)の伝熱部材(10)の表面における押圧力低減部材(7)が配置されている部分(10a)からの高さより高くなるように構成されていることを特徴としている。 In the invention according to claim 3, when the temperature of the surface of the heat transfer member (10) is equal to or higher than a predetermined reference heat transfer member temperature (T a ), A pressing force reducing member (7) for reducing the pressing force acting on the heat storage material (2) from the pressing member (6) is provided, and the pressing force reducing member (7) is provided on the surface of the heat transfer member (10). When the temperature is lower than the reference heat transfer member temperature (T a ), the height of the pressing force reducing member (7) from the surface of the heat transfer member (10) is the heat storage material (2) and the pressing member (6). The temperature of the surface of the heat transfer member (10) is lower than the height from the portion (10a) where the pressing force reducing member (7) is disposed, and the temperature of the surface of the heat transfer member (10) is the reference heat transfer member temperature. if it becomes (T a) above, the high from the surface of the heat transfer member (10) of the pressing force reducing member (7) However, it is comprised so that it may become higher than the height from the part (10a) by which the pressing force reduction member (7) in the surface of the heat-transfer member (10) of a thermal storage material (2) and a press member (6) is arrange | positioned. It is characterized by being.

このように、伝熱部材(10)の表面の温度が基準伝熱部材温度(T)以上になった場合に、押圧部材(6)から蓄熱材(2)に作用する押圧力を低減させることで、蓄熱材(2)と伝熱部材(10)との間の熱抵抗を増大させることができる。これにより、蓄熱材(2)が過度に高温になることを防止し、蓄熱材(2)の劣化を抑制することが可能となる。 As described above, when the surface temperature of the heat transfer member (10) becomes equal to or higher than the reference heat transfer member temperature (T a ), the pressing force acting on the heat storage material (2) from the pressing member (6) is reduced. Thus, the thermal resistance between the heat storage material (2) and the heat transfer member (10) can be increased. Thereby, it becomes possible to prevent that the heat storage material (2) becomes too high temperature, and to suppress deterioration of the heat storage material (2).

また、請求項4に記載の発明では、押圧力低減部材(7)は、伝熱部材(10)と熱的に接触していることを特徴としている。   Further, the invention according to claim 4 is characterized in that the pressing force reducing member (7) is in thermal contact with the heat transfer member (10).

これによれば、蓄熱材(2)の反応熱によって熱交換対象物を加熱する際に、蓄熱材(2)と伝熱部材(10)とが押圧力低減部材(7)を介しても熱交換を行うことができるようになるので、熱交換対象物への反応熱の伝達を促進することが可能となる。   According to this, when the heat exchange object is heated by the reaction heat of the heat storage material (2), the heat storage material (2) and the heat transfer member (10) are heated even though the pressing force reduction member (7). Since the exchange can be performed, it becomes possible to promote the transfer of reaction heat to the heat exchange object.

また、請求項5に記載の発明では、押圧力低減部材(7)は、伝熱部材(10)の表面の温度が基準伝熱部材温度(T)より低い場合には、押圧力低減部材(7)と蓄熱材(2)とが非接触となり、伝熱部材(10)の表面の温度が基準伝熱部材温度(T)以上になった場合には、押圧力低減部材(7)と前記蓄熱材(2)とが接触するような部位に配置されていることを特徴としている。 In the invention according to claim 5, the pressing force reducing member (7) is a pressing force reducing member when the surface temperature of the heat transfer member (10) is lower than the reference heat transfer member temperature (T a ). When the temperature of the surface of the heat transfer member (10) becomes equal to or higher than the reference heat transfer member temperature (T a ), the pressing force reducing member (7) It arrange | positions in the site | part which contacts the said thermal storage material (2).

これによれば、伝熱部材(10)の表面の温度が基準伝熱部材温度(T)より低い場合には、押圧力低減部材(7)と蓄熱材(2)とが非接触となるので、化学反応や温度変化に伴い蓄熱材(2)の体積が変化をしたときでも、蓄熱材(2)が動くスペースを確保することができる。このため、蓄熱材(2)が破損することを防止できる。また、伝熱部材(10)の表面の温度が基準伝熱部材温度(T)以上になった場合、すなわち押圧力低減部材(7)により押圧部材(6)が伝熱部材(10)から離れる方向に押し上げられる場合には、押圧力低減部材(7)と蓄熱材(2)とが接触するので、蓄熱材(2)が伝熱部材(10)の表面に平行な方向にずれることを抑制できる。 According to this, when the temperature of the surface of the heat transfer member (10) is lower than the reference heat transfer member temperature (T a ), the pressing force reducing member (7) and the heat storage material (2) are not in contact with each other. Therefore, even when the volume of the heat storage material (2) changes due to a chemical reaction or a temperature change, a space in which the heat storage material (2) moves can be secured. For this reason, it can prevent that a thermal storage material (2) breaks. Further, when the surface temperature of the heat transfer member (10) becomes equal to or higher than the reference heat transfer member temperature (T a ), that is, the pressing member (6) is moved from the heat transfer member (10) by the pressing force reducing member (7). When pushed up in the away direction, the pressing force reducing member (7) and the heat storage material (2) are in contact with each other, so that the heat storage material (2) is displaced in a direction parallel to the surface of the heat transfer member (10). Can be suppressed.

また、請求項6に記載の発明では、押圧部材(6)における蓄熱材(2)と接触している面と反対側の面には、押圧部材(6)と線膨張係数の異なる材質からなる異線膨張係数部材(8)が設けられており、異線膨張係数部材(8)は、押圧部材(6)および異線膨張係数部材(8)の温度が予め定めた基準部材温度(T)より低い場合には、異線膨張係数部材(8)の線膨張係数が押圧部材(6)の線膨張係数より大きくなるとともに、押圧部材(6)および異線膨張係数部材(8)の温度が基準部材温度(T)以上になった場合には、異線膨張係数部材(8)の線膨張係数が押圧部材(6)の線膨張係数より小さくなることで、押圧部材(6)から蓄熱材(2)に作用する押圧力を低減させるように構成されていることを特徴としている。 Moreover, in invention of Claim 6, it consists of a material with a different linear expansion coefficient from a press member (6) in the surface on the opposite side to the surface which is contacting the thermal storage material (2) in a press member (6). An extra-linear expansion coefficient member (8) is provided, and the extra-linear expansion coefficient member (8) is a reference member temperature (T b ) in which the temperatures of the pressing member (6) and the extra-linear expansion coefficient member (8) are predetermined. ), The linear expansion coefficient of the different linear expansion coefficient member (8) is larger than the linear expansion coefficient of the pressing member (6), and the temperature of the pressing member (6) and the different linear expansion coefficient member (8). Is equal to or higher than the reference member temperature (T b ), the linear expansion coefficient of the different linear expansion coefficient member (8) is smaller than the linear expansion coefficient of the pressing member (6). It is configured to reduce the pressing force acting on the heat storage material (2). ing.

このように、押圧部材(6)および異線膨張係数部材(8)の温度が基準部材温度(T)以上になった場合に、押圧部材(6)から蓄熱材(2)に作用する押圧力を低減させることで、蓄熱材(2)と伝熱部材(10)との間の熱抵抗を増大させることができる。これにより、蓄熱材(2)が過度に高温になることを防止し、蓄熱材(2)の劣化を抑制することが可能となる。 As described above, when the temperature of the pressing member (6) and the extra linear expansion coefficient member (8) is equal to or higher than the reference member temperature (T b ), the pressing member acting on the heat storage material (2) from the pressing member (6). By reducing the pressure, the thermal resistance between the heat storage material (2) and the heat transfer member (10) can be increased. Thereby, it becomes possible to prevent that the heat storage material (2) becomes too high temperature, and to suppress deterioration of the heat storage material (2).

また、請求項7に記載の発明では、押圧部材(6)と蓄熱材(2)との間には、押圧部材(6)と線膨張係数の異なる材質からなる異線膨張係数部材(8)が設けられており、異線膨張係数部材(8)は、押圧部材(6)および異線膨張係数部材(8)の温度が予め定めた基準部材温度(T)より低い場合には、異線膨張係数部材(8)の線膨張係数が押圧部材(6)の線膨張係数より小さくなるとともに、押圧部材(6)および異線膨張係数部材(8)の温度が基準部材温度(T)以上になった場合には、異線膨張係数部材(8)の線膨張係数が押圧部材(6)の線膨張係数より大きくなることで、押圧部材(6)から蓄熱材(2)に作用する押圧力を低減させるように構成されていることを特徴としている。 Moreover, in invention of Claim 7, between a pressing member (6) and a thermal storage material (2), a different linear expansion coefficient member (8) which consists of a material with a different linear expansion coefficient from a pressing member (6). When the temperature of the pressing member (6) and the different linear expansion coefficient member (8) is lower than a predetermined reference member temperature (T b ), the different linear expansion coefficient member (8) is different. The linear expansion coefficient of the linear expansion coefficient member (8) is smaller than the linear expansion coefficient of the pressing member (6), and the temperatures of the pressing member (6) and the different linear expansion coefficient member (8) are the reference member temperature (T b ). When it becomes above, it acts on a thermal storage material (2) from a pressing member (6) because the linear expansion coefficient of a different linear expansion coefficient member (8) becomes larger than the linear expansion coefficient of a pressing member (6). It is characterized by being configured to reduce the pressing force.

このように、押圧部材(6)および異線膨張係数部材(8)の温度が基準部材温度(T)以上になった場合に、押圧部材(6)から蓄熱材(2)に作用する押圧力を低減させることで、蓄熱材(2)と伝熱部材(10)との間の熱抵抗を増大させることができる。これにより、蓄熱材(2)が過度に高温になることを防止し、蓄熱材(2)の劣化を抑制することが可能となる。 As described above, when the temperature of the pressing member (6) and the extra linear expansion coefficient member (8) is equal to or higher than the reference member temperature (T b ), the pressing member acting on the heat storage material (2) from the pressing member (6). By reducing the pressure, the thermal resistance between the heat storage material (2) and the heat transfer member (10) can be increased. Thereby, it becomes possible to prevent that the heat storage material (2) becomes too high temperature, and to suppress deterioration of the heat storage material (2).

また、請求項8に記載の発明では、蓄熱材(2)における伝熱部材(10)と反対側の端部には、伝熱部材(10)から離れる方向に向かって凸となるように円弧状に湾曲した蓄熱側湾曲部(20)が形成されており、押圧部材(6)には、蓄熱側湾曲部(20)に沿って円弧状に湾曲した押圧側湾曲部(63)が形成されていることを特徴としている。   Moreover, in invention of Claim 8, it is a circle | round | yen so that it may become convex toward the direction away from a heat-transfer member (10) in the edge part on the opposite side to the heat-transfer member (10) in a thermal storage material (2). A heat storage side curved portion (20) curved in an arc shape is formed, and a pressing side curved portion (63) curved in an arc shape along the heat storage side curved portion (20) is formed in the pressing member (6). It is characterized by having.

これによれば、化学反応や温度変化に伴い蓄熱材(2)が膨張した際に押圧部材(6)に加えられる応力を緩和することができるので、押圧部材(6)の破損を防止することが可能となる。   According to this, since the stress applied to the pressing member (6) when the heat storage material (2) expands due to a chemical reaction or temperature change can be relaxed, damage to the pressing member (6) can be prevented. Is possible.

また、請求項9に記載の発明では、押圧部材(6)は、押圧部材(6)と伝熱部材(10)との成す角度が0°より大きく、90°より小さくなるように、伝熱部材(10)の表面に平行な方向に対して傾斜配置されており、蓄熱材(2)は、押圧部材(6)の傾斜に沿って傾斜した傾斜面を有して構成されていることを特徴としている。   Further, in the invention according to claim 9, the pressing member (6) is configured to transfer heat so that an angle formed between the pressing member (6) and the heat transfer member (10) is larger than 0 ° and smaller than 90 °. It is inclined with respect to the direction parallel to the surface of the member (10), and the heat storage material (2) has an inclined surface inclined along the inclination of the pressing member (6). It is a feature.

これによれば、押圧部材(6)と伝熱部材(10)との接触部に近くなる程、蓄熱材(2)の表面積、すなわち第2反応物と接触する面積を小さくすることができる。このため、第2反応物が到達しないために化合物を生成する反応が生じない部分に存在する蓄熱材(2)の量を低減することができる。その結果、蓄熱材(2)の軽量化を図り、さらに蓄熱材(2)の製造コストを低減することが可能となる。   According to this, the surface area of the heat storage material (2), that is, the area in contact with the second reactant can be reduced as the contact portion between the pressing member (6) and the heat transfer member (10) is closer. For this reason, since the 2nd reactant does not reach | attain, the quantity of the thermal storage material (2) which exists in the part which does not produce the reaction which produces | generates a compound can be reduced. As a result, it is possible to reduce the weight of the heat storage material (2) and further reduce the manufacturing cost of the heat storage material (2).

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim shows the correspondence with the specific means as described in embodiment mentioned later.

第1実施形態に係る蓄熱装置を示す概略断面図である。It is a schematic sectional drawing which shows the thermal storage apparatus which concerns on 1st Embodiment. 第1実施形態の蓄熱装置の作動を説明するためのタイムチャートである。It is a time chart for demonstrating the action | operation of the thermal storage apparatus of 1st Embodiment. 第1実施形態に係る蓄熱装置の蓄熱材2近傍を示す概略断面図である。It is a schematic sectional drawing which shows the heat storage material 2 vicinity of the heat storage apparatus which concerns on 1st Embodiment. 第1実施形態に係る蓄熱装置の蓄熱材2近傍を示す拡大斜視図である。It is an expansion perspective view which shows the heat storage material 2 vicinity of the heat storage apparatus which concerns on 1st Embodiment. 第1実施形態に係る蓄熱装置の、伝熱部材10の表面温度が基準伝熱部材温度T以上となった場合の蓄熱材2近傍を示す概略断面図である。Of the heat storage apparatus according to the first embodiment, it is a schematic sectional view showing a thermal storage material 2 near the case where the surface temperature of the heat transfer member 10 is in the reference heat transfer member temperature T a or more. 第2実施形態に係る蓄熱装置の蓄熱材2近傍を示す概略断面図である。It is a schematic sectional drawing which shows the heat storage material 2 vicinity of the heat storage apparatus which concerns on 2nd Embodiment. 第2実施形態に係る蓄熱装置の、伝熱部材10の表面温度が基準伝熱部材温度T以上となった場合の蓄熱材2近傍を示す概略断面図である。Of the heat storage device according to the second embodiment, a schematic sectional view showing a thermal storage material 2 near the case where the surface temperature of the heat transfer member 10 is in the reference heat transfer member temperature T a or more. 第3実施形態に係る蓄熱装置の蓄熱材2近傍を示す概略断面図である。It is a schematic sectional drawing which shows the heat storage material 2 vicinity of the heat storage apparatus which concerns on 3rd Embodiment. 第4実施形態に係る蓄熱装置の蓄熱材2近傍を示す概略断面図である。It is a schematic sectional drawing which shows the heat storage material 2 vicinity of the heat storage apparatus which concerns on 4th Embodiment. 第5実施形態に係る蓄熱装置の蓄熱材2近傍を示す概略断面図である。It is a schematic sectional drawing which shows the heat storage material 2 vicinity of the heat storage apparatus which concerns on 5th Embodiment. 第5実施形態における押圧部材6および板状部材8の線膨張係数と温度との関係を示す特性図である。It is a characteristic view which shows the relationship between the linear expansion coefficient of the pressing member 6 and the plate-shaped member 8, and temperature in 5th Embodiment. 第5実施形態に係る蓄熱装置の、押圧部材6および板状部材8の温度が基準部材温度T以上となった場合の蓄熱材2近傍を示す概略断面図である。Of the heat storage apparatus according to the fifth embodiment, a schematic sectional view showing a thermal storage material 2 near the case where the temperature of the pressing member 6 and the plate member 8 becomes the reference member temperature T b or more. 第6実施形態に係る蓄熱装置の蓄熱材2近傍を示す概略断面図である。It is a schematic sectional drawing which shows the heat storage material 2 vicinity of the heat storage apparatus which concerns on 6th Embodiment.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.

(第1実施形態)
本発明の第1実施形態について図1〜図5に基づいて説明する。本実施形態の蓄熱装置は、車両のエンジン(内燃機関)の排気系から排気の有する熱を蓄熱して、その熱を暖機促進に利用するものである。
(First embodiment)
1st Embodiment of this invention is described based on FIGS. The heat storage device of the present embodiment stores heat of exhaust from an exhaust system of a vehicle engine (internal combustion engine) and uses the heat for promoting warm-up.

図1は、本第1実施形態に係る蓄熱装置を示す概略断面図である。図1に示すように、本実施形態の蓄熱装置では、エンジン(図示せず)の排気が流通する排気管1の外周面に、金属酸化物を有して構成され、第1反応物としての金属酸化物および第2反応物としての水を反応させて水和物(化合物)を生成する際に生じる水和熱によって熱交換対象物を加熱し、水和物を金属酸化物および水に分離させることによって外部熱を蓄熱する蓄熱材2が固定されている。なお、本実施形態では、金属酸化物として酸化カルシウムを用いており、熱交換対象物は排気であり、外部熱はエンジンの排気が有する熱である。   FIG. 1 is a schematic cross-sectional view showing a heat storage device according to the first embodiment. As shown in FIG. 1, the heat storage device of the present embodiment is configured to have a metal oxide on the outer peripheral surface of an exhaust pipe 1 through which exhaust of an engine (not shown) flows, and serves as a first reactant. The heat exchange target is heated by the heat of hydration generated when the metal oxide and water as the second reactant are reacted to form a hydrate (compound), and the hydrate is separated into the metal oxide and water. By doing so, the heat storage material 2 for storing external heat is fixed. In the present embodiment, calcium oxide is used as the metal oxide, the heat exchange object is exhaust, and the external heat is the heat of the engine exhaust.

ここで、排気管1は、金属製の板材(以下、伝熱部材10という)により構成されており、蓄熱材2と熱交換対象物との間で熱の授受を行うようになっている。本実施形態では、伝熱部材10は、銅合金から構成されている。   Here, the exhaust pipe 1 is composed of a metal plate material (hereinafter referred to as a heat transfer member 10), and exchanges heat between the heat storage material 2 and the heat exchange object. In the present embodiment, the heat transfer member 10 is made of a copper alloy.

蓄熱材2が外周面に固定された排気管1の外側には、水(水蒸気)が流通する水配管3が配置されている。すなわち、排気管1および水配管3は、水配管3の内側に排気管1を配置する、いわゆる二重管構造となっている。   A water pipe 3 through which water (water vapor) flows is disposed outside the exhaust pipe 1 where the heat storage material 2 is fixed to the outer peripheral surface. That is, the exhaust pipe 1 and the water pipe 3 have a so-called double pipe structure in which the exhaust pipe 1 is disposed inside the water pipe 3.

水配管3には、図示しない水タンクから水が供給されるようになっている。水配管3と水タンクとの間には、水配管3と水タンクとを繋ぐ接続経路4が設けられている。接続経路4には、接続経路4を開閉し、水配管3に供給される水量を調整するための水バルブ5が設けられている。   Water is supplied to the water pipe 3 from a water tank (not shown). Between the water pipe 3 and the water tank, a connection path 4 that connects the water pipe 3 and the water tank is provided. The connection path 4 is provided with a water valve 5 for opening and closing the connection path 4 and adjusting the amount of water supplied to the water pipe 3.

図2は、本第1実施形態の蓄熱装置の作動を説明するためのタイムチャートである。   FIG. 2 is a time chart for explaining the operation of the heat storage device of the first embodiment.

まず、排気を加熱する加熱モードについて説明する。図2に示すように、エンジンの始動時に水バルブ5を開き、蓄熱材2に水(水蒸気)が供給されると、以下の化1に示すように、蓄熱材2である酸化カルシウム(CaO)と水とが水和反応して水酸化カルシウム(Ca(OH))が生成される。 First, the heating mode for heating the exhaust will be described. As shown in FIG. 2, when the water valve 5 is opened at the start of the engine and water (water vapor) is supplied to the heat storage material 2, calcium oxide (CaO), which is the heat storage material 2, as shown in Chemical Formula 1 below. And water hydrate to produce calcium hydroxide (Ca (OH) 2 ).

(化1)
CaO+HO→Ca(OH)
この水和反応は放熱反応であり、反応の際に発生する水和熱によって排気が加熱され、排気温度が上昇する。これにより、蓄熱材2を設けない場合と比較して、エンジン始動時において排気浄化用触媒(図示せず)を早期に活性化することができる。
(Chemical formula 1)
CaO + H 2 O → Ca (OH) 2
This hydration reaction is a heat release reaction, and the exhaust is heated by the heat of hydration generated during the reaction, and the exhaust temperature rises. Thereby, compared with the case where the heat storage material 2 is not provided, the exhaust purification catalyst (not shown) can be activated at an early stage when the engine is started.

続いて、排気が有する熱を蓄熱する蓄熱モードについて説明する。排気温度が蓄熱材2の再生温度に達すると、以下の化2に示すように、蓄熱材2の水酸化カルシウムが酸化カルシウムと水とに分離(脱水)する。   Subsequently, a heat storage mode for storing heat of the exhaust will be described. When the exhaust temperature reaches the regeneration temperature of the heat storage material 2, as shown in the following chemical formula 2, the calcium hydroxide of the heat storage material 2 is separated (dehydrated) into calcium oxide and water.

(化2)
Ca(OH)→CaO+H
この脱水反応は吸熱反応であり、排気が有する熱が蓄熱材2に蓄熱される。そして、脱水反応が完了した後、水バルブ5を閉じる。
(Chemical formula 2)
Ca (OH) 2 → CaO + H 2 O
This dehydration reaction is an endothermic reaction, and the heat of the exhaust is stored in the heat storage material 2. Then, after the dehydration reaction is completed, the water valve 5 is closed.

図3は本第1実施形態に係る蓄熱装置の蓄熱材2近傍を示す概略断面図で、図4は本第1実施形態に係る蓄熱装置の蓄熱材2近傍を示す拡大斜視図である。図3および図4に示すように、蓄熱材2は、直角三角形の断面を有する三角柱状に形成されている。蓄熱材2は、その直角三角形の断面における斜辺を除く辺のうちの1つに該当する平面が、伝熱部材10と接触するように、伝熱部材10の表面上に配置されている。   3 is a schematic sectional view showing the vicinity of the heat storage material 2 of the heat storage device according to the first embodiment, and FIG. 4 is an enlarged perspective view showing the vicinity of the heat storage material 2 of the heat storage device according to the first embodiment. As shown in FIGS. 3 and 4, the heat storage material 2 is formed in a triangular prism shape having a right triangular cross section. The heat storage material 2 is arranged on the surface of the heat transfer member 10 such that a plane corresponding to one of the sides excluding the hypotenuse in the cross section of the right triangle contacts the heat transfer member 10.

伝熱部材10には、蓄熱材2を伝熱部材10の表面に押し当て、すなわち伝熱部材10に向けて押圧し、蓄熱材2と伝熱部材10との界面における熱抵抗を低減させる押圧部材6が設けられている。すなわち、蓄熱材2は、押圧部材6の押圧力により伝熱部材10に固定されている。この押圧部材6は、伝熱部材10と熱的に接触している。   The heat transfer member 10 is pressed against the surface of the heat transfer member 10, that is, pressed toward the heat transfer member 10 to reduce the thermal resistance at the interface between the heat storage member 2 and the heat transfer member 10. A member 6 is provided. That is, the heat storage material 2 is fixed to the heat transfer member 10 by the pressing force of the pressing member 6. The pressing member 6 is in thermal contact with the heat transfer member 10.

本実施形態では、押圧部材6はステンレス製であり、平板状に形成されている。また、押圧部材6は、蓄熱材2の直角三角形の断面における斜辺に該当する平面(以下、斜面という)と接触するように配置されており、蓄熱材2を斜面側から伝熱部材10に向けて押圧している。換言すると、押圧部材6は、押圧部材6と伝熱部材10との成す角度が0°より大きく、90°より小さくなるように、伝熱部材10の表面に平行な方向に対して傾斜配置されており、蓄熱材2は、押圧部材6の傾斜に沿って傾斜した傾斜面を有して構成されている。   In the present embodiment, the pressing member 6 is made of stainless steel and has a flat plate shape. Further, the pressing member 6 is disposed so as to come into contact with a plane corresponding to the hypotenuse in the cross section of the right triangle of the heat storage material 2 (hereinafter referred to as a slope), and the heat storage material 2 is directed from the slope side toward the heat transfer member 10. Is pressing. In other words, the pressing member 6 is inclined with respect to the direction parallel to the surface of the heat transfer member 10 so that the angle formed by the pressing member 6 and the heat transfer member 10 is larger than 0 ° and smaller than 90 °. The heat storage material 2 has an inclined surface inclined along the inclination of the pressing member 6.

伝熱部材10には、伝熱部材10の表面温度が予め定めた基準伝熱部材温度T以上になった場合に、押圧部材6から蓄熱材2に作用する押圧力を低減させる押圧力低減部材としてのストッパ7が設けられている。ここで、基準伝熱部材温度Tは、蓄熱材2が劣化し始める温度(以下、劣化温度という)と略同一の温度に設定されている。本実施形態では、蓄熱材2として酸化カルシウムを用いていており、その劣化温度が1300℃であるので、基準伝熱部材温度Tは1300℃に設定されている。 The heat transfer member 10 reduces the pressing force that acts on the heat storage material 2 from the pressing member 6 when the surface temperature of the heat transfer member 10 is equal to or higher than a predetermined reference heat transfer member temperature Ta. A stopper 7 as a member is provided. Here, the reference heat transfer member temperature T a is the temperature of the thermal storage material 2 begins to degrade (hereinafter, referred to as degradation temperature) is set to be substantially the same temperature as. In the present embodiment, though using calcium oxide as the thermal storage material 2, so that the degradation temperature is 1300 ° C., the reference heat transfer member temperature T a is set to 1300 ° C..

本実施形態では、ストッパ7は、蓄熱材2の直角三角形の断面における斜辺および伝熱部材10と接触している辺を除く辺に該当する面と接触するように配置されている。これにより、蓄熱材2が伝熱部材10の表面に平行な方向にずれることを抑制できる。   In this embodiment, the stopper 7 is arrange | positioned so that the surface applicable to the edge | side except the oblique side in the cross section of the right triangle of the thermal storage material 2 and the side which is contacting the heat-transfer member 10 may be contacted. Thereby, it can control that heat storage material 2 shifts in the direction parallel to the surface of heat transfer member 10.

ここで、伝熱部材10の表面うちストッパ7が配置されている部分を、ストッパ配置面10aという。ストッパ7は、伝熱部材10の表面温度が基準伝熱部材温度Tより低い場合には、ストッパ7のストッパ配置面10aからの高さが、蓄熱材2および押圧部材6のストッパ配置面10aからの高さより低くなり、かつ、伝熱部材10の表面温度が基準伝熱部材温度T以上となった場合に、ストッパ7のストッパ配置面10aからの高さが、蓄熱材2上に配置された押圧部材6のストッパ配置面10aからの高さより高くなるように構成されている。 Here, the portion of the surface of the heat transfer member 10 where the stopper 7 is disposed is referred to as a stopper disposition surface 10a. Stopper 7, when the surface temperature of the heat transfer member 10 is lower than the reference heat transfer member temperature T a, the height of the stopper arrangement surface 10a of the stopper 7, a stopper placement surface 10a of the heat storage material 2 and the pressing member 6 lower than the height from, and, when the surface temperature of the heat transfer member 10 is in the reference heat transfer member temperature T a or more, the height of the stopper arrangement surface 10a of the stopper 7, disposed on the thermal storage material 2 The pressed member 6 is configured to be higher than the height from the stopper arrangement surface 10a.

すなわち、押圧部材6の線膨張係数をα、ストッパ7の線膨張係数をα、吸水時の蓄熱材2の膨張率をα、常温(本実施形態では25℃)時における蓄熱材2上に配置された押圧部材6のストッパ配置面10aからの高さをL、常温時におけるストッパ7のストッパ配置面10aからの高さをL、常温と劣化温度との温度差、すなわち常温と基準伝熱部材温度Tとの温度差をΔTとしたとき、次の数式1、2に示される関係を満たすように、ストッパ7の高さLが設定されている。 That is, the linear expansion coefficient of the pressing member 6 is α 1 , the linear expansion coefficient of the stopper 7 is α 2 , the expansion coefficient of the heat storage material 2 at the time of water absorption is α h , and the heat storage material 2 at normal temperature (25 ° C. in this embodiment). The height of the pressing member 6 arranged above from the stopper arrangement surface 10a is L 1 , the height of the stopper 7 from the stopper arrangement surface 10a at normal temperature is L 2 , and the temperature difference between normal temperature and deterioration temperature, that is, normal temperature and when the temperature difference between the reference heat transfer member temperature T a and a [Delta] T, so as to satisfy the relationship shown in equation 1, the height L 2 of the stopper 7 is set.

(数1)
(1+α)ΔT≧L(1+α)ΔT
(数2)
(1+α)ΔT≧L(1+α
本実施形態では、ストッパ7は、銅合金製であり、四角柱状に形成されている。また、ストッパ7は、蓄熱材2と熱的に接触している。
(Equation 1)
L 2 (1 + α 2 ) ΔT ≧ L 1 (1 + α 1 ) ΔT
(Equation 2)
L 2 (1 + α 2 ) ΔT ≧ L 1 (1 + α h )
In the present embodiment, the stopper 7 is made of a copper alloy and is formed in a quadrangular prism shape. The stopper 7 is in thermal contact with the heat storage material 2.

続いて、本第1実施形態に係る蓄熱装置の作動について説明する。図5は、本第1実施形態に係る蓄熱装置の蓄熱材2近傍を示す概略断面図であり、伝熱部材10の表面温度が基準伝熱部材温度T以上となった場合を示している。 Next, the operation of the heat storage device according to the first embodiment will be described. Figure 5 is a schematic sectional view showing the vicinity thermal storage material 2 of the heat storage apparatus according to the first embodiment, and shows a case where the surface temperature of the heat transfer member 10 is in the reference heat transfer member temperature T a more .

伝熱部材10の表面温度が基準伝熱部材温度T以上となった場合、図5に示すように、ストッパ7のストッパ配置面10aからの高さが、蓄熱材2上に配置された押圧部材6のストッパ配置面10aからの高さより高くなる。このため、ストッパ7により押圧部材6が伝熱部材10と反対側(図5の紙面上方側)に向かって押し上げられる。これにより、押圧部材6から蓄熱材2に作用する押圧力が低減するので、蓄熱材2と伝熱部材10との間の熱抵抗を増大させることができる。したがって、蓄熱材2が過度に高温になることを防止し、蓄熱材2の劣化を抑制することができる。 When the surface temperature of the heat transfer member 10 is in the reference heat transfer member temperature T a more pressing as shown in FIG. 5, the height from the stopper arrangement surface 10a of the stopper 7, which is disposed on the thermal storage material 2 It becomes higher than the height of the member 6 from the stopper arrangement surface 10a. For this reason, the pressing member 6 is pushed up by the stopper 7 toward the side opposite to the heat transfer member 10 (the upper side in FIG. 5). Thereby, since the pressing force which acts on the thermal storage material 2 from the pressing member 6 reduces, the thermal resistance between the thermal storage material 2 and the heat-transfer member 10 can be increased. Therefore, it can prevent that the thermal storage material 2 becomes high temperature too much, and can suppress deterioration of the thermal storage material 2. FIG.

以上説明したように、蓄熱材2は押圧部材6の押圧力により伝熱部材10に固定されているので、交換したい蓄熱材2に対応する押圧部材6を押圧力の作用方向と逆の方向に引っ張ることにより、交換したい蓄熱材2だけを容易に交換することができる。このため、蓄熱材2をネジや接着剤等により伝熱部材10に固定する従来の蓄熱装置と比較して、蓄熱材2を容易に交換することが可能となる。また、押圧部材6によって蓄熱材2が伝熱部材10に向けて押圧されることにより、蓄熱材2と伝熱部材10との界面における熱抵抗が低減するので、蓄熱材2と伝熱部材10との間の伝熱性能を向上させることが可能となる。   As described above, since the heat storage material 2 is fixed to the heat transfer member 10 by the pressing force of the pressing member 6, the pressing member 6 corresponding to the heat storage material 2 to be replaced is placed in a direction opposite to the direction in which the pressing force is applied. By pulling, only the heat storage material 2 to be replaced can be easily replaced. For this reason, compared with the conventional heat storage apparatus which fixes the heat storage material 2 to the heat-transfer member 10 with a screw, an adhesive agent, etc., it becomes possible to replace | exchange the heat storage material 2 easily. Further, since the heat storage material 2 is pressed toward the heat transfer member 10 by the pressing member 6, the thermal resistance at the interface between the heat storage material 2 and the heat transfer member 10 is reduced. It is possible to improve the heat transfer performance between the two.

また、押圧部材6を、伝熱部材10の表面に平行な方向に対して傾斜配置するとともに、蓄熱材2を、押圧部材6の傾斜に沿って傾斜した傾斜面を有して構成することにより、押圧部材6と伝熱部材10との接触部に近くなる程、蓄熱材2の表面積、すなわち水蒸気と接触する面積を小さくすることができる。このため、水蒸気が到達しない、すなわち水和反応が行われない部分に存在する蓄熱材2の量を低減することができる。その結果、蓄熱材2の軽量化を図り、さらに蓄熱材2の製造コストを低減することが可能となる。   Further, by arranging the pressing member 6 to be inclined with respect to the direction parallel to the surface of the heat transfer member 10, the heat storage material 2 is configured to have an inclined surface inclined along the inclination of the pressing member 6. The closer to the contact portion between the pressing member 6 and the heat transfer member 10, the smaller the surface area of the heat storage material 2, that is, the area in contact with water vapor. For this reason, the quantity of the heat storage material 2 which exists in the part which water vapor | steam does not reach, ie, a hydration reaction cannot be performed, can be reduced. As a result, the heat storage material 2 can be reduced in weight, and the manufacturing cost of the heat storage material 2 can be further reduced.

また、ストッパ7を、蓄熱材2の直角三角形の断面における斜辺および伝熱部材10と接触している辺を除く辺に該当する面と接触する部位に配置することで、蓄熱材2の水和反応、吸水反応および温度変化により生じる体積変化の際の動きを抑制することが可能となる。   Moreover, the hydration of the heat storage material 2 is carried out by arrange | positioning the stopper 7 in the site | part corresponding to the side except the hypotenuse in the cross section of the right triangle of the heat storage material 2, and the side which is contacting the heat-transfer member 10. It is possible to suppress movement during volume change caused by reaction, water absorption reaction, and temperature change.

また、ストッパ7を蓄熱材2と熱的に接触させることで、蓄熱材2の水和反応時、すなわち放熱時に、ストッパ7を介して熱交換を行うこともできるようになる。このため、排気への水和熱の伝達を促進することが可能となる。   Further, by bringing the stopper 7 into thermal contact with the heat storage material 2, heat exchange can be performed via the stopper 7 during the hydration reaction of the heat storage material 2, that is, during heat dissipation. For this reason, it becomes possible to accelerate | stimulate transmission of the hydration heat to exhaust_gas | exhaustion.

(第2実施形態)
次に、本発明の第2実施形態について図6および図7に基づいて説明する。本第2実施形態は、上記第1実施形態と比較して、蓄熱材2および押圧部材6の形状が異なるものである。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. The second embodiment is different from the first embodiment in the shapes of the heat storage material 2 and the pressing member 6.

図6は、本第2実施形態に係る蓄熱装置の蓄熱材2近傍を示す概略断面図である。図6に示すように、本実施形態の蓄熱材2は、長方形の断面を有する四角柱状に形成されている。また、押圧部材6は、断面略L字状に形成されている。   FIG. 6 is a schematic cross-sectional view showing the vicinity of the heat storage material 2 of the heat storage device according to the second embodiment. As shown in FIG. 6, the heat storage material 2 of this embodiment is formed in a quadrangular prism shape having a rectangular cross section. The pressing member 6 has a substantially L-shaped cross section.

より詳細には、押圧部材6は、伝熱部材10の表面から当該表面の法線方向と平行に延びる第1押圧部61と、第1押圧部61の伝熱部材10とは反対側の端部から伝熱部材10の表面と平行な方向に延びる第2押圧部62とを有して構成されている。第1押圧部61と第2押圧部62とは、一体に形成されている。また、第2押圧部62は、蓄熱材2における伝熱部材10との接触面と反対側の面に接触している。そして、蓄熱材2は、押圧部材6の第2押圧部62により、伝熱部材10との接触面と反対側の面から押圧されている。   More specifically, the pressing member 6 includes a first pressing portion 61 extending from the surface of the heat transfer member 10 in parallel with the normal direction of the surface, and an end of the first pressing portion 61 opposite to the heat transfer member 10. And a second pressing portion 62 extending in a direction parallel to the surface of the heat transfer member 10. The first pressing part 61 and the second pressing part 62 are integrally formed. Moreover, the 2nd press part 62 is contacting the surface on the opposite side to the contact surface with the heat-transfer member 10 in the thermal storage material 2. As shown in FIG. The heat storage material 2 is pressed from the surface opposite to the contact surface with the heat transfer member 10 by the second pressing portion 62 of the pressing member 6.

図7は、本第2実施形態に係る蓄熱装置の蓄熱材2近傍を示す概略断面図であり、伝熱部材10の表面温度が基準伝熱部材温度T以上となった場合を示している。 Figure 7 is a schematic sectional view showing the vicinity thermal storage material 2 of the heat storage apparatus according to the second embodiment shows a case where the surface temperature of the heat transfer member 10 is in the reference heat transfer member temperature T a more .

図7に示すように、ストッパ7は、伝熱部材10の表面温度が基準伝熱部材温度T以上となった場合に、伝熱部材10のストッパ配置面10aからの高さが、蓄熱材2上に配置された押圧部材6の第2押圧部62における伝熱部材10のストッパ配置面10aからの高さより高くなるように構成されている。これにより、押圧部材6から蓄熱材2に作用する押圧力が低減するので、蓄熱材2と伝熱部材10との間の熱抵抗を増大させることができる。したがって、蓄熱材2が過度に高温になることを防止し、蓄熱材2の劣化を抑制することが可能となる。 As shown in FIG. 7, the stopper 7, when the surface temperature of the heat transfer member 10 is in the reference heat transfer member temperature T a or more, the height of the stopper arrangement surface 10a of the heat transfer member 10, the heat storage material It is comprised so that it may become higher than the height from the stopper arrangement | positioning surface 10a of the heat-transfer member 10 in the 2nd press part 62 of the press member 6 arrange | positioned on 2. As shown in FIG. Thereby, since the pressing force which acts on the thermal storage material 2 from the pressing member 6 reduces, the thermal resistance between the thermal storage material 2 and the heat-transfer member 10 can be increased. Therefore, it is possible to prevent the heat storage material 2 from becoming excessively high temperature and to suppress deterioration of the heat storage material 2.

本実施形態では、蓄熱材2は押圧部材6の第2押圧部62の押圧力により伝熱部材10に固定されているので、交換したい蓄熱材2に対応する押圧部材6の第2押圧部62を押圧力の作用方向と逆の方向に引っ張ることにより、交換したい蓄熱材2だけを容易に交換することができる。このため、上記第1実施形態と同様の効果を得ることが可能となる。   In this embodiment, since the heat storage material 2 is fixed to the heat transfer member 10 by the pressing force of the second pressing portion 62 of the pressing member 6, the second pressing portion 62 of the pressing member 6 corresponding to the heat storage material 2 to be replaced. By pulling in the direction opposite to the direction in which the pressing force is applied, only the heat storage material 2 to be replaced can be easily replaced. For this reason, it becomes possible to acquire the effect similar to the said 1st Embodiment.

(第3実施形態)
次に、本発明の第3実施形態について図8に基づいて説明する。本第3実施形態は、上記第2実施形態と比較して、ストッパ7の設置位置が異なるものである。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG. The third embodiment is different from the second embodiment in the installation position of the stopper 7.

図8は、本第3実施形態に係る蓄熱装置の蓄熱材2近傍を示す概略断面図である。図8に示すように、本実施形態のストッパ7は、伝熱部材10の表面温度が基準伝熱部材温度T、すなわち蓄熱材2の劣化温度より低い場合には蓄熱材2と接触せず、伝熱部材10の表面温度が基準伝熱部材温度T以上となった場合に蓄熱材2と接触するような位置に配置されている。 FIG. 8 is a schematic cross-sectional view showing the vicinity of the heat storage material 2 of the heat storage device according to the third embodiment. As shown in FIG. 8, the stopper 7 of the present embodiment, the surface temperature of the reference heat transfer member temperature T a of the heat transfer member 10, that is, lower than the degradation temperature of the heat storage material 2 not in contact with the thermal storage material 2 , it is disposed at a position in contact with the thermal storage material 2 when the surface temperature of the heat transfer member 10 is in the reference heat transfer member temperature T a or more.

以下、伝熱部材10の表面に平行な方向で、かつ蓄熱材2とストッパ7が並んでいる方向を、ストッパ配置方向(図8の紙面左右方向)という。そして、ストッパ7の線膨張係数をα、吸水時の蓄熱材2の膨張率をα、常温における蓄熱材2の配置方向の長さをW、常温におけるストッパ7の配置方向の長さをW、常温における蓄熱材2とストッパ7との間の距離をx、常温と劣化温度との温度差、すなわち常温と基準伝熱部材温度Tとの温度差をΔTとしたとき、次の数式3に示される関係を満たすように、常温時の蓄熱材2とストッパ7との間の距離xが設定されている。 Hereinafter, a direction parallel to the surface of the heat transfer member 10 and in which the heat storage material 2 and the stopper 7 are arranged is referred to as a stopper arrangement direction (left and right direction in FIG. 8). Further, the linear expansion coefficient of the stopper 7 is α 2 , the expansion rate of the heat storage material 2 at the time of water absorption is α h , the length in the arrangement direction of the heat storage material 2 at room temperature is W 1 , and the length in the arrangement direction of the stopper 7 at room temperature. when the W 2, x the distance between the thermal storage material 2 and the stopper 7 at the normal temperature, the temperature difference between the room temperature and the degradation temperature, i.e. the temperature difference between the ambient temperature and the reference heat transfer member temperature T a and a [Delta] T, the following The distance x between the heat storage material 2 and the stopper 7 at the normal temperature is set so as to satisfy the relationship expressed by Equation 3 below.

(数3)
x>W(1+α)+W(1+α)ΔT
これにより、伝熱部材10の表面の温度が基準伝熱部材温度Tより低い場合には、ストッパ7と蓄熱材2とが非接触となるので、水和反応や脱水反応および温度変化に伴い蓄熱材2の体積が変化をしたときでも、蓄熱材2が動くスペースを確保することができる。このため、蓄熱材2が破損することを防止できる。また、伝熱部材10の表面の温度が基準伝熱部材温度T以上になった場合、すなわちストッパ7により押圧部材6が伝熱部材10から離れる方向に押し上げられた場合には、ストッパ7と蓄熱材2とが接触するので、蓄熱材2がストッパ配置方向にずれることを抑制できる。
(Equation 3)
x> W 1 (1 + α h ) + W 2 (1 + α 2 ) ΔT
Thus, when the temperature of the surface of the heat transfer member 10 is lower than the reference heat transfer member temperature T a, since the stopper 7 and the thermal storage material 2 is not in contact, with the hydration reaction and dehydration reaction and temperature changes Even when the volume of the heat storage material 2 changes, a space in which the heat storage material 2 moves can be secured. For this reason, it can prevent that the thermal storage material 2 is damaged. Also, if the temperature of the surface of the heat transfer member 10 is equal to or greater than the reference heat transfer member temperature T a, that is, when the pressing member 6 by the stopper 7 is pushed up in a direction away from the heat transfer member 10, a stopper 7 Since the heat storage material 2 contacts, it can suppress that the heat storage material 2 slip | deviates to a stopper arrangement | positioning direction.

(第4実施形態)
次に、本発明の第4実施形態について図9に基づいて説明する。本第4実施形態は、上記第2実施形態と比較して、蓄熱材2および押圧部材6の形状が異なるものである。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described with reference to FIG. The fourth embodiment is different from the second embodiment in the shapes of the heat storage material 2 and the pressing member 6.

図9は、本第4実施形態に係る蓄熱装置の蓄熱材2近傍を示す概略断面図である。図9に示すように、本実施形態の蓄熱材2は、ストッパ配置方向および伝熱部材10の表面の法線方向に直交する断面において、伝熱部材10と反対側の端部が、伝熱部材10から離れる方向に向かって凸となるように円弧状に湾曲して形成されている。換言すると、蓄熱材2における伝熱部材10と反対側の端部には、ストッパ配置方向および伝熱部材10の表面の法線方向に直交する断面において、伝熱部材10から離れる方向に向かって凸となるように円弧状に湾曲した蓄熱側湾曲部20が形成されている。   FIG. 9 is a schematic cross-sectional view showing the vicinity of the heat storage material 2 of the heat storage device according to the fourth embodiment. As shown in FIG. 9, the heat storage material 2 of the present embodiment has a heat transfer member 10 whose end opposite to the heat transfer member 10 is in the cross section perpendicular to the stopper arrangement direction and the normal direction of the surface of the heat transfer member 10. It is curved and formed in an arc shape so as to be convex in a direction away from the member 10. In other words, at the end of the heat storage material 2 opposite to the heat transfer member 10, in the direction perpendicular to the stopper arrangement direction and the normal direction of the surface of the heat transfer member 10, toward the direction away from the heat transfer member 10. A heat storage side curved portion 20 that is curved in an arc shape so as to be convex is formed.

押圧部材6の断面L字形状の角部、すなわち押圧部材6における第1押圧部61と第2押圧部62との接続部は、蓄熱材2の蓄熱側湾曲部20に沿って湾曲している。換言すると、押圧部材6の断面L字形状の角部には、蓄熱材2の蓄熱側湾曲部20に沿って円弧状に湾曲した押圧側湾曲部63が形成されている。   A corner portion of the pressing member 6 having an L-shaped cross section, that is, a connection portion between the first pressing portion 61 and the second pressing portion 62 in the pressing member 6 is curved along the heat storage side bending portion 20 of the heat storage material 2. . In other words, the pressing side curved portion 63 that is curved in an arc shape along the heat storage side bending portion 20 of the heat storage material 2 is formed at the corner portion of the L-shaped cross section of the pressing member 6.

これによれば、水和反応や温度変化に伴い蓄熱材2が膨張した際に、押圧部材6における第1押圧部61と第2押圧部62との接続部に加えられる応力を緩和することができるので、押圧部材6の破損を防止することが可能となる。   According to this, when the heat storage material 2 expands due to a hydration reaction or a temperature change, the stress applied to the connection portion between the first pressing portion 61 and the second pressing portion 62 in the pressing member 6 can be relieved. Therefore, it is possible to prevent the pressing member 6 from being damaged.

(第5実施形態)
次に、本発明の第5実施形態について図10〜図12に基づいて説明する。本第5実施形態は、上記第2実施形態と比較して、ストッパ7を廃止するとともに、板状部材8を設けた点が異なるものである。
(Fifth embodiment)
Next, a fifth embodiment of the present invention will be described with reference to FIGS. The fifth embodiment is different from the second embodiment in that the stopper 7 is eliminated and a plate-like member 8 is provided.

図10は、本第5実施形態に係る蓄熱装置の蓄熱材2近傍を示す概略断面図である。図10に示すように、本実施形態の押圧部材6の第2押圧部62における蓄熱材2と接触する面と反対側の面には、押圧部材6と線膨張係数の異なる材質からなる異線膨張係数部材としての板状部材8が設けられている。板状部材8は、第2押圧部62における蓄熱材2と接触する面と反対側の面と全面に亘って接触するように配設されており、第2押圧部62における蓄熱材2と接触する面と反対側の面に固定されている。   FIG. 10 is a schematic cross-sectional view showing the vicinity of the heat storage material 2 of the heat storage device according to the fifth embodiment. As shown in FIG. 10, on the surface opposite to the surface in contact with the heat storage material 2 in the second pressing portion 62 of the pressing member 6 of the present embodiment, a different line made of a material having a linear expansion coefficient different from that of the pressing member 6. A plate-like member 8 is provided as an expansion coefficient member. The plate-like member 8 is disposed so as to be in contact with the entire surface of the second pressing portion 62 opposite to the surface in contact with the heat storage material 2, and is in contact with the heat storage material 2 in the second pressing portion 62. It is fixed to the surface on the opposite side to the surface.

図11は、本第5実施形態における押圧部材6および板状部材8の線膨張係数と温度との関係を示す特性図である。押圧部材6および板状部材8としては、図11に示すように、押圧部材6および板状部材8それぞれの温度が、予め定めた基準部材温度Tより低い場合には、押圧部材6より板状部材8の線膨張係数が大きく、押圧部材6および板状部材8それぞれの温度が基準部材温度T以上の高温の場合においては、押圧部材6より板状部材8の線膨張係数が小さくなるようなものを用いている。本実施形態では、押圧部材6として炭素鋼(S35C)を用いており、板状部材8として軟鋼(0.23C−0.6Mn)を用いている。 FIG. 11 is a characteristic diagram showing the relationship between the linear expansion coefficient and the temperature of the pressing member 6 and the plate-like member 8 in the fifth embodiment. The pressing member 6 and the plate member 8, as shown in FIG. 11, the temperature of each pressing member 6 and the plate member 8 is lower than the reference members temperature T b which defines in advance, the plate than the pressing member 6 greater coefficient of linear expansion of Jo member 8, when the temperature of the respective pressing members 6 and the plate member 8 is a temperature higher than the reference members temperature T b is the coefficient of linear expansion of the plate member 8 from the pressing member 6 is reduced Something like that is used. In the present embodiment, carbon steel (S35C) is used as the pressing member 6, and mild steel (0.23C-0.6Mn) is used as the plate-like member 8.

ここで、基準部材温度Tは、蓄熱材2の再生温度(転換温度)より高く、かつ劣化温度より低い温度に設定されている。本実施形態では、蓄熱材2として酸化カルシウムを用いているので、上述したように、劣化温度は1300℃となる。一方、蓄熱材2の再生温度は圧力によって変化することがわかっている。このため、本実施形態では、蓄熱材2の再生温度として、圧力を1気圧としたときの再生温度である479℃を採用している。このため、基準部材温度Tは、479℃より高く、1300℃より低い温度に設定されている。 Here, the reference member temperature Tb is set to a temperature higher than the regeneration temperature (conversion temperature) of the heat storage material 2 and lower than the deterioration temperature. In this embodiment, since calcium oxide is used as the heat storage material 2, as described above, the deterioration temperature is 1300 ° C. On the other hand, it is known that the regeneration temperature of the heat storage material 2 changes with pressure. For this reason, in this embodiment, 479 ° C., which is the regeneration temperature when the pressure is 1 atm, is adopted as the regeneration temperature of the heat storage material 2. For this reason, the reference member temperature Tb is set to a temperature higher than 479 ° C. and lower than 1300 ° C.

続いて、本実施形態の蓄熱装置の作動について説明する。図12は、本第5実施形態に係る蓄熱装置の蓄熱材2近傍を示す概略断面図であり、押圧部材6および板状部材8の温度が基準部材温度T以上となった場合を示している。 Then, the action | operation of the thermal storage apparatus of this embodiment is demonstrated. Figure 12 is a schematic sectional view showing a thermal storage material 2 near the heat storage device according to the fifth embodiment, showing a case where the temperature of the pressing member 6 and the plate member 8 becomes the reference member temperature T b or Yes.

押圧部材6および板状部材8の温度が基準部材温度T以上になると、板状部材8の線膨張係数が押圧部材6の線膨張係数より小さくなるので、図12に示すように、押圧部材6の第2押圧部62および板状部材8が蓄熱材2と反対側に反り返るように湾曲する。これにより、押圧部材6から蓄熱材2に作用する押圧力が低減するので、蓄熱材2と伝熱部材10との間の熱抵抗を増大させることができる。したがって、蓄熱材2が過度に高温になることを防止し、蓄熱材2の劣化を抑制することが可能となる。 When the temperature of the pressing member 6 and the plate member 8 becomes equal to or higher than the reference members temperature T b, since the linear expansion coefficient of the plate-like member 8 is smaller than the linear expansion coefficient of the pressing member 6, as shown in FIG. 12, the pressing member The second pressing portion 62 and the plate-like member 8 are curved so as to warp opposite to the heat storage material 2. Thereby, since the pressing force which acts on the thermal storage material 2 from the pressing member 6 reduces, the thermal resistance between the thermal storage material 2 and the heat-transfer member 10 can be increased. Therefore, it is possible to prevent the heat storage material 2 from becoming excessively high temperature and to suppress deterioration of the heat storage material 2.

本実施形態では、蓄熱材2は押圧部材6および板状部材8の押圧力により伝熱部材10に固定されているので、交換したい蓄熱材2に対応する押圧部材6および板状部材8を押圧力の作用方向と逆の方向に引っ張ることにより、交換したい蓄熱材2だけを容易に交換することができる。このため、上記第1実施形態と同様の効果を得ることが可能となる。   In the present embodiment, since the heat storage material 2 is fixed to the heat transfer member 10 by the pressing force of the pressing member 6 and the plate-like member 8, the pressing member 6 and the plate-like member 8 corresponding to the heat storage material 2 to be replaced are pressed. Only the heat storage material 2 to be replaced can be easily replaced by pulling in a direction opposite to the direction in which the pressure is applied. For this reason, it becomes possible to acquire the effect similar to the said 1st Embodiment.

(第6実施形態)
次に、本発明の第6実施形態について図13に基づいて説明する。本第6実施形態は、上記第5実施形態と比較して、板状部材8を設ける位置、および押圧部材6および板状部材8の材質が異なるものである。
(Sixth embodiment)
Next, a sixth embodiment of the present invention will be described with reference to FIG. The sixth embodiment is different from the fifth embodiment in the position where the plate-like member 8 is provided and the material of the pressing member 6 and the plate-like member 8.

図13は、本第6実施形態に係る蓄熱装置の蓄熱材2近傍を示す概略断面図である。図13に示すように、本実施形態の押圧部材6の第2押圧部62と蓄熱材2との間には、押圧部材6と線膨張係数の異なる材質からなる異線膨張係数部材としての板状部材8が設けられている。板状部材8は、第2押圧部62における蓄熱材2側の面と全面に亘って接触するように配設されており、第2押圧部62における蓄熱材2側の面に固定されている。   FIG. 13 is a schematic cross-sectional view showing the vicinity of the heat storage material 2 of the heat storage device according to the sixth embodiment. As shown in FIG. 13, between the second pressing portion 62 of the pressing member 6 and the heat storage material 2 of the present embodiment, a plate as a different linear expansion coefficient member made of a material having a different linear expansion coefficient from the pressing member 6. A shaped member 8 is provided. The plate-like member 8 is arranged so as to be in contact with the entire surface of the second pressing portion 62 on the heat storage material 2 side, and is fixed to the surface of the second pressing portion 62 on the heat storage material 2 side. .

押圧部材6および板状部材8としては、押圧部材6および板状部材8それぞれの温度が基準部材温度Tより低い場合には、押圧部材6より板状部材8の線膨張係数が小さく、押圧部材6および板状部材8それぞれの温度が基準部材温度T以上の高温の場合においては、押圧部材6より板状部材8の線膨張係数が大きくなるようなものを用いている。本実施形態では、押圧部材6として軟鋼(0.23C−0.6Mn)を用いており、板状部材8として炭素鋼(S35C)を用いている。 The pressing member 6 and the plate member 8, when the temperature of the respective pressing members 6 and the plate member 8 is lower than the reference members temperature T b is the coefficient of linear expansion of the plate member 8 from the pressing member 6 is small, the pressing in the case member 6 and the plate member 8 of the respective temperature of the reference member temperature T b or high temperature is used as such as a linear expansion coefficient of the plate member 8 from the pressing member 6 is increased. In this embodiment, mild steel (0.23C-0.6Mn) is used as the pressing member 6, and carbon steel (S35C) is used as the plate-like member 8.

続いて、本実施形態の蓄熱装置の作動について説明する。押圧部材6および板状部材8の温度が基準部材温度T以上になると、板状部材8の線膨張係数が押圧部材6の線膨張係数より大きくなるので、板状部材8および押圧部材6の第2押圧部62が蓄熱材2と反対側に反り返るように湾曲する。このため、押圧部材6から蓄熱材2に作用する押圧力が低減するので、蓄熱材2と伝熱部材10との間の熱抵抗を増大させることができる。これにより、上記第5実施形態と同様の効果を得ることが可能となる。 Then, the action | operation of the thermal storage apparatus of this embodiment is demonstrated. When the temperature of the pressing member 6 and the plate member 8 becomes equal to or higher than the reference members temperature T b, since the linear expansion coefficient of the plate-like member 8 is larger than the linear expansion coefficient of the pressing member 6, the plate member 8 and the pressing member 6 The second pressing portion 62 is curved so as to warp to the opposite side to the heat storage material 2. For this reason, since the pressing force which acts on the thermal storage material 2 from the pressing member 6 reduces, the thermal resistance between the thermal storage material 2 and the heat-transfer member 10 can be increased. Thereby, it is possible to obtain the same effect as that of the fifth embodiment.

(他の実施形態)
なお、上記各実施形態では、第1反応物として金属酸化物を用い、第2反応物として水を用い、金属酸化物の水和反応による水和熱を利用して熱交換対象物である排気を加熱した例について説明したが、これに限らず、第1反応物および第2反応物として他の物質を用いてもよい。また、熱交換対象物として、エンジン冷却水、触媒、エンジンオイル、走行用駆動源としてのバッテリ、ATF等を採用してもよい。なお、上記各実施形態では、第1反応物として酸化カルシウムを用いた例について説明したが、これに代えて、例えば酸化マグネシウム等の他の金属酸化物を用いてもよい。
(Other embodiments)
In each of the above embodiments, a metal oxide is used as the first reactant, water is used as the second reactant, and exhaust gas that is a heat exchange object using heat of hydration by the hydration reaction of the metal oxide. However, the present invention is not limited to this, and other substances may be used as the first reactant and the second reactant. Further, engine cooling water, a catalyst, engine oil, a battery as a travel drive source, ATF, or the like may be employed as a heat exchange object. In each of the above-described embodiments, an example in which calcium oxide is used as the first reactant has been described, but other metal oxides such as magnesium oxide may be used instead.

また、上記第1、第2、第4実施形態では、蓄熱材2とストッパ7とが接触するように配置されている例について説明したが、これに限らず、蓄熱材2とストッパ7とが接触しない、すなわち非接触となるように配置されていてもよい。   Moreover, in the said 1st, 2nd, 4th embodiment, although the heat storage material 2 and the example arrange | positioned so that the stopper 7 may contact were demonstrated, not only this but the heat storage material 2 and the stopper 7 are provided. You may arrange | position so that it may not contact, ie, may be non-contact.

また、上記第5、第6実施形態では、ストッパ7を廃止した例について説明したが、ストッパ7を設けてもよい。   In the fifth and sixth embodiments, the example in which the stopper 7 is eliminated has been described. However, the stopper 7 may be provided.

2 蓄熱材
6 押圧部材
7 ストッパ(押圧力低減部材)
8 板状部剤(異線膨張係数部材)
10 伝熱部材
2 Thermal storage material 6 Pressing member 7 Stopper (pressing force reducing member)
8 Plate-shaped parts (different linear expansion coefficient members)
10 Heat transfer member

Claims (9)

第1反応物を有して構成されており、前記第1反応物および第2反応物を反応させて化合物を生成する際に生じる反応熱によって熱交換対象物を加熱し、前記化合物を前記第1反応物および前記第2反応物に分離させることによって前記反応の系外にて発生する熱である外部熱を蓄熱する蓄熱材(2)と、
前記蓄熱材(2)と前記熱交換対象物との間で熱の授受を行う伝熱部材(10)と、
前記蓄熱材(2)を前記伝熱部材(10)に向けて押圧し、前記蓄熱材(2)と前記伝熱部材(10)との界面における熱抵抗を低減させる押圧部材(6)とを備えることを特徴とする蓄熱装置。
The first reactant and the second reactant are reacted with each other to heat a heat exchange target by reaction heat generated when the compound is produced, and the compound is A heat storage material (2) for storing external heat, which is heat generated outside the reaction system, by separating the reactant into the first reactant and the second reactant;
A heat transfer member (10) for transferring heat between the heat storage material (2) and the heat exchange object;
A pressing member (6) that presses the heat storage material (2) toward the heat transfer member (10) and reduces a thermal resistance at an interface between the heat storage material (2) and the heat transfer member (10). A heat storage device comprising:
前記押圧部材(6)は、前記伝熱部材(10)と熱的に接触していることを特徴とする請求項1に記載の蓄熱装置。   The heat storage device according to claim 1, wherein the pressing member (6) is in thermal contact with the heat transfer member (10). 前記伝熱部材(10)には、前記伝熱部材(10)の表面の温度が予め定めた基準伝熱部材温度(T)以上になった場合に、前記押圧部材(6)から前記蓄熱材(2)に作用する押圧力を低減させる押圧力低減部材(7)が設けられており、
前記押圧力低減部材(7)は、前記伝熱部材(10)の前記表面の温度が前記基準伝熱部材温度(T)より低い場合には、前記押圧力低減部材(7)の前記伝熱部材(10)の前記表面からの高さが、前記蓄熱材(2)および前記押圧部材(6)の前記伝熱部材(10)の表面における前記押圧力低減部材(7)が配置されている部分(10a)からの高さより低くなるとともに、前記伝熱部材(10)の前記表面の温度が前記基準伝熱部材温度(T)以上になった場合には、前記押圧力低減部材(7)の前記伝熱部材(10)の前記表面からの高さが、前記蓄熱材(2)および前記押圧部材(6)の前記伝熱部材(10)の前記表面における前記押圧力低減部材(7)が配置されている部分(10a)からの高さより高くなるように構成されていることを特徴とする請求項1または2に記載の蓄熱装置。
When the temperature of the surface of the heat transfer member (10) becomes equal to or higher than a predetermined reference heat transfer member temperature (T a ), the heat transfer member (10) receives heat from the pressing member (6). A pressing force reducing member (7) for reducing the pressing force acting on the material (2) is provided;
When the temperature of the surface of the heat transfer member (10) is lower than the reference heat transfer member temperature (T a ), the pressing force reduction member (7) The height of the thermal member (10) from the surface is such that the pressing force reducing member (7) on the surface of the heat transfer member (10) of the heat storage material (2) and the pressing member (6) is arranged. When the temperature of the surface of the heat transfer member (10) becomes equal to or higher than the reference heat transfer member temperature (T a ), the pressing force reducing member ( 7) from the surface of the heat transfer member (10) is the pressing force reducing member (2) on the surface of the heat transfer member (10) of the heat storage material (2) and the pressing member (6) ( 7) so that it is higher than the height from the part (10a) where it is arranged It is comprised, The heat storage apparatus of Claim 1 or 2 characterized by the above-mentioned.
前記押圧力低減部材(7)は、前記蓄熱材(2)と熱的に接触していることを特徴とする請求項3に記載の蓄熱装置。   The heat storage device according to claim 3, wherein the pressing force reducing member (7) is in thermal contact with the heat storage material (2). 前記押圧力低減部材(7)は、前記伝熱部材(10)の前記表面の温度が前記基準伝熱部材温度(T)より低い場合には、前記押圧力低減部材(7)と前記蓄熱材(2)とが非接触となり、前記伝熱部材(10)の前記表面の温度が前記基準伝熱部材温度(T)以上になった場合には、前記押圧力低減部材(7)と前記蓄熱材(2)とが接触するような部位に配置されていることを特徴とする請求項3に記載の蓄熱装置。 When the temperature of the surface of the heat transfer member (10) is lower than the reference heat transfer member temperature (T a ), the pressing force reduction member (7) and the heat storage member (7) When the material (2) is in non-contact and the temperature of the surface of the heat transfer member (10) is equal to or higher than the reference heat transfer member temperature (T a ), the pressing force reducing member (7) The heat storage device according to claim 3, wherein the heat storage device is arranged at a site where the heat storage material (2) comes into contact. 前記押圧部材(6)における前記蓄熱材(2)と接触している面と反対側の面には、前記押圧部材(6)と線膨張係数の異なる材質からなる異線膨張係数部材(8)が設けられており、
前記異線膨張係数部材(8)は、前記押圧部材(6)および前記異線膨張係数部材(8)の温度が予め定めた基準部材温度(T)より低い場合には、前記異線膨張係数部材(8)の線膨張係数が前記押圧部材(6)の線膨張係数より大きくなるとともに、前記押圧部材(6)および前記異線膨張係数部材(8)の温度が前記基準部材温度(T)以上になった場合には、前記異線膨張係数部材(8)の線膨張係数が前記押圧部材(6)の線膨張係数より小さくなることで、前記押圧部材(6)から前記蓄熱材(2)に作用する押圧力を低減させるように構成されていることを特徴とする請求項1ないし5のいずれか1つに記載の蓄熱装置。
On the surface of the pressing member (6) opposite to the surface in contact with the heat storage material (2), a different linear expansion coefficient member (8) made of a material having a linear expansion coefficient different from that of the pressing member (6). Is provided,
When the temperature of the pressing member (6) and the extra-linear expansion coefficient member (8) is lower than a predetermined reference member temperature (T b ), the extra-linear expansion coefficient member (8) The linear expansion coefficient of the coefficient member (8) is larger than the linear expansion coefficient of the pressing member (6), and the temperature of the pressing member (6) and the different linear expansion coefficient member (8) is the reference member temperature (T b ) When it becomes more than this, the linear expansion coefficient of the said different linear expansion coefficient member (8) becomes smaller than the linear expansion coefficient of the said pressing member (6), Therefore The said thermal storage material from the said pressing member (6). The heat storage device according to any one of claims 1 to 5, wherein the heat storage device is configured to reduce a pressing force acting on (2).
前記押圧部材(6)と前記蓄熱材(2)との間には、前記押圧部材(6)と線膨張係数の異なる材質からなる異線膨張係数部材(8)が設けられており、
前記異線膨張係数部材(8)は、前記押圧部材(6)および前記異線膨張係数部材(8)の温度が予め定めた基準部材温度(T)より低い場合には、前記異線膨張係数部材(8)の線膨張係数が前記押圧部材(6)の線膨張係数より小さくなるとともに、前記押圧部材(6)および前記異線膨張係数部材(8)の温度が前記基準部材温度(T)以上になった場合には、前記異線膨張係数部材(8)の線膨張係数が前記押圧部材(6)の線膨張係数より大きくなることで、前記押圧部材(6)から前記蓄熱材(2)に作用する押圧力を低減させるように構成されていることを特徴とする請求項1ないし5のいずれか1つに記載の蓄熱装置。
Between the pressing member (6) and the heat storage material (2), a different linear expansion coefficient member (8) made of a material having a different linear expansion coefficient from the pressing member (6) is provided,
When the temperature of the pressing member (6) and the extra-linear expansion coefficient member (8) is lower than a predetermined reference member temperature (T b ), the extra-linear expansion coefficient member (8) The linear expansion coefficient of the coefficient member (8) is smaller than the linear expansion coefficient of the pressing member (6), and the temperatures of the pressing member (6) and the different linear expansion coefficient member (8) are the reference member temperature (T b ) When it becomes more than this, the linear expansion coefficient of the said different linear expansion coefficient member (8) becomes larger than the linear expansion coefficient of the said press member (6), Therefore The said thermal storage material from the said press member (6). The heat storage device according to any one of claims 1 to 5, wherein the heat storage device is configured to reduce a pressing force acting on (2).
前記蓄熱材(2)における前記伝熱部材(10)と反対側の端部には、前記伝熱部材(10)から離れる方向に向かって凸となるように円弧状に湾曲した蓄熱側湾曲部(20)が形成されており、
前記押圧部材(6)には、前記蓄熱側湾曲部(20)に沿って円弧状に湾曲した押圧側湾曲部(63)が形成されていることを特徴とする請求項1ないし7のいずれか1つに記載の蓄熱装置。
The heat storage side curved portion curved in an arc shape so as to protrude toward the direction away from the heat transfer member (10) at the end of the heat storage material (2) opposite to the heat transfer member (10). (20) is formed,
The pressing member (6) is formed with a pressing side bending portion (63) curved in an arc along the heat storage side bending portion (20). The heat storage device according to one.
前記押圧部材(6)は、前記押圧部材(6)と前記伝熱部材(10)との成す角度が0°より大きく、90°より小さくなるように、前記伝熱部材(10)の表面に平行な方向に対して傾斜配置されており、
前記蓄熱材(2)は、前記押圧部材(6)の傾斜に沿って傾斜した傾斜面を有して構成されていることを特徴とする請求項1ないし8のいずれか1つに記載の蓄熱装置。
The pressing member (6) is formed on the surface of the heat transfer member (10) such that an angle formed between the pressing member (6) and the heat transfer member (10) is larger than 0 ° and smaller than 90 °. It is inclined with respect to the parallel direction,
The said heat storage material (2) has an inclined surface inclined along the inclination of the said press member (6), The heat storage as described in any one of Claim 1 thru | or 8 characterized by the above-mentioned. apparatus.
JP2010012016A 2010-01-22 2010-01-22 Heat storage device Withdrawn JP2011149639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010012016A JP2011149639A (en) 2010-01-22 2010-01-22 Heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010012016A JP2011149639A (en) 2010-01-22 2010-01-22 Heat storage device

Publications (1)

Publication Number Publication Date
JP2011149639A true JP2011149639A (en) 2011-08-04

Family

ID=44536786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010012016A Withdrawn JP2011149639A (en) 2010-01-22 2010-01-22 Heat storage device

Country Status (1)

Country Link
JP (1) JP2011149639A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195022A (en) * 2012-03-21 2013-09-30 Chiba Univ Chemical heat pump and control method thereof
JP2014098531A (en) * 2012-11-16 2014-05-29 Ricoh Co Ltd Heat storing and radiating device
WO2016027815A1 (en) * 2014-08-19 2016-02-25 株式会社豊田自動織機 Chemical heat storage device
WO2016035562A1 (en) * 2014-09-03 2016-03-10 株式会社豊田自動織機 Chemical heat storage device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195022A (en) * 2012-03-21 2013-09-30 Chiba Univ Chemical heat pump and control method thereof
JP2014098531A (en) * 2012-11-16 2014-05-29 Ricoh Co Ltd Heat storing and radiating device
WO2016027815A1 (en) * 2014-08-19 2016-02-25 株式会社豊田自動織機 Chemical heat storage device
JP2016042008A (en) * 2014-08-19 2016-03-31 株式会社豊田自動織機 Chemical heat storage device
WO2016035562A1 (en) * 2014-09-03 2016-03-10 株式会社豊田自動織機 Chemical heat storage device
JP2016053431A (en) * 2014-09-03 2016-04-14 株式会社豊田自動織機 Chemical heat storage device

Similar Documents

Publication Publication Date Title
JP2011149639A (en) Heat storage device
JP2007016747A (en) Automobile exhaust heat power generation device
Ogura et al. Efficiencies of CaO/H2O/Ca (OH) 2 chemical heat pump for heat storing and heating/cooling
JP5217595B2 (en) Chemical heat storage system for vehicles
US20090020260A1 (en) Exhaust heat recovery apparatus
US9752805B2 (en) Adsorption heat pump
JP4701816B2 (en) Steam supply system
WO2010109145A3 (en) Exhaust line for a motor vehicle with a closed recovery cycle for exhaust gas heat energy, and associated control method
US4140173A (en) Heating device
JP2006234199A (en) Heat exchanger
JP6080950B2 (en) Heat exchanger and internal combustion engine for automobile
JP5402346B2 (en) Heat dissipation device
JP5569603B2 (en) Chemical heat storage system for vehicles
JP6350250B2 (en) Chemical heat storage reactor
JP5687179B2 (en) Chemical heat storage reactor
JP6493338B2 (en) Chemical heat storage device
WO2015194400A1 (en) Chemical thermal storage device
JP6280520B2 (en) Exhaust gas heat exchanger made of duplex steel
WO2016072331A1 (en) Chemical heat storage apparatus
JP5904828B2 (en) Fuel cell device
JP6044419B2 (en) Waste heat recovery device
JP6471867B2 (en) Waste heat recovery device
JP2005330832A (en) Heat storage system
CN202350601U (en) Long lasting heat pipe
JP2010156212A (en) Cylinder head cover heat-retaining device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130402