JP2011149143A - Vibration damper - Google Patents

Vibration damper Download PDF

Info

Publication number
JP2011149143A
JP2011149143A JP2010008630A JP2010008630A JP2011149143A JP 2011149143 A JP2011149143 A JP 2011149143A JP 2010008630 A JP2010008630 A JP 2010008630A JP 2010008630 A JP2010008630 A JP 2010008630A JP 2011149143 A JP2011149143 A JP 2011149143A
Authority
JP
Japan
Prior art keywords
plastic deformation
tube
axial direction
shaft member
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010008630A
Other languages
Japanese (ja)
Inventor
Peizheng Lin
沛征 林
Ken Komatsu
健 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2010008630A priority Critical patent/JP2011149143A/en
Publication of JP2011149143A publication Critical patent/JP2011149143A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration damper which eliminates the need of an excessive vibration energy at the start of plastic deformation even if forces of compression and tension are applied thereto by an earthquake or the like and which can sufficiently exhibit energy absorbing performance by the plastic deformation. <P>SOLUTION: This vibration damper 1 is installed, as a brace, for example, between a base D, a beam H, and columns P1, P2 as the structural members of a building so as to absorb vibration energy generated by an earthquake or the like. The vibration damper includes a considerably long shaft member 2 extending in the axial direction and an plastically deformable tube 6 of circular shape in cross section which is fixed to one end (bottom end) of the shaft member 2 in the axial direction of the shaft member 2. The plastically deformable tube 6 includes a compressively deformable and tensely deformable plastically deformable part 7 at the axial intermediate part over the entire circumference. The deformation of the plastically deformable part 7 changes the axial dimension of the plastically deformable tube 6. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、建築物の構造材同士の間に取り付けられ、地震などによる振動エネルギを吸収ないし緩和して、建築物が破損したり、倒壊するなどの影響を防止ないし低減するための制振ダンパに関する。   The present invention is a vibration damper that is attached between structural materials of a building and absorbs or relaxes vibration energy due to an earthquake or the like to prevent or reduce the influence of the building being damaged or collapsed. About.

地震による振動エネルギは、縦揺れおよび横揺れとして現れるが、通常は横揺れによって建築物が倒壊することが多い。係る横揺れは、建築物の構造材を補強している筋交いに対し、圧縮と引張りとを交互に加えている。そして、建築物が倒壊する場合は、一般に、圧縮時のエネルギによって生じることが多い。
例えば、地震による圧縮時の振動エネルギを十分に吸収するため、長尺な外管の内側に若干長さの短い内管を嵌挿し、該内・外管を長手方向の中間で固定すると共に、外管のみが位置する両端部に十字形継手を固定することにより、両端付近の外管のみが径方向に拡がるような座屈変形を誘発するようにした二重管型すじかい材が提案されている(例えば、特許文献1参照)。
Vibration energy from earthquakes appears as pitching and rolling, but usually buildings often collapse due to rolling. Such rolls alternately apply compression and tension to the braces that reinforce the structural material of the building. And when a building collapses, generally it is often caused by energy at the time of compression.
For example, in order to sufficiently absorb vibration energy at the time of compression due to an earthquake, an inner tube with a slightly short length is fitted inside a long outer tube, and the inner and outer tubes are fixed in the middle in the longitudinal direction, A double pipe type brace has been proposed in which a cruciform joint is fixed to both ends where only the outer pipe is located, thereby inducing buckling deformation in which only the outer pipe near both ends expands in the radial direction. (For example, refer to Patent Document 1).

前記二重管型すじかい材の場合、地震の圧縮力を受けても、長手方向の断面が円形で且つ均一な外管の両端部が塑性変形して座屈を開始するまでに過大なエネルギを必要とするため、種々の地震に対応できない事態を招くおそれがあった。
一方、圧縮による座屈変形の開始に必要なエネルギを低く設定した場合、座屈開始後の塑性変形によるエネルギの吸収能力が低下する、という問題があった。
加えて、前記二重管型すじかい材では、引張り時の振動エネルギを全く吸収できない、という問題もあった。
In the case of the above-mentioned double pipe type stiffener, even if it receives the compressive force of earthquake, excessive energy is required until both ends of the outer pipe having a circular cross section in the longitudinal direction are circularly deformed and begin to buckle. Therefore, there is a risk of causing a situation that cannot cope with various earthquakes.
On the other hand, when the energy required for the start of buckling deformation due to compression is set low, there is a problem that the ability to absorb energy due to plastic deformation after the start of buckling decreases.
In addition, there is a problem in that the double pipe type smooth material cannot absorb vibration energy at the time of pulling.

特開平8−68109号公報(第1〜8頁、図1〜7)JP-A-8-68109 (pages 1-8, FIGS. 1-7)

本発明は、背景技術で説明した問題点を解決し、地震などによる圧縮力および引張力を受けても、塑性変形の開始に過大な振動エネルギを必要とせず、且つ塑性変形によるエネルギの吸収能力を十分に発揮することが可能な制振ダンパを提供する、ことを課題とする。   The present invention solves the problems described in the background art, and does not require excessive vibration energy to start plastic deformation even when subjected to compressive force and tensile force due to an earthquake or the like, and absorbs energy due to plastic deformation It is an object to provide a vibration damper capable of fully exhibiting the above.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

本発明は、前記課題を解決すべく、発明者らによる鋭意研究および調査の結果により得られたものであり、地震などによる圧縮力と引張力とを繰り返し受けても、これらの力ごとによる塑性変形がスムースに開始され、且つ繰り返して変形できる塑性変形管を用いる、ことに着想して成されたものである。
即ち、本発明の制振ダンパ(請求項1)は、建築物の構造材同士の間に取り付けられ、地震などによる振動エネルギを吸収する制振ダンパであって、軸方向に沿って比較的長尺な軸部材と、該軸部材の少なくとも一端または中間に、係る軸部材の軸方向に沿って固定された断面円形の塑性変形管と、を備え、係る塑性変形管は、その軸方向における中間の全周に圧縮変形および引張変形が可能な塑性変形部を有し、該塑性変形部の変形は、当該塑性変形管の軸方向の寸法を変化させる、ことを特徴とする。
The present invention has been obtained as a result of diligent research and investigations by the inventors to solve the above-mentioned problems. Even if a compression force and a tensile force due to an earthquake or the like are repeatedly received, the plasticity due to each of these forces is obtained. The idea is to use a plastic deformation tube that can be smoothly deformed and repeatedly deformed.
That is, the vibration damper of the present invention (Claim 1) is a vibration damper that is attached between the structural materials of a building and absorbs vibration energy due to an earthquake or the like, and is relatively long along the axial direction. And a plastic deformation tube having a circular cross section fixed along at least one end or the middle of the shaft member along the axial direction of the shaft member, the plastic deformation tube being an intermediate in the axial direction. And a plastic deformation part capable of compressive deformation and tensile deformation, and the deformation of the plastic deformation part changes the axial dimension of the plastic deformation pipe.

これによれば、前記軸部材の少なくとも一端または中間の全周に、断面円形で且つ軸方向の中間に塑性変形部を有する塑性変形管が固定されている。そのため、地震などによる圧縮力および引張力を繰り返し受けても、上記塑性変形管の塑性変形部が、比較的少ない振動エネルギによって、当該塑性変形管の軸方向の寸法が変化する圧縮(座屈)変形および引張(伸長)変形をスムースに開始する。しかも、係る圧縮変形および引張変形を交互に繰り返して行う際に、上記塑性変形管の軸方向に沿った寸法変化によって、振動エネルギを十分に吸収することができる。従って、建築物の構造材同士の間に筋交いなどとして取り付けることで、地震などによる振動エネルギを吸収ないし緩和できるので、建築物が破損したり、倒壊するなどの影響を防止ないし低減することが可能となる。   According to this, a plastic deformation tube having a circular cross section and having a plastic deformation portion in the middle in the axial direction is fixed to at least one end of the shaft member or the entire circumference in the middle. Therefore, even when compressive force and tensile force due to an earthquake or the like are repeatedly received, the plastic deformation portion of the plastic deformation tube undergoes compression (buckling) in which the axial dimension of the plastic deformation tube changes due to relatively little vibration energy. Smoothly start deformation and tensile (elongation) deformation. In addition, when the compression deformation and the tensile deformation are alternately repeated, vibration energy can be sufficiently absorbed by the dimensional change along the axial direction of the plastic deformation tube. Therefore, it is possible to absorb or mitigate vibration energy due to earthquakes, etc. by attaching it as a bracing between the structural materials of the building, so it is possible to prevent or reduce the effects such as damage or collapse of the building It becomes.

尚、前記軸部材は、円形を含む任意の断面を有する管材や棒材であり、例えば、断面が円形あるいは矩形の金属パイプや、硬質木製の筋交いなどが含まれる。
また、前記塑性変形管は、例えば、6000系のアルミニウム合金、鋼、各種の合金鋼、あるいはステンレス鋼などからなるパイプの中間部から一端側に対し、拡径加工または縮径加工を施したものである。その後、例えば、大きな変形を要するなどの必要に応じて、合金の種類や鋼種ごとの焼き鈍しを施しても良い。
更に、前記塑性変形管は、軸部材の両端に2個を固定したり、軸部材の中間と何れか一方または双方の端部に2個ないし3個を固定しても良い。
また、前記塑性変形管の塑性変形部は、軸方向に沿った断面がほぼ直角の段部であり、軸方向の圧縮力を受けると断面ほぼZ字形ないしS字形に塑性変形し、軸方向の引張力を受けると断面の中間にほぼ円錐状のテーパ面を有する形態に塑性変形するものである。
加えて、本発明の制振ダンパは、地震以外の振動エネルギ、例えば、鉄道車両や高速道路付近で生じる振動に対しても、その付近の建築物に適用可能である。
The shaft member is a pipe or bar having an arbitrary cross section including a circular shape, and includes, for example, a metal pipe having a circular or rectangular cross section, a hard wooden brace, or the like.
In addition, the plastic deformation pipe is subjected to diameter expansion processing or diameter reduction processing from one end side to an end side of a pipe made of, for example, 6000 series aluminum alloy, steel, various alloy steels, or stainless steel. It is. Thereafter, for example, annealing may be performed for each alloy type or steel type as necessary, such as requiring a large deformation.
Further, two plastic deformation pipes may be fixed to both ends of the shaft member, or two to three may be fixed to one or both ends of the middle of the shaft member.
Further, the plastic deformation portion of the plastic deformation tube is a step portion having a cross section substantially perpendicular to the axial direction, and when subjected to an axial compressive force, the plastic deformation portion is plastically deformed into a substantially Z-shaped or S-shaped cross section. When subjected to a tensile force, it is plastically deformed into a form having a substantially conical tapered surface in the middle of the cross section.
In addition, the vibration damper of the present invention can be applied to buildings in the vicinity of vibration energy other than earthquakes, for example, vibrations generated in the vicinity of railway vehicles and highways.

また、本発明には、前記塑性変形管の塑性変形部は、該塑性変形管の軸方向に対し、90度±10度の範囲で傾いた円環状の段部を含む、制振ダンパ(請求項2)も含まれる。
これによれば、上記塑性変形管の塑性変形部が、該塑性変形管の軸方向に対し、90度±10度の範囲で傾いた円環状の段部を含んでいるため、地震などの振動エネルギによる圧縮力および引張力を受けても、比較的少ない振動エネルギによって、塑性変形管の軸方向の寸法が変化する圧縮変形と引張変形とをスムースに開始できると共に、係る変形を繰り返し且つ安定的に行わせられる。
尚、塑性変形部の前記段部は、塑性変形管の軸方向に対し、90度±10度の範囲で傾いた円環(リング)状の平坦面である。
According to the present invention, the plastic deformation portion of the plastic deformation pipe includes an annular step portion that is inclined in a range of 90 ° ± 10 ° with respect to the axial direction of the plastic deformation tube. Item 2) is also included.
According to this, since the plastic deformation portion of the plastic deformation tube includes an annular step portion inclined within a range of 90 ° ± 10 ° with respect to the axial direction of the plastic deformation tube, vibration such as an earthquake occurs. Even under compressive and tensile forces due to energy, it is possible to smoothly start compressive deformation and tensile deformation in which the axial dimension of the plastic deformation tube changes with relatively little vibration energy, and to repeat and stably perform such deformation. To be done.
The step portion of the plastic deformation portion is an annular (ring) -shaped flat surface inclined within a range of 90 ° ± 10 ° with respect to the axial direction of the plastic deformation tube.

更に、本発明には、前記塑性変形管の塑性変形部は、予め軸方向の中間に円錐形状のテーパ部を設けた金属パイプを軸方向に沿って圧縮して座屈変形させた部分である、制振ダンパ(請求項3)も含まれる。
これによれば、予め、内・外径が均一な金属パイプを拡径加工あるいは縮径加工して、軸方向の中間に円錐形状のテーパ部を設け、係るテーパ部付き金属パイプを軸方向に沿って圧力を加えることで、上記テーパ部を軸方向に沿って座屈変形させることにより、塑性変形部を軸方向の中間に有する前記塑性変形管を、形状および寸法精度良くして、効率良く製作することが可能となる。
尚、上記塑性変形部を有する塑性変形管は、内・外径が均一な金属パイプから直にバルジ成形する単一の工程によって、製作することも可能である。
Furthermore, in the present invention, the plastic deformation portion of the plastic deformation tube is a portion in which a metal pipe provided with a conical tapered portion in the middle in the axial direction is compressed along the axial direction and buckled and deformed. Further, a vibration damper (claim 3) is also included.
According to this, a metal pipe with uniform inner and outer diameters is expanded or reduced in diameter in advance, and a conical tapered portion is provided in the middle of the axial direction, and the metal pipe with the tapered portion is disposed in the axial direction. By applying pressure along the axial direction, the taper portion is buckled and deformed along the axial direction, whereby the plastic deformation tube having the plastic deformation portion in the middle in the axial direction can be efficiently improved in shape and dimensional accuracy. It becomes possible to produce.
The plastic deformation pipe having the plastic deformation portion can be manufactured by a single process of directly bulging from a metal pipe having a uniform inner and outer diameter.

また、本発明には、前記塑性変形管の塑性変形部は、前記座屈変形の後に焼き鈍しを施されている、制振ダンパ(請求項4)も含まれる。
これによれば、前記テーパ部付き金属パイプを軸方向に沿って圧力を加え、そのテーパ部を軸方向に沿って座屈変形させた際に、得られた塑性変形部の断部付近に含まれる加工硬化や加工歪みを低減することができる。従って、地震などによる圧縮力および引張力を受けても、塑性変形部の圧縮変形および引張変形による塑性変形管の寸法変化を複数回にわたり繰り返して行うことが可能となる。
The present invention also includes a vibration damper (claim 4) in which the plastic deformation portion of the plastic deformation tube is annealed after the buckling deformation.
According to this, when pressure is applied along the axial direction of the metal pipe with the tapered portion, and the tapered portion is buckled and deformed along the axial direction, it is included in the vicinity of the cut portion of the obtained plastic deformation portion. Work hardening and work distortion can be reduced. Therefore, even if a compressive force and a tensile force due to an earthquake or the like are received, the dimensional change of the plastic deformation tube due to the compressive deformation and tensile deformation of the plastic deformation portion can be repeatedly performed a plurality of times.

更に、本発明には、前記塑性変形管の内外には、該塑性変形管の太径部よりも内径が大きな外ガイド管と、上記塑性変形管の細径部よりも外径が小さい内ガイド管とが、これらの軸方向と上記塑性変形管の軸方向とを平行にして取り付けられている、制振ダンパ(請求項5)も含まれる。
これによれば、前記軸部材の軸方向に対し、ある程度ずれた方向の圧縮力や引張力を受けた場合でも、塑性変形管の内外には、係る塑性変形管と平行に外・内ガイド管が取り付けられているため、上記塑性変形管の塑性変形部に対し、軸方向に沿った圧縮変形および引張変形を確実に成さしめることが可能となる。
Further, according to the present invention, there are an outer guide tube having an inner diameter larger than that of the large diameter portion of the plastic deformation tube and an inner guide having an outer diameter smaller than that of the small diameter portion of the plastic deformation tube. A damping damper (Claim 5) is also included, in which the pipe is attached with these axial directions parallel to the axial direction of the plastic deformation pipe.
According to this, even when a compressive force or tensile force in a direction deviated to some extent with respect to the axial direction of the shaft member is received, the inner and outer sides of the plastic deformation tube are parallel to the plastic deformation tube and the outer / inner guide tube. Therefore, it is possible to reliably perform compressive deformation and tensile deformation along the axial direction with respect to the plastic deformation portion of the plastic deformation tube.

加えて、本発明には、前記外ガイド管および内ガイド管は、前記塑性変形管と軸部材とを連結しているフランジ、あるいは上記塑性変形管を構造材に取り付けているフランジに、一方の管端を固定されている、制振ダンパ(請求項6)も含まれる。
これによれば、上記外・内ガイド管における一方の管端を塑性変形管と軸部材とを連結しているフランジ、あるいは上記塑性変形管を構造材に取り付けているフランジに対し、溶接付けなどにより容易に固定できると共に、上記塑性変形管の塑性変形部を、軸方向に沿って確実に圧縮変形および引張変形させられる。
In addition, according to the present invention, the outer guide tube and the inner guide tube are connected to a flange that connects the plastic deformation tube and a shaft member, or a flange that attaches the plastic deformation tube to a structural member. A damping damper (Claim 6) having a fixed pipe end is also included.
According to this, one end of the outer / inner guide tube is welded to a flange that connects the plastic deformation tube and the shaft member, or a flange that attaches the plastic deformation tube to a structural material, etc. Thus, the plastic deformation portion of the plastic deformation tube can be reliably compressed and tensile deformed along the axial direction.

本発明による一形態の制振ダンパを示す概略側面図。The schematic side view which shows the damping damper of one form by this invention. 上記制振ダンパに用いる塑性変形管の製作工程を示す概略図。Schematic which shows the manufacturing process of the plastic deformation pipe | tube used for the said damping damper. 上記塑性変形管の異なる製作工程を示す概略図。Schematic which shows the manufacturing process from which the said plastic deformation pipe differs. 上記塑性変形管の更に異なる製作工程を示す概略図。Schematic which shows the still another manufacturing process of the said plastic deformation pipe | tube. 上記塑性変形管の圧縮(座屈)変形の態様を示す概略図。Schematic which shows the aspect of the compression (buckling) deformation | transformation of the said plastic deformation pipe | tube. 図5に続く塑性変形管の引張(伸長)変形の態様を示す概略図。Schematic which shows the aspect of the tension | pulling (elongation) deformation | transformation of the plastic deformation pipe | tube following FIG. 上記制振ダンパの変形形態を示す概略図。Schematic which shows the deformation | transformation form of the said damping damper. 異なる形態の制振ダンパを示す概略図。Schematic which shows the damping damper of a different form. 異なる形態の塑性変形管を示す断面図。Sectional drawing which shows the plastic deformation pipe of a different form. 更に異なる形態の塑性変形管を示す断面図。Furthermore, sectional drawing which shows the plastic deformation pipe of a different form.

以下において、本発明を実施するための形態について説明する。
図1は、木造軸組構造の建築物における土台D、梁H、およびこれらの間で左右に隣接する柱P1,P2の構造材同士の間に、「筋交い」として取り付けた本発明による一形態の制振ダンパ1を示す概略の側面図である。
制振ダンパ1は、図1に示すように、土台Dおよび柱P1の内隅部に固定したブラケットB1と、梁Hおよび柱P2の内隅部に固定したブラケットB2との間に取り付けられ、対角線方向に沿った軸方向に沿って比較的長尺な軸部材2と、係る軸部材2の下端(一端)側で且つ該軸部材2の軸方向に沿って上記ブラケットB1との間に固定された塑性変形管6とを備えている。
上記軸部材2は、例えば、アルミニウム合金のパイプからなり、その上端に固定したフランジ4を介してブラケットB2のフランジ(図示せず)と連結され、当該軸部材2の下端に固定したフランジ3を介して、塑性変形管6の上端に固定したフランジ8と連結されている。
Hereinafter, modes for carrying out the present invention will be described.
FIG. 1 shows an embodiment according to the present invention in which a base D and a beam H in a building having a wooden frame structure, and columns P1 and P2 adjacent to each other between them are attached as "bars". FIG. 2 is a schematic side view showing the vibration damping damper 1 of FIG.
As shown in FIG. 1, the vibration damper 1 is attached between a bracket B1 fixed to the inner corner of the base D and the column P1, and a bracket B2 fixed to the inner corner of the beam H and the column P2. Fixing between the shaft member 2 that is relatively long along the axial direction along the diagonal direction and the bracket B1 on the lower end (one end) side of the shaft member 2 and along the axial direction of the shaft member 2 The plastic deformation pipe 6 is provided.
The shaft member 2 is made of, for example, an aluminum alloy pipe, and is connected to a flange (not shown) of the bracket B2 via a flange 4 fixed to the upper end thereof. The flange 3 fixed to the lower end of the shaft member 2 is connected to the shaft member 2. The flange 8 fixed to the upper end of the plastic deformation pipe 6 is connected.

また、塑性変形管6は、例えば、アルミニウム合金からなり、図1の中の白抜き矢印の右側に示す部分断面図のように、全体がほぼ円筒形を呈し、軸方向の中間の全周に円環(リング)状の段部である塑性変形部7を有し、その両側に軸部材2側の太径部6aとブラケットB1側の細径部6bとを同軸心で併有している。上記塑性変形部7は、後述するように、当該塑性変形管6の軸方向の寸法が変化するものであり、その円環状の段部は、塑性変形管6の軸方向に対し、90度±10度の範囲で傾斜している。
図1中の部分断面図に示すように、上記塑性変形管6の内外には、係る塑性変形管6の太径部6aよりも太径の外ガイド管5と、上記塑性変形管6の細径部6bよりも細径の内ガイド管9とが、それぞれの軸方向を軸部材2および塑性変形管6の軸方向と平行で且つ間隔を置いて配置されている。
上記外ガイド管5は、その上端(一方の管端)を前記フランジ8に溶接にて固定され、上記内ガイド管9は、その下端(一方の管端)を前記ブラケットB1に連結されるフランジ10に溶接にて固定されている。
Further, the plastic deformation tube 6 is made of, for example, an aluminum alloy, and as shown in the partial sectional view on the right side of the white arrow in FIG. It has a plastic deformation portion 7 which is a ring-shaped step portion, and has a large diameter portion 6a on the shaft member 2 side and a small diameter portion 6b on the bracket B1 side on both sides of the same. . As will be described later, the plastic deformation portion 7 changes the axial dimension of the plastic deformation tube 6, and the annular stepped portion is 90 ° ± with respect to the axial direction of the plastic deformation tube 6. It is inclined in the range of 10 degrees.
As shown in the partial cross-sectional view in FIG. 1, there are an outer guide tube 5 having a larger diameter than the large-diameter portion 6 a of the plastic deformation tube 6, and a narrow diameter of the plastic deformation tube 6. Inner guide tubes 9 having a diameter smaller than that of the diameter portion 6b are arranged with their respective axial directions parallel to and spaced from the axial directions of the shaft member 2 and the plastic deformation tube 6.
The outer guide tube 5 has an upper end (one tube end) fixed to the flange 8 by welding, and the inner guide tube 9 has a lower end (one tube end) connected to the bracket B1. 10 is fixed by welding.

ここで、前記塑性変形管6の製作方法について説明する。
図2の左端に示すように、アルミニウム合金(例えば、JIS:A6063)からなり、内・外径が均一な金属パイプW0を用意し、白抜き矢印の右隣に示すように、係る金属パイプW0を回転させつつ、その一端側から円錐形の金型K1の先尖り側を軸方向に沿って中空部に挿入し、円錐形状の大きなテーパ部Tを一端側に有する金属パイプW1を成形する。次いで、金型K1を引き抜いた後、更に白抜き矢印の右隣に示すように、金属パイプW1のテーパ部T側の開口部に、先端側に金型K1と同じ傾斜角度の傾斜(円錐形)部sを有する円柱形の金型K2を挿入し、係る金型K2と共に金属パイプW1を回転させた状態で、係る金属パイプW1のテーパ部Tの外周面に対し、硬質素材からなり、回転方向が金属パイプW1の径方向に沿ったローラRを押し当てつつ、軸方向に沿って移動させる。
Here, a manufacturing method of the plastic deformation tube 6 will be described.
As shown at the left end of FIG. 2, a metal pipe W0 made of an aluminum alloy (for example, JIS: A6063) and having a uniform inner and outer diameter is prepared. As shown to the right of the white arrow, the metal pipe W0 is shown. , The pointed side of the conical die K1 is inserted into the hollow portion along the axial direction from one end side, and a metal pipe W1 having a large conical tapered portion T on one end side is formed. Next, after the mold K1 is pulled out, as shown on the right side of the white arrow, the tip of the metal pipe W1 is inclined at the same inclination angle as that of the mold K1 (conical shape). ) A cylindrical mold K2 having a portion s is inserted, and the metal pipe W1 is rotated together with the mold K2, and the outer periphery of the tapered portion T of the metal pipe W1 is made of a hard material and rotated. It moves along the axial direction while pressing the roller R whose direction is along the radial direction of the metal pipe W1.

その結果、円錐形状の比較的小さなテーパ部tを挟んで太径部6aと細径部6bとを同軸心で有する金属パイプW2が成形される。そして、金型K2を引き抜いた後、図2の右端に示すように、上記金属パイプW2に対し、軸方向に沿って対向する圧縮力Pを加えて、上記テーパ部tを軸方向に沿って座屈変形させることにより、軸方向に対しほぼ90度の傾斜した段部を含む塑性変形部7を軸方向の中間に有する塑性変形管6を成形することができる。これにより、後述する圧縮変形と引張変形とが可能な塑性変形部7を有する塑性変形管6を製作することができる。
尚、例えば、大きな変形量が求められるなどの必要に応じて、前記アルミニウム合金(JIS:A6063)からなる塑性変形管6に対しては、415℃×1〜2時間の焼き鈍しを更に施すことにより、塑性変形部7付近の加工硬化や加工歪みを低減するようにしても良い。但し、上記焼き鈍しの条件は、合金の種類や鋼種に応じて適宜選定される。
As a result, a metal pipe W2 having a large diameter portion 6a and a small diameter portion 6b coaxially sandwiching a relatively small conical tapered portion t is formed. Then, after the mold K2 is pulled out, as shown at the right end of FIG. 2, a compressive force P facing along the axial direction is applied to the metal pipe W2 so that the taper portion t extends along the axial direction. By performing the buckling deformation, it is possible to form the plastic deformation tube 6 having the plastic deformation portion 7 including a step portion inclined by approximately 90 degrees with respect to the axial direction in the middle of the axial direction. Thereby, the plastic deformation pipe | tube 6 which has the plastic deformation part 7 in which the compressive deformation and tensile deformation which are mentioned later are possible can be manufactured.
For example, the plastic deformation tube 6 made of the aluminum alloy (JIS: A6063) is further annealed at 415 ° C. × 1 to 2 hours as necessary, for example, when a large deformation amount is required. Further, work hardening and work distortion near the plastic deformation portion 7 may be reduced. However, the annealing conditions are appropriately selected according to the type of alloy and the steel type.

また、図3の左端に示すように、前記同様のアルミニウム合金からなり、内・外径が比較的大きな金属パイプW0′を用意し、その白抜き矢印の右隣に示すように、係る金属パイプW0′の中空部に、その内径と同じ外径の円柱部と、前記同様の傾斜部sと、上記中空部の内径よりも細径の円柱部とを軸方向に沿って連設した金型K3を挿入する。係る状態で、更に白抜き矢印の右隣に示すように、係る金型K3をと共に金属パイプW0′を回転させつつ、傾斜部sと細径の円柱部とを囲む金属パイプW0′の外周面に対し、前記同様のローラRを押し当てつつ、軸方向に沿って移動させる。
その結果、円錐形状のテーパ部tを挟んで太径部6aと細径部6bとを有する金属パイプW3が成形される。そして、金型K3を引き抜いた後、図3の右端に示すように、上記金属パイプW3に対し、軸方向に沿った圧縮力Pを加えて、上記テーパ部tを軸方向に沿って座屈変形させることにより、前記同様の塑性変形管6を製作できる。尚、その後、前記同様の焼き鈍しを更に施しても良い。
Further, as shown at the left end of FIG. 3, a metal pipe W0 ′ made of the same aluminum alloy as described above and having a relatively large inner and outer diameter is prepared. A mold in which a cylindrical portion having the same outer diameter as the inner diameter thereof, the same inclined portion s, and a cylindrical portion having a diameter smaller than the inner diameter of the hollow portion are connected to the hollow portion of W0 ′ along the axial direction. Insert K3. In this state, as shown to the right of the white arrow, the outer peripheral surface of the metal pipe W0 ′ surrounding the inclined portion s and the small-diameter cylindrical portion while rotating the metal pipe W0 ′ together with the mold K3. On the other hand, it moves along the axial direction while pressing the same roller R as described above.
As a result, the metal pipe W3 having the large diameter portion 6a and the small diameter portion 6b is formed with the conical tapered portion t interposed therebetween. Then, after pulling out the mold K3, as shown at the right end of FIG. 3, a compressive force P along the axial direction is applied to the metal pipe W3 to buckle the tapered portion t along the axial direction. By deforming, the plastic deformation tube 6 similar to the above can be manufactured. Thereafter, annealing similar to that described above may be further performed.

更に、図4の左端に示すように、前記同様のアルミニウム合金からなり、前記同様の内・外径を有し、軸方向の寸法が若干長い金属パイプW0を用意し、その白抜き矢印の右隣に示すように、係る金属パイプW0を、金型K4内において同軸心で貫通する大きな内径のキャビティC1と、金属パイプW0の外径と同じ内径のキャビティC2とに挿入して拘束する。尚、キャビティC1,C2間には、径方向と平行なリング状の段部と、その内外の周縁に沿ったアール面とが位置している。
係る状態で、更に白抜き矢印の右隣に示すように、金属パイプW0の両端からその中空部内に高圧油などの圧力流体HPを充填する。その結果、円錐形状のテーパ部tを挟んで太径部6aと細径部6bとを同軸心で有する金属パイプW4がバルジ成形によって製作できる。そして、金型K4から取り出した金属パイプW4の両端部付近を切断・除去することで、図4の右端に示すように、前記同様の塑性変形管6を製作できる。尚、その後、前記同様の焼き鈍しを施しても良い。
Further, as shown at the left end of FIG. 4, a metal pipe W0 made of the same aluminum alloy, having the same inner and outer diameters as described above, and having a slightly longer axial dimension is prepared. As shown next, the metal pipe W0 is inserted and restrained in a cavity C1 having a large inner diameter that penetrates coaxially in the mold K4 and a cavity C2 having the same inner diameter as the outer diameter of the metal pipe W0. Between the cavities C1 and C2, a ring-shaped step portion parallel to the radial direction and a rounded surface along the inner and outer peripheral edges are located.
In this state, as shown on the right side of the white arrow, a pressure fluid HP such as high-pressure oil is filled into the hollow portion from both ends of the metal pipe W0. As a result, the metal pipe W4 having the large diameter portion 6a and the small diameter portion 6b coaxially with the conical tapered portion t interposed therebetween can be manufactured by bulge forming. Then, by cutting and removing the vicinity of both ends of the metal pipe W4 taken out from the mold K4, the plastic deformation tube 6 similar to the above can be manufactured as shown at the right end of FIG. After that, annealing similar to the above may be performed.

図5の左側は、前記制振ダンパ1における塑性変形管6の付近を拡大して示す断面図、図5の右側は、該塑性変形管6が圧縮変形した状態を示す断面図、図6の左側は、上記圧縮状態を、図6の中央は、当初の形態に復帰した状態を示す部分断面図、図6の右側は、塑性変形管6が引張変形した状態を示す断面図である。
図5の左側に示すように、軸部材2における下端に溶接wしたフランジ3と、外ガイド管5および塑性変形管6の太径部6aの上端に溶接wしたフランジ8とは、これらを厚み方向に貫通する複数のボルトbおよびこれにネジ結合したナットnにより連結され、塑性変形管6の細径部6bおよび内ガイド管9の下端に溶接wしたフランジ10と、土台Dおよび柱P1の内隅部に固定したブラケットB1側のフランジ11とは、上記同様のボルトb・ナットnにより連結されている。
また、上記塑性変形管6の塑性変形部7は、係る塑性変形管6の軸方向に対し、傾斜角度θが90度の段部である。
The left side of FIG. 5 is an enlarged cross-sectional view showing the vicinity of the plastic deformation pipe 6 in the vibration damper 1, and the right side of FIG. 5 is a cross-sectional view showing a state in which the plastic deformation pipe 6 is compressed and deformed. The left side is a partial cross-sectional view showing the compressed state, the center of FIG. 6 is a partial cross-sectional view showing a state of returning to the original form, and the right side of FIG.
As shown on the left side of FIG. 5, the flange 3 welded to the lower end of the shaft member 2 and the flange 8 welded to the upper end of the large-diameter portion 6 a of the outer guide pipe 5 and the plastic deformation pipe 6 are made thick. A plurality of bolts b penetrating in the direction and a nut n screwed to the flange b, and a flange 10 welded to the small diameter portion 6b of the plastic deformation tube 6 and the lower end of the inner guide tube 9, and the base D and the column P1 The flange B on the bracket B1 side fixed to the inner corner is connected by the same bolt b and nut n as described above.
The plastic deformation portion 7 of the plastic deformation tube 6 is a step portion having an inclination angle θ of 90 degrees with respect to the axial direction of the plastic deformation tube 6.

例えば、地震の発生に伴って、図5の左側に示す制振ダンパ1が、その軸方向にほぼ沿った圧縮力を最初に受けたとする。
この場合、係る制振ダンパ1の塑性変形管6は、その塑性変形部7付近が、図5中の白抜き矢印の右側に示すように、比較的少ない振動エネルギによって、軸方向に沿った断面がほぼクランク形状からほぼZ字形状となるように座屈(圧縮)変形した塑性変形部7aとなる。その結果、塑性変形管6は、太径部6aと細径部6bを含めた軸方向の寸法が短く変化する過程において、上記圧縮力に伴って加えられた振動エネルギを吸収する。
次に、一般的な地震と同様に、上記制振ダンパ1は、上記軸方向に沿った圧縮力を受けた直後に、当該制振ダンパ1の軸方向にほぼ沿った引張力を受ける。この際、係る制振ダンパ1の塑性変形管6の塑性変形部7aは、図6の左側に示すように、軸方向に沿った断面がほぼZ字形状に座屈変形(7a)した前記状態から、図6中の白抜き矢印の右側で且つ同図中央に部分的に示すように、断面がほぼクランク形状の塑性変形部7に一旦復帰し、太径部6aおよび細径部6bを含めた軸方向の寸法も当初の寸法にほぼ復帰(伸長)する。
For example, it is assumed that the vibration damping damper 1 shown on the left side of FIG. 5 first receives a compressive force substantially along the axial direction with the occurrence of an earthquake.
In this case, the plastic deformation tube 6 of the vibration damper 1 has a cross section along the axial direction in the vicinity of the plastic deformation portion 7 with relatively little vibration energy as shown on the right side of the white arrow in FIG. Becomes a plastically deformed portion 7a that is buckled (compressed) so that it is substantially Z-shaped from the crank shape. As a result, the plastic deformation tube 6 absorbs vibration energy applied with the compressive force in the process in which the axial dimension including the large diameter portion 6a and the small diameter portion 6b changes short.
Next, like a general earthquake, the damping damper 1 receives a tensile force substantially along the axial direction of the damping damper 1 immediately after receiving the compressive force along the axial direction. At this time, the plastic deformation portion 7a of the plastic deformation tube 6 of the damping damper 1 is in the above-described state in which the cross section along the axial direction is buckled (7a) in a substantially Z shape as shown on the left side of FIG. Then, as shown partially on the right side of the white arrow in FIG. 6 and in the center of the figure, the cross-section is temporarily returned to the plastic deformation portion 7 having a substantially crank shape, and includes the large diameter portion 6a and the small diameter portion 6b. The axial dimension is almost restored (elongated) to the original dimension.

引き続いて、前記制振ダンパ1は、そのほぼ軸方向に沿った引張力を連続して受けるので、図6中の白抜き矢印の右側に示すように、塑性変形管6の前記塑性変形部7付近は、比較的少ない振動エネルギによって、軸方向に沿った断面がほぼクランク形状からほぼ円錐形状となる伸長(引張)変形7bを生じる。その結果、塑性変形管6は、太径部6aおよび細径部6bを含めた軸方向の寸法が長く変化する過程において、上記引張力に伴って加えられた振動エネルギを吸収する。
更に、一般的な地震と同様に、制振ダンパ1は、上記軸方向に沿った引張力を受けた直後に、更に当該制振ダンパ1のほぼ軸方向に沿った圧縮力を、引き続いて受ける。この際、係る制振ダンパ1の塑性変形管6の塑性変形部7bが、軸方向に沿った断面がほぼ円錐形状から、図6中の灰色矢印の左側で且つ同図中央に部分的に示すほぼクランク形状の塑性変形部7に一旦復帰し、太径部6aおよび細径部6bを含めた軸方向の寸法も当初の寸法にほぼ復帰(短縮)する。
引き続いて、上記塑性変形部7は、図6中の灰色矢印の左側に示すように、更にほぼZ字形状の前記座屈(圧縮)変形7aに復帰する。これ以降は、塑性変形部7を挟んで、塑性変形部7aと塑性変形部7bとを交互に連続して繰り返す。
尚、地震の発生に伴って、軸方向にほぼ沿った引張力を最初に受けた場合は、塑性変形部7は、一旦塑性変形部7bとなった後、係る塑性変形部7bと塑性変形部7aとを交互に繰り返す。
Subsequently, since the damping damper 1 continuously receives a tensile force substantially along the axial direction, the plastic deformation portion 7 of the plastic deformation tube 6 is shown on the right side of the white arrow in FIG. In the vicinity, an elongation (tensile) deformation 7b in which the cross section along the axial direction changes from a substantially crank shape to a substantially conical shape due to relatively little vibration energy. As a result, the plastic deformation tube 6 absorbs the vibration energy applied along with the tensile force in the process in which the axial dimension including the large diameter portion 6a and the small diameter portion 6b changes long.
Further, just like a general earthquake, immediately after receiving the tensile force along the axial direction, the damping damper 1 continues to receive a compressive force along the substantially axial direction of the damping damper 1. . At this time, the plastic deformation portion 7b of the plastic deformation tube 6 of the vibration damper 1 is partially shown in the left side of the gray arrow in FIG. It returns to the substantially crank-shaped plastic deformation part 7 once, and the axial dimension including the large diameter part 6a and the small diameter part 6b also substantially returns (shortens) to the original dimension.
Subsequently, as shown on the left side of the gray arrow in FIG. 6, the plastic deformation portion 7 further returns to the substantially Z-shaped buckling (compression) deformation 7a. Thereafter, the plastic deformation portion 7a and the plastic deformation portion 7b are alternately and continuously repeated with the plastic deformation portion 7 interposed therebetween.
In addition, when a tensile force substantially along the axial direction is first received with the occurrence of an earthquake, the plastic deformation portion 7 once becomes the plastic deformation portion 7b, and then the plastic deformation portion 7b and the plastic deformation portion. 7a is repeated alternately.

以上のような制振ダンパ1によれば、一般的な地震時のように、そのほぼ軸方向に沿った圧縮力および引張力を交互に繰り返し受けると、その塑性変形管6の塑性変形部7付近は、その断面形状が、比較的少ない振動エネルギによって、図5の左側から右側の座屈変形(7a)を生じた後、一旦当初の断面形状である図5の左側に示す断面形状を経てから、図6の右側に示す伸長変形(7b)を生じる。これ以降は、塑性変形部7を挟んで、座屈変形(7a)と伸長変形(7b)を交互に連続して繰り返す。この間において、上記座屈変形(7a)により圧縮力に伴った振動エネルギと、上記伸長変形(7b)により引張力に伴った振動エネルギとを、十分且つ確実に吸収することができる。しかも、塑性変形管6の内外には、これと平行な内・外ガイド管9,5が取り付けられているので、前記圧縮力や引張力が、軸部材2や当該塑性変形管6の軸方向とある程度ずれていた場合でも、塑性変形部7付近を座屈変形(7a)および伸長変形(7b)させることが確実となる。
従って、例えば、木造軸組構造による一階建てあるいは2階建ての建築物において、平面視で一階の前記土台D、梁H、柱P1,P2間におけるX方向およびY方向に沿って、筋交いとして2個の前記制振ダンパ1を個別に取り付けることで、地震などによる振動エネルギを吸収ないし緩和でき、建築物が破損したり、倒壊するなどの影響を防止ないし低減することが可能となる。
According to the vibration damper 1 as described above, when the compressive force and the tensile force along the substantially axial direction are alternately and repeatedly received during a general earthquake, the plastic deformation portion 7 of the plastic deformation tube 6 is obtained. In the vicinity, after the buckling deformation (7a) from the left side to the right side in FIG. 5 is caused by the relatively small vibration energy, the cross-sectional shape once passes through the cross-sectional shape shown on the left side in FIG. Thus, the expansion deformation (7b) shown on the right side of FIG. 6 is generated. Thereafter, buckling deformation (7a) and extension deformation (7b) are alternately and continuously repeated with the plastic deformation portion 7 interposed therebetween. During this time, vibration energy associated with compressive force due to the buckling deformation (7a) and vibration energy associated with tensile force due to the extension deformation (7b) can be absorbed sufficiently and reliably. In addition, since the inner and outer guide tubes 9 and 5 parallel to the inner and outer sides of the plastic deformation tube 6 are attached, the compressive force and the tensile force are applied in the axial direction of the shaft member 2 and the plastic deformation tube 6. Even if it deviates to some extent, it is certain that the plastic deformation portion 7 and its vicinity are buckled (7a) and elongated (7b).
Therefore, for example, in a one-story or two-story building with a wooden frame structure, straddle along the X and Y directions between the base D, beams H, and pillars P1 and P2 on the first floor in plan view. By attaching the two damping dampers 1 individually, vibration energy due to an earthquake or the like can be absorbed or mitigated, and it is possible to prevent or reduce the influence of the building being damaged or collapsing.

図7は、前記制振ダンパ1の変形形態である制振ダンパ1aの断面図を示す。
制振ダンパ1aは、図7に示すように、前記同様の軸部材2、塑性変形管6、および内・外ガイド管9,5を備えている。係る制振ダンパ1aが前記制振ダンパ1と相違しているのは、軸部材2とブラケットB1のフランジ11との間において、塑性変形管6を前記とは逆向きに固定した点である。
即ち、図7に示すように、軸部材2における下端に溶接wしたフランジ3と、内ガイド管9および塑性変形管6の細径部6bの上端に溶接wしたフランジ8とが、複数のボルトbおよびナットnにより連結され、塑性変形管6の太径部6aおよび外ガイド管5の下端に溶接wしたフランジ10と、土台Dおよび柱P1の内隅部に固定したブラケットB1側のフランジ11とが、上記同様のボルトb・ナットnにより連結されている。
以上のような制振ダンパ1aによっても、前記制振ダンパ1と同様な作用を生じ、且つ同様な効果を奏することが可能である。
FIG. 7 shows a cross-sectional view of a vibration damper 1a which is a modified form of the vibration damper 1. As shown in FIG.
As shown in FIG. 7, the vibration damper 1 a includes the same shaft member 2, plastic deformation tube 6, and inner / outer guide tubes 9 and 5 as described above. The vibration damper 1a is different from the vibration damper 1 in that the plastic deformation tube 6 is fixed in the opposite direction between the shaft member 2 and the flange 11 of the bracket B1.
That is, as shown in FIG. 7, the flange 3 welded to the lower end of the shaft member 2 and the flange 8 welded to the upper end of the inner guide tube 9 and the small diameter portion 6 b of the plastic deformation tube 6 are a plurality of bolts. b and a nut n, a flange 10 welded to the lower end of the large-diameter portion 6a of the plastic deformation tube 6 and the outer guide tube 5, and a flange 11 on the side of the bracket B1 fixed to the inner corners of the base D and the column P1. Are connected by the same bolt b and nut n as described above.
The vibration damping damper 1a as described above can produce the same effect as the vibration damping damper 1 and can provide the same effect.

図8は、異なる形態の制振ダンパ1bを示す一部に断面を含む概略図である。
制振ダンパ1bは、図8に示すように、同軸心とした一対の軸部材2,2の中間に固定したフランジ3,3間に、塑性変形管6および外・内ガイド管5,9の一方または双方を固定したフランジ8,8を連結している。また、一端(上端)側のフランジ4と他端(下端)側のフランジ10との外側には、側面視がほぼ半楕円形であるフランジ4b,10bを1枚あるいは2枚ずつほぼ軸方向に沿って突設している。係るフランジ4b,10bには、前記土台Dおよび柱P1の内隅部や、梁Hおよび柱P2の内隅部に固定される鋼板製の補強板(図示せず)と、ボルト・ナットで連結すべく、単数または複数の貫通孔hが開設されている。
上記のような形態の制振ダンパ1bによっても、前記制振ダンパ1と同様な作用を生じ、且つ同様な効果を奏することが可能である。
FIG. 8 is a schematic view partially including a cross section showing a vibration damper 1b of a different form.
As shown in FIG. 8, the vibration damper 1 b includes a plastic deformation pipe 6 and outer / inner guide pipes 5, 9 between flanges 3, 3 fixed between a pair of coaxial shaft members 2, 2. The flanges 8 and 8 which fixed one or both are connected. Further, one or two flanges 4b and 10b, which are substantially semi-elliptical in a side view, are provided in the axial direction on the outside of the flange 4 on one end (upper end) side and the flange 10 on the other end (lower end) side. Protruding along. The flanges 4b and 10b are connected with a steel plate reinforcing plate (not shown) fixed to the inner corners of the base D and the pillar P1, and the inner corners of the beam H and the pillar P2, with bolts and nuts. Therefore, one or more through holes h are opened.
Even with the vibration damper 1b having the above-described configuration, it is possible to produce the same operation as that of the vibration damper 1 and achieve the same effect.

図9は、異なる形態の塑性変形管6xを示す断面図である。
係る塑性変形管6xは、図9に示すように、前記同様である円筒形の太径部6aと細径部6bとの間に、これらの軸方向に対して、傾斜角度θが80度(90度−10度)である段部を含む塑性変形部7xを有している。この塑性変形管6xによれば、塑性変形部7xの傾斜角度θがやや鋭角であるため、一層少ない振動エネルギを伴う圧縮力によって、前記のような座屈(圧縮)変形7aを容易に誘発することが可能となる。
FIG. 9 is a cross-sectional view showing a plastic deformation tube 6x having a different form.
As shown in FIG. 9, the plastic deformation tube 6x has an inclination angle θ of 80 degrees between the cylindrical large-diameter portion 6a and the small-diameter portion 6b, which is the same as described above, with respect to these axial directions. The plastic deformation portion 7x includes a step portion that is 90 degrees to 10 degrees). According to this plastic deformation tube 6x, since the inclination angle θ of the plastic deformation portion 7x is slightly acute, the buckling (compression) deformation 7a as described above is easily induced by a compressive force with less vibration energy. It becomes possible.

更に、図10は、更に異なる形態の塑性変形管6yを示す断面図である。
係る塑性変形管6yは、図10に示すように、前記同様である円筒形の太径部6aと細径部6bとの間に、これらの軸方向に対して、傾斜角度θが100度(90度+10度)である段部を含む塑性変形部7yを有している。この塑性変形管6xによれば、塑性変形部7yの傾斜角度θがやや鈍角であるため、軸方向に沿った圧縮力を受けた際に、係る塑性変形部7yが前記座屈変形7aに至るまでの軸方向に沿った塑性変形量が比較的大きくなる。従って、圧縮力に伴う振動エネルギをより多く吸収することが可能となる。
上記塑性変形管6x,6yは、前記制振ダンパ1,1a,1bの何れにも適用可能であり、且つ前記図2〜図4に示した何れの方法によっても製作可能である。
Furthermore, FIG. 10 is a cross-sectional view showing a further different form of plastic deformation tube 6y.
As shown in FIG. 10, the plastic deformation tube 6y has an inclination angle θ of 100 degrees between the cylindrical large-diameter portion 6a and the small-diameter portion 6b, which is the same as described above, with respect to these axial directions. It has a plastic deformation portion 7y including a step portion that is 90 degrees +10 degrees). According to this plastic deformation tube 6x, since the inclination angle θ of the plastic deformation portion 7y is slightly obtuse, the plastic deformation portion 7y reaches the buckling deformation 7a when receiving a compressive force along the axial direction. The amount of plastic deformation along the axial direction is relatively large. Therefore, it becomes possible to absorb more vibration energy accompanying the compression force.
The plastic deformation tubes 6x, 6y can be applied to any of the vibration dampers 1, 1a, 1b, and can be manufactured by any of the methods shown in FIGS.

本発明は、以上において説明した各形態に限定されるものではない。
例えば、前記軸部材は、鋼管としたり、あるいは断面が矩形(正方形または長方形)の角形鋼管や、断面が矩形で且つアルミニウム合金である押出形材としても良い。あるいは、樫や椎などの硬い木材を適用することも可能である。
また、塑性変形管は、塑性変形が容易であれば、例えば、ステンレス鋼管や、チタン合金などの金属パイプを適用することも可能である。
更に、塑性変形部は、1つの塑性変形管に対し、軸方向の間隔を置いて2個以上を併設することも可能である。
The present invention is not limited to the embodiments described above.
For example, the shaft member may be a steel pipe, a square steel pipe having a rectangular (square or rectangular) cross section, or an extruded profile having a rectangular cross section and made of an aluminum alloy. Alternatively, it is possible to apply hard wood such as ridges and vertebrae.
Moreover, as long as plastic deformation is easy for a plastic deformation pipe | tube, it is also possible to apply metal pipes, such as a stainless steel pipe and a titanium alloy, for example.
Furthermore, two or more plastic deformation portions can be provided at an axial interval with respect to one plastic deformation tube.

本発明の制振ダンパは、建築物の構造材同士の間に取り付け、地震などによる振動エネルギを吸収ないし緩和することで、建築物が破損したり、倒壊するなどの影響を防止ないし低減できるため、建築業界の振興に供することが可能である。   Since the vibration damper of the present invention is installed between structural materials of a building and absorbs or alleviates vibration energy due to an earthquake or the like, it can prevent or reduce the influence of the building being damaged or collapsing. It can be used to promote the building industry.

1,1a,1b…制振ダンパ
2…………………軸部材
5…………………外ガイド管
6,6x,6y…塑性変形管
7,7x,7y…塑性変形部
7a………………塑性変形部/座屈変形(圧縮変形)
7b………………塑性変形部/伸長変形(引張変形)
8,10…………フランジ
9…………………内ガイド管
t…………………テーパ部
D…………………土台(構造材)
H…………………梁(構造材)
P1,P2………柱(構造材)
1, 1a, 1b ... Damping damper 2 ............... Shaft member 5 ............... Outer guide tube 6, 6x, 6y ... Plastic deformation tube 7, 7x, 7y ... Plastic deformation portion 7a ... …………… Plastic deformation / buckling deformation (compression deformation)
7b ……………… Plastic deformation part / elongation deformation (tensile deformation)
8,10 ………… Flange 9 ………………… Inner guide tube t ………………… Tapered part D …………………… Base (structural material)
H ………………… Beam (structural material)
P1, P2 ......... Pillar (Structural material)

Claims (6)

建築物の構造材同士の間に取り付けられ、地震などによる振動エネルギを吸収する制振ダンパであって、
軸方向に沿って比較的長尺な軸部材と、該軸部材の少なくとも一端または中間に、係る軸部材の軸方向に沿って固定された断面円形の塑性変形管と、を備え、
上記塑性変形管は、その軸方向における中間の全周に圧縮変形および引張変形が可能な塑性変形部を有し、該塑性変形部の変形は、当該塑性変形管の軸方向の寸法を変化させる、
ことを特徴とする制振ダンパ。
A damping damper that is installed between building structural materials and absorbs vibration energy from earthquakes, etc.
A relatively long shaft member along the axial direction, and a plastic deformation tube having a circular cross section fixed along the axial direction of the shaft member at least at one end or in the middle of the shaft member,
The plastic deformation tube has a plastic deformation portion capable of compressive deformation and tensile deformation around the entire intermediate circumference in the axial direction, and the deformation of the plastic deformation portion changes the axial dimension of the plastic deformation tube. ,
Damping damper characterized by that.
前記塑性変形管の塑性変形部は、該塑性変形管の軸方向に対し、90度±10度の範囲で傾いた円環状の段部を含む、
ことを特徴とする請求項1に記載の制振ダンパ。
The plastic deformation portion of the plastic deformation tube includes an annular step portion inclined in a range of 90 ° ± 10 ° with respect to the axial direction of the plastic deformation tube.
The vibration damper according to claim 1.
前記塑性変形管の塑性変形部は、予め軸方向の中間に円錐形状のテーパ部を設けた金属パイプを軸方向に沿って圧縮して座屈変形させた部分である、
ことを特徴とする請求項1または2に記載の制振ダンパ。
The plastic deformation portion of the plastic deformation tube is a portion in which a metal pipe provided with a conical tapered portion in the middle in the axial direction is compressed along the axial direction and buckled and deformed.
The damping damper according to claim 1 or 2, wherein
前記塑性変形管の塑性変形部は、前記座屈変形の後に焼き鈍しを施されている、
ことを特徴とする請求項3に記載の制振ダンパ。
The plastic deformation portion of the plastic deformation tube is annealed after the buckling deformation,
The vibration damper according to claim 3.
前記塑性変形管の内外には、該塑性変形管の太径部よりも内径が大きな外ガイド管と、上記塑性変形管の細径部よりも外径が小さい内ガイド管とが、これらの軸方向と上記塑性変形管の軸方向とを平行にして取り付けられている、
ことを特徴とする請求項1乃至4の何れか一項に記載の制振ダンパ。
Inside and outside of the plastic deformation tube, there are an outer guide tube having an inner diameter larger than the large diameter portion of the plastic deformation tube and an inner guide tube having an outer diameter smaller than the small diameter portion of the plastic deformation tube. Is attached with the direction parallel to the axial direction of the plastic deformation tube,
The damping damper according to any one of claims 1 to 4, wherein the damping damper is provided.
前記外ガイド管および内ガイド管は、前記塑性変形管と軸部材とを連結しているフランジ、あるいは上記塑性変形管を構造材に取り付けているフランジに、一方の管端を固定されている、
ことを特徴とする請求項5に記載の制振ダンパ。
The outer guide tube and the inner guide tube have one tube end fixed to a flange connecting the plastic deformation tube and a shaft member, or a flange attaching the plastic deformation tube to a structural material,
The vibration damper according to claim 5.
JP2010008630A 2010-01-19 2010-01-19 Vibration damper Withdrawn JP2011149143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010008630A JP2011149143A (en) 2010-01-19 2010-01-19 Vibration damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010008630A JP2011149143A (en) 2010-01-19 2010-01-19 Vibration damper

Publications (1)

Publication Number Publication Date
JP2011149143A true JP2011149143A (en) 2011-08-04

Family

ID=44536364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010008630A Withdrawn JP2011149143A (en) 2010-01-19 2010-01-19 Vibration damper

Country Status (1)

Country Link
JP (1) JP2011149143A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014221980A (en) * 2013-05-13 2014-11-27 大和ハウス工業株式会社 Bearing wall with damper, and damper
JP2016061066A (en) * 2014-09-18 2016-04-25 大和ハウス工業株式会社 Bearing wall with damper
JP2017179989A (en) * 2016-03-31 2017-10-05 新日鐵住金株式会社 Energy absorption device and earthquake-resisting wall
JP2017214748A (en) * 2016-05-31 2017-12-07 新日鐵住金株式会社 Damper structure and method for manufacturing damper

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014221980A (en) * 2013-05-13 2014-11-27 大和ハウス工業株式会社 Bearing wall with damper, and damper
JP2016061066A (en) * 2014-09-18 2016-04-25 大和ハウス工業株式会社 Bearing wall with damper
JP2017179989A (en) * 2016-03-31 2017-10-05 新日鐵住金株式会社 Energy absorption device and earthquake-resisting wall
JP2017214748A (en) * 2016-05-31 2017-12-07 新日鐵住金株式会社 Damper structure and method for manufacturing damper

Similar Documents

Publication Publication Date Title
US10167623B2 (en) Prefabricated reinforced concrete-filled steel pipe sleeve joint
US10626611B2 (en) Modular truss joint
US20100107519A1 (en) Perforated plate seismic damper
JP2011149143A (en) Vibration damper
JP4129423B2 (en) Bolt joint construction method and joint structure of steel columns using energy absorbing members
CN112031180B (en) Beam column node connecting device and application thereof
JP2008025236A (en) Precast prestressed concrete beam using tension material different in strength between end part and central part
JP6128058B2 (en) Beam end joint structure
JP6754552B2 (en) Column beam frame
JP2020183643A (en) Reinforcement arrangement structure
CN105201098A (en) Novel buckling-free energy dissipation brace
JP6996544B2 (en) Seismic retrofitting method for existing structures
JP6481665B2 (en) Joining structure of steel column and H-shaped beam or I-shaped beam, and its joining method
JP2006299576A (en) Triple pipe damping brace having slot
JP2005264516A (en) Bolt connection structure between steel column and steel beam
JPH11241523A (en) Structure
JP5628601B2 (en) Seismic reinforcement method for existing steel buildings
JP6895328B2 (en) Building structure
JP5292881B2 (en) Vibration control panel
JP2009209582A (en) Panel, building, and building constructed of thin and lightweight shape steel
JP6945960B2 (en) Structure reinforcement members and joint structures
JP2020070585A (en) Bearing wall and building
JP3294495B2 (en) Elasto-plastic energy absorber
JP2008031765A (en) Joint structure of steel column and steel beam
JP6022435B2 (en) Bearing wall with brace and brace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130402