JP2011148929A - Method for estimating the amount of raised dust of coal to be charged, method for estimating the thickness of deposited carbon, and method for operating chamber-type coke oven - Google Patents

Method for estimating the amount of raised dust of coal to be charged, method for estimating the thickness of deposited carbon, and method for operating chamber-type coke oven Download PDF

Info

Publication number
JP2011148929A
JP2011148929A JP2010012328A JP2010012328A JP2011148929A JP 2011148929 A JP2011148929 A JP 2011148929A JP 2010012328 A JP2010012328 A JP 2010012328A JP 2010012328 A JP2010012328 A JP 2010012328A JP 2011148929 A JP2011148929 A JP 2011148929A
Authority
JP
Japan
Prior art keywords
coal
mass
agglomerated
charging
coarse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010012328A
Other languages
Japanese (ja)
Other versions
JP5779836B2 (en
Inventor
Asayuki Nakagawa
朝之 中川
Kenji Kato
健次 加藤
Takashi Arima
孝 有馬
Masahiro Kubota
征弘 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010012328A priority Critical patent/JP5779836B2/en
Publication of JP2011148929A publication Critical patent/JP2011148929A/en
Application granted granted Critical
Publication of JP5779836B2 publication Critical patent/JP5779836B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably operate a coke oven by precisely estimating the amount of raised dust in consideration of the impact and raising dust effect of fine powder and properly estimating the thickness of deposited carbon based on the estimate. <P>SOLUTION: Raw material coal is classified into fine powder coal and coarse particle coal. The fine powder coal is agglomerated into agglomerated coal. The agglomerated coal and the coarse particle coal are charged into a coke oven as a coal to be charged for dry distillation. At this time, the amount Hdst (mass%) of raised dust which is raised when coal is charged is estimated by the following formula (1) and the thickness of deposited carbon is properly estimated based on the estimate: Hdst=k1[HGI]+k2+[Gv]+k3[Dp]+k4[M]+k5[OL]+k6[Mrf]+k7[Rsep]+k8[Mcp]+k9 (1), wherein HGI: grindability index of coal, Gv: gas flow rate (m/s), Dp: fineness number of coal, M: moisture content of coal (mass%), OL: oil addition rate to coal (mass%), Mrf: proportion of fine powder in coarse particle coal (mass%), Rsep: classification rate (mass%), Mcp: proportion of 0.3-1 mm in coal to be charged (mass%), and k1-k9: coefficient determined by multiple linear regression analysis. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、室式コークス炉の操業における装入炭の発塵量の推定方法と付着カーボン厚の推定方法、及び、該推定方法に基づく室式コークス炉の操業方法に関するものである。   TECHNICAL FIELD The present invention relates to a method for estimating the amount of dust generated from charging coal in the operation of a chamber coke oven, a method for estimating the thickness of attached carbon, and a method for operating a chamber coke oven based on the estimation method.

コークス炉炭化室で石炭を乾留してコークスを製造する過程において、石炭から発生した乾留ガス(炭化水素系化合物)が熱分解してカーボンが生成し、炭化室の炉壁や炉頂空間部、さらに、上昇管基部に付着する。炭化室の炉壁や炉頂空間部におけるカーボン付着量が増加すると、石炭の乾留後のコークス押出し時に、コークス押出し抵抗が増大して炉体の損傷及びコークス押し詰まり等の操業障害や経済的損失を招くことになる。   In the process of carbonizing coal in a coke oven carbonization chamber to produce coke, carbonization gas (hydrocarbon compound) generated from coal is pyrolyzed to produce carbon, and the furnace wall and top space of the carbonization chamber, Furthermore, it adheres to the riser base. Increasing the amount of carbon adhering to the furnace wall and top space of the carbonization chamber will increase coke extrusion resistance during coke extrusion after coal carbonization, resulting in operational failures and economic losses such as furnace damage and coke clogging. Will be invited.

また、石炭の乾留において、上昇管基部のカーボン付着量が過度に増加し、上昇管が閉塞すると、コークス炉乾留ガスのガス精製プロセスへの流れが遮断されるので、一貫製鉄所のエネルギー需給バランスを乱したり、コークス炉の装入口や炉蓋から乾留ガスが漏洩したりするので、環境・エネルギーへの影響が極めて大きい。   In addition, if the carbon adhering amount at the base of the riser is excessively increased and the riser is clogged during coal dry distillation, the flow of coke oven dry distillation gas to the gas refining process is interrupted. Or carbonization gas leaks from the coke oven inlet and the furnace lid, which has a significant impact on the environment and energy.

それ故、これまで、上昇管基部へのカーボンの付着又は付着カーボンに対する種々の対策が、(1)カーボンを付着させないとの観点、又は、(2)付着カーボンを除去するとの観点から提案されている((1)の観点:特許文献1〜5、参照、(2)の観点:特許文献6〜10、参照)。   Therefore, various countermeasures against carbon adhering to the riser base or adhering carbon have been proposed so far from the viewpoint of (1) not adhering carbon or (2) removing adhering carbon. ((1) viewpoint: Patent Documents 1 to 5, see, (2) viewpoint: Patent Documents 6 to 10).

これらの対策は、いずれも、カーボンの付着抑制、又は、付着カーボンの除去の点で、効果が期待できるものであるが、乾留ガスの熱分解が著しく速く進行する場合には、カーボンの付着抑制又は付着カーボンの除去が間に合わず、上昇管が閉塞することがある。   All of these measures are expected to be effective in terms of carbon adhesion suppression or carbon removal, but when carbonization of pyrolysis gas proceeds significantly faster, carbon adhesion suppression Or removal of adhering carbon may not be in time, and the riser may be blocked.

そこで、本発明者らは、カーボンの付着による上昇管の閉塞問題を解決するため、付着カーボン厚の推定方法と、該推定方法を用いるコークス炉の操業方法を提案した(特許文献11、参照)。   In view of this, the present inventors have proposed a method for estimating the deposited carbon thickness and a method for operating a coke oven using the estimated method in order to solve the problem of clogging of the riser due to carbon adhesion (see Patent Document 11). .

上記推定方法は、従来の石炭の水分や揮発分、炉頂空間部(上昇管基部を含む)の温度等に加え、装入時の発塵や、炉頂空間部の体積を考慮して、付着カーボン厚を推定するものである。そして、上記操業方法によれば、上昇管基部の閉塞を回避することができ、操業が安定するので、大きな経済的及び技術的効果を得ることができる。   The above estimation method takes into consideration the moisture and volatile content of conventional coal, the temperature of the furnace top space (including the riser base), dust generation during charging, and the volume of the furnace top space, This is to estimate the deposited carbon thickness. And according to the said operation method, since obstruction | occlusion of a riser base part can be avoided and operation is stabilized, a big economic and technical effect can be acquired.

ところが、石炭を微粉炭と粗粒炭に分級し、微粉炭からの発塵量を低減するため、微粉炭を塊成化して塊成炭とした後、これを粗粒炭と混合して炭化室に装入するコークスの製造方法(例えば、特許文献12、参照)の場合、特に、塊成炭の使用割合が増大すると、特許文献11の推定方法で推定した付着カーボン厚よりも実測付着カーボン厚が厚くなり、推定値と実測値が乖離することが判明した。   However, in order to classify coal into pulverized coal and coarse coal, and reduce the amount of dust generated from pulverized coal, the pulverized coal is agglomerated to form agglomerated coal, which is then mixed with coarse coal and carbonized. In the case of a method for producing coke charged into a chamber (for example, see Patent Document 12), in particular, when the use ratio of agglomerated coal is increased, the actually measured adhered carbon is larger than the deposited carbon thickness estimated by the estimation method of Patent Document 11. It became clear that the estimated value and the measured value differed as the thickness increased.

このように、推定値が実測値を下回るような乖離では、推定値で、乾留中に閉塞は発生しないと予測しても、実際の操業で、上昇管の閉塞が発生してしまうことになるので、好ましいことではない。それ故、特許文献11の推定方法に替り、塊成炭と粗粒炭を混合して使用する場合でも適用できる上昇管基部における付着カーボン厚の推定方法が求められている。   In this way, when the estimated value is less than the actual measured value, even if the estimated value predicts that no blockage will occur during dry distillation, the riser will be blocked in actual operation. So it is not preferable. Therefore, in place of the estimation method of Patent Document 11, there is a need for an estimation method of the attached carbon thickness at the riser base that can be applied even when agglomerated coal and coarse coal are mixed and used.

特開平05−14136号公報Japanese Patent Laid-Open No. 05-14136 実開昭60−82442号公報Japanese Utility Model Publication No. 60-82442 特開平06−271864号公報Japanese Patent Laid-Open No. 06-271864 特開昭53−72002号公報JP-A-53-72002 特開平09−263763号公報JP 09-263663 A 特開昭58−120686号公報JP 58-120686 A 特開平05−1287号公報Japanese Patent Laid-Open No. 05-1287 特開平05−271662号公報Japanese Patent Laid-Open No. 05-271661 特開平06−322373号公報Japanese Patent Laid-Open No. 06-322373 特開平07−247482号公報JP 07-247482 A 特開2002−173683号公報JP 2002-173683 A 特開2006−283008号公報JP 2006-283008 A

CAMP−ISIJ、vol.20、2007、p.875CAMP-ISIJ, vol.20, 2007, p.875

原料炭を微粉炭と粗粒炭に分級し、微粉炭を塊成化して塊成炭とした後、この塊成炭と粗粒炭を混合してコークスを製造する場合、塊成炭の使用割合が大きいと、特許文献11の推定方法で推定した付着カーボン厚の推定値が付着カーボン厚の実測値と乖離する。これは、次の理由による。   When coke is produced by classifying raw coal into pulverized coal and coarse coal, agglomerating pulverized coal into agglomerated coal, and then mixing this agglomerated coal and coarse coal, coke is used. When the ratio is large, the estimated value of the attached carbon thickness estimated by the estimation method of Patent Document 11 deviates from the actually measured value of the attached carbon thickness. This is due to the following reason.

(i)粉砕した石炭を微粉炭と粗粒炭に分級する過程で、コークス炉のカーボン付着量に大きく影響する0.3mm以下の石炭微粉粒子を、粗粒炭から完全に分離することは極めて困難であり、該微粉粒子は、粗粒炭中に残留し、(ii)上記微粉炭を塊成化して塊成炭とした後、この塊成炭を粗粒炭と混合して装入炭として炭化室に装入する時、(ii-1)塊成炭の落下衝撃により、粗粒炭に残留していた微粉(以下「残留微粉粒子」ともいう。)が、粗粒炭から分離・飛散して発塵量が増加し(以下「微粉の衝撃・発塵効果」という。この効果については、後で詳述する。)、(ii-2)その結果、コークス炉内で乾留中に生成する付着カーボン量が増加する(非特許文献1、参照)。   (I) In the process of classifying pulverized coal into pulverized coal and coarse coal, it is extremely difficult to completely separate fine coal particles of 0.3 mm or less that greatly affect the carbon adhesion amount of the coke oven from coarse coal. The pulverized particles remain in the coarse coal. (Ii) After the pulverized coal is agglomerated into agglomerated coal, the agglomerated coal is mixed with the coarse coal and charged coal. (Ii-1) The fine powder remaining in the coarse coal (hereinafter also referred to as “residual fine particles”) is separated from the coarse coal when it is charged into the carbonization chamber. The amount of dust generation increases due to scattering (hereinafter referred to as “impact / dust generation effect of fine powder. This effect will be described in detail later), (ii-2) As a result, during the carbonization in the coke oven. The amount of produced carbon increases (see Non-Patent Document 1).

そこで、本発明は、原料炭を微粉炭と粗粒炭に分級し、微粉炭を塊成化して塊成炭とした後、この塊成炭と粗粒炭を混合してコークス炉に装入してコークスを乾留する際に、微粉の衝撃・発塵効果を考慮して、装入炭の発塵量を精度よく推定するとともに、該推定値に基づいて付着カーボン厚を適正に推定し、さらに、該推定値に基づいて室式コークス炉を安定的に操業することを課題とする。   Therefore, the present invention classifies the raw coal into pulverized coal and coarse coal, agglomerates the pulverized coal into agglomerated coal, and then mixes the agglomerated coal and coarse coal and charges them into the coke oven. Then, when carbonizing coke, considering the impact and dust generation effect of fine powder, accurately estimate the dust generation amount of the charging coal, and properly estimate the attached carbon thickness based on the estimated value, Furthermore, it makes it a subject to operate a room-type coke oven stably based on this estimated value.

本発明者らは、特許文献11で提案した装入炭の発塵量の推定式を前提に、原料炭を微粉炭と粗粒炭に分級し、微粉炭を塊成化して塊成炭とした後、該塊成炭と前記粗粒炭を装入炭として室式コークス炉に装入して乾留する際に、塊成炭に起因する微粉の衝撃・発塵効果を考慮した発塵量の推定式を鋭意検討した。その結果、下記式(1)で定義する推定式Hdstを創案した。   On the premise of the estimation formula for the dust generation amount of the charging coal proposed in Patent Document 11, the present inventors classify the raw coal into pulverized coal and coarse coal, agglomerate the pulverized coal, Then, when the agglomerated coal and the coarse coal are charged into a chamber coke oven as dry coal and dry-distilled, the amount of dust generated taking into account the impact and dusting effect of fine powder caused by the agglomerated coal The estimation formula of As a result, the estimation formula Hdst defined by the following formula (1) was created.

Hdst=k1[HGI]+k2[Gv]+k3[Dp]+k4[M]+k5[OL]
+k6[Mrf]+k7[Rsep]+k8[Mcp]+k9(k1〜k9:重回帰分析で定まる 係数) ・・・(1)
Hdst = k1 [HGI] + k2 [Gv] + k3 [Dp] + k4 [M] + k5 [OL]
+ K6 [Mrf] + k7 [Rsep] + k8 [Mcp] + k9 (k1 to k9: coefficients determined by multiple regression analysis) (1)

上記式(1)は、特許文献11で提案した推定式Hに、上記塊成炭に起因する微粉の衝撃・発塵効果を考慮して、Mrf:粗粒炭中の微粉の割合(質量%)、Rsep:分級率(質量%)、及び、Mcp:装入炭中の0.3〜1mmの石炭粒子の割合(質量%)に係る新規項を、線形一次結合で追加したことを特徴とする。   The above formula (1) is based on the estimation formula H proposed in Patent Document 11 in consideration of the impact and dust generation effect of fine powder due to the agglomerated coal, Mrf: the proportion of fine powder in coarse coal (mass%) ), Rsep: classification rate (mass%), and Mcp: a new term relating to the proportion (mass%) of coal particles of 0.3 to 1 mm in the charged coal is added by linear linear combination, To do.

本発明は、微粉の衝撃・発塵効果を考慮した上記式(1)を基礎としてなされたもので、その要旨は以下のとおりである。   The present invention has been made on the basis of the above formula (1) in consideration of the impact and dust generation effect of fine powder, and the gist thereof is as follows.

(1)原料炭を微粉炭と粗粒炭に分級し、微粉炭を塊成化して塊成炭とした後、該塊成炭と前記粗粒炭を装入炭として室式コークス炉に装入して乾留する際、装入時に装入炭から発塵する発塵量Hdst(質量%)を、下記式(1)で推定することを特徴とする装入炭の発塵量の推定方法。
Hdst=k1[HGI]+k2[Gv]+k3[Dp]+k4[M]+k5[OL]
+k6[Mrf]+k7[Rsep]+k8[Mcp]+k9 ・・・(1)
HGI:石炭の粉砕性指数
Gv:ガス流速(m/s)
Dp:石炭の粒度指数
M:石炭の水分含有率(質量%)
OL:石炭へのオイル添加率(質量%)
Mrf:粗粒炭中の微粉の割合(質量%)
Rsep:分級率(質量%)
Mcp:装入炭中の0.3〜1mmの石炭粒子の割合(質量%)
k1〜k9:重回帰分析で定まる係数
(1) Classifying raw coal into pulverized coal and coarse coal, agglomerating pulverized coal into agglomerated coal, and then loading the agglomerated coal and coarse coal into a chamber coke oven. A method for estimating the amount of dust generated by charging coal, characterized in that the amount of dust Hdst (mass%) generated from the charged coal during charging is estimated by the following equation (1). .
Hdst = k1 [HGI] + k2 [Gv] + k3 [Dp] + k4 [M] + k5 [OL]
+ K6 [Mrf] + k7 [Rsep] + k8 [Mcp] + k9 (1)
HGI: Coal grindability index Gv: Gas flow rate (m / s)
Dp: Coal particle size index M: Coal moisture content (% by mass)
OL: Oil addition rate to coal (mass%)
Mrf: Ratio of fine powder in coarse coal (mass%)
Rsep: Classification rate (mass%)
Mcp: Ratio of coal particles of 0.3 to 1 mm in charging coal (mass%)
k1 to k9: Coefficients determined by multiple regression analysis

(2)原料炭を微粉炭と粗粒炭に分級し、微粉炭を塊成化して塊成炭とした後、該塊成炭と前記粗粒炭を装入炭として室式コークス炉に装入して乾留する際、乾留1サイクルの間に上昇管の内面に付着するカーボンの水平方向の厚さ:Doil-space-fine(mm/日)を、下記式(2)で推定することを特徴とする付着カーボン厚の推定方法。   (2) After classifying the raw coal into pulverized coal and coarse coal and agglomerating the pulverized coal into agglomerated coal, the coal and the coarse coal are charged into the chamber coke oven. When carbonizing and carbonizing, the horizontal thickness of carbon adhering to the inner surface of the riser during one cycle of carbonization: Doil-space-fine (mm / day) is estimated by the following formula (2). A method for estimating the thickness of attached carbon.

Doil-space-fine
=64.5×Exp(k10×OL+k11×W+k12−7950/T)
×VM×(1−0.0476×M)
×Exp{(k13+k14×Hdst)×(1−ξ(τ))} ・・・(2)
Hdst=k1[HGI]+k2[Gv]+k3[Dp]+k4[M]+k5[OL]
+k6[Mrf]+k7[Rsep]+k8[Mcp]+k9
OL:石炭へのオイル添加率(質量%)
W:炭化室への石炭装入量(ton)
T:上昇管基部の温度(K)
VM:石炭の揮発分(質量%)
M:石炭の水分含有率(質量%)
Hdst:石炭の発塵量(質量%)
ξ(τ):補正係数
τ:石炭装入後の経過時間(h)
HGI:石炭の粉砕性指数
Gv:ガス流速(m/s)
Dp:石炭の粒度指数
Mrf:粗粒炭中の微粉の割合(質量%)
Rsep:分級率(質量%)
Mcp:装入炭中の0.3〜1mmの石炭粒子の割合(質量%)
k1〜k14:係数
Doil-space-fine
= 64.5 x Exp (k10 x OL + k11 x W + k12-7950 / T)
× VM × (1-0.0476 × M)
× Exp {(k13 + k14 × Hdst) × (1-ξ (τ))} (2)
Hdst = k1 [HGI] + k2 [Gv] + k3 [Dp] + k4 [M] + k5 [OL]
+ K6 [Mrf] + k7 [Rsep] + k8 [Mcp] + k9
OL: Oil addition rate to coal (mass%)
W: Coal charge into the carbonization chamber (ton)
T: Temperature of the riser base (K)
VM: Coal volatile matter (mass%)
M: Moisture content of coal (% by mass)
Hdst: Coal dust generation (% by mass)
ξ (τ): Correction factor τ: Elapsed time after charging coal (h)
HGI: Coal grindability index Gv: Gas flow rate (m / s)
Dp: Particle size index of coal Mrf: Ratio of fine powder in coarse coal (mass%)
Rsep: Classification rate (mass%)
Mcp: Ratio of coal particles of 0.3 to 1 mm in charging coal (mass%)
k1 to k14: Coefficient

(3)原料炭を微粉炭と粗粒炭に分級し、微粉炭を塊成化して塊成炭とした後、該塊成炭と前記粗粒炭を装入炭として室式コークス炉に装入して乾留する際、乾留1サイクルの間に上昇管の内面に付着するカーボンの水平方向の厚さ:Doil-space-fine(mm/日)を、下記式(3)で推定することを特徴とする付着カーボン厚の推定方法。   (3) After classifying the raw coal into pulverized coal and coarse coal, agglomerating the pulverized coal into agglomerated coal, and then loading the agglomerated coal and the coarse coal into the chamber coke oven as charging coal. When carbonizing and carbonizing, the horizontal thickness of carbon adhering to the inner surface of the riser during one cycle of carbonization: Doil-space-fine (mm / day) is estimated by the following formula (3). A method for estimating the thickness of attached carbon.

Doil-space-fine
=64.5×Σ[Exp(k10×OL+k11×W+k12−7950/Tm(Δτ))
×VM×(1−0.0476×M)
×Exp{(k13+k14×Hdst)×(1−ξm(Δτ))}] ・・・(3)
Hdst=k1[HGI]+k2[Gv]+k3[Dp]+k4[M]+k5[OL]
+k6[Mrf]+k7[Rsep]+k8[Mcp]+k9
OL:石炭へのオイル添加率(質量%)
W:炭化室への石炭装入量(ton)
Tm:微小時間Δτにおける温度の平均値(K)
VM:石炭の揮発分(質量%)
M:石炭の水分含有率(質量%)
Hdst:石炭の発塵量(質量%)
ξm(τ):微小時間Δτにおける補正係数の平均値(−)
Δτ:微小時間(乾留1サイクルに対する相対値)
HGI:石炭の粉砕性指数
Gv:ガス流速(m/s)
Dp:石炭の粒度指数
Mrf:粗粒炭中の微粉の割合(質量%)
Rsep:分級率(質量%)
Mcp:装入炭中の0.3〜1mmの石炭粒子の割合(質量%)
k1〜k14:係数
Doil-space-fine
= 64.5 × Σ [Exp (k10 × OL + k11 × W + k12-7950 / Tm (Δτ))
× VM × (1-0.0476 × M)
× Exp {(k13 + k14 × Hdst) × (1-ξm (Δτ))}] (3)
Hdst = k1 [HGI] + k2 [Gv] + k3 [Dp] + k4 [M] + k5 [OL]
+ K6 [Mrf] + k7 [Rsep] + k8 [Mcp] + k9
OL: Oil addition rate to coal (mass%)
W: Coal charge into the carbonization chamber (ton)
Tm: Average value of temperature in minute time Δτ (K)
VM: Coal volatile matter (mass%)
M: Moisture content of coal (% by mass)
Hdst: Coal dust generation (% by mass)
ξm (τ): Average value of correction coefficient (−) in minute time Δτ
Δτ: Minute time (relative value for one cycle of carbonization)
HGI: Coal grindability index Gv: Gas flow rate (m / s)
Dp: Particle size index of coal Mrf: Ratio of fine powder in coarse coal (mass%)
Rsep: Classification rate (mass%)
Mcp: Ratio of coal particles of 0.3 to 1 mm in charging coal (mass%)
k1 to k14: Coefficient

(4)上記(2)に記載の付着カーボン厚の推定方法により推定した付着カーボン厚に基づいて、予め、装入炭の性状及び/又は操業条件を調整して、上昇管の内面へのカーボンの付着を抑制し、上昇管の閉塞を防止することを特徴とする室式コークス炉の操業方法。   (4) Based on the adhesion carbon thickness estimated by the method for estimating the adhesion carbon thickness described in (2) above, the carbon on the inner surface of the riser pipe is adjusted in advance by adjusting the properties and / or operating conditions of the charging coal. A method for operating a coke oven, characterized by suppressing adhesion of the riser and preventing the riser from being blocked.

(5)上記(3)に記載の付着カーボン厚の推定方法により推定した付着カーボン厚に基づいて、操業途中、装入炭の性状及び/又は操業条件を調整して、上昇管の内面へのカーボンの付着を抑制し、上昇管の閉塞を防止することを特徴とする室式コークス炉の操業方法。   (5) Based on the adhesion carbon thickness estimated by the method for estimating the adhesion carbon thickness described in (3) above, during the operation, the properties and / or operation conditions of the charging coal are adjusted, and the inner surface of the riser pipe is adjusted. A method for operating a coke oven, characterized by suppressing carbon adhesion and preventing the riser from being blocked.

本発明によれば、塊成炭と粗粒炭を混合して装入炭として使用する場合において、原料炭を微粉炭と粗粒炭に分級し、微粉炭を塊成化して塊成炭とした後、該塊成炭と前記粗粒炭を装入炭として室式コークス炉に装入して乾留する際、装入炭の発塵量を精度よく推定するとともに、該推定値に基づいて付着カーボン厚を適正に推定することができ、さらに、該推定値に基づいてコークス炉を安定的に操業することができる。   According to the present invention, when mixed agglomerate and coarse coal are used as charging coal, the raw coal is classified into pulverized coal and coarse coal, and the pulverized coal is agglomerated and agglomerated. Then, when charging the carbonized coal and the coarse coal into the chamber coke oven as dry coal and dry distillation, the dust generation amount of the charged coal is accurately estimated, and based on the estimated value. Adhering carbon thickness can be estimated appropriately, and the coke oven can be stably operated based on the estimated value.

微粉炭からなる塊成炭を装入炭として使用しない場合における、推定式H(特許文献11)による推定発塵量(質量%)と実測発塵量(質量%)の相関を示す図である。It is a figure which shows the correlation of the estimated dust generation amount (mass%) by the estimation formula H (patent document 11) and the measured dust generation amount (mass%) in the case where the agglomerated coal which consists of pulverized coal is not used as charging coal. . 微粉炭からなる塊成炭と粗粒炭の混合装入炭を乾留した場合における、推定式H(特許文献11)による推定発塵量(質量%)と実測発塵量(質量%)の相関を示す図である。Correlation between estimated dust generation (mass%) and estimated dust generation (mass%) according to estimation formula H (Patent Document 11) in the case of dry distillation of mixed coal of coarse coal and coarse coal consisting of pulverized coal FIG. 微粉炭からなる塊成炭と粗粒炭の混合装入炭を製造する事前処理工程の一態様を示す図である。It is a figure which shows the one aspect | mode of the pretreatment process which manufactures the mixed charging coal of the agglomerated coal and coarse-grained coal which consist of pulverized coal. 発塵量を測定する試験装置の態様を示す図である。It is a figure which shows the aspect of the test apparatus which measures the amount of dust generation. 装入炭装入時の発塵機構を示す図である。(a)は、粗粒炭(0.3mm以下の残留微粉粒子:19質量%を含む)の試料Bの場合の発塵機構を示し、(b)は、粗粒炭B:75質量%+塊成炭:25質量%の試料Cの場合の発塵機構を示す。It is a figure which shows the dust generation mechanism at the time of charging charcoal charging. (A) shows a dust generation mechanism in the case of sample B of coarse coal (residual fine particles of 0.3 mm or less: including 19% by mass), and (b) coarse coal B: 75% by mass + Agglomerated coal: A dust generation mechanism in the case of 25% by mass of sample C is shown. 装入炭中に含まれる残留微粉粒子の量を同じにし、塊成炭の有無で、発塵量がどの程度変化するかを調査した結果を示す図である。It is a figure which shows the result of investigating how much dust generation amount changes with the presence or absence of agglomerated coal by making the quantity of the residual fine powder particle | grains contained in charging coal into the same. 図4に示す試験装置で測定した、試料の落下前の粒度分布と、落下後の粒度分布を示す図である。(a)は、粗粒炭(0.3mm以下の残留微粉粒子:1質量%未満を含む)の試料D(表1、参照)の粒度分布を示し、(b)は、「試料Dの粗粒炭:75質量%+塊成炭:25質量%」の試料E(表1、参照)の粒度分布を示す。It is a figure which shows the particle size distribution before the fall of the sample measured with the test apparatus shown in FIG. 4, and the particle size distribution after the drop. (A) shows the particle size distribution of sample D (see Table 1) of coarse coal (residual fine particles of 0.3 mm or less, including less than 1% by mass), (b) shows “coarse of sample D The particle size distribution of Sample E (see Table 1) of “granulated coal: 75 mass% + agglomerated coal: 25 mass%” is shown. Hdstを定め、発塵量の推定値と実測値を対比した結果の一例を示す図である。It is a figure which shows an example of the result of having determined Hdst and having compared the estimated value of dust generation amount, and the measured value. 表1に示す試料A、C、及び、Eについて、835℃と950℃で測定した付着カーボンの成長速度(kg/m2/h)を示す図である。(a)は、835℃での付着カーボンの成長速度を示し、(b)は、950℃での付着カーボンの成長速度を示す。It is a figure which shows the growth rate (kg / m < 2 > / h) of the adhesion carbon measured about 835 degreeC and 950 degreeC about the sample A, C, and E shown in Table 1. FIG. (A) shows the growth rate of attached carbon at 835 ° C., and (b) shows the growth rate of attached carbon at 950 ° C. 装入炭装入時の発塵量(質量%)と付着カーボンの成長速度(kg/m2/h)の関係を示す図である。It is a figure which shows the relationship between the dust generation amount (mass%) at the time of charging charcoal charging, and the growth rate (kg / m < 2 > / h) of attached carbon. 付着カーボン量を推定する手順を示す図である。It is a figure which shows the procedure which estimates the amount of adhesion carbon. 推定付着カーボン量(kg/m2/ch)と実測推定付着カーボン量(kg/m2/ch)の相関を示す図である。It is a figure which shows the correlation of the estimated adhesion carbon amount (kg / m < 2 > / ch) and the measurement estimated adhesion carbon amount (kg / m < 2 > / ch). 上昇管基部の閉塞率を、従来の閉塞率と対比する図である。It is a figure which contrasts the obstruction | occlusion rate of a riser base part with the conventional obstruction | occlusion rate. 本発明における付着カーボンの成長速度を評価するための試験装置の概略を示す図である。It is a figure which shows the outline of the test apparatus for evaluating the growth rate of the adhesion carbon in this invention.

本発明について詳細に説明する。本発明者らは、特許文献11で、発塵量の推定式Hを提案した。
H=k1'[HGI]+k2'[Gv]+k3'[Dp]+k4'[M]+k5'[OL]
k1'〜k5'は、重回帰分析で定める係数
The present invention will be described in detail. In the patent document 11, the present inventors proposed the estimation formula H of the dust generation amount.
H = k1 ′ [HGI] + k2 ′ [Gv] + k3 ′ [Dp] + k4 ′ [M] + k5 ′ [OL]
k1 'to k5' are coefficients determined by multiple regression analysis

HGIは、石炭の粉砕性指数であり、通常、ハードグローブ指数(JIS M8801の石炭類の試験方法による指数)を用いる。Gvは、ガス流速(m/s)であり、通常、JIS Z8808の排ガス中のダスト濃度の測定方法で測定したガス流速を用いる。   HGI is a pulverization index of coal, and usually a hard glove index (an index according to a test method for coal according to JIS M8801) is used. Gv is a gas flow rate (m / s), and the gas flow rate measured by the dust concentration measuring method in the exhaust gas of JIS Z8808 is usually used.

Dpは、石炭の粒度指数であり、任意の開口径の篩を用いて測定した時の篩下の質量%を用いる。Mは、石炭の水分含有率(質量%)であり、通常、JIS M8812の工業分析法で測定した水分含有率を用いる。OLは、石炭へのオイル添加率(質量%)である。k1'〜k5'は、重回帰分析で定まる係数である。   Dp is the particle size index of coal, and the mass% under the sieve when measured using a sieve with an arbitrary opening diameter is used. M is the moisture content (mass%) of coal, and the moisture content measured by the industrial analysis method of JIS M8812 is usually used. OL is an oil addition rate (mass%) to coal. k1 ′ to k5 ′ are coefficients determined by multiple regression analysis.

図1に、微粉炭からなる塊成炭を装入炭として使用しない場合における、推定式Hによる推定発塵量(質量%)と実測発塵量(質量%)の相関を示す。なお、推定式Hによる推定発塵量(質量%)は、特許文献11の推定方法により求めた。塊成炭を装入炭として使用しない場合、推定発塵量(質量%)と実測発塵量(質量%)は極めてよく一致する。   FIG. 1 shows the correlation between the estimated dust generation amount (% by mass) and the actually measured dust generation amount (% by mass) according to the estimation formula H when agglomerated coal made of pulverized coal is not used as charging coal. In addition, the estimated dust generation amount (mass%) by the estimation formula H was obtained by the estimation method of Patent Document 11. When agglomerated coal is not used as charging coal, the estimated dust generation (mass%) and the measured dust generation (mass%) agree very well.

しかし、塊成炭と粗粒炭の混合物からなる装入炭を装入する場合において、推定式Hで発塵量を推定すると、図2に示すように、推定発塵量と実測発塵量(質量%)は相関しない。このことは、推定式Hが、本来無視できない塊成物に起因する微粉の衝撃・発塵効果を考慮していないことに起因する。   However, in the case where charging coal comprising a mixture of agglomerated coal and coarse coal is charged, when the dust generation amount is estimated by the estimation formula H, as shown in FIG. 2, the estimated dust generation amount and the actual dust generation amount are shown. (% By mass) is not correlated. This is due to the fact that the estimation formula H does not take into account the impact / dust generation effect of fine powder resulting from agglomerates that cannot be ignored.

図3に、微粉炭からなる塊成炭と粗粒炭の混合装入炭を製造する事前処理工程の一態様を示す。   In FIG. 3, the one aspect | mode of the pre-processing process which manufactures the mixed charging coal of the agglomerated coal and coarse-grained coal which consist of pulverized coal is shown.

粉砕した石炭1を流動床乾燥分級機2に装入し、流動床乾燥分級機2の底部から加熱ガス3を噴出し、石炭1を流動しながら乾燥しつつ粗粒炭4と微粉5に分級する。この際、粗粒炭4と微粉5の分級点は、コークス炉の操業条件によって適宜決められるが、一般的には、乾燥炭の搬送時の発塵を抑制する点から0.5mm程度の分級点で、粗粒炭4と微粉5に分級する。   The pulverized coal 1 is charged into a fluidized bed drying classifier 2 and heated gas 3 is ejected from the bottom of the fluidized bed drying classifier 2 to classify into coarse coal 4 and fine powder 5 while drying the coal 1 while flowing. To do. At this time, the classification points of the coarse coal 4 and the fine powder 5 are appropriately determined depending on the operating conditions of the coke oven, but generally, the classification is about 0.5 mm from the viewpoint of suppressing dust generation during the transport of the dry coal. At this point, it is classified into coarse coal 4 and fine powder 5.

なお、この実施形態では、流動床乾燥分級2を用いて石炭の乾燥及び分級を同時に行っているが、乾燥機を用いて石炭の乾燥後、引き続き、分級機を用いて微粉炭と粗粒炭に分級しても良い。   In this embodiment, the drying and classification of the coal are simultaneously performed using the fluidized bed drying classification 2. However, after the coal is dried using the dryer, the pulverized coal and the coarse coal are subsequently used using the classifier. You may classify them.

分級後の微粉5は、そのまま、成型機6に搬送されて、塊成炭7に成型される。この塊成炭7は粗粒炭4と混合され、装入炭としてコークス炉炭化室8へ装入される。   The fine powder 5 after classification is transported to the molding machine 6 as it is and molded into the agglomerated coal 7. This agglomerated coal 7 is mixed with the coarse coal 4 and charged into the coke oven carbonization chamber 8 as charged coal.

分級した微粉を塊成炭とすることにより、乾燥炭を分級せずに装入炭とし、コークス炉炭化室に装入する時に比べて、その発塵をかなりの程度まで抑制することができる。   By using the classified fine powder as agglomerated coal, it is possible to suppress the generation of dust to a considerable extent as compared with the case where dry coal is charged without classification and charged into the coke oven carbonization chamber.

しかし、分級した粗粒炭粒子に微粉粒子が付着、または、同伴した状態で分級機2から排出され、そのままの状態で塊成炭と混合され、コークス炉炭化室に装入される残留微粉粒子も多く存在する。   However, fine powder particles adhere to the accompanied coarse coal particles or are discharged from the classifier 2 in the accompanying state, mixed with the agglomerated coal as it is, and the residual fine particles charged into the coke oven carbonization chamber. There are many.

この残留微粉粒子が、微粉炭からなる塊成炭と粗粒炭を装入炭としてコークス炉炭化室に装入する場合に、塊成炭による衝撃・発塵効果で発塵する原因であると推定される。この発塵が、図2に示すように、特許文献11の推定方法を用いた場合の推定発塵量と実測発塵量(質量%)が相関しない原因であることを、次の試験で確認した。   These residual fine particles are the cause of dust generation due to the impact and dust generation effect of the agglomerated coal when the agglomerated coal and coarse coal made of pulverized coal are charged into the coke oven carbonization chamber as the charged coal. Presumed. As shown in FIG. 2, it is confirmed in the next test that the estimated dust generation amount and the actually measured dust generation amount (mass%) are not correlated when the estimation method of Patent Document 11 is used. did.

図4に試験装置を示す。アクリル製パイプ(φ125×高さ2000mm)14の上部に設置した試料容器10に、所定粒度と量(例えば、1kg)の試料(塊成炭と粗粒炭の混合装入炭)9を充填する。   FIG. 4 shows the test apparatus. A sample container 10 installed on the upper part of an acrylic pipe (φ125 × height 2000 mm) 14 is filled with a sample (mixed coal of agglomerated coal and coarse coal) 9 having a predetermined particle size and amount (for example, 1 kg). .

吸引機接続口12に接続した吸引機(図示せず)を作動させ、アクリル製パイプ14の内部に、所定の流速(例えば、実炉相当の3.7m/s)で、空気吹込口15から上方向に空気17を流通させた状態で、上部のスライドゲート11を開き、試料9を重力で落下させる。ここで、吸入流速は、実炉に装入炭を装入する時の炭化室内吸引ガス流速に基づいて設定する。   A suction machine (not shown) connected to the suction machine connection port 12 is operated, and the acrylic pipe 14 is passed through the air blowing port 15 at a predetermined flow rate (for example, 3.7 m / s equivalent to an actual furnace). With the air 17 in the upward direction, the upper slide gate 11 is opened, and the sample 9 is dropped by gravity. Here, the suction flow rate is set based on the suction gas flow rate in the carbonization chamber when charging coal into the actual furnace.

上部のスライドゲート11を開いてから1分間経過後に、吸引装置の作動を停止させ、下部のスライドゲート11を開いて下部のスライドゲート11の上に堆積した石炭試料を試料受器16に収容して、その質量を測定する。   One minute after opening the upper slide gate 11, the operation of the suction device is stopped, and the lower slide gate 11 is opened and the coal sample deposited on the lower slide gate 11 is accommodated in the sample receiver 16. And measure its mass.

発塵量(質量)及び発塵率(質量%)は、以下のようにして求められる。
発塵量(質量)=アクリル製パイプ14の外部に取り出された微紛の質量
=(試料容器10に充填した試料の質量)−(試料受器16に収容した試料の質量)
発塵率(質量%)=[{(試料容器10に充填した試料の質量)−(試料受器16に収容した試料の質量)}/(試料容器10に充填した試料の質量)]×100
The dust generation amount (mass) and the dust generation rate (mass%) are obtained as follows.
Dust generation amount (mass) = Mass of fine powder taken out of acrylic pipe 14 = (Mass of sample filled in sample container 10) − (Mass of sample accommodated in sample receiver 16)
Dust generation rate (mass%) = [{(mass of sample filled in sample container 10) − (mass of sample contained in sample receiver 16)} / (mass of sample filled in sample container 10)] × 100

試料は、塊成炭と粗粒炭の混合物からなる装入炭であるから、発塵量は、塊成炭に起因する微粉の衝撃・発塵効果を含む発塵量である。また、吸引機の吸引流速を、装入炭を実炉に装入する時の炭化室内吸引ガス流速に設定しているから、発塵量は、塊成炭と粗粒炭の混合装入炭を実炉に装入した時の発塵量に相当する。   Since the sample is charged coal made of a mixture of agglomerated coal and coarse coal, the dust generation amount is a dust generation amount including the impact and dust generation effect of fine powder resulting from the agglomeration coal. In addition, the suction flow rate of the suction machine is set to the suction gas flow rate in the carbonization chamber when charging the charging coal into the actual furnace, so the dust generation amount is a mixed charging coal of coarse coal and coarse coal. It corresponds to the amount of dust generated when is charged into an actual furnace.

本発明者らは、性状の異なる6種の装入炭からなる試料A〜Fを用意し、図4に示す試験装置で、発塵率(質量%)を測定した。その結果を、表1に示す。   The present inventors prepared samples A to F made of six kinds of charged coals having different properties, and measured the dust generation rate (mass%) with the test apparatus shown in FIG. The results are shown in Table 1.

Figure 2011148929
Figure 2011148929

表1から、次のことが解る。   From Table 1, the following can be understood.

(o)試料Aの発塵率と、(a1)試料B及び試料Cの発塵率との対比から、残留微粉粒子量が減少すると、発塵率も減少し、また、(a2)試料D及び試料Eの発塵率との対比から、残留微粉粒子量をほぼ完全に除去すると、発塵率が大幅に減少する。   (O) From the comparison between the dust generation rate of sample A and (a1) the dust generation rates of sample B and sample C, when the amount of residual fine particles decreases, the dust generation rate also decreases, and (a2) sample D From the comparison with the dust generation rate of sample E, when the amount of residual fine particles is almost completely removed, the dust generation rate is greatly reduced.

(p)試料Bと試料Cを対比すると、試料Cは、残留微粉粒子量が少ない(試料Bに比べ25質量%の減)にもかかわらず、試料Cの発塵率(10.6質量%)は、試料Bの発塵率(10.5質量%)と同じである。   (P) When sample B and sample C are compared, sample C has a small dust generation rate (10.6% by mass) despite the small amount of residual fine particles (25% by mass compared to sample B). ) Is the same as the dust generation rate (10.5% by mass) of Sample B.

(q)試料Dと試料Eを対比すると、試料Eは、粗粒炭が少ない(試料Dに比べ25質量%の減)にもかかわらず、試料Eの発塵率(4.4質量%)は、試料Dの発塵率(4.7質量%)と同じである。この場合も、塊成炭による微粉の衝撃・発塵効果が発現していると考えられる。   (Q) When sample D and sample E are compared, sample E has a small amount of coarse coal (25% by mass compared to sample D), but the dust generation rate of sample E (4.4% by mass) Is the same as the dust generation rate of sample D (4.7% by mass). Also in this case, it is considered that the impact and dust generation effect of fine powder by the agglomerated coal is expressed.

(r)試料F(塊成炭:100質量%)からの発塵はない。   (R) There is no dust generation from sample F (agglomerated coal: 100% by mass).

上記(p)の試験結果(試料Bと試料Cにおいて、発塵率に差がない)は、次の発塵機構によると考えられる。   The test result (p) above (the sample B and the sample C have no difference in dust generation rate) is considered to be due to the following dust generation mechanism.

図5に、装入炭装入時の発塵機構を示す。図5(a)に、粗粒炭(0.3mm以下の残留微粉粒子:19質量%を含む)の試料Bの場合の発塵機構を示す、図5(b)に、粗粒炭B:75質量%+塊成炭:25質量%の試料Cの発塵機構を示す。   FIG. 5 shows a dust generation mechanism when charging coal. FIG. 5 (a) shows a dust generation mechanism in the case of sample B of coarse coal (residual fine particles of 0.3 mm or less: including 19% by mass). FIG. 5 (b) shows coarse coal B: 75% by mass + agglomerated coal: The dust generation mechanism of Sample C of 25% by mass is shown.

図5(a)に示すように、試料Bの粗粒炭Cc(0.3mm以下の残留微粉粒子Cf:19質量%を含む)の場合、炭化室内に落下すると、落下衝撃により当然のことながら、残留微粉粒子Cfが飛散して発塵する。   As shown in FIG. 5A, in the case of coarse coal Cc of sample B (residual fine particles Cf of 0.3 mm or less: including 19% by mass), when falling into the carbonization chamber, it is natural that the impact is caused by a drop impact. Residual fine particles Cf are scattered to generate dust.

また、図5(b)に示すように、試料Cの“試料Bの粗粒炭Cc(0.3mm以下の残留微粉粒子Cf:19質量%を含む):75質量%+塊成炭Cb:25質量%”の場合、炭化室内に落下すると、塊成炭Cbの落下衝撃で、残留微粉粒子Cfが飛散して発塵する。   Further, as shown in FIG. 5 (b), “Coarse Coal Cc of Sample B (including residual fine powder Cf of 0.3 mm or less: including 19% by mass): 75% by mass + Agglomerated coal Cb: In the case of “25 mass%”, when falling into the carbonization chamber, the residual fine powder particles Cf are scattered and generated by the drop impact of the agglomerated coal Cb.

試料Cの場合、元々、含まれている残留微粉粒子Cfの量は、試料Bの粗粒炭に比べ少ないが、塊成炭Cbの落下衝撃で、残留微粉粒子Cfが飛散し、結果的に、発塵率に差が生じなかったと考えられる。   In the case of the sample C, the amount of the residual fine powder particles Cf originally contained is smaller than that of the coarse coal of the sample B, but the residual fine powder particles Cf are scattered by the drop impact of the agglomerated coal Cb. It is considered that there was no difference in the dust generation rate.

上記(o)の試験結果は、図6に示す別の試験結果からも裏付けられる。図6に示す試験結果は、装入炭中に含まれる残留微粉粒子の量を同じにし、塊成炭の有無で、発塵率がどの程度変化するかを調査した結果である。この図より、装入炭中に含まれる残留微粉粒子の量が同じでも、塊成炭が存在すると、発塵率は増大することがわかる。   The test result of (o) is supported by another test result shown in FIG. The test results shown in FIG. 6 are the results of investigating how much the dust generation rate changes depending on the presence or absence of agglomerated coal with the same amount of residual fine particles contained in the charging coal. From this figure, it can be seen that even if the amount of residual fine particles contained in the charging coal is the same, the presence of agglomerated coal increases the dust generation rate.

上記(p)及び(q)の試験結果は、塊成炭による微粉の衝撃・発塵効果の存在を定量的に裏付けるものである。   The test results of (p) and (q) above quantitatively support the existence of the impact / dust generation effect of fine powder by agglomerated coal.

そこで、本発明者らは、特許文献11の推定式Hを前提に、塊成炭による微粉の衝撃・発塵効果を考慮する推定式を鋭意検討し、下記式(1)で定義する推定式Hdstを創案した。   Then, the present inventors earnestly examined the estimation formula which considers the impact and dust generation effect of the fine powder by agglomerated on the assumption of the estimation formula H of patent document 11, and the estimation formula defined by following formula (1) Invented Hdst.

Hdst=k1[HGI]+k2[Gv]+k3[Dp]+k4[M]+k5[OL]
+k6[Mrf]+k7[Rsep]+k8[Mcp]+k9 ・・・(1)
k1〜k9は、重回帰分析で定まる係数である(詳しくは後述する。)。
Hdst = k1 [HGI] + k2 [Gv] + k3 [Dp] + k4 [M] + k5 [OL]
+ K6 [Mrf] + k7 [Rsep] + k8 [Mcp] + k9 (1)
k1 to k9 are coefficients determined by multiple regression analysis (details will be described later).

上記式(1)は、微粉の衝撃・発塵効果を考慮して、Mrf:粗粒炭中の微粉の割合(質量%)、Rsep:分級率(質量%)、及び、Mcp:装入炭中の0.3〜1mmの石炭粒子の割合(質量%)に係る新規項を、推定式Hに線形一次結合で追加したことを特徴とする。上記式(1)が、本発明の基礎をなす知見である。   In consideration of the impact and dust generation effect of fine powder, the above formula (1) is Mrf: proportion of fine powder in coarse coal (mass%), Rsep: classification rate (mass%), and Mcp: charged coal A new term relating to the ratio (mass%) of 0.3 to 1 mm of coal particles is added to the estimation formula H by linear linear combination. The above formula (1) is the knowledge forming the basis of the present invention.

粗粒炭中に残留する微粉粒子が飛散して発塵するのであるから、発塵量は、粗粒炭中に残留する微粉粒子の割合(質量%):Mrfに依存する。それ故、粗粒炭中に残留する微粉の割合(質量%):Mrfを、発塵量を定義する上記式(1)に、線形一次結合で組み入れた。   Since the fine powder particles remaining in the coarse coal are scattered to generate dust, the amount of dust generation depends on the ratio (mass%) of the fine powder particles remaining in the coarse coal: Mrf. Therefore, the proportion of fine powder remaining in the coarse coal (mass%): Mrf was incorporated into the above formula (1) defining the dust generation amount by linear linear combination.

また、塊成炭は、微粉粒子の衝撃・発塵効果に関与しており、その割合は、分級率(質量%):Rsepに依存する。それ故、分級率(質量%):Rsepを、発塵量を定義する上記式(1)に、線形一次結合で組み入れた。   In addition, agglomerated coal is involved in the impact and dust generation effect of fine particles, and the ratio depends on the classification rate (mass%): Rsep. Therefore, the classification rate (mass%): Rsep was incorporated into the above formula (1) defining the dust generation amount by linear linear combination.

さらに、図7(後で説明する。)に示すように、装入炭中の0.3〜1mmの石炭粒子も発塵に関与していることが実験的に判明したので、装入炭中の0.3〜1mmの石炭粒子の割合(質量%):Mcpも、発塵量を定義する上記式(1)に、線形一次結合で組み入れた。   Furthermore, as shown in FIG. 7 (described later), it has been experimentally found that 0.3 to 1 mm coal particles in the charging coal are also involved in dust generation. The proportion of coal particles of 0.3 to 1 mm (mass%): Mcp was also incorporated into the above formula (1), which defines the dust generation amount, by linear linear combination.

図7は、図4に示す試験装置で測定した、石炭試料の落下前の粒度分布と、落下後の粒度分布を示す図である。   FIG. 7 is a diagram showing the particle size distribution before dropping of the coal sample and the particle size distribution after dropping measured by the test apparatus shown in FIG.

図7(a)は、粗粒炭(0.3mm以下の残留微粉粒子:1質量%未満を含む)の試料D(表1、参照)の落下前後の粒度分布を示し、図7(b)は、「試料Dの粗粒炭:75質量%+塊成炭:25質量%」の試料E(表1、参照)の落下前後の粒度分布を示す。   FIG. 7 (a) shows the particle size distribution before and after dropping of sample D (see Table 1) of coarse coal (residual fine particles of 0.3 mm or less: including less than 1% by mass), FIG. 7 (b). These show the particle size distribution before and after the fall of sample E (see Table 1) of “coarse coal of sample D: 75% by mass + agglomerated coal: 25% by mass”.

いずれの試料も、0.3mm以下の成分を極力少なくした試料である。なお、図7(b)に示す粒度分布は、塊成炭を除いた粗粒炭の粒度分布である。   Each sample is a sample in which components of 0.3 mm or less are reduced as much as possible. In addition, the particle size distribution shown in FIG.7 (b) is a particle size distribution of the coarse coal except the agglomerated coal.

図7(a)及び(b)から、粒径0.3〜1mmの石炭粒子においても、落下前後の粒度分布に差が生じることが解る。このことから、塊成炭と粗粒炭の混合物からなる装入炭中の粒径0.3〜1mmの石炭粒子も、塊成炭による微粉の衝撃・発塵効果に関与しているということができるので、装入炭中0.3〜1mmの石炭粒子の割合(質量%):Mcpも、発塵量を定義する上記式(1)に、線形一次結合で組み入れた。   7 (a) and 7 (b), it can be seen that even in the case of coal particles having a particle size of 0.3 to 1 mm, a difference occurs in the particle size distribution before and after dropping. From this, coal particles with a particle size of 0.3 to 1 mm in charging coal composed of a mixture of agglomerated coal and coarse coal are also involved in the impact and dust generation effect of fine powder by agglomerated coal. Therefore, the ratio (mass%) of coal particles of 0.3 to 1 mm in the charged coal: Mcp was also incorporated into the above formula (1) defining the dust generation amount by linear linear combination.

本発明者らは、上記式(1)を定義した後、k1〜k9の係数を定めるため、表2に示す水準で、さらに試験を行った。   After defining the above formula (1), the present inventors conducted further tests at the levels shown in Table 2 in order to determine the coefficients k1 to k9.

Figure 2011148929
Figure 2011148929

石炭の粉砕性を示す指数として、JIS M 8801で規定されているハードグローブ指数(HGI)を用いた。また、HGIとは別に、実際に粉砕された石炭の粒度を表す指数(Dp)として、3mm以下の石炭粒子の質量割合(質量%)(以下、−3mm%とも記す)を用いた。   The hard glove index (HGI) defined in JIS M 8801 was used as an index indicating the pulverization property of coal. Separately from HGI, a mass ratio (mass%) of coal particles of 3 mm or less (hereinafter also referred to as -3 mm%) was used as an index (Dp) representing the particle size of the actually pulverized coal.

実測発塵量を目的関数とし、また、石炭の粉砕性指数(HGI)、ガス流速(Gv)、石炭の粒度指数(Dp)、石炭の水分含有率(M)、石炭へのオイル添加率(OL)、粗粒炭中の微粉の割合(Mrf)、分級率(Rsep)、及び、装入炭中の0.3〜1mmの割合(Mcp)を説明変数として、表2に示した値の範囲で重回帰分析を行った。   The measured dust generation amount is an objective function, and the coal grindability index (HGI), gas flow rate (Gv), coal particle size index (Dp), coal water content (M), oil addition rate to coal ( OL), the ratio of fine powder in coarse coal (Mrf), the classification rate (Rsep), and the ratio of 0.3 to 1 mm in charging coal (Mcp) as explanatory variables, the values shown in Table 2 Multiple regression analysis was performed on the range.

その結果、上記式(1)で用いる係数k1〜k9について、それぞれ、k1=0.0253、k2=0.1756、k3=−0.065、k4=−0.002、k5=−0.258、k6=0.002、k7=−0.076、k8=0.021、及び、k9=7.211が得られた。   As a result, k1 = 0.0253, k2 = 0.1756, k3 = −0.065, k4 = −0.002, k5 = −0.258 with respect to the coefficients k1 to k9 used in the above equation (1). K6 = 0.002, k7 = -0.076, k8 = 0.021, and k9 = 7.211.

次に、上記式(1)で定義するHdstの推定精度を確認するため、k1=0.0253、k2=0.1756、k3=−0.065、k4=−0.002、k5=−0.258、k6=0.002、k7=−0.076、k8=0.021、k9=7.211として、Hdstを定め、発塵量の推定値と実測値を対比した。結果の一部を、図8に示す。   Next, in order to confirm the estimation accuracy of Hdst defined by the above equation (1), k1 = 0.0253, k2 = 0.1756, k3 = −0.065, k4 = −0.002, k5 = −0. .258, k6 = 0.002, k7 = -0.076, k8 = 0.021, k9 = 7.211, Hdst was determined, and the estimated value of dust generation amount was compared with the actual measurement value. A part of the results is shown in FIG.

図8において、横軸は、前記試験で求めた実測発塵量(質量%)であり、縦軸は、上記k1〜k9で定めたHdstで計算した推定発塵量(質量%)である。   In FIG. 8, the horizontal axis represents the actual dust generation amount (mass%) obtained in the above test, and the vertical axis represents the estimated dust generation quantity (mass%) calculated by Hdst defined in the above k1 to k9.

実測発塵量(質量%)と推定発塵量(質量%)の相関は極めてよい。よって、上記式(1)で定義するHdstにより、塊成炭を含む装入炭装入時の発塵量を、正確に推定することが可能となる。ただし、上記式(1)で求まる発塵量は、装入炭を炭化室へ装入した時の発塵量である。   The correlation between the measured dust generation (mass%) and the estimated dust generation (mass%) is very good. Therefore, it is possible to accurately estimate the amount of dust generated when charging coal containing agglomerated coal, using Hdst defined by the above equation (1). However, the dust generation amount obtained by the above formula (1) is the dust generation amount when charging coal is charged into the carbonization chamber.

一般に、実炉において、発塵量は、装入からの時間の経過とともに減少する(Ironmaking Conference Proceedings、AIME、1998年、p.1041〜1051、参照)から、上記式(1)で求まる発塵量を、付着カーボンの成長速度を求める式に組み入れる場合、発塵量が、時間経過とともに減少するように、発塵量を補正する必要がある。この点については、後述する。   In general, in actual furnaces, the amount of dust generation decreases with the passage of time since charging (see Ironmaking Conference Proceedings, AIME, 1998, p. 1041 to 1051), and the dust generation determined by the above equation (1). When the amount is incorporated into the formula for determining the growth rate of attached carbon, it is necessary to correct the dust generation amount so that the dust generation amount decreases with time. This point will be described later.

本発明者らは、特許文献11で、付着カーボンの成長速度を推定する式として、下記式を提案した。   In the patent document 11, the present inventors proposed the following formula as a formula for estimating the growth rate of attached carbon.

Doil-space-fine'
=64.5×Exp(k6'×OL+k7'×W+k8'−7950/T)×VM
×(1−0.0476×M)×Exp{(k9’+k10’×H)×(1−ξ(τ))}
H=k1'[HGI]+k2'[Gv]+k3'[Dp]+k4'[M]+k5'[OL]
OL:石炭へのオイル添加率(質量%)
W:炭化室への石炭装入量(ton)
T:上昇管基部の温度(K)
VM:石炭の揮発分(質量%)
M:石炭の水分含有率(質量%)
H:石炭の発塵量(質量%)
ξ(τ):補正係数
τ:石炭装入後の経過時間(h)
k1'〜k10':係数
Doil-space-fine '
= 64.5 × Exp (k6 ′ × OL + k7 ′ × W + k8′-7950 / T) × VM
× (1-0.0476 × M) × Exp {(k9 ′ + k10 ′ × H) × (1-ξ (τ))}
H = k1 ′ [HGI] + k2 ′ [Gv] + k3 ′ [Dp] + k4 ′ [M] + k5 ′ [OL]
OL: Oil addition rate to coal (mass%)
W: Coal charge into the carbonization chamber (ton)
T: Temperature of the riser base (K)
VM: Coal volatile matter (mass%)
M: Moisture content of coal (% by mass)
H: Coal dust generation (% by mass)
ξ (τ): Correction factor τ: Elapsed time after charging coal (h)
k1 'to k10': coefficients

上記「Doil-space-fine'」の式で、発塵量Hに係る項を、補正係数ξ(τ)で補正する理由について説明する。   The reason why the term relating to the dust generation amount H is corrected by the correction coefficient ξ (τ) in the formula “Doil-space-fine ′” will be described.

前述したように、実炉において、発塵量は、時間の経過とともに減少する(Ironmaking Conference Proceedings、AIME、1998年、p.1041〜1051、参照)から、上記式における“Exp(k9'+k10’×H)”の項をそのまま用いると、装入時の発塵量で、乾留1サイクルの発塵量を計算することになり、実態と整合しない。   As described above, in an actual furnace, the amount of dust generation decreases with time (see Ironmaking Conference Proceedings, AIME, 1998, p. 1041 to 1051), and therefore, “Exp (k9 ′ + k10 ′” in the above equation. If the term “× H)” is used as it is, the amount of dust generated during charging will be calculated from the amount of dust generated at the time of charging, which is inconsistent with the actual situation.

そこで、本発明者らは、発塵量Hの時間経過を、実態と整合させるため、補正係数ξ(τ)を導入した。石炭装入後の経過時間τは、乾留1サイクルに対する相対値として無次元化した時間であるので、0≦ξ(τ)<1の範囲で変化する。   Therefore, the present inventors have introduced a correction coefficient ξ (τ) in order to match the time lapse of the dust generation amount H with the actual state. Since the elapsed time τ after coal charging is a dimensionless time as a relative value for one cycle of dry distillation, it changes in the range of 0 ≦ ξ (τ) <1.

上記「Doil-space-fine'」の式は、装入炭が微粉炭からなる塊成炭を含まない場合に、有効に機能するが、装入炭が塊成炭を含む場合、実際の付着カーボンの成長速度と乖離する。   The above formula “Doil-space-fine '” works effectively when the charged coal does not include agglomerated coal consisting of pulverized coal, but when the charged coal includes agglomerated coal, the actual adhesion Deviation from the growth rate of carbon.

本発明者らは、まず、上記式(1)で規定する発塵量Hdstと、付着カーボンの成長速度(kg/m2/h)との関係を、実験的により調査した。 The present inventors first experimentally investigated the relationship between the dust generation amount Hdst defined by the above formula (1) and the growth rate (kg / m 2 / h) of attached carbon.

図14に実験装置の概要を示す。まず、石炭供給ホッパー21に石炭18を10kg充填する。次いで、乾留容器24を乾留炉23で加熱し、排気管27内に設置した試験材料19を電気炉20で加熱して、所定の温度まで昇温する。所定の温度に到達したら、石炭供給ホッパー21のスライドゲート25を開いて、石炭18を、乾留容器24内に装入する。   FIG. 14 shows an outline of the experimental apparatus. First, 10 kg of coal 18 is charged into the coal supply hopper 21. Next, the carbonization vessel 24 is heated in the carbonization furnace 23, and the test material 19 installed in the exhaust pipe 27 is heated in the electric furnace 20 to raise the temperature to a predetermined temperature. When the predetermined temperature is reached, the slide gate 25 of the coal supply hopper 21 is opened, and the coal 18 is charged into the dry distillation vessel 24.

乾留容器24内で加熱された石炭から生成した乾留ガスは、排気管27内を上昇して系外へ排気されるが(発生ガスの流れ26、参照)、その途中で、排気管27内に設置した試験材料19の表面に、付着カーボンを生成する。   The dry distillation gas generated from the coal heated in the dry distillation vessel 24 rises in the exhaust pipe 27 and is exhausted to the outside of the system (see generated gas flow 26). Adhesive carbon is generated on the surface of the installed test material 19.

乾留容器24内に装入した石炭の温度は、熱電対(図示せず)で測定し、この温度が1000℃に到達したら、電気炉20と乾留炉23の電源をオフにする。試験材料19の温度が室温近傍まで低下したら、排気管27を開放して試験材料19を取り出し、重量を測定する。   The temperature of the coal charged in the dry distillation vessel 24 is measured with a thermocouple (not shown). When this temperature reaches 1000 ° C., the electric furnace 20 and the dry distillation furnace 23 are turned off. When the temperature of the test material 19 decreases to near room temperature, the exhaust pipe 27 is opened, the test material 19 is taken out, and the weight is measured.

初めに測定しておいた試験材料19の重量と、付着カーボンを生成させた時の重量の差から付着カーボン量を算出し、その量を、試験材料の表面積と乾留時間の積で除した値を付着カーボンの成長速度とした。   A value obtained by calculating the amount of adhering carbon from the difference between the weight of the test material 19 measured first and the weight when the adhering carbon was generated, and dividing that amount by the product of the surface area of the test material and the carbonization time. Was defined as the growth rate of attached carbon.

図9に、表1に示す試料A、C、及び、Eについて、試験材料19の温度が835℃と950℃(乾留中の熱電対22の温度の平均温度)で測定した付着カーボンの成長速度(kg/m2/h)を示す。図9(a)は、835℃での付着カーボンの成長速度を示し、図9(b)は、950℃での付着カーボンの成長速度を示す。 FIG. 9 shows the growth rate of attached carbon measured for samples A, C, and E shown in Table 1 at temperatures of 835 ° C. and 950 ° C. (average temperature of thermocouple 22 during carbonization). (Kg / m 2 / h) is shown. FIG. 9A shows the growth rate of attached carbon at 835 ° C., and FIG. 9B shows the growth rate of attached carbon at 950 ° C.

試料Aは、粗粒炭(0.3mm以下の残留微粉粒子:25質量%を含む)であり、試料Cは、“試料Bの粗粒炭:75質量%+塊成炭:25質量%”であり、試料Eは、“試料Dの粗粒炭(0.3mm以下の残留微粉粒子:1質量%未満を含む):75質量%+塊成炭:25質量%”であるから、発塵量が減少するに従い、付着カーボンの成長速度(kg/m2/h)は低下する。 Sample A is coarse coal (residual fine particles of 0.3 mm or less: including 25% by mass), and sample C is “coarse coal of sample B: 75% by mass + agglomerated coal: 25% by mass”. And sample E is “coarse coal of sample D (residual fine particles of 0.3 mm or less: including less than 1% by mass): 75% by mass + agglomerated coal: 25% by mass”. As the amount decreases, the growth rate (kg / m 2 / h) of deposited carbon decreases.

図10に、発塵量(質量%)と付着カーボンの成長速度(kg/m2/h)の関係を示す。発塵量を低減することで、カーボンの付着量が低減することは明らかである。なお、カーボンの付着量の低減は、温度が低いほうが大きい。これは、高温ほど、熱分解に由来するカーボンの寄与が大きいことによると考えられる。 FIG. 10 shows the relationship between the amount of dust generation (mass%) and the growth rate (kg / m 2 / h) of attached carbon. It is clear that reducing the amount of dust generation reduces the amount of carbon attached. Note that the lower the temperature, the greater the reduction in the amount of carbon attached. This is considered to be due to the greater contribution of carbon derived from thermal decomposition at higher temperatures.

本発明者らは、以上の調査結果を踏まえ、上記「Doil-space-fine'」の式で、Hを、前記式(1)で定義するHdstに置き換え、乾留1サイクルの間に上昇管の内面に付着するカーボンの水平方向の厚さ:Doil-space-fine(mm/日)を推定する式を、下記式(2)で定義した(基本的には、特許文献11で提案した推定式と同じである。)。   Based on the results of the above investigation, the present inventors replaced H in the above formula “Doil-space-fine” with Hdst defined in the above formula (1), The thickness in the horizontal direction of carbon adhering to the inner surface: The formula for estimating Doil-space-fine (mm / day) is defined by the following formula (2) (basically, the estimation formula proposed in Patent Document 11) Is the same.)

Doil-space-fine=64.5×Exp(k10×OL+k11×W+k12−7950/T)
×VM×(1−0.0476×M)
×Exp{(k13+k14×Hdst)×(1−ξ(τ))} ・・・(2)
Hdst=k1[HGI]+k2[Gv]+k3[Dp]+k4[M]+k5[OL]
+k6[Mrf]+k7[Rsep]+k8[Mcp]+k9 ・・・(1)
OL:石炭へのオイル添加率(質量%)
W:炭化室への石炭装入量(ton)
T:上昇管基部の温度(K)
VM:石炭の揮発分(質量%)
M:石炭の水分含有率(質量%)
Hdst:石炭の発塵量(質量%)
ξ(τ):補正係数
τ:石炭装入後の経過時間(h)
HGI:石炭の粉砕性指数
Gv:ガス流速(m/s)
Dp:石炭の粒度指数
Mrf:粗粒炭中の微粉の割合(質量%)
Rsep:分級率(質量%)
Mcp:装入炭中の0.3〜1mmの石炭粒子の割合(質量%)
k1〜k14:係数
Doil-space-fine = 64.5 × Exp (k10 × OL + k11 × W + k12-7950 / T)
× VM × (1-0.0476 × M)
× Exp {(k13 + k14 × Hdst) × (1-ξ (τ))} (2)
Hdst = k1 [HGI] + k2 [Gv] + k3 [Dp] + k4 [M] + k5 [OL]
+ K6 [Mrf] + k7 [Rsep] + k8 [Mcp] + k9 (1)
OL: Oil addition rate to coal (mass%)
W: Coal charge into the carbonization chamber (ton)
T: Temperature of the riser base (K)
VM: Coal volatile matter (mass%)
M: Moisture content of coal (% by mass)
Hdst: Coal dust generation (% by mass)
ξ (τ): Correction factor τ: Elapsed time after charging coal (h)
HGI: Coal grindability index Gv: Gas flow rate (m / s)
Dp: Particle size index of coal Mrf: Ratio of fine powder in coarse coal (mass%)
Rsep: Classification rate (mass%)
Mcp: Ratio of coal particles of 0.3 to 1 mm in charging coal (mass%)
k1 to k14: Coefficient

上記式(2)を実炉の操業に適用する場合、実炉においては、温度、ガス流速、微粉濃度等が時々刻々と変化するので、この変化を踏まえて、より正確に付着カーボン量を推定するためには、下記式(3)に示すように、微小区間毎に付着カーボン量を求め、その総和を用いることが好ましい。   When the above equation (2) is applied to the operation of an actual furnace, the temperature, gas flow rate, fine powder concentration, etc. change from time to time in the actual furnace. In order to do this, as shown in the following formula (3), it is preferable to determine the amount of attached carbon for each minute section and use the sum thereof.

Doil-space-fine
=64.5×Σ[Exp(k10×OL+k11×W+k12−7950/Tm(Δτ))
×VM×(1−0.0476×M)
×Exp{(k13+k14×Hdst)×(1−ξm(Δτ))}] ・・・(3)
Δτ:微小時間(乾留1サイクルに対する相対値)
Tm:微小時間Δτにおける温度の平均値(K)
ξm:微小時間Δτにおける補正係数の平均値(−)
Doil-space-fine
= 64.5 × Σ [Exp (k10 × OL + k11 × W + k12-7950 / Tm (Δτ))
× VM × (1-0.0476 × M)
× Exp {(k13 + k14 × Hdst) × (1-ξm (Δτ))}] (3)
Δτ: Minute time (relative value for one cycle of carbonization)
Tm: Average value of temperature in minute time Δτ (K)
ξm: Average value of the correction coefficient in the minute time Δτ (−)

ここで、上昇管の内面に付着するカーボンの量を、上記式(1)及び(2)に基づいて、精度よく推定し、該推定値に基づいて操業を制御する手順を説明する。図11に、その手順を示す。   Here, a procedure for accurately estimating the amount of carbon adhering to the inner surface of the riser based on the above formulas (1) and (2) and controlling the operation based on the estimated value will be described. FIG. 11 shows the procedure.

装入炭の性状Aとして、石炭の水分含有率、オイル添加率、揮発分、粒度(例えば、3mm以下の石炭粒子の割合(質量%)(以下−3mm%という))、及び、HGIの他、新規要因として、粗粒炭中の微粉割合、分級率、及び、装入炭中の0.3〜1mmの石炭粒子の割合を用いる。   Charging coal properties A include coal moisture content, oil addition rate, volatile matter, particle size (for example, the proportion (mass%) of coal particles of 3 mm or less (hereinafter referred to as -3 mm%)), and other HGI As a new factor, the proportion of fine powder in coarse coal, classification rate, and the proportion of 0.3 to 1 mm coal particles in the charged coal are used.

なお、装入炭の粒度は、−3mm%に限定されない。篩い粒子径6mm以下の石炭粒子の割合(質量%)(以下−6mm%という)や、0.1mm以下の石炭粒子の割合等、石炭の種類や粉砕の程度、水分含有率によって変化する粒度構成を、正しく表示できる粒度であれば、どのような粒度でもよい。   In addition, the particle size of charging coal is not limited to -3 mm%. Particle size composition that varies depending on the type of coal, degree of pulverization, and moisture content, such as the ratio (mass%) of coal particles having a sieve particle diameter of 6 mm or less (hereinafter referred to as -6 mm%), the ratio of coal particles having a diameter of 0.1 mm or less Any particle size may be used as long as it can display correctly.

これらの要因に係るデータは、日常の工程分析と、その他、石炭入荷時に実施する分析や、コークス品質を制御する配合や粒度の変更の際に行う分析等により入手できる。   Data relating to these factors can be obtained by daily process analysis, analysis performed at the time of arrival of coal, analysis performed when changing the composition and particle size for controlling coke quality, and the like.

一方、炉の操業条件Bとして、石炭装入量と炉壁温度を用いる。石炭装入量は、操業管理データとして入手可能である。炉壁温度は、押出機のラムヘッドに取り付けた温度計で測定する温度が望ましいが、温度計が取り付けられていない場合は、燃焼室温度の実測値から伝熱計算で推定した温度でもよい。なお、炉温管理のために炉体の所定箇所に設置した温度計の指示値を用いることも可能である。   On the other hand, as the furnace operating condition B, the coal charge and the furnace wall temperature are used. Coal charge is available as operation management data. The furnace wall temperature is preferably a temperature measured by a thermometer attached to the ram head of the extruder. However, when the thermometer is not attached, the furnace wall temperature may be a temperature estimated by heat transfer calculation from an actual measurement value of the combustion chamber temperature. In addition, it is also possible to use the indicated value of the thermometer installed in the predetermined location of the furnace body for furnace temperature management.

まず、石炭の水分含有率、オイル添加率、及び、石炭装入量から、炉頂空間容積を計算する。これは、炭化室の容積と、石炭の装入密度、及び、装入量から計算した充填容積との差から、炉頂空間容積を求める計算である。この炉頂空間容積より、予め求めておいた炭化室の炉頂空間容積と上昇管基部の温度との関係(特許文献11、参照)に基づいて、炉頂空間部の温度を推定する。   First, the furnace top space volume is calculated from the moisture content of coal, the oil addition rate, and the coal charge. This is a calculation for obtaining the furnace top space volume from the difference between the volume of the carbonization chamber and the filling volume calculated from the charging density of coal and the charging amount. From this furnace top space volume, the temperature of the furnace top space part is estimated based on the relationship between the furnace top space volume of the carbonization chamber and the temperature of the riser base (see Patent Document 11).

次に、炉の操業条件から、乾留時のガス発生量を求める。これは、伝熱計算により、コークス炉炭化室の石炭充填層内の温度分布を推定し、石炭からのガス発生量を部位毎、時間毎に求める計算である。得られたガス発生量、炉頂空間容積、及び、炉頂空間温度から、炉頂空間部のガス流速を推定する。   Next, the amount of gas generated during dry distillation is determined from the operating conditions of the furnace. This is a calculation for estimating the temperature distribution in the coal packed bed of the coke oven carbonization chamber and calculating the gas generation amount from the coal for each part and every time by heat transfer calculation. The gas flow rate in the furnace top space is estimated from the obtained gas generation amount, furnace top space volume, and furnace top space temperature.

得られたガス流速、石炭の水分含有率、オイル添加率、粒度、及び、HGIに加え、新規要因の粗粒炭中の微粉割合、分級率、及び、装入炭中の0.3〜1mmの石炭粒子の割合より、装入時の装入炭の発塵量を、回帰式で推定する。   In addition to the obtained gas flow rate, moisture content of coal, oil addition rate, particle size, and HGI, the ratio of fine powder in coarse coal as a new factor, classification rate, and 0.3-1 mm in charging coal From the ratio of coal particles, the amount of dust generated in the charged coal at the time of charging is estimated by a regression equation.

次に、炉頂空間温度と発塵量の各推定値と、石炭水分と揮発分から、最終的な付着カーボン量を推定する。   Next, the final amount of adhering carbon is estimated from the estimated values of the furnace top space temperature and the amount of dust generation, and the coal moisture and volatile matter.

ここで、得られた推定カーボン量(質量)を、付着カーボンの密度で除し“厚さ”に換算する。この“厚さ”を、カーボンが付着している上昇管の内筒径と比較して、閉塞状況を判断する。   Here, the estimated carbon amount (mass) obtained is divided by the density of the attached carbon and converted to “thickness”. This “thickness” is compared with the inner cylinder diameter of the ascending pipe to which carbon is adhered to determine the blockage state.

即ち、付着カーボンが成長して上昇管のガス通過面積をゼロにする時間が、乾留1サイクル(炭化室への石炭装入からコークスの押出し終了まで)より短い場合には、乾留の途中で、上昇管が閉塞する。上昇管の閉塞が予測される場合には、装入炭の性状及び/又は炉の操業条件を、上昇管が閉塞しない条件に変更する。   That is, in the case where the time for which the adhered carbon grows to make the gas passage area of the riser to zero is shorter than one cycle of dry distillation (from coal charging into the carbonization chamber to the end of coke extrusion), during the dry distillation, The riser blockages. If clogging of the riser is predicted, the charging coal properties and / or furnace operating conditions are changed to conditions that do not clog the riser.

カーボンの付着状況に応じて、装入炭の性状及び/又は炉の操業条件を制御する具体的な方法について説明する。まず、装入炭の性状の制御は、水分の増加、揮発分の低減、粒度のいずれか1又は2以上を調整して行う。オイルの添加率は、発塵量を抑制して付着カーボン量を低減するが、一方で、揮発分を増加させるので、カーボン付着量が増加するという相反効果があるので、実際には、両者の最適値を見いだすことが望ましい。   A specific method for controlling the properties of the charged coal and / or the operating conditions of the furnace according to the state of carbon adhesion will be described. First, the property of the charging coal is controlled by adjusting one or more of an increase in moisture, a reduction in volatile content, and a particle size. The oil addition rate suppresses the amount of dust generated and reduces the amount of carbon adhering, but on the other hand, it increases the volatile content, so there is a conflicting effect that the amount of carbon adhering increases. It is desirable to find the optimum value.

コークス炉の操業条件において、石炭装入量は、規定の装入レベルを確保する装入量とし、炉壁温度は下げることがカーボン付着量を低減する点から有効である。しかし、炉壁温度を下げると、乾留時間が長くなり、コークスの生産性が低下するので、通常操業における現実的な対応策は、石炭装入量を確保することである。   Under the operating conditions of the coke oven, the coal charge is effective to ensure the specified charge level, and lowering the furnace wall temperature is effective from the viewpoint of reducing the carbon deposit. However, if the furnace wall temperature is lowered, the carbonization time becomes longer and the coke productivity decreases, so a realistic countermeasure in normal operation is to secure a coal charge.

コークス炉炭化室において、石炭装入量が少なく、規定の装入レベルより低い場合は、炉頂空間容積が増加して、炉頂空間温度が上昇し、カーボン付着量が増加するので、好ましくない。   In the coke oven carbonization chamber, if the coal charge is small and lower than the specified charge level, the furnace top space volume increases, the furnace top space temperature rises, and the carbon deposition amount increases, which is not preferable. .

以上の対策は、炭化室へ石炭を装入する前に行うことが可能な対策である。石炭装入後の閉塞抑制方法は、例えば、特開平9−104869号公報等に開示されているように、(i)炉頂空間温度を低下させて、付着カーボンの生成(成長)速度を低下させる方法、又は、(ii)上昇管のトップカバーを開放して、上昇管の内壁面に付着したカーボンを機械的に除去する方法である。   The above measures can be taken before charging coal into the carbonization chamber. For example, as disclosed in Japanese Patent Application Laid-Open No. 9-104869, the method for suppressing clogging after coal charging is as follows: (i) Reducing the top space temperature and reducing the rate of formation (growth) of attached carbon Or (ii) opening the top cover of the riser and mechanically removing carbon adhering to the inner wall surface of the riser.

上昇管が閉塞に至らない場合でも、上昇管のガス通過断面積が減少すれば、通気抵抗が増加して、炉内のガス圧が上昇し、炉体からガスが洩れる原因となる。したがって、推定に用いる諸要因が、乾留途中で変化しても、利用可能であれば、時々刻々の付着カーボン量を推定し、乾留のどの時点で上昇管が閉塞するかを推定することが可能となる。   Even if the riser pipe does not become blocked, if the gas passage cross-sectional area of the riser pipe decreases, the ventilation resistance increases, the gas pressure in the furnace rises, and gas leaks from the furnace body. Therefore, even if the factors used for estimation change during dry distillation, if it can be used, it is possible to estimate the amount of carbon adhering every moment, and to estimate at which point in the dry distillation the riser blockages It becomes.

ここで、上昇管の閉塞の有無は、完全に閉塞してガスの流通が不可能になる場合を除き、上昇管の内壁面にカーボンが付着した場合の開口部の面積が、付着カーボンがない場合の開口部面積の80質量%以下となったとき、好ましくは、50質量%以下となったときに判断する。   Here, the presence or absence of clogging of the riser means that the area of the opening when carbon adheres to the inner wall surface of the riser, except for the case where gas flow is impossible due to complete clogging, there is no adhering carbon In this case, it is determined when the opening area is 80% by mass or less, preferably 50% by mass or less.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例)
Δτ=0.0139とした上記式(3)に、石炭性状及びコークス炉の操業条件を代入して、上昇管基部の付着カーボン量を、本発明の推定式で推定し、測定した付着カーボン量と比較した。その結果を図12に示す。推定値と実測値は極めて良く一致している。したがって、本発明の推定式により、上昇管基部に付着するカーボン量を精度良く推定することができる。
(Example)
By substituting the coal properties and the coke oven operating conditions into the above equation (3) where Δτ = 0.139, the carbon adhering amount at the base of the riser pipe was estimated by the estimation formula of the present invention, and the adhering carbon amount measured. Compared with. The result is shown in FIG. The estimated value and the measured value agree very well. Therefore, the amount of carbon adhering to the riser base can be accurately estimated by the estimation formula of the present invention.

本発明の推定式により、上昇管基部に付着するカーボン量を推定し、付着カーボンの成長によって、乾留中に上昇管が閉塞することがない管理システムを構築した。この管理システムを実炉の操業に適用し、本発明の上昇管の閉塞防止効果を調査した。その結果を、図13に示す。   Based on the estimation formula of the present invention, the amount of carbon adhering to the riser base was estimated, and a management system was constructed in which the riser was not blocked during dry distillation due to the growth of the adhering carbon. This management system was applied to the operation of an actual furnace, and the effect of preventing the riser blockage of the present invention was investigated. The result is shown in FIG.

図13において、縦軸は、石炭装入からコークス押出しまでの間に、上昇管が閉塞した割合を示す。この割合が低いほど、上昇管が閉塞せずに、好ましい状態にあることを意味する。   In FIG. 13, the vertical axis indicates the rate at which the riser is blocked during the period from coal charging to coke extrusion. A lower ratio means that the riser is not blocked and is in a favorable state.

Aは、本発明を適用する前の従来例であり、Bは、本発明を適用して、装入炭の粒度(−3mm%)を、通常の85質量%から75質量%に下げ、装入時の発塵量を低下させ、微粉の発生を抑制した場合である。図13から、本発明の推定式に基づく管理システムによれば、上昇管の閉塞率が大きく低下することが解る。   A is a conventional example before applying the present invention, and B is applied to the present invention to reduce the particle size (-3 mm%) of the charged coal from 85% by mass to 75% by mass. This is a case where the amount of dust generation at the time of entering is reduced to suppress the generation of fine powder. From FIG. 13, it can be seen that according to the management system based on the estimation formula of the present invention, the clogging rate of the riser pipe is greatly reduced.

前述したように、本発明によれば、微粉炭からなる塊成炭と粗粒炭を混合して装入炭として使用する場合において、発塵量を精度よく推定するとともに、該推定値に基づいて付着カーボン厚を適正に推定することができ、さらに、該推定値に基づいてコークス炉を安定的に操業することができる。よって、本発明は、コークス製造産業において利用可能性が高いものである。   As described above, according to the present invention, when agglomerated coal composed of pulverized coal and coarse coal are mixed and used as charging coal, the amount of dust generation is accurately estimated, and based on the estimated value. Thus, the carbon thickness can be properly estimated, and the coke oven can be stably operated based on the estimated value. Therefore, the present invention has high applicability in the coke manufacturing industry.

1 石炭
2 流動床乾燥分級機
3 加熱ガス
4 粗粒炭
5 微粉
6 成型機
7 塊成炭
8 コークス炉炭化室
9 試料
10 試料容器
11 スライドゲート
12 吸引機接続口
13 吸入口
14 吸入管
15 空気吹込口
16 試料受器
17 空気
18 石炭
19 試験材料
20 電気炉
21 石炭供給ホッパー
22 熱電対
23 乾留炉
24 乾留容器
25 スライドゲート
26 発生ガスの流れ
27 排気管
A 装入炭の性状
B 炉の操業条件
Cc 粒径0.3mm超の粗粒炭
Cf 粒径0.3mm以下の残留微粉粒子
Cb 塊成炭
DESCRIPTION OF SYMBOLS 1 Coal 2 Fluidized bed drying classifier 3 Heated gas 4 Coarse coal 5 Fine powder 6 Molding machine 7 Coal coal 8 Coke oven carbonization chamber 9 Sample 10 Sample container 11 Slide gate 12 Suction machine connection port 13 Suction port 14 Suction pipe 15 Air Inlet 16 Sample receiver 17 Air 18 Coal 19 Test material 20 Electric furnace 21 Coal supply hopper 22 Thermocouple 23 Drying furnace 24 Drying vessel 25 Sliding gate 26 Flow of generated gas 27 Exhaust pipe A Charging coal properties B Furnace operation Conditions Cc Coarse coal with a particle size of over 0.3 mm Cf Residual fine particles with a particle size of 0.3 mm or less Cb Agglomerated coal

Claims (5)

原料炭を微粉炭と粗粒炭に分級し、微粉炭を塊成化して塊成炭とした後、該塊成炭と前記粗粒炭を装入炭として室式コークス炉に装入して乾留する際、装入時に装入炭から発塵する発塵量Hdst(質量%)を、下記式(1)で推定することを特徴とする装入炭の発塵量の推定方法。
Hdst=k1[HGI]+k2[Gv]+k3[Dp]+k4[M]+k5[OL]
+k6[Mrf]+k7[Rsep]+k8[Mcp]+k9 ・・・(1)
HGI:石炭の粉砕性指数
Gv:ガス流速(m/s)
Dp:石炭の粒度指数
M:石炭の水分含有率(質量%)
OL:石炭へのオイル添加率(質量%)
Mrf:粗粒炭中の微粉の割合(質量%)
Rsep:分級率(質量%)
Mcp:装入炭中の0.3〜1mmの石炭粒子の割合(質量%)
k1〜k9:重回帰分析で定まる係数
After classifying the raw coal into pulverized coal and coarse coal, the pulverized coal is agglomerated into agglomerated coal, and then the agglomerated coal and the coarse coal are charged into a chamber coke oven as charging coal. A method for estimating a dust generation amount of charging coal, characterized in that a dust generation amount Hdst (mass%) generated from charging coal during charging is estimated by the following equation (1).
Hdst = k1 [HGI] + k2 [Gv] + k3 [Dp] + k4 [M] + k5 [OL]
+ K6 [Mrf] + k7 [Rsep] + k8 [Mcp] + k9 (1)
HGI: Coal grindability index Gv: Gas flow rate (m / s)
Dp: Coal particle size index M: Coal moisture content (% by mass)
OL: Oil addition rate to coal (mass%)
Mrf: Ratio of fine powder in coarse coal (mass%)
Rsep: Classification rate (mass%)
Mcp: Ratio of coal particles of 0.3 to 1 mm in charging coal (mass%)
k1 to k9: Coefficients determined by multiple regression analysis
原料炭を微粉炭と粗粒炭に分級し、微粉炭を塊成化して塊成炭とした後、該塊成炭と前記粗粒炭を装入炭として室式コークス炉に装入して乾留する際、乾留1サイクルの間に上昇管の内面に付着するカーボンの水平方向の厚さ:Doil-space-fine(mm/日)を、下記式(2)で推定することを特徴とする付着カーボン厚の推定方法。
Doil-space-fine
=64.5×Exp(k10×OL+k11×W+k12−7950/T)
×VM×(1−0.0476×M)
×Exp{(k13+k14×Hdst)×(1−ξ(τ))} ・・・(2)
Hdst=k1[HGI]+k2[Gv]+k3[Dp]+k4[M]+k5[OL]
+k6[Mrf]+k7[Rsep]+k8[Mcp]+k9
OL:石炭へのオイル添加率(質量%)
W:炭化室への石炭装入量(ton)
T:上昇管基部の温度(K)
VM:石炭の揮発分(質量%)
M:石炭の水分含有率(質量%)
Hdst:石炭の発塵量(質量%)
ξ(τ):補正係数
τ:石炭装入後の経過時間(h)
HGI:石炭の粉砕性指数
Gv:ガス流速(m/s)
Dp:石炭の粒度指数
Mrf:粗粒炭中の微粉の割合(質量%)
Rsep:分級率(質量%)
Mcp:装入炭中の0.3〜1mmの石炭粒子の割合(質量%)
k1〜k14:係数
After classifying the raw coal into pulverized coal and coarse coal, the pulverized coal is agglomerated into agglomerated coal, and then the agglomerated coal and the coarse coal are charged into a chamber coke oven as charging coal. During carbonization, the horizontal thickness of carbon adhering to the inner surface of the riser during one cycle of carbonization: Doil-space-fine (mm / day) is estimated by the following equation (2). Estimated carbon thickness estimation method.
Doil-space-fine
= 64.5 x Exp (k10 x OL + k11 x W + k12-7950 / T)
× VM × (1-0.0476 × M)
× Exp {(k13 + k14 × Hdst) × (1-ξ (τ))} (2)
Hdst = k1 [HGI] + k2 [Gv] + k3 [Dp] + k4 [M] + k5 [OL]
+ K6 [Mrf] + k7 [Rsep] + k8 [Mcp] + k9
OL: Oil addition rate to coal (mass%)
W: Coal charge into the carbonization chamber (ton)
T: Temperature of the riser base (K)
VM: Coal volatile matter (mass%)
M: Moisture content of coal (% by mass)
Hdst: Coal dust generation (% by mass)
ξ (τ): Correction factor τ: Elapsed time after charging coal (h)
HGI: Coal grindability index Gv: Gas flow rate (m / s)
Dp: Particle size index of coal Mrf: Ratio of fine powder in coarse coal (mass%)
Rsep: Classification rate (mass%)
Mcp: Ratio of coal particles of 0.3 to 1 mm in charging coal (mass%)
k1 to k14: Coefficient
原料炭を微粉炭と粗粒炭に分級し、微粉炭を塊成化して塊成炭とした後、該塊成炭と前記粗粒炭を装入炭として室式コークス炉に装入して乾留する際、乾留1サイクルの間に上昇管の内面に付着するカーボンの水平方向の厚さ:Doil-space-fine(mm/日)を、下記式(3)で推定することを特徴とする付着カーボン厚の推定方法。
Doil-space-fine
=64.5×Σ[Exp(k10×OL+k11×W+k12−7950/Tm(Δτ))
×VM×(1−0.0476×M)
×Exp{(k13+k14×Hdst)×(1−ξm(Δτ))}] ・・・(3)
Hdst=k1[HGI]+k2[Gv]+k3[Dp]+k4[M]+k5[OL]
+k6[Mrf]+k7[Rsep]+k8[Mcp]+k9
OL:石炭へのオイル添加率(質量%)
W:炭化室への石炭装入量(ton)
Tm:微小時間Δτにおける温度の平均値(K)
VM:石炭の揮発分(質量%)
M:石炭の水分含有率(質量%)
Hdst:石炭の発塵量(質量%)
ξm(τ):微小時間Δτにおける補正係数の平均値(−)
Δτ:微小時間(乾留1サイクルに対する相対値)
HGI:石炭の粉砕性指数
Gv:ガス流速(m/s)
Dp:石炭の粒度指数
Mrf:粗粒炭中の微粉の割合(質量%)
Rsep:分級率(質量%)
Mcp:装入炭中の0.3〜1mmの石炭粒子の割合(質量%)
k1〜k14:係数
After classifying the raw coal into pulverized coal and coarse coal, the pulverized coal is agglomerated into agglomerated coal, and then the agglomerated coal and the coarse coal are charged into a chamber coke oven as charging coal. When carbonizing, the horizontal thickness of carbon adhering to the inner surface of the riser during one cycle of carbonization: Doil-space-fine (mm / day) is estimated by the following formula (3). Estimated carbon thickness estimation method.
Doil-space-fine
= 64.5 × Σ [Exp (k10 × OL + k11 × W + k12-7950 / Tm (Δτ))
× VM × (1-0.0476 × M)
× Exp {(k13 + k14 × Hdst) × (1-ξm (Δτ))}] (3)
Hdst = k1 [HGI] + k2 [Gv] + k3 [Dp] + k4 [M] + k5 [OL]
+ K6 [Mrf] + k7 [Rsep] + k8 [Mcp] + k9
OL: Oil addition rate to coal (mass%)
W: Coal charge into the carbonization chamber (ton)
Tm: Average value of temperature in minute time Δτ (K)
VM: Coal volatile matter (mass%)
M: Moisture content of coal (% by mass)
Hdst: Coal dust generation (% by mass)
ξm (τ): Average value of correction coefficient (−) in minute time Δτ
Δτ: Minute time (relative value for one cycle of carbonization)
HGI: Coal grindability index Gv: Gas flow rate (m / s)
Dp: Particle size index of coal Mrf: Ratio of fine powder in coarse coal (mass%)
Rsep: Classification rate (mass%)
Mcp: Ratio of coal particles of 0.3 to 1 mm in charging coal (mass%)
k1 to k14: Coefficient
請求項2に記載の付着カーボン厚の推定方法により推定した付着カーボン厚に基づいて、予め、装入炭の性状及び/又は操業条件を調整して、上昇管の内面へのカーボンの付着を抑制し、上昇管の閉塞を防止することを特徴とする室式コークス炉の操業方法。   Based on the adhesion carbon thickness estimated by the method for estimating the adhesion carbon thickness according to claim 2, the properties and / or operating conditions of the charging coal are adjusted in advance to suppress the adhesion of carbon to the inner surface of the riser pipe. And operating the coke oven in the room-type coke oven, which prevents the riser from being blocked. 請求項3に記載の付着カーボン厚の推定方法により推定した付着カーボン厚に基づいて、操業途中、装入炭の性状及び/又は操業条件を調整して、上昇管の内面へのカーボンの付着を抑制し、上昇管の閉塞を防止することを特徴とする室式コークス炉の操業方法。   Based on the adhesion carbon thickness estimated by the method for estimating the adhesion carbon thickness according to claim 3, during the operation, the properties and / or operation conditions of the charging coal are adjusted so that the carbon adheres to the inner surface of the riser pipe. A method of operating a coke oven, characterized by suppressing and preventing clogging of the riser pipe.
JP2010012328A 2010-01-22 2010-01-22 Method for estimating the amount of dust generated from charging coal Expired - Fee Related JP5779836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010012328A JP5779836B2 (en) 2010-01-22 2010-01-22 Method for estimating the amount of dust generated from charging coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010012328A JP5779836B2 (en) 2010-01-22 2010-01-22 Method for estimating the amount of dust generated from charging coal

Publications (2)

Publication Number Publication Date
JP2011148929A true JP2011148929A (en) 2011-08-04
JP5779836B2 JP5779836B2 (en) 2015-09-16

Family

ID=44536223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010012328A Expired - Fee Related JP5779836B2 (en) 2010-01-22 2010-01-22 Method for estimating the amount of dust generated from charging coal

Country Status (1)

Country Link
JP (1) JP5779836B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012063213A (en) * 2010-09-15 2012-03-29 Kansai Coke & Chem Co Ltd Apparatus and method for evaluating carbon deposition quantity
CN102478668A (en) * 2010-11-30 2012-05-30 中国石油天然气集团公司 Method for applying seismic multiattribute parameters to predicting coal seam thickness
CN104379709A (en) * 2012-09-20 2015-02-25 三菱重工业株式会社 Method for producing carbonized coal, method for working blast furnace, and method for operating boiler
CN113792255A (en) * 2021-11-17 2021-12-14 西安热工研究院有限公司 Method for calculating coal mill outlet coal powder fineness on line based on power plant big data
CN115433593A (en) * 2022-08-10 2022-12-06 武汉钢铁有限公司 Coke oven heating method matched with fineness of coal as fired

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173683A (en) * 2000-12-05 2002-06-21 Nippon Steel Corp Method for estimating thickness of carbon deposited on inner wall of ascension pipe of coke oven and method for operating coke oven

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173683A (en) * 2000-12-05 2002-06-21 Nippon Steel Corp Method for estimating thickness of carbon deposited on inner wall of ascension pipe of coke oven and method for operating coke oven

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012063213A (en) * 2010-09-15 2012-03-29 Kansai Coke & Chem Co Ltd Apparatus and method for evaluating carbon deposition quantity
CN102478668A (en) * 2010-11-30 2012-05-30 中国石油天然气集团公司 Method for applying seismic multiattribute parameters to predicting coal seam thickness
CN104379709A (en) * 2012-09-20 2015-02-25 三菱重工业株式会社 Method for producing carbonized coal, method for working blast furnace, and method for operating boiler
CN104379709B (en) * 2012-09-20 2016-04-27 三菱重工业株式会社 The method of operation of the manufacture method of destructive distillation coal, the working method of blast furnace and boiler
CN113792255A (en) * 2021-11-17 2021-12-14 西安热工研究院有限公司 Method for calculating coal mill outlet coal powder fineness on line based on power plant big data
CN115433593A (en) * 2022-08-10 2022-12-06 武汉钢铁有限公司 Coke oven heating method matched with fineness of coal as fired
CN115433593B (en) * 2022-08-10 2023-06-09 武汉钢铁有限公司 Coke oven heating method matched with fineness of coal entering furnace

Also Published As

Publication number Publication date
JP5779836B2 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
JP5779836B2 (en) Method for estimating the amount of dust generated from charging coal
US9845439B2 (en) Method for blending coals for cokemaking and method for producing coke
JP7063159B2 (en) Quality control method for coke for blast furnace
EP2832824B1 (en) Preparation method for coal mixture for coke production and coke production method
CN110546284B (en) Method for producing sintered ore
JP4998692B2 (en) Blast furnace operation method when using ferro-coke
KR20170053988A (en) Method for producing cokes
JP2014214331A (en) Method of charging raw material into blast furnace
JP5320832B2 (en) Vertical furnace operation method and furnace powdering prevention equipment
JP7070228B2 (en) Estimating method of surface fracture strength of coke
JP5835311B2 (en) Ferro-coke manufacturing method and manufacturing equipment
JP2002173683A (en) Method for estimating thickness of carbon deposited on inner wall of ascension pipe of coke oven and method for operating coke oven
JP2002173687A (en) Method for estimating pushing load of coke and method for operation of coke oven to prevent clogging trouble in coke pushing work
JP6795314B2 (en) How to make coke
KR101299385B1 (en) Prediction method of sintering productivity
JP2001214167A (en) Method for evaluating of blended coal of raw material for blast furnace coke preparation
TWI481722B (en) Method for determining permeability of lower part of a blast furnace and system using the same
JP4734350B2 (en) Evaluation method of raw coal blend for blast furnace coke production
Halt Factors influencing material loss during iron ore pellet handling
JP6624181B2 (en) Raw material charging method for coke oven
JP3835160B2 (en) Method for producing sintered ore
Fidchunov et al. Coke Segregation in the Dry Coke Quenching Unit.
Tian Fragmentation of large coal particles at high temperature in a drop tube furnace
JP6979267B2 (en) How to make coke
JPH05279756A (en) Production of sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150518

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150629

R151 Written notification of patent or utility model registration

Ref document number: 5779836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees