JP2011149039A - Cu-Ga-BASED SPUTTERING TARGET MATERIAL HAVING HIGH STRENGTH, AND METHOD FOR MANUFACTURING THE SAME - Google Patents

Cu-Ga-BASED SPUTTERING TARGET MATERIAL HAVING HIGH STRENGTH, AND METHOD FOR MANUFACTURING THE SAME Download PDF

Info

Publication number
JP2011149039A
JP2011149039A JP2010009691A JP2010009691A JP2011149039A JP 2011149039 A JP2011149039 A JP 2011149039A JP 2010009691 A JP2010009691 A JP 2010009691A JP 2010009691 A JP2010009691 A JP 2010009691A JP 2011149039 A JP2011149039 A JP 2011149039A
Authority
JP
Japan
Prior art keywords
phase
cu9ga4
target material
cuga2
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010009691A
Other languages
Japanese (ja)
Other versions
JP5501774B2 (en
Inventor
Toshiyuki Sawada
俊之 澤田
Yuko Shimizu
悠子 清水
Hiroki Ikeda
裕樹 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2010009691A priority Critical patent/JP5501774B2/en
Publication of JP2011149039A publication Critical patent/JP2011149039A/en
Application granted granted Critical
Publication of JP5501774B2 publication Critical patent/JP5501774B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength Cu-Ga-based sputtering target material for use in manufacturing a light-absorbing thin layer of a solar cell, which can be highly densified by preventing the powder from being melted in a molding process at high temperature, and to provide a method for manufacturing the same. <P>SOLUTION: The high-strength Cu-Ga-based target material is a target material by powder metallurgy, which includes, by atom%, 29-40% Ga and the balance Cu with unavoidable impurities, wherein the peak intensity ratio in an X-ray diffraction spectrum of the (111) face of a fcc phase of a Cu base to the (330) face of a Cu9Ga4 phase satisfies 0.05≤Cu[I(111)]/Cu9Ga4[I(330)]≤0.80, in an X-ray diffraction analysis, the peak intensity ratio in an X-ray diffraction spectrum of the (102) face of a CuGa2 phase to the (330) face of the Cu9Ga4 phase satisfies CuGa2[I(102)]/Cu9Ga4[I(330)]≤0.10, and further the relative density is 95% or more. The method for manufacturing the same is also disclosed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、太陽電池の光吸収薄膜層を製造するための高強度Cu−Ga系スパッタリングターゲット材およびその製造方法に関する。   The present invention relates to a high-strength Cu—Ga based sputtering target material for producing a light-absorbing thin film layer of a solar cell and a method for producing the same.

従来より、太陽電池の光吸収層を製造するためのスパッタリングターゲット材として、Cu−Ga系ターゲット材が用いられている。このCu−Ga系ターゲット材は、例えば特開2000−73163号公報(特許文献1)に開示されているように、鋳造法により製造されることが多いが、一方で、特開2008−138232号公報(特許文献2)に開示されているように、粉末冶金法によっても製造されている。   Conventionally, a Cu—Ga based target material has been used as a sputtering target material for producing a light absorption layer of a solar cell. This Cu—Ga based target material is often manufactured by a casting method as disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-73163 (Patent Document 1), but on the other hand, Japanese Patent Application Laid-Open No. 2008-138232. As disclosed in the publication (Patent Document 2), it is also manufactured by powder metallurgy.

Cu−Ga系合金は、例えば、特許文献2の段落[0003]に記載されている通り、Ga濃度が高くなるに伴い、硬くかつ脆くなるため、ターゲット材への機械加工時に欠けや割れが発生しやすくなる問題がある。この問題に対し特許文献2では粉末工法によりターゲット材を作製すると共に、原料粉末を低Ga粉末と高Ga粉末の混合粉末とすることによって、脆さを改善している技術である。   As described in paragraph [0003] of Patent Document 2, for example, Cu—Ga-based alloys become harder and more brittle as the Ga concentration increases, so that chipping and cracking occur during machining of the target material. There is a problem that makes it easier to do. With respect to this problem, Patent Document 2 is a technique in which the brittleness is improved by preparing a target material by a powder method and making the raw material powder a mixed powder of a low Ga powder and a high Ga powder.

しかしながら、Cu−Ga系合金は2元状態図からわかるとおり、Ga含有量が増加するに伴い、固相線(溶融開始温度)が急激に低下するため、固化成形時の溶融を避けるために、固化成形温度を極端に低く設定せざるを得なくなる。例えば、特許文献2における実施例は全て200℃で固化成形されている。特許文献2では実施例により作製されたターゲット材の密度についての記載はないが、200℃程度の低温でCu系合金粉末を真密度近くまで上げることは極めて困難である。   However, as can be seen from the binary phase diagram, Cu—Ga-based alloys have a rapid decrease in the solidus (melting start temperature) as the Ga content increases. In order to avoid melting during solidification, The solidification molding temperature must be set extremely low. For example, all the examples in Patent Document 2 are solidified at 200 ° C. In Patent Document 2, there is no description about the density of the target material produced by the example, but it is extremely difficult to raise the Cu-based alloy powder to near the true density at a low temperature of about 200 ° C.

また、特許文献2の実施例では600MPaという大きな圧力でホットプレス成形しているが、近年の太陽電池パネルの大型化に伴い、Cu−Ga系ターゲット材も大型化する傾向にあり、例えば400mm四方のターゲット材を600MPaで成形するためには、総圧100000kN近い圧力が必要となるため、工業的に困難であり、成形圧力の観点からも相対密度95%以上の高密度化は不可能となってくる。
特開2000−73163号公報 特開2008−138232号公報
In the example of Patent Document 2, hot press molding is performed with a large pressure of 600 MPa, but with the recent increase in the size of the solar cell panel, the Cu—Ga based target material tends to increase in size, for example, 400 mm square. In order to form the target material at 600 MPa, a pressure close to a total pressure of 100,000 kN is required, which is industrially difficult, and it is impossible to increase the relative density to 95% or more from the viewpoint of the molding pressure. Come.
JP 2000-73163 A JP 2008-138232 A

上述のような問題に加えて、一般に、ターゲット材を用いてスパッタ工法により薄膜を作製する場合、ターゲット材の相対密度が低いと異常放電やスプラッツが多く発生し、薄膜の不良率が増えることが知られており、95%以上のターゲット材を用いることはスパッタ工法により作製される薄膜の不良率を減らすため極めて工業的に価値が高い。このように、ターゲット材としての形状への機械加工の時に、欠けや割れの発生を抑制できるよう脆さを改善され、かつ、95%以上の相対密度を有するCu−Ga系ターゲット材の製造は極めて困難であった。   In addition to the above-described problems, generally, when a thin film is produced by sputtering using a target material, if the relative density of the target material is low, abnormal discharge and splats often occur and the thin film defect rate increases. It is known that using a target material of 95% or more is extremely industrially valuable because it reduces the defect rate of thin films produced by sputtering. Thus, when machining into a shape as a target material, the manufacture of a Cu—Ga based target material having improved brittleness and having a relative density of 95% or more is able to suppress the occurrence of chips and cracks. It was extremely difficult.

上述のような問題を解消するために発明者らは鋭意開発を進めた結果、低Ga粉末が延性の高いCuベースfcc相を生成し、かつ高Ga粉末のGa上限を設定することで、高温成形時の溶融を抑制することで高密度化を達成できる、太陽電池の光吸収薄膜層を製造するための高強度Cu−Ga系スパッタリングターゲット材およびその製造方法を提供するものである。   As a result of diligent development to solve the problems as described above, the inventors have developed a Cu base fcc phase with high ductility and low Ga powder, and set the Ga upper limit of the high Ga powder. The present invention provides a high-strength Cu—Ga based sputtering target material for producing a light-absorbing thin film layer of a solar cell, which can achieve high density by suppressing melting during molding, and a method for producing the same.

その発明の要旨とするところは、
(1)原子%で、Gaを29〜40%含み、残部Cuおよび不可避的不純物からなるCu−Ga系スパッタリングターゲット材において、Cuベースfcc固溶体相とCu9Ga4金属間化合物相からなる二相もしくは、さらに前記二相に加えCuGa2金属間化合物相の三相からなることを特徴とした高強度Cu−Ga系スパッタリングターゲット材。
The gist of the invention is that
(1) In a Cu—Ga based sputtering target material containing 29-40% Ga in atomic percent and the balance Cu and inevitable impurities, a two-phase consisting of a Cu-based fcc solid solution phase and a Cu9Ga4 intermetallic compound phase, or A high-strength Cu-Ga-based sputtering target material comprising a three-phase CuGa2 intermetallic phase in addition to the two phases.

(2)原子%で、Gaを29〜40%含み、残部Cuおよび不可避的不純物からなるCu−Ga系スパッタリングターゲット材において、X線回折によるCuベースの相のうちfcc相の(111)面からの回折線のピーク値であるCu[I(111)]とCu9Ga4相の(330)面からの回折線のピーク値であるCu9Ga4[I(330)]とのピーク比が、0.05≦Cu[I(111)]/Cu9Ga4[I(330)]≦0.80、かつCuGa2相の(102)面からの回折線のピーク値であるCuGa2[I(102)]とCu9Ga4相の(330)面からの回折線のピーク値であるCu9Ga4[I(330)]とのピーク比が、CuGa2[I(102)]/Cu9Ga4[I(330)]≦0.10であり、さらに相対密度が95%以上であることを特徴とした高強度Cu−Ga系スパッタリングターゲット材。   (2) In a Cu—Ga based sputtering target material containing 29 to 40% Ga and containing the balance Cu and unavoidable impurities in atomic%, from the (111) plane of the fcc phase among Cu based phases by X-ray diffraction The peak ratio of Cu [I (111)], which is the peak value of the diffraction line, and Cu9Ga4 [I (330)], which is the peak value of the diffraction line from the (330) plane of the Cu9Ga4 phase, is 0.05 ≦ Cu [I (111)] / Cu9Ga4 [I (330)] ≦ 0.80 and CuGa2 [I (102)] which is the peak value of the diffraction line from the (102) plane of the CuGa2 phase and (330) of the Cu9Ga4 phase The peak ratio of Cu9Ga4 [I (330)], which is the peak value of the diffraction line from the surface, is CuGa2 [I (102)] / Cu9Ga4 [I (330)] ≦ 0.10, and High strength Cu-Ga-based sputtering target material relative density was characterized by 95% or more.

(3)原子%で、Gaを29〜40%含み、残部Cuおよび不可避的不純物からなるCu−Ga系スパッタリングターゲット材において、Cuベースfcc固溶体相と、Cu9Ga4金属間化合物相からなる二相もしくは、さらに前記二相に加えCuGa2金属間化合物相の三相からなり、X線回折によるCuベースの相のうちfcc相の(111)面からの回折線のピーク値であるCu[I(111)]とCu9Ga4相の(330)面からの回折線のピーク値であるCu9Ga4[I(330)]とのピーク比が、0.05≦Cu[I(111)]/Cu9Ga4[I(330)]≦0.80、かつCuGa2相の(102)面からの回折線のピーク値であるCuGa2[I(102)]とCu9Ga4相の(330)面からの回折線のピーク値であるCu9Ga4[I(330)]とのピーク比が、CuGa2[I(102)]/Cu9Ga4[I(330)]≦0.10であり、さらに相対密度が95%以上であることを特徴とした高強度Cu−Ga系スパッタリングターゲット材。   (3) In a Cu-Ga-based sputtering target material containing 29 to 40% Ga in atomic percent and the balance Cu and inevitable impurities, a two-phase consisting of a Cu-based fcc solid solution phase and a Cu9Ga4 intermetallic compound phase, or Further, Cu [I (111)], which is a peak value of diffraction lines from the (111) plane of the fcc phase among the Cu-based phases by X-ray diffraction, consists of three phases of the CuGa2 intermetallic compound phase in addition to the two phases. The peak ratio of Cu9Ga4 [I (330)], which is the peak value of the diffraction line from the (330) plane of the Cu9Ga4 phase, is 0.05 ≦ Cu [I (111)] / Cu9Ga4 [I (330)] ≦ The diffraction line from the (330) plane of CuGa2 [I (102)] and the Cu9Ga4 phase is 0.80 and the peak value of the diffraction line from the (102) plane of the CuGa2 phase. The peak ratio with Cu9Ga4 [I (330)], which is a peak value, is CuGa2 [I (102)] / Cu9Ga4 [I (330)] ≦ 0.10, and the relative density is 95% or more. A high-strength Cu—Ga based sputtering target material characterized by

(4)Gaを21%以下(0を含む)含み、残部Cuおよび不可避的不純物からなる粉末と、Gaを30〜45%含み、残部Cuおよび不可避的不純物からなる粉末を混合した粉末を原料とし、この原料粉末を300℃以上、850℃以下の温間で固化成形することを特徴とした前記(1)〜(3)のいずれか1に記載のCu−Ga系スパッタリングターゲット材の製造方法にある。   (4) As a raw material, a powder containing 21% or less (including 0) of Ga and containing a balance Cu and inevitable impurities and a powder containing Ga 30 to 45% and the balance Cu and inevitable impurities is mixed. The method for producing a Cu—Ga based sputtering target material according to any one of the above (1) to (3), wherein the raw material powder is solidified and molded at a temperature of 300 ° C. or higher and 850 ° C. or lower. is there.

以上述べたように、合金の構成相を所定の条件に制御することにより脆さを改善し、かつ原料粉末とするCu−Ga系粉末の組成を所定の条件にすることで高温で固化成形でき、95%以上の高密度ターゲット材の製造を可能とした、太陽電池の光吸収薄膜層を製造するための高強度Cu−Ga系スパッタリングターゲット材およびその製造方法を提供するものである。   As described above, brittleness is improved by controlling the constituent phases of the alloy to predetermined conditions, and solidification molding can be performed at a high temperature by setting the composition of the Cu-Ga-based powder as the raw material powder to predetermined conditions. The present invention provides a high-strength Cu—Ga-based sputtering target material for producing a light-absorbing thin film layer of a solar cell, which can produce a high-density target material of 95% or more, and a method for producing the same.

以下、本発明について詳細に説明する。
Cu−Ga系2元状態図から、CuにGaを添加していくと、少量添加であればf.c.c.構造のCu固溶体となるが、更に添加量を増やしていくと、様々な金属間化合物を生成することがわかる。そこで発明者らはCu−Ga系合金の脆さに関して詳細に研究した結果、合金の構成相を所定の条件に制御することにより脆さを改善できることを見出した。更に、原料粉末とするCu−Ga系粉末の組成を所定の条件にすることにより、比較的高温で固化成形でき、95%以上の高密度ターゲット材が作製できることを見出したものである。
Hereinafter, the present invention will be described in detail.
From the Cu-Ga based binary phase diagram, when Ga is added to Cu, if a small amount is added, f. c. c. Although it becomes a Cu solid solution of a structure, it turns out that various intermetallic compounds are produced | generated when the addition amount is increased further. Therefore, the inventors have conducted detailed studies on the brittleness of Cu—Ga based alloys, and as a result, found that the brittleness can be improved by controlling the constituent phases of the alloy to predetermined conditions. Furthermore, it has been found that by setting the composition of the Cu—Ga-based powder as the raw material powder to a predetermined condition, it can be solidified and molded at a relatively high temperature, and a high-density target material of 95% or more can be produced.

本発明において、Cuベースのfcc相の(111)とCu9Ga4相の(330)面からのX線回折ピーク強度比が、0.05≦Cu[I(111)]/Cu9Ga4[I(330)]≦0.80とした理由は、Gaを29〜40%含むCu−Ga系2元合金は、平衡状態においてCu9Ga4相が主相になり、Cuベースfcc相はほぼ生成しない。しかしながら、このCu9Ga4相は極めて脆いことがわかった。ここで、Cuベースのfcc相の(111)面からのX線回折ピークをCu[I(111)]と示し、Cu9Ga4相の(330)面からのX線回折ピークをCu9Ga4[I(330)]と示している。   In the present invention, the X-ray diffraction peak intensity ratio from the (111) of the Cu-based fcc phase to the (330) plane of the Cu9Ga4 phase is 0.05 ≦ Cu [I (111)] / Cu9Ga4 [I (330)]. The reason for ≦ 0.80 is that in the Cu—Ga binary alloy containing 29 to 40% of Ga, the Cu 9 Ga 4 phase becomes the main phase in the equilibrium state, and the Cu base fcc phase is hardly generated. However, this Cu9Ga4 phase was found to be extremely brittle. Here, the X-ray diffraction peak from the (111) plane of the Cu-based fcc phase is denoted as Cu [I (111)], and the X-ray diffraction peak from the (330) plane of the Cu9Ga4 phase is Cu9Ga4 [I (330). ].

一方、Gaが29%より少ない組成においてはCuベースのfcc相も存在し、このfcc相は比較的延性があることがわかった。そこで、それぞれのメインピーク比を0.05≦Cu[I(111)]/Cu9Ga4[I(330)]≦0.80の範囲にすることにより、欠けなどが発生しにくく取り扱いの容易なターゲット材となることを見出した。このピーク比が0.05未満では十分な延性が得られず、0.80を超えるとターゲットトータルのGa量を多くすることができない。なお、Cuベースfcc相のメインピークは(111)面から、Cu9Ga4相のメインピークは(330)面からのX線回折ピークである。   On the other hand, a Cu-based fcc phase is also present in a composition with less than 29% Ga, and this fcc phase was found to be relatively ductile. Therefore, by setting the respective main peak ratios in the range of 0.05 ≦ Cu [I (111)] / Cu9Ga4 [I (330)] ≦ 0.80, target materials that are less prone to chipping and are easy to handle. I found out that If this peak ratio is less than 0.05, sufficient ductility cannot be obtained, and if it exceeds 0.80, the total amount of Ga cannot be increased. The main peak of the Cu base fcc phase is an X-ray diffraction peak from the (111) plane, and the main peak of the Cu9Ga4 phase is an X-ray diffraction peak from the (330) plane.

また、CuGa2相の(102)とCu9Ga4相の(330)面からのX線回折ピーク強度比が、CuGa2[I(102)]/Cu9Ga4[I(330)]≦0.10とした理由は、CuGa2は比較的Ga量の多い合金において生成するが、この相が多く生成すると溶融温度が低いため、固化成形後に凝固巣ができるなど、高密度化が困難となる。すなわち、メインピーク比CuGa2[I(102)]/Cu9Ga4[I(330)]が0.10を超えると高密度化が困難となる。なお、CuGa2相のメインピークは(102)面からのX線回折ピークである。ここで、CuGa2相の(102)面からのX線回折ピークをCuGa2[I(102)]と示す。   The reason why the X-ray diffraction peak intensity ratio from the (330) plane of the CuGa2 phase (102) and the Cu9Ga4 phase is CuGa2 [I (102)] / Cu9Ga4 [I (330)] ≦ 0.10 is as follows. CuGa2 is produced in an alloy having a relatively large amount of Ga. However, if this phase is produced in a large amount, the melting temperature is low, so that it becomes difficult to increase the density, for example, a solidification cavity is formed after solidification molding. That is, when the main peak ratio CuGa2 [I (102)] / Cu9Ga4 [I (330)] exceeds 0.10, it is difficult to increase the density. The main peak of the CuGa2 phase is an X-ray diffraction peak from the (102) plane. Here, the X-ray diffraction peak from the (102) plane of the CuGa2 phase is denoted as CuGa2 [I (102)].

また、Gaを21%以下(0を含む)含み、残部Cuおよび不可避的不純物からなる粉末Aと、Gaを30〜45%含み、残部Cuおよび不可避的不純物からなる粉末Bを混合した粉末とした理由は、原料粉末として単一組成の粉末ではなく、2種類の組成の粉末による混合粉末を用い、かつGaを21%以下含む粉末を用いると、固化成形後に比較的延性の高いCuベースfcc相を多く存在させることができるため好ましい。Gaが15%を超える場合、ターゲットトータルのGa量を多く設定できるためより好ましい。また、もう一方の粉末として、Gaが30〜45%を含む粉末を用いることが好ましい。これは、Gaが30%未満では、ターゲットトータルのGa量を多くすることができない。45%を超えると低融点のCuGa2相が多くなり、高密度ターゲット材が得られない。   Moreover, it was set as the powder which mixed 21% or less (including 0) of Ga, powder A which consists of remainder Cu and an unavoidable impurity, and powder B which contains Ga 30 to 45%, and consists of the remainder Cu and an unavoidable impurity. The reason is that when a mixed powder of two types of powders is used as the raw material powder, and a powder containing 21% or less of Ga is used, a Cu-based fcc phase having a relatively high ductility after solidification molding is used. Can be present in a large amount. When Ga exceeds 15%, it is more preferable because the target total Ga amount can be set large. Moreover, it is preferable to use the powder in which Ga contains 30 to 45% as the other powder. This is because if the Ga content is less than 30%, the target total Ga content cannot be increased. If it exceeds 45%, the CuGa2 phase having a low melting point increases and a high-density target material cannot be obtained.

さらに、300℃以上、850℃以下の温間で固化成形した理由は、300℃未満での固化成形では95%以上の高密度が得られず、850℃を超える高温では溶融による凝固巣の発生で低密度となる。   Furthermore, the reason for solidification molding at a temperature of 300 ° C. or more and 850 ° C. or less is that solidification molding at a temperature of less than 300 ° C. does not provide a high density of 95% or more. With low density.

以下、本発明について実施例によって具体的に説明する。
粉末Aとして表1に示すNo.a〜No.gの組成の各粉末を、粉末BとしてNo.h〜No.lの組成の各粉末を作製した。粉末の作製方法はガスアトマイズ法で、まず各組成となるように原料を合計で20kg計量し、これをアルミナ坩堝にて溶解し、径8mmのノズルからこの溶湯を出湯し、アルゴンガスにて噴霧した。得られた粉末Aおよび粉末Bを表2に示すターゲットトータル組成となるよう計量し、これをV型混合機にて1時間混合した。この粉末を表2に示す温度でホットプレスもしくはHIP法にて固化成形した。ホットプレスは径150mmのカーボン型で20MPaの圧力で2時間成形した。HIPについては径200mmの炭素鋼外筒管に粉末を充填し、脱気封入後、118MPaで2時間成形した。
Hereinafter, the present invention will be specifically described with reference to examples.
No. shown in Table 1 as Powder A a-No. Each powder having the composition of g was designated as powder B No. h-No. Each powder having a composition of l was prepared. The powder was prepared by gas atomization. First, a total of 20 kg of raw materials were weighed so as to obtain each composition, this was melted in an alumina crucible, this molten metal was discharged from an 8 mm diameter nozzle, and sprayed with argon gas. . The obtained powder A and powder B were weighed so as to have the target total composition shown in Table 2, and mixed with a V-type mixer for 1 hour. This powder was solidified and molded at a temperature shown in Table 2 by hot pressing or HIP method. The hot press was a carbon mold having a diameter of 150 mm and molded at a pressure of 20 MPa for 2 hours. Regarding HIP, a carbon steel outer tube having a diameter of 200 mm was filled with powder, sealed with deaeration, and then molded at 118 MPa for 2 hours.

それぞれの成形体から、2mm角で長さ20mmの試験片を採取し、3点曲げ試験により抗折強度を測定し、200MPa以上を○、200MPa未満を×とした。また、成形体から切り出した小片を鏡面研磨し、光学顕微鏡像で観察することによりポアの面積を算出してポアの面積率を求め、この面積率を100%から差し引いて成形体の相対密度とした。相対密度が95%以上の成形体を○、95%未満の成形体を×とした。また、同様の鏡面に研磨した試験片をX線回折し、Cu[I(111)]/Cu9Ga4[I(330)]のピーク比A、CuGa2[I(102)]/Cu9Ga4[I(330)]のピーク比Bを算出した。その粉末Aに用いる各粉末および粉末Bに用いる各粉末の組成を表1に示す。そしてこれら粉末の混合し成形した結果およびこの成形体の試験結果を表2に示す。   A test piece of 2 mm square and a length of 20 mm was collected from each molded body, and the bending strength was measured by a three-point bending test. In addition, a small piece cut out from the molded body is mirror-polished, the area of the pore is calculated by observing with an optical microscope image, the area ratio of the pore is obtained, and this area ratio is subtracted from 100% to obtain the relative density of the molded body. did. A molded body having a relative density of 95% or more was evaluated as “◯”, and a molded body having a relative density of less than 95% was evaluated as “X”. Moreover, the test piece grind | polished to the same mirror surface was X-ray-diffracted, and the peak ratio A of Cu [I (111)] / Cu9Ga4 [I (330)], CuGa2 [I (102)] / Cu9Ga4 [I (330) The peak ratio B was calculated. The composition of each powder used for the powder A and each powder used for the powder B is shown in Table 1. Table 2 shows the results of mixing and molding these powders and the test results of this molded body.

Figure 2011149039
Figure 2011149039

Figure 2011149039
表2に示すように、No.1〜12は本発明例であり、No.13〜18は比較例である。
Figure 2011149039
As shown in Table 2, no. Nos. 1 to 12 are examples of the present invention. 13 to 18 are comparative examples.

表2に示すように、比較例No.13は粉末Aが比較例であるgであり、また、ピーク比Aが0.02と小さいために、抗折強度が低い。比較例No.14、15は単一組成粉末のみで製造したもので、ピーク比Aが0.05未満であり脆く、抗折強度が低い。比較例No.16は粉末Bが比較例であるlであり、また、ピーク比Bが大きいために、相対密度が低い。   As shown in Table 2, Comparative Example No. 13 is g in which the powder A is a comparative example, and since the peak ratio A is as small as 0.02, the bending strength is low. Comparative Example No. Nos. 14 and 15 were produced using only a single composition powder, and the peak ratio A was less than 0.05, it was brittle, and the bending strength was low. Comparative Example No. No. 16 is 1 in which powder B is a comparative example, and since the peak ratio B is large, the relative density is low.

比較例No.17はターゲットトータルのGaが29%未満であり、ピーク比Aが0.85と大きく、成形温度が低いため、相対密度が低い。比較例No.18は成形温度が高く、かつピーク比Aが0.01と小さいために、抗折強度、相対密度が低い。これに対し、本発明例であるNo.1〜12はいずれも本発明の条件を満たしていることから、抗折強度および相対密度の優れていることが分かる。   Comparative Example No. In No. 17, the total target Ga is less than 29%, the peak ratio A is as large as 0.85, and the molding temperature is low, so the relative density is low. Comparative Example No. No. 18 has a high molding temperature and a small peak ratio A of 0.01, so that the bending strength and the relative density are low. On the other hand, No. which is an example of the invention. Since 1 to 12 all satisfy the conditions of the present invention, it is understood that the bending strength and the relative density are excellent.

以上のように、本発明による、低Ga粉末が延性の高いCuベースfcc相を生成し、かつ高Ga粉末のGa上限を設定することで、温間成形時の溶融を抑制することで高密度化を達成できる、太陽電池の光吸収薄膜層を製造するための高強度Cu−Ga系スパッタリングターゲット材およびその製造方法を可能とした極めて優れた効果を奏するものである。


特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
As described above, according to the present invention, the low Ga powder generates a highly ductile Cu-based fcc phase, and the Ga upper limit of the high Ga powder is set, thereby suppressing the melting during warm forming, thereby increasing the density. Therefore, it is possible to achieve a high-strength Cu—Ga based sputtering target material for producing a light-absorbing thin film layer of a solar cell and a method for producing the same.


Patent applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina

Claims (4)

原子%で、Gaを29〜40%含み、残部Cuおよび不可避的不純物からなるCu−Ga系スパッタリングターゲット材において、Cuベースfcc固溶体相と、Cu9Ga4金属間化合物相からなる二相もしくは、さらに前記二相に加えCuGa2金属間化合物相の三相からなることを特徴とした高強度Cu−Ga系スパッタリングターゲット材。 In a Cu-Ga-based sputtering target material containing 29 to 40% of Ga at the atomic percent and the balance Cu and inevitable impurities, a two-phase consisting of a Cu-based fcc solid solution phase and a Cu9Ga4 intermetallic compound phase, or the two A high-strength Cu-Ga-based sputtering target material comprising three phases of a CuGa2 intermetallic phase in addition to a phase. 原子%で、Gaを29〜40%含み、残部Cuおよび不可避的不純物からなるCu−Ga系スパッタリングターゲット材において、X線回折によるCuベースの相のうちfcc相の(111)面からの回折線のピーク値であるCu[I(111)]とCu9Ga4相の(330)面からの回折線のピーク値であるCu9Ga4[I(330)]とのピーク比が、0.05≦Cu[I(111)]/Cu9Ga4[I(330)]≦0.80、かつCuGa2相の(102)面からの回折線のピーク値であるCuGa2[I(102)]とCu9Ga4相の(330)面からの回折線のピーク値であるCu9Ga4[I(330)]とのピーク比が、CuGa2[I(102)]/Cu9Ga4[I(330)]≦0.10であり、さらに相対密度が95%以上であることを特徴とした高強度Cu−Ga系スパッタリングターゲット材。 Diffraction line from (111) plane of fcc phase among Cu-based phases by X-ray diffraction in a Cu-Ga based sputtering target material containing 29-40% Ga in atomic percent and remaining Cu and inevitable impurities The peak ratio of Cu [I (111)] that is the peak value of Cu9Ga4 [I (330)] that is the peak value of the diffraction line from the (330) plane of the Cu9Ga4 phase is 0.05 ≦ Cu [I ( 111)] / Cu9Ga4 [I (330)] ≦ 0.80 and the peak value of the diffraction line from the (102) plane of the CuGa2 phase from the (330) plane of the CuGa2 [I (102)] and the Cu9Ga4 phase. The peak ratio of Cu9Ga4 [I (330)], which is the peak value of the diffraction line, is CuGa2 [I (102)] / Cu9Ga4 [I (330)] ≦ 0.10, and further relative High strength Cu-Ga-based sputtering target material degrees is characterized by 95% or more. 原子%で、Gaを29〜40%含み、残部Cuおよび不可避的不純物からなるCu−Ga系スパッタリングターゲット材において、Cuベースfcc固溶体相と、Cu9Ga4金属間化合物相からなる二相もしくは、さらに前記二相に加えCuGa2金属間化合物相の三相からなり、X線回折によるCuベースの相のうちfcc相の(111)面からの回折線のピーク値であるCu[I(111)]とCu9Ga4相の(330)面からの回折線のピーク値であるCu9Ga4[I(330)]とのピーク比が、0.05≦Cu[I(111)]/Cu9Ga4[I(330)]≦0.80、かつCuGa2相の(102)面からの回折線のピーク値であるCuGa2[I(102)]とCu9Ga4相の(330)面からの回折線のピーク値であるCu9Ga4[I(330)]とのピーク比が、CuGa2[I(102)]/Cu9Ga4[I(330)]≦0.10であり、さらに相対密度が95%以上であることを特徴とした高強度Cu−Ga系スパッタリングターゲット材。 In a Cu-Ga-based sputtering target material containing 29 to 40% of Ga at the atomic percent and the balance Cu and inevitable impurities, two phases consisting of a Cu-based fcc solid solution phase and a Cu9Ga4 intermetallic compound phase, or the two Cu [I (111)] which is a peak value of diffraction lines from the (111) plane of the fcc phase among Cu-based phases by X-ray diffraction and a Cu9Ga4 phase. The peak ratio of Cu9Ga4 [I (330)], which is the peak value of the diffraction line from the (330) plane, is 0.05 ≦ Cu [I (111)] / Cu9Ga4 [I (330)] ≦ 0.80. And the peak of the diffraction line from the (330) plane of CuGa2 [I (102)] and the Cu9Ga4 phase, which is the peak value of the diffraction line from the (102) plane of the CuGa2 phase The peak ratio to Cu9Ga4 [I (330)] is CuGa2 [I (102)] / Cu9Ga4 [I (330)] ≦ 0.10, and the relative density is 95% or more. High strength Cu—Ga based sputtering target material. Gaを21%以下(0を含む)含み、残部Cuおよび不可避的不純物からなる粉末と、Gaを30〜45%含み、残部Cuおよび不可避的不純物からなる粉末を混合した粉末を原料とし、この原料粉末を300℃以上、850℃以下の温間で固化成形することを特徴とした請求項1〜3のいずれか1項に記載のCu−Ga系スパッタリングターゲット材の製造方法。 The raw material is a powder containing 21% or less (including 0) of Ga and containing a balance Cu and unavoidable impurities and a powder containing 30 to 45% Ga and the balance Cu and unavoidable impurities. The method for producing a Cu-Ga based sputtering target material according to any one of claims 1 to 3, wherein the powder is solidified and molded at a temperature of 300 ° C or higher and 850 ° C or lower.
JP2010009691A 2010-01-20 2010-01-20 Cu-Ga sputtering target material having high strength Expired - Fee Related JP5501774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010009691A JP5501774B2 (en) 2010-01-20 2010-01-20 Cu-Ga sputtering target material having high strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010009691A JP5501774B2 (en) 2010-01-20 2010-01-20 Cu-Ga sputtering target material having high strength

Publications (2)

Publication Number Publication Date
JP2011149039A true JP2011149039A (en) 2011-08-04
JP5501774B2 JP5501774B2 (en) 2014-05-28

Family

ID=44536287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010009691A Expired - Fee Related JP5501774B2 (en) 2010-01-20 2010-01-20 Cu-Ga sputtering target material having high strength

Country Status (1)

Country Link
JP (1) JP5501774B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031508A (en) * 2010-06-28 2012-02-16 Hitachi Metals Ltd Cu-Ga ALLOY TARGET MATERIAL AND METHOD FOR MANUFACTURING THE SAME
WO2012098722A1 (en) * 2011-01-17 2012-07-26 Jx日鉱日石金属株式会社 Cu-ga target and method for manufacturing same, as well as light-absorbing layer formed from cu-ga alloy film, and cigs solar cell using light-absorbing layer
WO2013054521A1 (en) * 2011-10-14 2013-04-18 株式会社アルバック Target assembly and production method therefor
CN103421976A (en) * 2012-05-22 2013-12-04 山阳特殊制钢株式会社 Cu-Ga alloy powder with low oxygen content, Cu-Ga alloy target material with low oxygen content and manufacturing method of the target material
AT13564U1 (en) * 2013-01-31 2014-03-15 Plansee Se CU-GA-IN-NA Target
WO2014061697A1 (en) * 2012-10-17 2014-04-24 三菱マテリアル株式会社 Cu-Ga BINARY SPUTTERING TARGET AND METHOD FOR PRODUCING SAME
WO2014129648A1 (en) * 2013-02-25 2014-08-28 三菱マテリアル株式会社 Sputtering target and production method therefor
JP2014185384A (en) * 2013-03-25 2014-10-02 Nippon Steel & Sumitomo Metal Cu-Ga SPUTTERING TARGET AND MANUFACTURING METHOD OF THE SAME
WO2015064157A1 (en) * 2013-10-30 2015-05-07 住友金属鉱山株式会社 METHOD FOR MANUFACTURING Cu-Ga ALLOY SPUTTERING TARGET
WO2016047556A1 (en) * 2014-09-22 2016-03-31 三菱マテリアル株式会社 Sputtering target and method for manufacturing same
JP2017500438A (en) * 2013-09-27 2017-01-05 プランゼー エスエー Copper-gallium sputtering target
CN106471150A (en) * 2014-09-22 2017-03-01 三菱综合材料株式会社 Sputtering target and its manufacture method
US9934949B2 (en) 2013-04-15 2018-04-03 Mitsubishi Materials Corporation Sputtering target and production method of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247571A (en) * 1988-03-30 1989-10-03 Hitachi Metals Ltd Rare earth metal-iron group metal target and its production
JP2006225696A (en) * 2005-02-16 2006-08-31 Toshiba Corp Sputtering target, high refractive index film, its production method, and antireflection film and display unit using the same
JP2008138232A (en) * 2006-11-30 2008-06-19 Mitsubishi Materials Corp HIGH Ga CONTENT Cu-Ga BINARY ALLOY SPUTTERING TARGET, AND ITS MANUFACTURING METHOD

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247571A (en) * 1988-03-30 1989-10-03 Hitachi Metals Ltd Rare earth metal-iron group metal target and its production
JP2006225696A (en) * 2005-02-16 2006-08-31 Toshiba Corp Sputtering target, high refractive index film, its production method, and antireflection film and display unit using the same
JP2008138232A (en) * 2006-11-30 2008-06-19 Mitsubishi Materials Corp HIGH Ga CONTENT Cu-Ga BINARY ALLOY SPUTTERING TARGET, AND ITS MANUFACTURING METHOD

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031508A (en) * 2010-06-28 2012-02-16 Hitachi Metals Ltd Cu-Ga ALLOY TARGET MATERIAL AND METHOD FOR MANUFACTURING THE SAME
WO2012098722A1 (en) * 2011-01-17 2012-07-26 Jx日鉱日石金属株式会社 Cu-ga target and method for manufacturing same, as well as light-absorbing layer formed from cu-ga alloy film, and cigs solar cell using light-absorbing layer
US10050160B2 (en) 2011-01-17 2018-08-14 Jx Nippon Mining & Metals Corporation Cu—Ga target, method of producing same, light-absorbing layer formed from Cu—Ga based alloy film, and CIGS system solar cell having the light-absorbing layer
JP5819323B2 (en) * 2011-01-17 2015-11-24 Jx日鉱日石金属株式会社 Cu-Ga target and manufacturing method thereof
JPWO2013054521A1 (en) * 2011-10-14 2015-03-30 株式会社アルバック Target assembly and manufacturing method thereof
WO2013054521A1 (en) * 2011-10-14 2013-04-18 株式会社アルバック Target assembly and production method therefor
CN103930591A (en) * 2011-10-14 2014-07-16 株式会社爱发科 Target assembly and production method therefor
CN103421976A (en) * 2012-05-22 2013-12-04 山阳特殊制钢株式会社 Cu-Ga alloy powder with low oxygen content, Cu-Ga alloy target material with low oxygen content and manufacturing method of the target material
CN103421976B (en) * 2012-05-22 2017-11-21 山阳特殊制钢株式会社 The manufacture method of the low Cu Ga series alloy powders of oxygen content, Cu Ga alloy target materials and target
WO2014061697A1 (en) * 2012-10-17 2014-04-24 三菱マテリアル株式会社 Cu-Ga BINARY SPUTTERING TARGET AND METHOD FOR PRODUCING SAME
JP2014098206A (en) * 2012-10-17 2014-05-29 Mitsubishi Materials Corp Cu-Ga BINARY SPUTTERING TARGET AND PRODUCTION METHOD THEREOF
CN104718308A (en) * 2012-10-17 2015-06-17 三菱综合材料株式会社 Cu-Ga binary sputtering target and method for producing same
US10283332B2 (en) 2012-10-17 2019-05-07 Mitsubishi Materials Corporation Cu—Ga binary alloy sputtering target and method of producing the same
US10329661B2 (en) 2013-01-31 2019-06-25 Plansee Se Cu—Ga—In—Na target
AT13564U1 (en) * 2013-01-31 2014-03-15 Plansee Se CU-GA-IN-NA Target
CN105008580A (en) * 2013-02-25 2015-10-28 三菱综合材料株式会社 Sputtering target and production method therefor
WO2014129648A1 (en) * 2013-02-25 2014-08-28 三菱マテリアル株式会社 Sputtering target and production method therefor
JP2014185384A (en) * 2013-03-25 2014-10-02 Nippon Steel & Sumitomo Metal Cu-Ga SPUTTERING TARGET AND MANUFACTURING METHOD OF THE SAME
US9934949B2 (en) 2013-04-15 2018-04-03 Mitsubishi Materials Corporation Sputtering target and production method of the same
JP2017500438A (en) * 2013-09-27 2017-01-05 プランゼー エスエー Copper-gallium sputtering target
WO2015064157A1 (en) * 2013-10-30 2015-05-07 住友金属鉱山株式会社 METHOD FOR MANUFACTURING Cu-Ga ALLOY SPUTTERING TARGET
CN106471150A (en) * 2014-09-22 2017-03-01 三菱综合材料株式会社 Sputtering target and its manufacture method
WO2016047556A1 (en) * 2014-09-22 2016-03-31 三菱マテリアル株式会社 Sputtering target and method for manufacturing same

Also Published As

Publication number Publication date
JP5501774B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5501774B2 (en) Cu-Ga sputtering target material having high strength
JP5342810B2 (en) Method for producing Al-based alloy sputtering target material
JP5051168B2 (en) Nitride-dispersed Ti-Al target and method for producing the same
JP2018512507A (en) Aluminum alloy product and manufacturing method thereof
US20150041313A1 (en) Silver-based cylindrical target and process for manufacturing same
EP4083244A1 (en) Heat-resistant powdered aluminium material
JP6880203B2 (en) Aluminum alloy for additional manufacturing technology
CN101623800B (en) Magnesium-based brazing filler metal alloy and preparation method thereof
JP5595891B2 (en) Method for producing heat-resistant magnesium alloy, heat-resistant magnesium alloy casting and method for producing the same
JP2008255440A (en) MoTi ALLOY SPUTTERING TARGET MATERIAL
KR20150023925A (en) Cu-Ga ALLOY SPUTTERING TARGET, AND METHOD FOR PRODUCING SAME
JP2016028173A (en) Cu-Ga ALLOY SPUTTERING TARGET AND PRODUCTION METHOD THEREOF
JP5661540B2 (en) Cu-Ga based alloy powder having low oxygen content, Cu-Ga based alloy target material, and method for producing target material
JP2020531683A (en) Copper-based alloys for the production of bulk metallic glasses
AU2018394138B2 (en) Aluminium alloy
WO2019159856A1 (en) Sputtering target material
WO2012023475A1 (en) CrTi-BASED ALLOY AND SPUTTERING TARGET MATERIAL, PERPENDICULAR MAGNETIC RECORDING MEDIUM, AND PROCESSES FOR PRODUCING SAME
JP2017057477A (en) CoFeB BASED ALLOY TARGET MATERIAL
JP6583019B2 (en) Cu-Ga alloy sputtering target and method for producing Cu-Ga alloy sputtering target
JP6311912B2 (en) Cu-Ga binary sputtering target and method for producing the same
JP7412183B2 (en) sputtering target material
JP5840748B2 (en) Cu-Ga based alloy powder having low oxygen content and method for producing sputtering target material
JP5795420B2 (en) Cu-Ga based alloy sputtering target material with low oxygen content
JP2013087340A (en) Sintered compact of nickel-based intermetallic compound and method for producing the same
KR20140087381A (en) Alloy and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140312

R150 Certificate of patent or registration of utility model

Ref document number: 5501774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees