JP2012031508A - Cu-Ga ALLOY TARGET MATERIAL AND METHOD FOR MANUFACTURING THE SAME - Google Patents

Cu-Ga ALLOY TARGET MATERIAL AND METHOD FOR MANUFACTURING THE SAME Download PDF

Info

Publication number
JP2012031508A
JP2012031508A JP2011140203A JP2011140203A JP2012031508A JP 2012031508 A JP2012031508 A JP 2012031508A JP 2011140203 A JP2011140203 A JP 2011140203A JP 2011140203 A JP2011140203 A JP 2011140203A JP 2012031508 A JP2012031508 A JP 2012031508A
Authority
JP
Japan
Prior art keywords
target material
alloy
content
average value
oxygen content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011140203A
Other languages
Japanese (ja)
Other versions
JP5818139B2 (en
Inventor
Yu Tamada
悠 玉田
Hiroshi Takashima
洋 高島
Takuya Ishikawa
卓也 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2011140203A priority Critical patent/JP5818139B2/en
Publication of JP2012031508A publication Critical patent/JP2012031508A/en
Application granted granted Critical
Publication of JP5818139B2 publication Critical patent/JP5818139B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a Cu-Ga alloy target material for performing stable film formation in spattering.SOLUTION: The Cu-Ga alloy target material includes 10 to 95 mass% Ga and the balance being Cu and unavoidable impurities, and has a structure consisting of a Cu-Ga alloy phase with an average particle diameter of 300 μm or less. The variation of the Ga content of each site in the target material to the average value of the Ga content of the whole target material is within a range of ±3%, the variation of the relative density of each site of the target material to the average value of the relative density of the whole target material is within a range of ±2%, and the average value of the relative density of the whole target material is 100% or more, the variation of the oxygen content of each site of the target material to the average value of the oxygen content of the whole target material is within a range of ±20%, and the average value of the oxygen content of the whole target material is 300 mass ppm or less.

Description

本発明は、例えば、カルコパイライト系薄膜太陽電池の光吸収層を形成するためのCu(InGa)Se合金膜を形成するのに使用されるCu−Ga合金ターゲット材およびその製造方法に関するものである。 The present invention relates to a Cu—Ga alloy target material used for forming a Cu (InGa) Se 2 alloy film for forming a light absorption layer of a chalcopyrite thin film solar cell, for example, and a method for producing the same. is there.

現在、シリコン太陽電池、薄膜太陽電池、化合物太陽電池等の様々な太陽電池の開発が進んでおり、その中でも、薄膜太陽電池は薄膜技術を応用した光デバイスとして製造プロセスが簡易かつ低エネルギーで可能となる利点から商品化が進んでいる。また、薄膜太陽電池の中でも、カルコパイライト化合物であるCu(InGa)Se(以下CIGSという。)を光吸収層として備えた薄膜太陽電池が有望視されている。
CIGS薄膜太陽電池は、一般的に、ソーダライムガラス基板、Mo金属からなる背面電極層、CIGS層からなる光吸収層、透明導電膜からなる前面電極で構成される多層積層構造である。
Currently, various solar cells such as silicon solar cells, thin film solar cells, and compound solar cells are being developed. Among them, thin film solar cells can be manufactured easily and with low energy as optical devices applying thin film technology. Commercialization is progressing because of the advantages. Among thin-film solar cells, a thin-film solar cell including Cu (InGa) Se 2 (hereinafter referred to as CIGS), which is a chalcopyrite compound, as a light absorption layer is promising.
A CIGS thin film solar cell generally has a multilayer laminated structure including a soda lime glass substrate, a back electrode layer made of Mo metal, a light absorption layer made of a CIGS layer, and a front electrode made of a transparent conductive film.

このCIGS層を形成する方法としては、例えば、Inターゲットを用いてスパッタリング法によりIn薄膜を成膜した上に、Cu−Ga合金ターゲット材を用いてCu−Ga合金薄膜を形成し、その後この積層膜をSe雰囲気中で熱処理を施して四元系合金膜であるCIGS層とする方法が用いられている。その際のCu−Ga合金ターゲット材としては、例えば、所望のCu−Ga組成の合金を真空溶解し鋳造する溶解鋳造法で作製したものが使用されている(例えば、特許文献1参照)。   As a method for forming this CIGS layer, for example, an In thin film is formed by sputtering using an In target, a Cu—Ga alloy thin film is formed using a Cu—Ga alloy target material, and then this lamination is performed. A method is used in which the film is heat treated in an Se atmosphere to form a CIGS layer that is a quaternary alloy film. As the Cu—Ga alloy target material at that time, for example, a material prepared by a melting casting method in which an alloy having a desired Cu—Ga composition is vacuum-melted and cast is used (for example, see Patent Document 1).

また、Cu−Ga系合金は、脆弱で成分の偏析を生じやすいため、粉末焼結法による製造も試みられている。具体的には、高Ga含有のCu−Ga合金組成においては、脆弱なCu−Ga合金相が形成されやすく、ターゲット材としての形状に機械加工する際に、欠け等の加工不具合が発生する場合がある。このため、高Ga含有のCu−Ga合金相を低Ga含有のCu−Ga合金相で包囲した二相共存組織に制御された焼結組織とすることで、機械加工時の問題を抑制可能なCu−Ga合金ターゲット材が提案されている(例えば、特許文献2参照)。   Moreover, since Cu-Ga type alloys are brittle and easily cause segregation of components, production by a powder sintering method has also been attempted. Specifically, in a Cu-Ga alloy composition containing a high Ga content, a fragile Cu-Ga alloy phase is likely to be formed, and processing defects such as chipping occur when machining into a shape as a target material. There is. For this reason, the problem at the time of machining can be suppressed by making the sintered structure controlled by the two-phase coexistence structure surrounded by the Cu-Ga alloy phase containing low Ga content the Cu-Ga alloy phase containing high Ga. A Cu—Ga alloy target material has been proposed (see, for example, Patent Document 2).

特開2000−73163号公報JP 2000-73163 A 特開2008−138232号公報JP 2008-138232 A

上述した特許文献2に開示されるCu−Ga二元系合金ターゲット材は、より脆弱な高Ga含有のCu−Ga合金相を低Ga含有のCu−Ga合金相を覆うように形成される二相共存組織とすることで、良好な機械加工が実現できるので有効である。
しかしながら、本発明者の検討によれば、このような二相共存組織の場合には、Ga含有の濃淡を積極的に形成する方法であるため、スパッタリングに際して、レートの差が生じるために安定して所望のCu−Ga合金層が形成しづらいという問題が生じることを確認した。
本発明の目的は、上記課題を解決し、スパッタリングの際に安定した成膜が可能なCu−Ga合金ターゲット材およびその製造方法を提供することである。
The Cu—Ga binary alloy target material disclosed in Patent Document 2 described above is formed so that a more fragile high Ga-containing Cu—Ga alloy phase is covered with a low Ga-containing Cu—Ga alloy phase. A phase-coexisting structure is effective because good machining can be realized.
However, according to the study of the present inventors, in the case of such a two-phase coexisting structure, since it is a method of positively forming Ga-containing shades, a difference in rate occurs during sputtering, so that it is stable. Thus, it was confirmed that a problem that it was difficult to form a desired Cu—Ga alloy layer occurred.
An object of the present invention is to provide a Cu—Ga alloy target material that can solve the above-described problems and can stably form a film during sputtering, and a method for producing the same.

本発明者は、上記の課題を検討した結果、組成変動のない均一なCu−Ga合金相で一定の粒径以下の組織とし、ターゲット材全体でGa含有量のばらつきのないターゲット材とすることで、スパッタリングの際に安定した成膜が可能なCu−Ga合金ターゲット材を実現できることを見いだし本発明に到達した。   As a result of examining the above-mentioned problems, the present inventor has a uniform Cu-Ga alloy phase having no composition variation and a structure having a certain particle size or less, and a target material having no variation in Ga content in the entire target material. Thus, it has been found that a Cu—Ga alloy target material capable of stable film formation during sputtering can be realized, and the present invention has been achieved.

すなわち本発明は、Gaを10〜95質量%含有し、残部Cuおよび不可避的不純物からなるCu−Ga合金ターゲット材であって、組織が平均粒径300μm以下のCu−Ga合金相からなり、且つターゲット材中の各部位のGa含有量がターゲット材全体のGa含有量の平均値に対する変動量が±3%以下であるCu−Ga合金ターゲット材である。
また、本発明のCu−Ga合金ターゲット材は、ターゲット材の各部位の相対密度がターゲット材全体の相対密度の平均値に対する変動量が±2%以内であり、且つ相対密度が100%以上である。
また、本発明のCu−Ga合金ターゲット材は、ターゲット材の各部位の酸素含有量がターゲット材全体の酸素含有量の平均値に対する変動量が±20%以内の範囲にあり、且つターゲット材全体の酸素含有量の平均値が300質量ppm以下である。
また、本発明のCu−Ga合金ターゲット材は、前記酸素含有量が200質量ppm以下であることが好ましい。
また、本発明のCu−Ga合金ターゲット材の前記平均粒径は、40μm以上であることが好ましい。
また、本発明のCu−Ga合金ターゲット材は、Gaを10〜95質量%含有し、残部Cuおよび不可避的不純物からなるCu−Ga合金粉を温度700〜900℃、圧力10〜200MPaで1〜10時間の加圧焼結を行うことで得ることができる。
That is, the present invention is a Cu-Ga alloy target material containing 10 to 95% by mass of Ga, the balance being Cu and unavoidable impurities, the structure comprising a Cu-Ga alloy phase having an average particle size of 300 μm or less, and The Ga content of each part in the target material is a Cu—Ga alloy target material whose variation with respect to the average value of the Ga content of the entire target material is ± 3% or less.
Further, in the Cu—Ga alloy target material of the present invention, the relative density of each part of the target material has a variation amount within ± 2% with respect to the average value of the relative density of the entire target material, and the relative density is 100% or more. is there.
Further, in the Cu—Ga alloy target material of the present invention, the oxygen content of each part of the target material is within a range of variation within ± 20% with respect to the average value of the oxygen content of the entire target material, and the entire target material The oxygen content average value is 300 mass ppm or less.
In the Cu—Ga alloy target material of the present invention, the oxygen content is preferably 200 mass ppm or less.
Moreover, it is preferable that the said average particle diameter of the Cu-Ga alloy target material of this invention is 40 micrometers or more.
Moreover, the Cu-Ga alloy target material of this invention contains 10-95 mass% of Ga, Cu-Ga alloy powder which consists of remainder Cu and an unavoidable impurity is 1-200 MPa at the temperature of 700-900 degreeC, and the pressure of 10-200 MPa. It can be obtained by performing pressure sintering for 10 hours.

本発明のCu−Ga合金ターゲット材によれば、スパッタの際のターゲット上でのノジュールの発生を抑制することができる。また、本発明のCu−Ga合金スパッタリングターゲット材を使用してスパッタ成膜することで、スパッタ成膜後の薄膜中で欠陥原因となる異常放電(アーキング)やパーティクルの発生が抑制され良好なCu−Ga層が形成できるため、太陽電池の製造において極めて有効である。   According to the Cu—Ga alloy target material of the present invention, generation of nodules on the target during sputtering can be suppressed. Also, by using the Cu—Ga alloy sputtering target material of the present invention to form a sputter film, the abnormal discharge (arcing) and the generation of particles that cause defects in the thin film after the sputter film formation are suppressed and good Cu is obtained. Since a -Ga layer can be formed, it is extremely effective in the production of solar cells.

本発明のCu−Ga合金ターゲット材の光学顕微鏡像である。It is an optical microscope image of the Cu-Ga alloy target material of this invention. 本発明のCu−Ga合金ターゲット材におけるGa含有量、相対密度、酸素含有量を測定する部位の一例を示す図である。It is a figure which shows an example of the site | part which measures Ga content in a Cu-Ga alloy target material of this invention, relative density, and oxygen content. 本発明の別のCu−Ga合金ターゲット材の光学顕微鏡像である。It is an optical microscope image of another Cu-Ga alloy target material of the present invention.

本発明のCu−Ga合金ターゲット材は、Gaを10〜95質量%含有し、残部Cuおよび不可避的不純物からなるものである。
Ga含有量を上記の範囲とした理由は、Ga含有量を10〜95質量%含有するCu−Ga合金では組成の偏在が起こりやすく、組成変動のない均一なCu−Ga合金相を得ることが望まれる組成であるためである。
また、特に、本発明のCu−Ga合金ターゲット材をCIGS光吸収層の形成に適用する場合には、Ga含有量が10質量%に満たない場合ではCIGS光吸収層中のGa濃度が低く変換効率が向上しない。一方、Ga含有量が95質量%を超えるとわずかな組成ズレで融点が大きく低下するため、製膜時のスプラッシュやバッキングプレートとのボンディング剥離を引き起こし、安定的なスパッタを行うターゲット材としては適さない。
なお、CIGS層形成時における500℃前後の加熱により、Cu−Ga層、In層及びSe(S)の拡散処理が必要であり、このときCu−Ga合金層と背面電極層との密着性を確保するためにはCu−Ga合金層が溶融しないことが好ましいという理由から、ターゲット材の組成においてもGa含有量は、70質量%以下であることが好ましい。
The Cu—Ga alloy target material of the present invention contains 10 to 95% by mass of Ga, and consists of the remainder Cu and inevitable impurities.
The reason why the Ga content is in the above range is that a Cu-Ga alloy containing 10 to 95% by mass of Ga content tends to have an uneven composition, and a uniform Cu-Ga alloy phase having no composition variation can be obtained. This is because the composition is desired.
In particular, when the Cu—Ga alloy target material of the present invention is applied to the formation of the CIGS light absorption layer, the Ga concentration in the CIGS light absorption layer is converted to be low when the Ga content is less than 10% by mass. Efficiency does not improve. On the other hand, if the Ga content exceeds 95% by mass, the melting point is greatly lowered with a slight compositional deviation, causing splashing during film formation and bonding peeling from the backing plate, making it suitable as a target material for stable sputtering. Absent.
In addition, the diffusion process of a Cu-Ga layer, In layer, and Se (S) is required by heating at around 500 ° C. when forming the CIGS layer. At this time, the adhesion between the Cu—Ga alloy layer and the back electrode layer is improved. In order to ensure, it is preferable that the Cu—Ga alloy layer does not melt, so that the Ga content is preferably 70% by mass or less even in the composition of the target material.

本発明のCu−Ga合金ターゲット材は、平均粒径300μm以下のCu−Ga合金相からなり、且つターゲット材中の各部位のGa含有量がターゲット材全体のGa含有量の平均値に対する変動量が±3%以内である。以下、その理由を説明する。
まず、本発明のCu−Ga合金ターゲット材は、ターゲット材中の各部位の成分変動を抑制するために、Cu−Ga合金相を平均粒径300μm以下に限定する。本発明では、より顕著に成分変動をなくすためには、Cu−Ga合金相の平均粒径を40μm以上にすることが好ましい。これにより、本発明のCu−Ga合金ターゲット材は、スパッタの際に凹凸が小さい平滑なエロージョン面をターゲット材表面に実現することが可能となり、ターゲット上のノジュールの発生を抑制することができる。
また、本発明のCu−Ga合金ターゲット材は、組成変動のない均一なCu−Ga相からなるターゲット材とすることにより、組成変動におけるスパッタレート差を抑制し、局所的な凹凸のバラつきをなくすことで均一なエロージョン面を実現し、ターゲット上のノジュールの発生を抑制することが可能となるためである。また、ノジュールの発生の抑制は、スパッタ中の異常放電やスパッタ成膜後の薄膜中で欠陥原因となるパーティクルの発生を抑制することにも寄与する。
The Cu—Ga alloy target material of the present invention is composed of a Cu—Ga alloy phase having an average particle diameter of 300 μm or less, and the Ga content of each part in the target material is a variation with respect to the average value of the Ga content of the entire target material. Is within ± 3%. The reason will be described below.
First, the Cu—Ga alloy target material of the present invention limits the Cu—Ga alloy phase to an average particle size of 300 μm or less in order to suppress component fluctuations at each site in the target material. In the present invention, in order to eliminate the component fluctuation more remarkably, it is preferable that the average particle diameter of the Cu—Ga alloy phase is 40 μm or more. Thereby, the Cu—Ga alloy target material of the present invention can realize a smooth erosion surface with small irregularities on the surface of the target material during sputtering, and can suppress the generation of nodules on the target.
In addition, the Cu—Ga alloy target material of the present invention is a target material composed of a uniform Cu—Ga phase without composition variation, thereby suppressing the difference in sputtering rate in composition variation and eliminating local unevenness. This is because a uniform erosion surface can be realized and generation of nodules on the target can be suppressed. Further, the suppression of the generation of nodules also contributes to the suppression of abnormal discharge during sputtering and generation of particles that cause defects in the thin film after sputtering film formation.

また、Cu−Ga合金は、組成によって非常に脆弱な相が現れるが、ターゲット材中の各部位のGa含有量をターゲット材全体のGa含有量の平均値に対する変動量を±3%以下とすることで不連続組織を抑制し、ノジュールの基点となる機械加工による表面肌荒れや脱落を防止することが可能である。   Moreover, although a very fragile phase appears depending on the composition of the Cu—Ga alloy, the variation of the Ga content of each part in the target material with respect to the average value of the Ga content of the entire target material is ± 3% or less. In this way, it is possible to suppress discontinuous structures and prevent surface roughening and falling off due to machining, which is the base point of nodules.

本発明のCu−Ga合金ターゲット材は、各部位の相対密度がターゲット材全体の相対密度の平均値に対する変動量が±2%以内であり、且つその相対密度が全て100%以上である。
ターゲット材中の密度にばらつきが存在していると、各部位でスパッタレートがばらつくことから、膜厚、膜応力が影響を受け面内均一性が低下する。各部位の相対密度がターゲット材全体の相対密度の平均値に対する変動量が±2%を超えると面内ばらつきが著しく増加するため、本発明では相対密度の平均値に対する変動量を±2%以内にする。
また、相対密度が低くなるとターゲット材中に存在する空隙が増加し、空隙を基点としてスパッタリング工程中に、異常放電の原因となるノジュールの発生が起こりやすくなる。特に、相対密度が100%に満たないとノジュールが発生する確率が高くなるため、相対密度は100%以上にする。より好ましくは、107%以上である。
In the Cu—Ga alloy target material of the present invention, the relative density of each part has a variation amount within ± 2% with respect to the average value of the relative density of the entire target material, and the relative density is all 100% or more.
If there is a variation in the density in the target material, the sputtering rate varies at each site, so that the film thickness and film stress are affected and the in-plane uniformity is reduced. If the relative density of each part exceeds ± 2% relative to the average relative density of the entire target material, the in-plane variation increases significantly. Therefore, in the present invention, the fluctuation relative to the average relative density is within ± 2%. To.
Further, when the relative density is lowered, voids existing in the target material increase, and nodules that cause abnormal discharge are likely to occur during the sputtering process with the voids as a base point. In particular, if the relative density is less than 100%, the probability that nodules are generated increases, so the relative density is set to 100% or more. More preferably, it is 107% or more.

なお、本発明において「相対密度」とは、アルキメデス法により測定されたCu−Ga合金ターゲット材のかさ密度をその理論密度で割った値を百分率で表したものをいう。ここで、Cu−Ga合金の理論密度としては、簡単のため、合金相を含まないCu及びGaのみからなるものと仮定して算出した理論密度を用いた。具体的には、Cu、Gaの密度として各々8.96g/cm、5.91g/cmの値を用い、組成比から得られる質量比で算出した加重平均として得られた値を理論密度の値として用いた。Cu−Ga合金の密度の真の値は、本発明でいう理論密度に比べて一般に高くなるため、上記のようにして求めた相対密度の値は100%を超える場合がある。 In the present invention, “relative density” refers to a value obtained by dividing the bulk density of a Cu—Ga alloy target material measured by the Archimedes method by its theoretical density, expressed as a percentage. Here, as the theoretical density of the Cu—Ga alloy, for the sake of simplicity, the theoretical density calculated on the assumption that the alloy is composed only of Cu and Ga not including an alloy phase was used. Specifically, values of 8.96 g / cm 3 and 5.91 g / cm 3 are used as the densities of Cu and Ga, respectively, and the value obtained as a weighted average calculated by the mass ratio obtained from the composition ratio is the theoretical density. Was used as the value of. Since the true value of the density of the Cu—Ga alloy is generally higher than the theoretical density in the present invention, the relative density value obtained as described above may exceed 100%.

本発明のCu−Ga合金ターゲット材は、各部位の酸素含有量がターゲット全体の酸素含有量の平均値に対する変動量が±20%以内の範囲にあり、且つターゲット材全体の酸素量の平均値が300質量ppm以下である。
それは、ターゲット材中の酸素含有量にばらつきが存在していると、スパッタによって得られる膜の酸素量がばらつくことから、膜の抵抗値、熱伝導率、膜応力が影響を受けこれらの各種特性の面内均一性が低下するためである。このため、各部位の酸素量は、ターゲット材全体の酸素量の平均値に対する変動量を±20%以内としている。
また、ターゲット材全体としての酸素含有量は、200質量ppm以下とすることが望ましい。ターゲット材全体としての酸素含有量は、300質量ppmを超えるとそのばらつきの影響よりも酸素の絶対量の方がより大きく影響するようになる。ターゲット材中に存在する酸素が多いとスパッタリング中に酸素が膜中に取り込まれCIGS層形成時のセレン化、硫化を阻害するため、Cu−Ga合金ターゲット材中の酸素含有量を300質量ppm以下とすることは、良好なCIGS層の形成に有効である。
また、特に、粉末焼結法による焼結ターゲット材においては、原料粉末を焼結する際に酸素を低減することが困難であり、Cu−Ga合金組成においても酸素含有量30質量ppm以下とすることは困難である。そのため、酸素30〜300質量ppmを不可避的に含む焼結Cu−Ga合金ターゲット材においては、各部位の酸素含有量がターゲット全体の酸素含有量の平均値に対して±20%以内の範囲とすることは、均一な成膜の特性を得るために特によい。
In the Cu—Ga alloy target material of the present invention, the oxygen content of each part is within a range of variation within ± 20% with respect to the average value of the oxygen content of the entire target, and the average value of the oxygen content of the entire target material Is 300 ppm by mass or less.
This is because if the oxygen content in the target material varies, the amount of oxygen in the film obtained by sputtering varies, so the resistance value, thermal conductivity, and film stress of the film are affected. This is because the in-plane uniformity is reduced. For this reason, the amount of oxygen in each part is within ± 20% of the variation with respect to the average value of the amount of oxygen of the entire target material.
Further, the oxygen content of the target material as a whole is desirably 200 mass ppm or less. When the oxygen content of the target material as a whole exceeds 300 ppm by mass, the absolute amount of oxygen has a greater influence than the influence of the variation. If there is a lot of oxygen present in the target material, oxygen is taken into the film during sputtering and selenization and sulfidation during CIGS layer formation are inhibited, so the oxygen content in the Cu-Ga alloy target material is 300 mass ppm or less. It is effective to form a good CIGS layer.
In particular, in a sintering target material by a powder sintering method, it is difficult to reduce oxygen when sintering raw material powder, and the oxygen content is 30 mass ppm or less even in the Cu-Ga alloy composition. It is difficult. Therefore, in the sintered Cu-Ga alloy target material inevitably containing 30 to 300 ppm by mass of oxygen, the oxygen content of each part is within a range of ± 20% with respect to the average value of the oxygen content of the entire target. This is particularly good for obtaining uniform film formation characteristics.

本発明におけるターゲット材の各部位のGa含有量、相対密度、酸素含有量とは、図2に示すように、例えば円板状のターゲット材の場合には、中心部(部位1)と、中心部を通り円周を均等に分割した2本の直線上の外周近傍位置の4箇所(部位2〜5)、およびその1/2の距離の位置の4箇所(部位6〜9)の合計9箇所からそれぞれ採取した試料の分析値とする。
また、各試料の寸法は、15×15×6(mm)とし、Ga含有量は原子吸光法、相対密度はアルキメデス法、酸素含有量は赤外線吸収法で分析した値とする。
As shown in FIG. 2, the Ga content, relative density, and oxygen content of each part of the target material in the present invention are, for example, in the case of a disk-shaped target material, the center (part 1) and the center 4 parts (parts 2 to 5) in the vicinity of the outer periphery on two straight lines that pass through the part and the circumference is equally divided, and a total of 9 parts (parts 6 to 9) at positions that are ½ the distance The analysis value of each sample collected from each location.
The dimensions of each sample are 15 × 15 × 6 (mm), the Ga content is an atomic absorption method, the relative density is an Archimedes method, and the oxygen content is a value analyzed by an infrared absorption method.

次に、本発明のCu−Ga合金ターゲット材を作製するための方法を以下に説明する。
本発明のCu−Ga合金ターゲット材は、単一組成のCu−Ga合金相を得るために、ターゲット材の所望組成のCu−Ga合金粉末を作製し、そのCu−Ga合金粉末を加圧焼結法によって焼結体を得る方法を適用する。Cu−Ga合金粉末は、ターゲット材の所望組成のCu−Ga合金に調整できれば使用可能であり、所望組成に調整したCu−Ga合金を真空溶解後に鋳造した鋳塊を粉砕して得られる粉砕粉末、Cu−Ga合金溶湯をガスアトマイズ法等のアトマイズ法に代表される溶湯急冷法によって得られる粉末、などを使用することができる。その中でも、粉末中の不純物を低減でき、粒径の揃った粉末を比較的得やすいガスアトマイズ粉末を用いることが好ましい。
Next, a method for producing the Cu—Ga alloy target material of the present invention will be described below.
In order to obtain a Cu—Ga alloy target material having a single composition, the Cu—Ga alloy target material of the present invention produces a Cu—Ga alloy powder having a desired composition of the target material, and pressurizes the Cu—Ga alloy powder. A method of obtaining a sintered body by a sintering method is applied. The Cu-Ga alloy powder can be used if it can be adjusted to a Cu-Ga alloy having a desired composition of the target material, and is a pulverized powder obtained by pulverizing an ingot obtained by casting a Cu-Ga alloy adjusted to a desired composition after vacuum melting The powder obtained by the molten metal quenching method represented by atomizing methods, such as a gas atomizing method, etc. can be used for a Cu-Ga alloy molten metal. Among them, it is preferable to use a gas atomized powder that can reduce impurities in the powder and relatively easily obtain a powder having a uniform particle diameter.

ガスアトマイズ法によるCu−Ga合金粉末を使用する場合には、アトマイズ出湯温度はCu−Ga合金の融点に対して50℃から300℃高い温度であることが好ましい。この理由は、合金融点から融点に対し50℃高い温度範囲では溶湯ノズルが閉塞する可能性があり、合金融点に対し300℃を超える温度では、アトマイズ粉末がアトマイズ装置のチャンバー内で凝集する可能性があるためである。また、より球状で酸素含有量を抑制したアトマイズ粉末を得るためにはアトマイズのガス圧力は1MPa以上10MPa以下とすることが好ましい。
また、Cu−Ga合金粉末は、平均粒径20〜300μmであることが好ましい。平均粒径が20μmを下回る粉末では、単位体積当たりの比表面積が大きくなるため、粉末全体の酸素含有量が高くなり、焼結体の酸素含有量に影響を与えるためである。一方、平均粒径が300μmを超える粉末では、焼結性が低下し、高密度の焼結体を得ることが困難になる。
When using the Cu-Ga alloy powder by a gas atomization method, it is preferable that the atomization hot water temperature is 50 to 300 degreeC higher than melting | fusing point of Cu-Ga alloy. This is because the molten metal nozzle may clog in the temperature range higher than the melting point of the alloy by 50 ° C., and the atomized powder aggregates in the chamber of the atomizing device at a temperature exceeding 300 ° C. relative to the melting point of the alloy. This is because there is a possibility. In order to obtain atomized powder having a more spherical shape and a reduced oxygen content, the gas pressure of atomization is preferably 1 MPa or more and 10 MPa or less.
Moreover, it is preferable that Cu-Ga alloy powder is 20-300 micrometers in average particle diameter. This is because, in the powder having an average particle size of less than 20 μm, the specific surface area per unit volume is increased, so that the oxygen content of the entire powder is increased, which affects the oxygen content of the sintered body. On the other hand, when the average particle size exceeds 300 μm, the sinterability is lowered and it is difficult to obtain a high-density sintered body.

本発明の緻密化した焼結体のターゲット材を得るためには、上述したCu−Ga合金粉末を加圧焼結法によって作製する。加圧焼結法としては、ホットプレス、熱間静水圧プレス、通電加圧焼結、熱間押し出しなどの方法を適用することができる。中でも熱間静水圧プレスは加圧圧力が高く、緻密な焼結体が得られ易いため、特に好ましい。
なお、加圧焼結時の最高温度は、Cu−Ga合金の融点に対して10℃から300℃低い温度に設定することが好ましい。この理由は、焼結温度がCu−Ga合金の融点に対し300℃以上低い場合には、緻密な焼結体が得られ難く、Cu−Ga合金の融点に対し10℃低い温度を超えると粉末が溶融する可能性があるためである。本発明では、焼結温度を700〜900℃とする。
また、加圧焼結時の最高圧力は、10MPa以上に設定することが好ましい。その理由は最高圧力が10MPaを下回ると緻密な焼結体が得にくいためである。一方、200MPaを超えると耐え得る装置が限られるという問題がある。本発明では、加圧力を10〜200MPaとする。
また、焼結時間は、1時間未満では焼結を十分に進行させるのが難しく、10時間を超えると製造効率において避ける方がよい。本発明では、焼結時間を1〜10時間とする。
なお、熱間静水圧プレスやホットプレスで加圧焼結をする際には、混合粉末を加圧容器や加圧用ダイスに充填した後に、加熱しながら減圧脱気をすることが望ましい。減圧脱気は、加熱温度100〜600℃の範囲で、大気圧(101.3kPa)より低い減圧下で行うことが望ましい。それは、得られる焼結体の酸素をより低減することが可能となるためである。
In order to obtain the densified sintered compact target material of the present invention, the above-mentioned Cu-Ga alloy powder is produced by a pressure sintering method. As the pressure sintering method, methods such as hot pressing, hot isostatic pressing, energizing pressure sintering, hot extrusion, and the like can be applied. Among them, the hot isostatic press is particularly preferable because the pressurization pressure is high and a dense sintered body can be easily obtained.
In addition, it is preferable to set the maximum temperature at the time of pressure sintering to a temperature lower by 10 to 300 ° C. than the melting point of the Cu—Ga alloy. This is because if the sintering temperature is lower than the melting point of the Cu—Ga alloy by 300 ° C. or more, it is difficult to obtain a dense sintered body, and if the temperature exceeds 10 ° C. lower than the melting point of the Cu—Ga alloy, the powder This is because there is a possibility of melting. In the present invention, the sintering temperature is 700 to 900 ° C.
The maximum pressure during pressure sintering is preferably set to 10 MPa or more. The reason is that it is difficult to obtain a dense sintered body when the maximum pressure is less than 10 MPa. On the other hand, if it exceeds 200 MPa, there is a problem that the apparatus that can withstand is limited. In the present invention, the applied pressure is 10 to 200 MPa.
In addition, if the sintering time is less than 1 hour, it is difficult to sufficiently advance the sintering, and if it exceeds 10 hours, it is better to avoid the production efficiency. In the present invention, the sintering time is 1 to 10 hours.
In addition, when performing pressure sintering by hot isostatic pressing or hot pressing, it is desirable to deaerate under reduced pressure while heating after filling the mixed powder into a pressure vessel or a pressure die. The vacuum degassing is desirably performed under a reduced pressure lower than the atmospheric pressure (101.3 kPa) in the heating temperature range of 100 to 600 ° C. This is because oxygen in the obtained sintered body can be further reduced.

以下の実施例で本発明を更に詳しく説明する。
実施例1として先ず、Cu原料を68質量%、Ga原料を32質量%の割合になるように秤量して溶解炉内に装填し真空溶解した後、出湯温度1000℃、アトマイズガス圧4MPaでガスアトマイズを行いCu−Ga合金粉末を得た。得られた粉末を目開き250μmのふるいを用いて分級を実施し、平均粒径(D50)が75μmの粉末を得た。この粉末をカーボン製の加圧容器に充填しホットプレス装置の炉体内部に設置して750℃、30MPa、2時間の加圧焼結を実施した。加圧焼結後にカーボン製の加圧容器から取り出し焼結体を得た。得られた焼結体を、ダイヤモンド砥石を用いて平面研削による板厚加工を実施後、ウォータージェット切断機を用いて切断加工することによって、直径180mm×厚さ6mmのCu−Ga合金ターゲット材を2枚製作した。2枚のCu−Ga合金ターゲット材は同一原料、同一条件で製作したものであり、同一の密度、Ga含有量、酸素含有量を有しているものとみなすことができる。
The following examples further illustrate the present invention.
As Example 1, first, Cu raw material was weighed to a ratio of 68% by mass and Ga raw material to a ratio of 32% by mass, charged in a melting furnace and vacuum melted, and then gas atomized at a tapping temperature of 1000 ° C. and an atomizing gas pressure of 4 MPa. To obtain a Cu—Ga alloy powder. The obtained powder was classified using a sieve having an opening of 250 μm to obtain a powder having an average particle diameter (D50) of 75 μm. This powder was filled in a carbon pressure vessel and placed inside a furnace body of a hot press apparatus, and pressure sintering was performed at 750 ° C., 30 MPa for 2 hours. After pressure sintering, the sintered body was obtained from the carbon pressure vessel. The obtained sintered body is subjected to plate thickness processing by surface grinding using a diamond grindstone, and then cut using a water jet cutting machine to obtain a Cu-Ga alloy target material having a diameter of 180 mm and a thickness of 6 mm. Two pieces were produced. The two Cu—Ga alloy target materials are manufactured under the same raw material and under the same conditions, and can be regarded as having the same density, Ga content, and oxygen content.

このようにして得たCu−Ga合金ターゲット材の内、1枚は分析用として用い、図2に示す各測定位置からそれぞれ15×15×6(mm)の分析用試料を切り出し、各試料の相対密度、Ga含有量、酸素含有量を測定した。表1に各部位における相対密度、Ga含有量、酸素含有量とその平均値を示す。また表2に各部位における相対密度、Ga含有量、酸素含有量のそれぞれの全体平均に対する変動率(%)を示す。   One of the Cu—Ga alloy target materials thus obtained was used for analysis, and 15 × 15 × 6 (mm) analysis samples were cut out from the respective measurement positions shown in FIG. Relative density, Ga content, and oxygen content were measured. Table 1 shows the relative density, the Ga content, the oxygen content and the average value in each part. Table 2 shows the rate of change (%) relative to the overall average of the relative density, Ga content, and oxygen content at each site.

比較例1として以下のようにCu−Ga合金ターゲット材を製作した。先ず、Cu原料を68質量%、Ga原料を32質量%の割合になるように秤量して溶解炉内に装填し、真空溶解を行った後、出湯温度1000℃で鋳型に流し込みCu−Ga合金鋼塊を得た。得られた鋼塊の押し湯部を、ワイヤー放電加工機を用いて切除した後、ダイヤモンド砥石を用いて平面研削による板厚加工を実施後、ウォータージェット切断機を用いて切断加工することによって、直径180mm×厚さ6mmのCu−Ga合金ターゲット材を2枚製作した。2枚のCu−Ga合金ターゲット材は同一原料、同一条件で製作したものであり、同一の密度、Ga含有量、酸素含有量を有しているものとみなすことができる。   As Comparative Example 1, a Cu—Ga alloy target material was manufactured as follows. First, the Cu raw material is weighed to a ratio of 68% by mass and the Ga raw material to a ratio of 32% by mass, charged in a melting furnace, vacuum melted, poured into a mold at a tapping temperature of 1000 ° C., and a Cu—Ga alloy. A steel ingot was obtained. After excising the hot metal part of the obtained steel ingot using a wire electric discharge machine, after carrying out plate thickness processing by surface grinding using a diamond grindstone, by cutting using a water jet cutting machine, Two Cu—Ga alloy target materials having a diameter of 180 mm and a thickness of 6 mm were produced. The two Cu—Ga alloy target materials are manufactured under the same raw material and under the same conditions, and can be regarded as having the same density, Ga content, and oxygen content.

このようにして得たCu−Ga合金ターゲット材の内、1枚は分析用として用い、前述した方法に従って各測定位置からそれぞれの分析用試料を切り出し、各試料の相対密度、Ga含有量、酸素含有量を測定した。表3に各部位における相対密度、Ga含有量、酸素含有量とその平均値を示す。また表4に各部位における相対密度、Ga含有量、酸素含有量のそれぞれの全体平均に対する変動率(%)を示す。   One of the Cu—Ga alloy target materials thus obtained was used for analysis, and each analysis sample was cut out from each measurement position according to the method described above, and the relative density, Ga content, oxygen of each sample was cut out. The content was measured. Table 3 shows the relative density, Ga content, oxygen content and the average value in each part. Table 4 shows the fluctuation rate (%) with respect to the overall average of the relative density, Ga content, and oxygen content in each part.

また、実施例1及び比較例1のCu−Ga合金ターゲット材の平均結晶粒径を測定した。実施例1のCu−Ga合金ターゲット材では、図1に示す光学顕微鏡像で示すように平均粒径は、50μmであった。比較例1は場所により粒径は異なるが1mmを超える大きな結晶粒であった。   Moreover, the average crystal grain size of the Cu—Ga alloy target material of Example 1 and Comparative Example 1 was measured. In the Cu—Ga alloy target material of Example 1, the average particle size was 50 μm as shown in the optical microscope image shown in FIG. Comparative Example 1 was a large crystal grain exceeding 1 mm, although the grain size was different depending on the location.

次に上記で製作した各ターゲット材のスパッタテストを実施した。スパッタはAr圧力0.6Pa、DC電力500Wの条件で積算時間5時間実施した。比較例1はアーキングが発生していたのに対し、実施例1はアーキングが確認されなかった。また、スパッタ後のターゲット表面観察を行った比較例1のCu−Ga合金ターゲットでは目視で多数のノジュールが確認されたのに対し、実施例1のCu−Ga合金ターゲット材では目視ではノジュールが確認されなかった。   Next, the sputter test of each target material produced above was carried out. Sputtering was performed under the conditions of an Ar pressure of 0.6 Pa and a DC power of 500 W for an integrated time of 5 hours. In Comparative Example 1, arcing occurred, whereas in Example 1, no arcing was confirmed. In addition, a large number of nodules were visually confirmed in the Cu—Ga alloy target of Comparative Example 1 in which the target surface was observed after sputtering, whereas nodules were visually confirmed in the Cu—Ga alloy target material of Example 1. Was not.

次に実施例2として、Cu原料を75質量%、Ga原料を25質量%の割合になるように秤量して溶解炉内に装填し真空溶解した後、出湯温度1050℃、アトマイズガス圧4MPaでガスアトマイズを行いCu−Ga合金粉末を得た。得られた粉末を目開き250μmのふるいを用いて分級を実施し、平均粒径(D50)が95μmの粉末を得た。この粉末を鉄製の加圧容器に充填し熱間静水圧プレス装置の炉体内部に設置して800℃、120MPa、5時間の加圧焼結を実施した。加圧焼結後に鉄製の加圧容器を切削により除去して焼結体を得た。得られた焼結体を、ダイヤモンド砥石を用いて平面研削による板厚加工を実施後、ウォータージェット切断機を用いて切断加工することによって、直径180mm×厚さ6mmのCu−Ga合金ターゲット材を2枚製作した。2枚のCu−Ga合金ターゲット材は同一原料、同一条件で製作したものであり、同一の密度、Ga含有量、酸素含有量を有しているものとみなすことができる。   Next, as Example 2, the Cu raw material was weighed to a ratio of 75 mass% and the Ga raw material to a ratio of 25 mass%, charged in a melting furnace and melted in a vacuum, and then the hot water temperature was 1050 ° C. and the atomizing gas pressure was 4 MPa. Gas atomization was performed to obtain a Cu-Ga alloy powder. The obtained powder was classified using a sieve having an opening of 250 μm to obtain a powder having an average particle diameter (D50) of 95 μm. This powder was filled in an iron pressure vessel and placed inside a furnace body of a hot isostatic press to perform pressure sintering at 800 ° C., 120 MPa for 5 hours. After pressure sintering, the iron pressure vessel was removed by cutting to obtain a sintered body. The obtained sintered body is subjected to plate thickness processing by surface grinding using a diamond grindstone, and then cut using a water jet cutting machine to obtain a Cu-Ga alloy target material having a diameter of 180 mm and a thickness of 6 mm. Two pieces were produced. The two Cu—Ga alloy target materials are manufactured under the same raw material and under the same conditions, and can be regarded as having the same density, Ga content, and oxygen content.

このようにして得たCu−Ga合金ターゲット材の内、1枚は分析用として用い、図2に示す各測定位置からそれぞれ15×15×6(mm)の分析用試料を切り出し、各試料の相対密度、Ga含有量、酸素含有量を測定した。表5に各部位における相対密度、Ga含有量、酸素含有量とその平均値を示す。また表6に各部位における相対密度、Ga含有量、酸素含有量のそれぞれの全体平均に対する変動率(%)を示す。   One of the Cu—Ga alloy target materials thus obtained was used for analysis, and 15 × 15 × 6 (mm) analysis samples were cut out from the respective measurement positions shown in FIG. Relative density, Ga content, and oxygen content were measured. Table 5 shows the relative density, the Ga content, the oxygen content and the average value in each part. Table 6 shows the rate of change (%) relative to the overall average of the relative density, Ga content, and oxygen content in each part.

また、実施例2のCu−Ga合金ターゲット材の平均結晶粒径を測定した。実施例2のCu−Ga合金ターゲット材では、図3に示す光学顕微鏡像で示すように平均粒径は、100μmであった。   Moreover, the average crystal grain size of the Cu—Ga alloy target material of Example 2 was measured. In the Cu—Ga alloy target material of Example 2, the average particle diameter was 100 μm as shown in the optical microscope image shown in FIG.

次に上記で製作したターゲット材のスパッタテストを実施した。スパッタはAr圧力0.6Pa、DC電力500Wの条件で積算時間5時間実施した。実施例2でもアーキングが確認されなかった。また、スパッタ後のターゲット表面観察を行った、実施例2のCu−Ga合金ターゲット材でも目視ではノジュールが確認されなかった。   Next, a sputter test was performed on the target material produced above. Sputtering was performed under the conditions of an Ar pressure of 0.6 Pa and a DC power of 500 W for an integrated time of 5 hours. In Example 2, arcing was not confirmed. Further, no nodules were visually confirmed even in the Cu—Ga alloy target material of Example 2 in which the target surface was observed after sputtering.

Claims (4)

Gaを10〜95質量%含有し、残部Cuおよび不可避的不純物からなるCu−Ga合金ターゲット材であって、組織が平均粒径300μm以下のCu−Ga合金相からなり、ターゲット材中の各部位のGa含有量のターゲット材全体のGa含有量の平均値に対する変動量が±3%以内の範囲にあり、ターゲット材の各部位の相対密度のターゲット材全体の相対密度の平均値に対する変動量が±2%以内の範囲にあり、ターゲット材全体の相対密度の平均値が100%以上であり、ターゲット材の各部位の酸素含有量のターゲット材全体の酸素含有量の平均値に対する変動量が±20%以内の範囲にあり、且つ、ターゲット材全体の酸素含有量の平均値が300質量ppm以下であることを特徴とするCu−Ga合金ターゲット材。   A Cu—Ga alloy target material containing 10 to 95% by mass of Ga and comprising the balance Cu and unavoidable impurities, the structure comprising a Cu—Ga alloy phase having an average particle size of 300 μm or less, and each site in the target material The variation amount of the Ga content of the target material with respect to the average value of the Ga content is within a range of ± 3%, and the variation amount of the relative density of each part of the target material with respect to the average value of the relative density of the entire target material is Within the range of ± 2%, the average value of the relative density of the entire target material is 100% or more, and the fluctuation amount of the oxygen content of each part of the target material with respect to the average value of the oxygen content of the entire target material is ± A Cu—Ga alloy target material, which is within a range of 20% and has an average value of oxygen content of the entire target material of 300 mass ppm or less. 前記ターゲット材中の酸素含有量の平均値が200質量ppm以下であることを特徴とする請求項1に記載のCu−Ga合金ターゲット材。   The Cu-Ga alloy target material according to claim 1, wherein an average value of oxygen content in the target material is 200 mass ppm or less. 前記Cu−Ga合金相の平均粒径が40μm以上であることを特徴とする請求項1または請求項2に記載のCu−Ga合金ターゲット材。   The Cu-Ga alloy target material according to claim 1 or 2, wherein an average particle size of the Cu-Ga alloy phase is 40 µm or more. Cu−Ga合金ターゲット材の製造方法であって、Gaを10〜95質量%含有し、残部Cuおよび不可避的不純物からなるCu−Ga合金粉を温度700〜900℃、圧力10〜200MPaで1〜10時間の加圧焼結を行うことを特徴とするCu−Ga合金ターゲット材の製造方法。   It is a manufacturing method of a Cu-Ga alloy target material, Comprising: Cu-Ga alloy powder which contains 10-95 mass% of Ga, and consists of remainder Cu and an unavoidable impurity is 1-200 MPa at the temperature of 700-900 degreeC, and the pressure of 10-200 MPa. A method for producing a Cu-Ga alloy target material, comprising performing pressure sintering for 10 hours.
JP2011140203A 2010-06-28 2011-06-24 Cu-Ga alloy target material and method for producing the same Expired - Fee Related JP5818139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011140203A JP5818139B2 (en) 2010-06-28 2011-06-24 Cu-Ga alloy target material and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010146239 2010-06-28
JP2010146239 2010-06-28
JP2011140203A JP5818139B2 (en) 2010-06-28 2011-06-24 Cu-Ga alloy target material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012031508A true JP2012031508A (en) 2012-02-16
JP5818139B2 JP5818139B2 (en) 2015-11-18

Family

ID=45845256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011140203A Expired - Fee Related JP5818139B2 (en) 2010-06-28 2011-06-24 Cu-Ga alloy target material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5818139B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072467A (en) * 2010-09-29 2012-04-12 Sumitomo Metal Mining Co Ltd Cu-Ga ALLOY SPUTTERING TARGET AND METHOD FOR MANUFACTURING Cu-Ga ALLOY SPUTTERING TARGET
JP2012201948A (en) * 2011-03-25 2012-10-22 Sumitomo Metal Mining Co Ltd Cu-Ga ALLOY SPUTTERING TARGET
JP2012211382A (en) * 2011-03-23 2012-11-01 Sumitomo Metal Mining Co Ltd METHOD OF MANUFACTURING Cu-Ga ALLOY SPUTTERING TARGET AND THE Cu-Ga ALLOY SPUTTERING TARGET
JP2012214857A (en) * 2011-04-01 2012-11-08 Sanyo Special Steel Co Ltd Cu-Ga-BASED ALLOY POWDER WITH LOW OXYGEN CONTENT, Cu-Ga-BASED ALLOY TARGET MATERIAL, AND METHOD FOR PRODUCING THE TARGET MATERIAL
JP2013194313A (en) * 2012-03-22 2013-09-30 Sumitomo Metal Mining Co Ltd Cu-Ga ALLOY SPUTTERING TARGET AND Cu-Ga ALLOY POWDER
CN103421976A (en) * 2012-05-22 2013-12-04 山阳特殊制钢株式会社 Cu-Ga alloy powder with low oxygen content, Cu-Ga alloy target material with low oxygen content and manufacturing method of the target material
JP2014019934A (en) * 2012-07-23 2014-02-03 Mitsubishi Materials Corp Sputtering target and method for producing the same
WO2014115379A1 (en) * 2013-01-25 2014-07-31 住友金属鉱山株式会社 CYLINDRICAL Cu-Ga ALLOY SPUTTERING TARGET AND PRODUCTION METHOD THEREFOR
JP2015028213A (en) * 2013-02-25 2015-02-12 三菱マテリアル株式会社 Sputtering target and manufacturing method thereof
JP2015063760A (en) * 2014-10-31 2015-04-09 山陽特殊製鋼株式会社 METHODS FOR PRODUCING Cu-Ga-BASED ALLOY POWDER HAVING LOW OXYGEN CONTENT AND SPUTTERING TARGET MATERIAL
WO2015052848A1 (en) * 2013-10-07 2015-04-16 三菱マテリアル株式会社 Sputtering target and process for manufacturing same
JP2015071830A (en) * 2014-10-29 2015-04-16 山陽特殊製鋼株式会社 Cu-Ga-BASED ALLOY SPUTTERING TARGET MATERIAL WITH LOW OXYGEN CONTENT
WO2016013514A1 (en) * 2014-07-24 2016-01-28 三菱マテリアル株式会社 Cu-ga alloy cylindrical sputtering target and cu-ga alloy cylindrical ingot
US20160056025A1 (en) * 2013-03-29 2016-02-25 Mitsubishi Materials Corporation Cylindrical sputtering target and method for manufacturing same
WO2016158293A1 (en) * 2015-03-30 2016-10-06 三菱マテリアル株式会社 Cu-Ga ALLOY SPUTTERING TARGET AND PROCESS FOR PRODUCING Cu-Ga ALLOY SPUTTERING TARGET
JP2017014599A (en) * 2015-07-06 2017-01-19 三菱マテリアル株式会社 Sputtering target and production method thereof
WO2017188299A1 (en) * 2016-04-26 2017-11-02 出光興産株式会社 Oxide sintered body, sputtering target and oxide semiconductor film
CN107429384A (en) * 2015-03-30 2017-12-01 三菱综合材料株式会社 The manufacture method of Cu Ga alloy sputtering targets and Cu Ga alloy sputtering targets

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073163A (en) * 1998-08-28 2000-03-07 Vacuum Metallurgical Co Ltd Copper-gallium alloy sputtering target and its production
JP2008138232A (en) * 2006-11-30 2008-06-19 Mitsubishi Materials Corp HIGH Ga CONTENT Cu-Ga BINARY ALLOY SPUTTERING TARGET, AND ITS MANUFACTURING METHOD
US20100116341A1 (en) * 2008-11-12 2010-05-13 Solar Applied Materials Technology Corp. Copper-gallium allay sputtering target, method for fabricating the same and related applications
JP2010116580A (en) * 2008-11-11 2010-05-27 Solar Applied Materials Technology Corp Sputtering target of copper-gallium alloy, method for manufacturing the same, and related application
WO2010119887A1 (en) * 2009-04-14 2010-10-21 株式会社コベルコ科研 Cu-Ga ALLOY SPUTTERING TARGET AND PROCESS FOR MANUFACTURE THEREOF
WO2011010529A1 (en) * 2009-07-23 2011-01-27 Jx日鉱日石金属株式会社 Sintered cu-ga alloy sputtering target, method for producing the target, light-absorbing layer formed from sintered cu-ga alloy sputtering target, and cigs solar cell using the light-absorbing layer
JP2011149039A (en) * 2010-01-20 2011-08-04 Sanyo Special Steel Co Ltd Cu-Ga-BASED SPUTTERING TARGET MATERIAL HAVING HIGH STRENGTH, AND METHOD FOR MANUFACTURING THE SAME
WO2011126092A1 (en) * 2010-04-09 2011-10-13 住友金属鉱山株式会社 Method for producing cu-ga alloy powder, cu-ga alloy powder, method for producing cu-ga alloy sputtering target, and cu-ga alloy sputtering target
JP2011225986A (en) * 2010-03-31 2011-11-10 Sumitomo Chemical Co Ltd Copper-gallium alloy and manufacturing method therefor
JP2011241452A (en) * 2010-05-19 2011-12-01 Hitachi Cable Ltd Cu-Ga ALLOY MATERIAL, SPUTTERING TARGET, AND METHOD OF MAKING Cu-Ga ALLOY MATERIAL

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073163A (en) * 1998-08-28 2000-03-07 Vacuum Metallurgical Co Ltd Copper-gallium alloy sputtering target and its production
JP2008138232A (en) * 2006-11-30 2008-06-19 Mitsubishi Materials Corp HIGH Ga CONTENT Cu-Ga BINARY ALLOY SPUTTERING TARGET, AND ITS MANUFACTURING METHOD
JP2010116580A (en) * 2008-11-11 2010-05-27 Solar Applied Materials Technology Corp Sputtering target of copper-gallium alloy, method for manufacturing the same, and related application
US20100116341A1 (en) * 2008-11-12 2010-05-13 Solar Applied Materials Technology Corp. Copper-gallium allay sputtering target, method for fabricating the same and related applications
WO2010119887A1 (en) * 2009-04-14 2010-10-21 株式会社コベルコ科研 Cu-Ga ALLOY SPUTTERING TARGET AND PROCESS FOR MANUFACTURE THEREOF
JP2010265544A (en) * 2009-04-14 2010-11-25 Kobelco Kaken:Kk Cu-Ga ALLOY SPUTTERING TARGET AND PROCESS FOR MANUFACTURING THEREOF
WO2011010529A1 (en) * 2009-07-23 2011-01-27 Jx日鉱日石金属株式会社 Sintered cu-ga alloy sputtering target, method for producing the target, light-absorbing layer formed from sintered cu-ga alloy sputtering target, and cigs solar cell using the light-absorbing layer
JP2011149039A (en) * 2010-01-20 2011-08-04 Sanyo Special Steel Co Ltd Cu-Ga-BASED SPUTTERING TARGET MATERIAL HAVING HIGH STRENGTH, AND METHOD FOR MANUFACTURING THE SAME
JP2011225986A (en) * 2010-03-31 2011-11-10 Sumitomo Chemical Co Ltd Copper-gallium alloy and manufacturing method therefor
WO2011126092A1 (en) * 2010-04-09 2011-10-13 住友金属鉱山株式会社 Method for producing cu-ga alloy powder, cu-ga alloy powder, method for producing cu-ga alloy sputtering target, and cu-ga alloy sputtering target
JP2011241452A (en) * 2010-05-19 2011-12-01 Hitachi Cable Ltd Cu-Ga ALLOY MATERIAL, SPUTTERING TARGET, AND METHOD OF MAKING Cu-Ga ALLOY MATERIAL

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072467A (en) * 2010-09-29 2012-04-12 Sumitomo Metal Mining Co Ltd Cu-Ga ALLOY SPUTTERING TARGET AND METHOD FOR MANUFACTURING Cu-Ga ALLOY SPUTTERING TARGET
JP2012211382A (en) * 2011-03-23 2012-11-01 Sumitomo Metal Mining Co Ltd METHOD OF MANUFACTURING Cu-Ga ALLOY SPUTTERING TARGET AND THE Cu-Ga ALLOY SPUTTERING TARGET
JP2012201948A (en) * 2011-03-25 2012-10-22 Sumitomo Metal Mining Co Ltd Cu-Ga ALLOY SPUTTERING TARGET
JP2012214857A (en) * 2011-04-01 2012-11-08 Sanyo Special Steel Co Ltd Cu-Ga-BASED ALLOY POWDER WITH LOW OXYGEN CONTENT, Cu-Ga-BASED ALLOY TARGET MATERIAL, AND METHOD FOR PRODUCING THE TARGET MATERIAL
JP2013194313A (en) * 2012-03-22 2013-09-30 Sumitomo Metal Mining Co Ltd Cu-Ga ALLOY SPUTTERING TARGET AND Cu-Ga ALLOY POWDER
CN103421976A (en) * 2012-05-22 2013-12-04 山阳特殊制钢株式会社 Cu-Ga alloy powder with low oxygen content, Cu-Ga alloy target material with low oxygen content and manufacturing method of the target material
JP2014019934A (en) * 2012-07-23 2014-02-03 Mitsubishi Materials Corp Sputtering target and method for producing the same
WO2014115379A1 (en) * 2013-01-25 2014-07-31 住友金属鉱山株式会社 CYLINDRICAL Cu-Ga ALLOY SPUTTERING TARGET AND PRODUCTION METHOD THEREFOR
JP2014141722A (en) * 2013-01-25 2014-08-07 Sumitomo Metal Mining Co Ltd CYLINDRICAL Cu-Ga ALLOY SPUTTERING TARGET AND PRODUCTION METHOD THEREOF
TWI596222B (en) * 2013-01-25 2017-08-21 Sumitomo Metal Mining Co Cylindrical Cu-Ga alloy sputtering target and method of manufacturing the same
CN105008578B (en) * 2013-01-25 2017-03-22 住友金属矿山株式会社 CYLINDRICAL Cu-Ga ALLOY SPUTTERING TARGET AND PRODUCTION METHOD THEREFOR
JP2015028213A (en) * 2013-02-25 2015-02-12 三菱マテリアル株式会社 Sputtering target and manufacturing method thereof
US20160056025A1 (en) * 2013-03-29 2016-02-25 Mitsubishi Materials Corporation Cylindrical sputtering target and method for manufacturing same
EP2980268B1 (en) * 2013-03-29 2021-06-02 Mitsubishi Materials Corporation Cylindrical sputtering target and process for producing same
CN105473758A (en) * 2013-10-07 2016-04-06 三菱综合材料株式会社 Sputtering target and process for manufacturing same
US10351946B2 (en) 2013-10-07 2019-07-16 Mitsubishi Materials Corporation Sputtering target and method for producing same
WO2015052848A1 (en) * 2013-10-07 2015-04-16 三菱マテリアル株式会社 Sputtering target and process for manufacturing same
WO2016013514A1 (en) * 2014-07-24 2016-01-28 三菱マテリアル株式会社 Cu-ga alloy cylindrical sputtering target and cu-ga alloy cylindrical ingot
JP2015071830A (en) * 2014-10-29 2015-04-16 山陽特殊製鋼株式会社 Cu-Ga-BASED ALLOY SPUTTERING TARGET MATERIAL WITH LOW OXYGEN CONTENT
JP2015063760A (en) * 2014-10-31 2015-04-09 山陽特殊製鋼株式会社 METHODS FOR PRODUCING Cu-Ga-BASED ALLOY POWDER HAVING LOW OXYGEN CONTENT AND SPUTTERING TARGET MATERIAL
CN107429384B (en) * 2015-03-30 2019-07-05 三菱综合材料株式会社 The manufacturing method of Cu-Ga alloy sputtering targets and Cu-Ga alloy sputtering targets
CN107429384A (en) * 2015-03-30 2017-12-01 三菱综合材料株式会社 The manufacture method of Cu Ga alloy sputtering targets and Cu Ga alloy sputtering targets
US10822691B2 (en) 2015-03-30 2020-11-03 Mitsubishi Materials Corporation Cu—Ga alloy sputtering target and method of manufacturing Cu—Ga alloy sputtering target
WO2016158293A1 (en) * 2015-03-30 2016-10-06 三菱マテリアル株式会社 Cu-Ga ALLOY SPUTTERING TARGET AND PROCESS FOR PRODUCING Cu-Ga ALLOY SPUTTERING TARGET
JP2017014599A (en) * 2015-07-06 2017-01-19 三菱マテリアル株式会社 Sputtering target and production method thereof
JP6266853B1 (en) * 2016-04-26 2018-01-24 出光興産株式会社 Oxide sintered body, sputtering target, and oxide semiconductor film
JP2018104271A (en) * 2016-04-26 2018-07-05 出光興産株式会社 Oxide sintered body, sputtering target, oxide semiconductor film and thin-film transistor
KR20180136939A (en) * 2016-04-26 2018-12-26 이데미쓰 고산 가부시키가이샤 An oxide sintered body, a sputtering target, and an oxide semiconductor film
WO2017188299A1 (en) * 2016-04-26 2017-11-02 出光興産株式会社 Oxide sintered body, sputtering target and oxide semiconductor film
US11078120B2 (en) 2016-04-26 2021-08-03 Idemitsu Kosan Co., Ltd. Oxide sintered body, sputtering target and oxide semiconductor film
KR102382128B1 (en) 2016-04-26 2022-04-01 이데미쓰 고산 가부시키가이샤 Oxide sintered body, sputtering target and oxide semiconductor film

Also Published As

Publication number Publication date
JP5818139B2 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
JP5818139B2 (en) Cu-Ga alloy target material and method for producing the same
JP5202643B2 (en) Cu-Ga alloy sintered compact sputtering target and method for manufacturing the same
JP4793504B2 (en) Sputtering target and manufacturing method thereof
TWI458848B (en) Cu-Ga sintered body sputtering target and manufacturing method of the target
JP5725610B2 (en) Sputtering target and manufacturing method thereof
TWI490348B (en) Sputtering target and its manufacturing method
JP5954196B2 (en) Cylindrical Cu-Ga alloy sputtering target and manufacturing method thereof
JP5165100B1 (en) Sputtering target and manufacturing method thereof
JP2014034703A (en) Cu-Ga ALLOY SPUTTERING GATE AND METHOD FOR PRODUCING THE SAME
TWI438296B (en) Sputtering target and its manufacturing method
TWI551706B (en) Cu-Ga target and a method for producing the same, and a light absorbing layer composed of a Cu-Ga based alloy film and a CIGS solar cell using the light absorbing layer
TWI545208B (en) A Cu-Ga alloy sputtering target, a casting product for the sputtering target, and the like
JP2014210943A (en) Cu-Ga ALLOY TARGET MATERIAL AND METHOD FOR MANUFACTURING THE SAME
JP6583019B2 (en) Cu-Ga alloy sputtering target and method for producing Cu-Ga alloy sputtering target
JP2012092438A (en) Mo-based sputtering target and method of manufacturing the same, and cigs-based thin-film solar cell using the same
JP2015045060A (en) MANUFACTURING METHOD OF Cu-BASED POWDER, AND MANUFACTURING METHOD OF Cu-BASED SPUTTERING TARGET MATERIAL USING THE SAME
JP2014185384A (en) Cu-Ga SPUTTERING TARGET AND MANUFACTURING METHOD OF THE SAME
JP2014098206A (en) Cu-Ga BINARY SPUTTERING TARGET AND PRODUCTION METHOD THEREOF
JP2017095781A (en) Cu-Ga ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD OF THE SAME
JP2015059246A (en) Cu-Ga ALLOY TARGET MATERIAL
WO2016158293A1 (en) Cu-Ga ALLOY SPUTTERING TARGET AND PROCESS FOR PRODUCING Cu-Ga ALLOY SPUTTERING TARGET
JP2012072466A (en) METHOD OF MANUFACTURING Cu-Ga ALLOY SPUTTERING TARGET AND THE Cu-Ga ALLOY SPUTTERING TARGET

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150917

R150 Certificate of patent or registration of utility model

Ref document number: 5818139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees