JP2011147983A - Forming tool and method for machining the same - Google Patents

Forming tool and method for machining the same Download PDF

Info

Publication number
JP2011147983A
JP2011147983A JP2010012553A JP2010012553A JP2011147983A JP 2011147983 A JP2011147983 A JP 2011147983A JP 2010012553 A JP2010012553 A JP 2010012553A JP 2010012553 A JP2010012553 A JP 2010012553A JP 2011147983 A JP2011147983 A JP 2011147983A
Authority
JP
Japan
Prior art keywords
tool
cutting
forming
forming tool
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010012553A
Other languages
Japanese (ja)
Other versions
JP5610124B2 (en
Inventor
Kiyosumi Manita
清澄 眞仁田
Yuji Uchida
勇治 内田
Hiroaki Sasaki
洋明 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2010012553A priority Critical patent/JP5610124B2/en
Publication of JP2011147983A publication Critical patent/JP2011147983A/en
Application granted granted Critical
Publication of JP5610124B2 publication Critical patent/JP5610124B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a forming tool which has complicated shape and has high hardness and durability like an outer form tool for forming a peripheral polyhedral wall can without depending cemented carbide and without depending on electric discharge machining in a short period of time and inexpensively by cutting work. <P>SOLUTION: Prehardened steel having hardness of HRC 35-50 is adopted as steel and, by machining the steel with a ball end mill having a diameter of 1-6 mm, at a speed of rotation of 10,000-20,000 rpm and at a feed speed of 1,000-2,000 mm/min, the machining of the forming tool having high hardness and the complicate-shaped form surface is made possible. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、金属缶等のワークに複雑な立体的模様等を形成するための成形工具とその加工方法に関する。   The present invention relates to a forming tool for forming a complicated three-dimensional pattern or the like on a work such as a metal can and a processing method thereof.

従来、例えば缶容器の缶胴の全体又は一部を図8に示すようにダイヤカット状の連続凹凸の立体的模様を形成した周状多面体壁にしたものが知られている。この缶胴101の周状多面体壁102は、位相を缶軸方向に1/2ずつずらして配置した多数の構成単位面103から構成され、隣り合う個々の構成単位面は境界稜線104とこの境界稜線同士が交わる交叉部105とを共有し、境界稜線及び交叉部は構成単位面に比べて相対的に外側に凸となっている。本出願人は、この複雑な立体的模様を形成するための周状多面体壁缶製造用金型及びその製造方法を先に提案した(特許文献1参照)。該提案の金型は、図9に示すように、内型工具107と外型工具108とから構成され、内型工具107と外型工具108とで缶胴101を挟み込み同期回転させることにより、缶胴101をダイヤカット状に加工している。内型工具107は周状多面体壁缶と似た単純な形状であるが、外型工具108は缶胴の板厚に相当する寸法分だけ内型工具107より大きい基準型を回転させて得られた包絡線からなる複雑な形状となっている。このような成形工具は、耐久性・耐磨耗性の観点から超硬合金で作られているが、上記の外型工具のように形状が複雑であると切削加工が困難であるため、一般に放電加工により形成している(特許文献1参照)。しかしながら、超硬合金は材料原価が高価である点、また放電加工での成形加工は、加工速度が遅く長時間要し(例えば、特許文献1に示すような外型工具の加工には約30乃至40時間を要していた。)、効率の点、消費電力の点でコスト高であるという問題点があった。そのため、従来このような複雑形状で且つ高硬度を有する成形工具は高価であり、且つ製造に長期間要するため、設計変更等に容易に対応することができなかった。   2. Description of the Related Art Conventionally, for example, a whole or part of a can body of a can container is known as a circumferential polyhedral wall formed with a three-dimensional pattern of diamond-cut continuous irregularities as shown in FIG. The circumferential polyhedron wall 102 of the can body 101 is composed of a number of structural unit surfaces 103 arranged so that the phase is shifted by ½ in the can axis direction. The crossing portion 105 where the ridgelines cross each other is shared, and the boundary ridgeline and the crossing portion are relatively outwardly convex as compared to the structural unit surface. The present applicant has previously proposed a mold for producing a circumferential polyhedral wall can and a method for producing the same in order to form this complicated three-dimensional pattern (see Patent Document 1). As shown in FIG. 9, the proposed mold is composed of an inner mold tool 107 and an outer mold tool 108. By sandwiching the can body 101 between the inner mold tool 107 and the outer mold tool 108 and rotating them synchronously, The can body 101 is processed into a diamond cut shape. The inner tool 107 has a simple shape similar to a circumferential polyhedral wall can, but the outer tool 108 is obtained by rotating a reference tool larger than the inner tool 107 by a dimension corresponding to the plate thickness of the can body. It has a complicated shape consisting of an envelope. Such a forming tool is made of cemented carbide from the viewpoint of durability and wear resistance, but it is generally difficult to cut if the shape is complicated like the above-mentioned external tool, It is formed by electric discharge machining (see Patent Document 1). However, cemented carbide has a high material cost, and the forming process by electric discharge machining has a low machining speed and requires a long time (for example, about 30 for machining an external tool as shown in Patent Document 1). To 40 hours), and there is a problem that the cost is high in terms of efficiency and power consumption. For this reason, conventionally, a molding tool having such a complicated shape and high hardness is expensive and requires a long time for manufacturing, and thus cannot easily cope with a design change or the like.

一方、従来金型材としてSKD11等の高C−高Cr鋼が使用されているが、この場合は焼きなまし状態の素材を切削加工による粗加工後、焼入れ等の熱処理をして必要な表面硬さを得、その後研削、或いは放電加工等の仕上げ加工を行わなければならず、型製作の工程数が多いという問題点がある。そこで、近年切削加工後の熱処理、仕上げ加工が不要な鋼材として、プリハードン鋼が提供され、プラスチック型等に採用されてきている(特許文献2、3)。プリハードン鋼は、表面から芯まで均一な硬度をもっており、硬度が40HRC程度の硬度で切削加工が可能であり、且つ研摩性に優れている特徴を有している。しかし、プリハードン鋼は、プラスチック型等の金型材としては用いられているが、より耐久性・耐摩耗性が求められる成形工具には一般に採用されていない。また、プリハードン鋼であっても、硬度がHRC50以上の高硬度になると、前記の外型工具のような複雑な形状で精密な加工を必要とする場合は切削加工が困難であり、やはり放電加工に頼らざるを得なかった。   On the other hand, a high C-high Cr steel such as SKD11 is used as a conventional mold material. In this case, the annealed material is roughly processed by cutting and then subjected to heat treatment such as quenching to obtain the necessary surface hardness. After that, finishing processing such as grinding or electric discharge machining has to be performed, and there is a problem that the number of steps of mold production is large. Therefore, in recent years, pre-hardened steel has been provided as a steel material that does not require heat treatment and finishing after cutting, and has been adopted for plastic molds (Patent Documents 2 and 3). Pre-hardened steel has a uniform hardness from the surface to the core, can be cut with a hardness of about 40 HRC, and has excellent abrasive properties. However, although pre-hardened steel is used as a mold material such as a plastic mold, it is not generally employed for forming tools that require higher durability and wear resistance. In addition, even with pre-hardened steel, if the hardness is higher than HRC50 or more, cutting is difficult when precise processing is required with a complicated shape such as the above-mentioned external tool, and also EDM I had to rely on.

特許第4333501号公報Japanese Patent No. 4333501 特開2008−38219号公報JP 2008-38219 A 特開2008−127643号公報JP 2008-127643 A

そこで、本発明は、周状多面体壁缶成型用の外型工具のような形状が複雑で且つ成形工具として必要な硬度と耐久性を有し、放電加工によらずに切削加工により短時間に安価に得ることができる高硬度の成形工具とその加工方法を提供することを目的とする。   Therefore, the present invention has a complicated shape such as an outer mold tool for molding a circumferential polyhedral wall can and has the necessary hardness and durability as a forming tool. An object of the present invention is to provide a high-hardness forming tool that can be obtained at low cost and a processing method thereof.

上記課題を解決する本発明の成形工具は、ワークに立体的模様を形成するための成形工具であって、プリハードン鋼からなり、前記立体的模様を形成する凹凸を有する加工面が切削加工により形成されてなることを特徴とするものである。
成形工具としてプリハードン鋼を用いることにより、立体的模様の複雑な形状の切削加工が容易となり、且つ成形工具として耐摩耗性・耐久性に優れ、耐久性を確保することができる。
The forming tool of the present invention that solves the above problems is a forming tool for forming a three-dimensional pattern on a workpiece, and is made of pre-hardened steel, and a processed surface having irregularities forming the three-dimensional pattern is formed by cutting. It is characterized by being made.
By using pre-hardened steel as a forming tool, it becomes easy to cut a complicated shape with a three-dimensional pattern, and as a forming tool, it is excellent in wear resistance and durability, and durability can be ensured.

前記プリハードン鋼の硬度は、前記硬度がHRC35未満であると成形工具として耐摩耗性・耐久性に欠け、HRC50を超えると立体的模様の複雑な形状の切削加工が困難となるし、HRC35〜50の硬さの範囲内で成形工具としての耐摩耗性・耐久性を十分確保できるので、複雑な立体的模様を切削加工で形成でき、且つ成形工具としての耐久性を確保するのに上記範囲が望ましい。   If the hardness is less than HRC35, the hardness of the pre-hardened steel lacks wear resistance and durability as a forming tool, and if it exceeds HRC50, it becomes difficult to cut a complicated shape of a three-dimensional pattern, and HRC35-50 Since the wear resistance and durability as a forming tool can be sufficiently secured within the hardness range, a complicated three-dimensional pattern can be formed by cutting, and the above range is required to ensure the durability as a forming tool. desirable.

前記プリハードン鋼は、切削性の観点からNi−Al−Cu系時効硬化型鋼であることが望ましい。前記成形工具は、加工面の形状が基準型を回転させて得られた包絡線からなる多面体である周状多面体壁缶成形用のアウター成形工具として適用可能である。該アウター前記成形工具は、加工面が円筒回転体の約半周部分にだけ形成して断面扇形状に構成することが望ましい。   The pre-hardened steel is preferably a Ni—Al—Cu age-hardening steel from the viewpoint of machinability. The forming tool can be applied as an outer forming tool for forming a circumferential polyhedral wall can, which is a polyhedron having a processed surface shape formed by an envelope obtained by rotating a reference mold. The outer forming tool is preferably formed in a sectional fan shape by forming the machining surface only in about a half circumference portion of the cylindrical rotating body.

本発明の成形工具加工方法は、請求項1乃至5の何れかに記載の成形工具の加工方法であって、仕上げ切削工程では、先端部が立方晶窒化ホウ素焼結体から形成されたボールエンドミルで、切削加工を微量の油を含ませた圧縮エアを加工点に吹き付けて行うことを特徴とするものである。
前記構成とすることにより、従来硬度が高い反面靭性に劣り欠損し易いため、適用できる加工が限定されるCBN工具の適用が上記切削条件のもとで可能となり、高度の精密切削加工が実現できると共に、切削工具の寿命を増大させ、製造の効率化・低コスト化を図ることができる。
A forming tool processing method according to the present invention is a forming tool processing method according to any one of claims 1 to 5, wherein, in a finish cutting step, a ball end mill whose tip is formed of a cubic boron nitride sintered body Then, the cutting process is performed by blowing compressed air containing a small amount of oil onto the processing point.
By adopting the above-described configuration, since the conventional hardness is high and the toughness is inferior and the chipping is likely to occur, it is possible to apply a CBN tool that can be applied to the machining under the above-described cutting conditions, and it is possible to realize a high-precision cutting process. At the same time, the life of the cutting tool can be increased, and the production efficiency and cost can be reduced.

前記ボールエンドミルの先端部直径が1〜6mmであり、回転数10,000〜20,000rpm、送り速度1,000〜2,000mm/minで切削加工を行うことが望ましい。ボールエンドミルは、直径が小径のものを採用することによって切削面の品位が向上し、より複雑な模様を形成することができるが、1mm未満であると切削時間に長時間を要し、6mmを超えると複雑な形状の仕上げ加工の面品位が劣るので、上記範囲が望ましい。また、切削速度が上記範囲未満であると、切削負荷が増大し、切削が困難となり切削工具の低寿命化をもたらし、また上記範囲を超えると形状精度の確保が困難となるので、エンドミルの回転数、送り速度は上記範囲が望ましい。
そして、HRC35〜50の高硬度のプリハードン鋼の被削面に、従来放電加工に頼らざるを得なかった複雑な立体模様の形成を切削加工によって実現でき、高硬度成形工具を短時間に安価に得ることができる。
It is desirable that the tip end diameter of the ball end mill is 1 to 6 mm, the cutting is performed at a rotational speed of 10,000 to 20,000 rpm, and a feed rate of 1,000 to 2,000 mm / min. By adopting a ball end mill having a small diameter, the quality of the cutting surface can be improved and a more complicated pattern can be formed. However, if it is less than 1 mm, it takes a long time to cut, and 6 mm Since the surface quality of the finishing process of a complicated shape will be inferior when exceeding, the said range is desirable. Also, if the cutting speed is less than the above range, the cutting load increases, cutting becomes difficult and the life of the cutting tool is reduced, and if it exceeds the above range, it is difficult to ensure the shape accuracy. The above range is desirable for the number and feed rate.
In addition, it is possible to realize the formation of a complicated three-dimensional pattern that had to be relied on electric discharge machining on the machined surface of high-hardness pre-hardened steel of HRC 35 to 50 by cutting, and to obtain a high-hardness forming tool at a low cost in a short time. be able to.

前記ボールエンドミルは、そのR形状を用いて自由曲面を成形することができ、精密な曲面加工が可能である。前記ボールエンドミルの加工ピッチは0.05〜0.1mmで切削加工を行なうことによって、切削負荷が軽減し、形状精度が向上し、面品位も向上し加工面粗さがRz2〜3を得ることができ、高硬度鋼の複雑な切削加工を可能にしている。   The ball end mill can form a free-form surface using its R shape, and can perform precise curved surface processing. By cutting the ball end mill at a processing pitch of 0.05 to 0.1 mm, the cutting load is reduced, the shape accuracy is improved, the surface quality is improved, and the surface roughness is Rz2 to 3. This enables complex cutting of high-hardness steel.

本発明の成形工具は、プリハードン鋼から形成されているので適度の硬度を維持しており、且つ切削方法を工夫することによって、周状多面体壁缶成形用の外型工具のような形状が複雑であっても従来の放電加工によらずに切削加工により短時間に安価に得ることができる。従って、本発明によれば、切削加工により、例えば周状多面体缶壁形成用の外型工具等、金属缶等のワークの折り曲げ加工が基本の複雑な成形加工をする成形工具として必要な高度と耐久性を有している高硬度成形工具を得ることができる。   Since the forming tool of the present invention is made of pre-hardened steel, it maintains an appropriate hardness, and the shape of an outer tool for forming a circumferential polyhedral wall can is complicated by devising a cutting method. However, it can be obtained in a short time and inexpensively by cutting without using conventional electric discharge machining. Therefore, according to the present invention, by cutting, for example, an outer tool for forming a circumferential polyhedral can wall, etc. A high-hardness forming tool having durability can be obtained.

また、本発明の上記成形工具の製造方法は、先端部が立方晶窒化ホウ素焼結体から形成されているボールエンドミルを採用し、且つ微量の油を含ませた圧縮エアを加工点に吹き付けながら切削加工することによって、従来硬度が高い反面靭性に劣り欠損し易いため、適用できる加工が限定されるCBN工具の適用が上記切削条件のもとで可能となり、高度の精密切削加工が実現できると共に、切削工具の寿命を増大させ、製造の効率化・低コスト化を図ることができた。   Moreover, the manufacturing method of the said shaping | molding tool of this invention employ | adopts the ball end mill in which the front-end | tip part is formed from the cubic boron nitride sintered compact, and spraying the compressed air containing a trace amount oil on the processing point By cutting, conventional hard toughness is inferior and easily damaged, so it is possible to apply CBN tools that can be applied under the above-mentioned cutting conditions, and high precision cutting can be realized. As a result, it was possible to increase the life of the cutting tool and to increase the production efficiency and cost.

本発明の成形工具の実施形態に係る周状多面体壁缶成形用の外型工具により、内型工具とで缶胴を成形加工している状態を模式的に示す斜視図である。It is a perspective view showing typically the state where the can body is being processed with the inner mold tool by the outer mold tool for forming the circumferential polyhedral wall can according to the embodiment of the molding tool of the present invention. その正面図である。It is the front view. 缶胴に一周の加工が終了した状態での正面図である。It is a front view in the state where one round of processing was completed to the can body. 本発明の実施形態にかかるCBNボールエンドミルの要部拡大正面図である。It is a principal part enlarged front view of the CBN ball end mill concerning the embodiment of the present invention. 本発明の実施形態に係るCBNボールエンドミルによる自由曲面形成を模式的に示し、(a)は中仕上げ加工におけるCBNボールエンドミルの加工ピッチを示し、(b)は仕上げ加工におけるCBNボールエンドミルの加工ピッチを示している。1 schematically shows the formation of a free-form surface by a CBN ball end mill according to an embodiment of the present invention, wherein (a) shows the processing pitch of the CBN ball end mill in the intermediate finishing process, and (b) shows the processing pitch of the CBN ball end mill in the finishing process. Is shown. (a)は本発明の実施形態に係るCBNボールエンドミルの未使用状態での刃先部の拡大写真であり、(b)は発明の実施形態に係るオイルミスト法による54時間使用した後の状態を示す刃先部の拡大写真であり、(c)は比較例としてエアブロー法により54時間使用した後の状態を示す刃先部の拡大写真である。(A) is an enlarged photograph of the cutting edge part in the unused state of the CBN ball end mill concerning the embodiment of the present invention, and (b) shows the state after 54 hours use by the oil mist method according to the embodiment of the invention. It is the enlarged photograph of the blade edge | tip part to show, (c) is an enlarged photograph of the blade edge | tip part which shows the state after using for 54 hours by the air blow method as a comparative example. 本発明の比較例として超硬ボールエンドミルの先端部拡大写真であり、(a)は使用前の状態、(b)は54時間使用後の状態である。It is the front-end | tip part enlarged photograph of a cemented carbide ball end mill as a comparative example of this invention, (a) is the state before use, (b) is the state after 54 hours use. 周状多面体壁缶を有する缶体の一例を示す正面図である。It is a front view which shows an example of the can which has a circumferential polyhedral wall can. 周状多面体壁缶を形成する従来の外型工具と内型工具とで缶胴を成形加工している状態を模式的に示す正面図である。It is a front view which shows typically the state which shape | molds the can body with the conventional external type tool and internal type tool which form a circumferential polyhedral wall can.

以下、図面を基に本発明の実施形態を詳細に説明する。
図1〜図3は、本発明の成形工具の実施形態に係る周状多面体壁缶(いわゆるダイヤカット缶)製造用の外型工具1を内型工具2と共に示している。本実施形態に係る成形工具は、図8に示す缶胴101の凹凸模様を成形するための成形工具である。外型工具1は、図示のように軸方向長さが成形加工する缶胴に相当する長さを有し、周方向が缶胴の周長に相当する略半円周面を有する断面扇形状に形成され、その扇形外周面が成形型面4となっている。その成形型面4の形状は、特許文献1に示すものと略同様であり、内型工具2の多面体を構成する突条と噛合する谷で構成される多面体を有している。そして、これらの外型工具1と内型工具2とを、互いに対応する突条と谷とが噛合するように配置し、外型工具1と内型工具2との間に缶胴101の側壁を挟み込んだ状態で逆方向に同一の周速度で回転させることで、周状多面体壁を形成することができる。缶胴101の周状多面体は、外型工具1と内型工具2とが噛合した状態で互いに転動することにより形成されるため、外型工具1の多面体周方向の形状は、内型工具2が転動することによって得られる包絡線を基準とし、缶胴の板厚に相当する寸法だけ内型工具2より大きい基準型を回転させて得られた包絡線5の繰り返し連続からなる多面体形状に形成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1 to 3 show an outer mold tool 1 for manufacturing a circumferential polyhedral wall can (so-called diamond cut can) according to an embodiment of a forming tool of the present invention, together with an inner mold tool 2. The forming tool according to the present embodiment is a forming tool for forming the uneven pattern of the can body 101 shown in FIG. As shown in the figure, the outer mold tool 1 has a length corresponding to the can body to be processed in the axial direction, and a sectoral fan shape in which the circumferential direction has a substantially semicircular surface corresponding to the peripheral length of the can body. The fan-shaped outer peripheral surface is a mold surface 4. The shape of the molding die surface 4 is substantially the same as that shown in Patent Document 1, and has a polyhedron constituted by valleys that mesh with protrusions constituting the polyhedron of the inner tool 2. The outer tool 1 and the inner tool 2 are arranged so that the corresponding protrusions and valleys mesh with each other, and the side wall of the can body 101 is placed between the outer tool 1 and the inner tool 2. A circumferential polyhedral wall can be formed by rotating in the opposite direction at the same peripheral speed while sandwiching. Since the circumferential polyhedron of the can body 101 is formed by rolling the outer die tool 1 and the inner die tool 2 in a meshed state, the shape of the outer die tool 1 in the circumferential direction of the polyhedron is A polyhedral shape consisting of repeated continuations of the envelope 5 obtained by rotating the reference die larger than the inner die tool 2 by a dimension corresponding to the plate thickness of the can body, based on the envelope obtained by rolling 2 Is formed.

本実施形態では、上記のように外型工具1を扇形にすることによって、内型工具2と外型工具1の噛合いが解けたときにワークである缶胴101の一周の成形が終了し、内型工具2との軸心間を移動させることなく、内型工具2への缶胴の装着及び取り出しを行うことができるので、内型工具への缶胴の脱着制御が容易であるという利点がある。
以上の形状を有する本実施形態に係る周状多面体壁缶製造用の外型工具(以下、単に外型工具という。)1は、次のようにして製造される。
In the present embodiment, by forming the outer tool 1 into a fan shape as described above, the formation of one round of the can body 101, which is a workpiece, is completed when the inner tool 2 and the outer tool 1 are disengaged. Since the can body can be attached to and removed from the inner tool 2 without moving between the axial centers of the inner tool 2 and the inner tool, it is easy to control the removal of the can body from the inner tool. There are advantages.
The outer mold tool (hereinafter simply referred to as the outer mold tool) 1 for manufacturing the circumferential polyhedral wall can according to the present embodiment having the above shape is manufactured as follows.

周状多面体壁缶の成形は、缶胴部の折り曲げ加工が基本である。超硬工具は金属加工用の成形工具としては理想的であるが、硬く且つ靱性も高いため、切削加工は非常に困難である。そのため、単純な形状であるしごきリングなどの加工には、超硬工具は最適であるが、周状多面体壁缶成形用の外型工具は包絡線の繰り返しで複雑な形状であるため、切削加工が非常に困難で上述のように放電加工に頼っていた。本発明者は、放電加工でなく、そのような複雑な加工面を有する成形工具を切削加工で成形する方法はないかと鋭意研究した結果、まず、従来この種の成形工具の材質として専ら採用されている超硬合金に代えて、成形工具に適用できる新たな材料を採用することを着想し、種々の材料について研究した。その結果、プリハードン鋼は、表面から芯まで均一な硬度を持っていること、超硬合金に比べて適度の硬度であるから、切削が可能であること、研磨性に優れていて、ラップ仕上げで鏡面にすることが可能であることに着目し、該プリハードン鋼を外型工具に採用できないか研究した結果、該プリハード鋼が一定の条件を満たし、且つ切削工具及び切削方法を工夫することによって、外型工具の材質に採用可能であることを見出し本発明に到達したものである。   The forming of the circumferential polyhedral wall can is basically performed by bending the can body. Although a carbide tool is ideal as a forming tool for metal processing, it is hard and has high toughness, so that cutting is very difficult. For this reason, carbide tools are ideal for machining such as ironing rings that have a simple shape, but the outer tools for forming circumferential polyhedral wall cans have complicated shapes due to repeated envelopes, so cutting Is very difficult and relied on electric discharge machining as described above. As a result of earnest research that the present inventor is not an electric discharge machining but a method of forming a molding tool having such a complicated machining surface by cutting, first, it has been employed exclusively as a material for this type of molding tool. Instead of the cemented carbide, the idea was to adopt a new material applicable to forming tools, and various materials were studied. As a result, pre-hardened steel has a uniform hardness from the surface to the core, and has a moderate hardness compared to cemented carbide, so it can be cut, has excellent polishing properties, and has a lapping finish. Focusing on the fact that it is possible to make a mirror surface, as a result of investigating whether or not the pre-hardened steel can be adopted as an outer tool, the pre-hard steel satisfies certain conditions, and by devising a cutting tool and a cutting method, The present invention has been found by finding that it can be used as the material of the external tool.

本発明で採用するプリハードン鋼としては、特に限定されるものではないが、Cr系よりもNi−AL−Cu系時効硬化型の鋼が切削性の観点から望ましく、硬さがHRC35〜50であるのが望ましい。HRC35〜50の硬度で、基本的に缶胴材の折り曲げ加工により複雑なレリーフやエンボス模様を形成する成形工具としては十分な耐摩耗性・耐久性を確保することが可能である。これを満たす市販のブリハードン鋼としては、例えば大同特殊鋼(株)社製のNAK80がある。硬度はHRC37〜43である。   Although it does not specifically limit as prehardened steel employ | adopted by this invention, Ni-AL-Cu type | system | group age hardening type steel is desirable rather than Cr type | system | group from a viewpoint of cutting property, and hardness is HRC35-50. Is desirable. With a hardness of HRC 35-50, it is possible to ensure sufficient wear resistance and durability as a forming tool for forming a complex relief or embossed pattern basically by bending a can body material. An example of a commercially available brihard steel that satisfies this requirement is NAK80 manufactured by Daido Special Steel Co., Ltd. Hardness is HRC37-43.

本発明では、上記プリハードン鋼の鋼塊から次のような切削条件で切削加工して、成形工具としての外型工具を得ることができた。
本実施形態での切削加工は、CNC高速マシニングセンタで行い、通常荒加工、中仕上加工、仕上加工の順で行うが、ここでは微細な切削加工が要求される仕上加工について主に説明する。
(1)切削工具:ボールエンドミル
ボールエンドミルのR形状を用いて自由曲面を成形する。仕上げ工程の切削工具は、直径1〜6mmの小径工具を用いる。直径が小さい程長時間加工となるが、切削面の品位が向上し、より複雑な模様を形成することができ、周状多面体壁缶成形用の外型工具の切削加工には、上記範囲が望ましく、本実施形態ではより望ましいものとして、φ2ボールエンドミルの小径工具を用いる。
In the present invention, the pre-hardened steel ingot was cut under the following cutting conditions to obtain an external tool as a forming tool.
Cutting in this embodiment is performed by a CNC high-speed machining center, and is normally performed in the order of roughing, intermediate finishing, and finishing. Here, the finishing that requires fine cutting will be mainly described.
(1) Cutting tool: ball end mill A free-form surface is formed using the R shape of a ball end mill. As the cutting tool in the finishing process, a small diameter tool having a diameter of 1 to 6 mm is used. The smaller the diameter, the longer the machining will be, but the quality of the cutting surface will be improved and a more complicated pattern can be formed, and the above range is applicable to the cutting of the outer tool for forming a circumferential polyhedral wall can. Desirably, in this embodiment, a small diameter tool of a φ2 ball end mill is used as a more desirable one.

ボールエンドミルは、工具の材料としては超硬合金が主流であるが、超硬は磨耗が激しいので、使用開始直後と多くの加工した後では刃先が大きく変化するため、仕上加工には工具の頻繁な交換が必要で高コストと生産性の低下をもたらすため、仕上工程には不利である。そこで、本実施形態では超硬合金工具よりも高温硬さが高く耐摩耗性に優れているCBN(立方晶窒化ホウ素)をボールエンドミルの刃先部分に埋め込んだ工具(以下、CBN工具という。)を使用することにした。図4は、本実施形態に係るCBN工具10の要部拡大図であり、刃先部分にCBN焼結体11を使用してある。
しかしながら、CBN工具は、硬度が高い反面、靱性に劣るため、小径のエンドミルによる長時間加工すると刃先部が熱的折損をするという不都合が発生した。該熱的折損は、従来の超硬合金ボールエンドミルで同条件で切削を行った場合に発生する刃先の微細な欠けに比べて、折損度合いが大きい。したがって、従来の切削加工方法でプリハードン鋼の複雑形状の切削面を得ようとしても、単純に超硬合金工具をCBN工具に置き換えた場合、折損の問題から工具寿命が悪化してしまうことがわかった。このように、CBNボールエンドミルは、熱的折損で欠けやすい欠点があるが、この問題を克服できれば、超硬工具に比べて有利な点(切れ味がよく、表面粗さが小さく且つ一定に保たれるなど)が多く、仕上げ加工には有利である。そこで、本発明ではこの問題を次のような切削方法を採用することによって解決してCBN工具の採用を可能にした。
Cemented carbide is the main tool material for ball end mills, but since carbide wears heavily, the cutting edge changes greatly immediately after the start of use and after many machining operations. This is disadvantageous for the finishing process because it requires a lot of replacement and results in high costs and reduced productivity. Therefore, in the present embodiment, a tool (hereinafter referred to as a CBN tool) in which CBN (cubic boron nitride) having a high temperature hardness and excellent wear resistance than a cemented carbide tool is embedded in a blade end portion of a ball end mill. Decided to use. FIG. 4 is an enlarged view of a main part of the CBN tool 10 according to the present embodiment, in which the CBN sintered body 11 is used for the cutting edge portion.
However, although the CBN tool is high in hardness, it is inferior in toughness. Therefore, when machining is performed for a long time with a small-diameter end mill, there is a disadvantage that the cutting edge portion is thermally broken. The thermal breakage has a greater degree of breakage than a fine chip of the cutting edge that occurs when cutting is performed under the same conditions with a conventional cemented carbide ball end mill. Therefore, even when trying to obtain a pre-hardened steel complex shape cutting surface by the conventional cutting method, if the cemented carbide tool is simply replaced with a CBN tool, the tool life will deteriorate due to breakage problems. It was. As described above, the CBN ball end mill has a drawback that it is easily chipped due to thermal breakage. However, if this problem can be overcome, the CBN ball end mill has advantages over the carbide tool (the sharpness is good, the surface roughness is small and kept constant). This is advantageous for finishing. Therefore, in the present invention, this problem is solved by adopting the following cutting method, and the CBN tool can be adopted.

(2)切削方法
[切削条件]
回転数 :10,000〜20,000mm/min
送り速度 :1,000〜2,000mm/min
加工ピッチ:0.05〜0.1mm
切り込み量:0.03〜0.06mm
加工時間 :8〜14時間/個
以上のように、従来のエンドミルによる切削加工に比べて1回の切り込み量を少なくして加工速度を上げ、且つ加工ピッチを微細にすることによって、切削負荷の軽減と形状精度の向上及び品位の向上が図れた。CBN工具は、欠損しやすいため、適用できる加工が限定されるが、後述する冷却・潤滑と共に上記のように加工速度・加工量等の切削条件を適性に選択することによって、従来ダイヤモンド工具しか適用でなかった高硬度鋼の仕上加工にCBN工具の適用可能性を見出した。
(2) Cutting method
[Cutting conditions]
Number of rotations: 10,000 to 20,000 mm / min
Feed rate: 1,000 to 2,000 mm / min
Processing pitch: 0.05-0.1mm
Cutting depth: 0.03-0.06mm
Processing time: 8 to 14 hours / piece As described above, the cutting speed is increased by reducing the amount of one-time cutting compared to the conventional end milling, and the processing pitch is reduced. Reduction, improved shape accuracy, and improved quality. CBN tools are prone to chipping, so the applicable processing is limited, but only conventional diamond tools can be applied by appropriately selecting the cutting conditions such as processing speed and processing amount as described above together with cooling and lubrication described later. The applicability of the CBN tool was found in the finishing of high hardness steel that was not.

図5は、切削加工におけるボールエンドミルのR形状を用いてワークに自由曲面21を成型する状態を模式的に示している。図5(a)は上記小径ボールエンドミルによる中仕上工程での加工ピッチを模式的に示し、図5(b)は本実施形態における仕上加工工程での加工ピッチを模式的に示している。同図(a)に示す中仕上工程での加工ピッチは約0.1mmであり、同図(b)に示す仕上工程での加工ピッチは0.05〜0.1mmであり、加工ピッチを微細にした。   FIG. 5 schematically shows a state in which the free curved surface 21 is formed on the workpiece using the R shape of the ball end mill in the cutting process. FIG. 5A schematically shows a processing pitch in the intermediate finishing process by the small-diameter ball end mill, and FIG. 5B schematically shows a processing pitch in the finishing process in the present embodiment. The machining pitch in the intermediate finishing process shown in FIG. 10A is about 0.1 mm, and the machining pitch in the finishing process shown in FIG. I made it.

[冷却]
CBN工具は、欠損しやすいため工具への切削負荷が低い場合にしか適用できないが、本発明では前記の通り加工ピッチを微細にすると共に、冷却法を工夫することによって、工具先端(刃先)の折損問題を解決した。即ち、従来の高硬度鋼の切削加工では、一般に切削油や水溶性切削液を使用することによって加工点での発熱を冷却しているが、本発明者の実験では高速切削加工の場合は冷却性能が高いと熱的折損が発生してしまうことがわかった。これを解消するためには、微量の油を含ませた圧縮エアーを加工点に吹き付けながら冷却を行う、いわゆるオイルミスト加工法を適用した。微量ながら油を使用するために潤滑性に優れ、工具の磨耗劣化を防ぎ、且つ加工点での冷却性能が水溶性切削液や切削油を用いる場合と比べて低く、熱的折損を効果的に防ぎ、CBN工具による刃先の欠損を防ぐことができた。油使用量としては、5〜15cc/hourの範囲が望ましいことが分かった。5cc/hour未満であると潤滑性が劣り、工具の磨耗劣化抑制効果がなく、15cc/hourを超えると冷却性能が高くなり刃先の熱的折損が多くなるため、上記範囲が望ましく、より望ましくは10cc/hour程度である。
[cooling]
Since the CBN tool is easy to break, it can be applied only when the cutting load on the tool is low. In the present invention, as described above, the machining pitch is made fine and the cooling method is devised so that the tip of the tool (cutting edge) can be reduced. Solved the problem of breakage. That is, in conventional high-hardness steel cutting, heat generation at the processing point is generally cooled by using a cutting oil or a water-soluble cutting fluid. It has been found that high performance results in thermal breakage. In order to solve this problem, a so-called oil mist processing method is applied in which cooling is performed while blowing compressed air containing a small amount of oil to the processing point. The oil is used in a small amount, so it has excellent lubricity, prevents wear deterioration of the tool, and the cooling performance at the machining point is lower than when using water-soluble cutting fluid or cutting oil, effectively preventing thermal breakage It was possible to prevent the cutting edge from being damaged by the CBN tool. It was found that the amount of oil used is preferably in the range of 5 to 15 cc / hour. If it is less than 5 cc / hour, the lubricity is inferior and there is no effect of suppressing the wear deterioration of the tool. If it exceeds 15 cc / hour, the cooling performance becomes high and the thermal breakage of the cutting edge increases, so the above range is desirable, more desirably It is about 10cc / hour.

本発明者は、仕上加工におけるCBN工具における上記オイルミスト法の効果を検証するために図1に示す外型工具を次のように製造する実験を行った。
外型工具:
材質:Ni−AL−Cu系時効硬化型のプリハードン鋼:NAK80(大同特殊鋼株式会社製)
硬度:公称HRC40
加工機械:CNC高速マシンニングセンタ
切削工具:ボールエンドミル
先端がCBN(立方晶窒化ホウ素)であるφ2mmのボールエンドミル
切削条件:切削は荒加工、中仕上げ加工、仕上げ加工に分けて行ったが、ここでは仕上げ加工工程について説明する。
回転数:18,000rpm
送り速度:1,000〜2,000mm/分
割り出し:任意の角度分割して加工
上記切削条件で、仕上加工におけるCBN工具の効果検証のために、実施例として、油使用量:10cc/hourを含ませた圧縮エアを加工点に吹きつけながら切削加工を行なった。また、比較例として、CBNボールエンドミルをエアーブロー法で冷却しながら、実施例と同条件で切削を行った。
In order to verify the effect of the oil mist method in the CBN tool in finishing, the present inventor conducted an experiment for manufacturing the outer tool shown in FIG. 1 as follows.
External tool:
Material: Ni-AL-Cu age hardened pre-hardened steel: NAK80 (Daido Special Steel Co., Ltd.)
Hardness: Nominal HRC40
Processing machine: CNC high-speed machining center Cutting tool: Ball end mill
Ball end mill of φ2 mm whose tip is CBN (cubic boron nitride) Cutting conditions: Cutting was divided into rough machining, intermediate finishing, and finishing. Here, the finishing process will be described.
Rotation speed: 18,000 rpm
Feeding speed: 1,000 to 2,000 mm / min Indexing: Machining by dividing at an arbitrary angle In order to verify the effect of the CBN tool in finishing machining under the above cutting conditions, the amount of oil used is 10 cc / hour. Cutting was performed while blowing the included compressed air on the processing point. Further, as a comparative example, cutting was performed under the same conditions as in the example while cooling the CBN ball end mill by the air blow method.

そして、実施例及び比較例とも54時間使用後のCBNボールエンドミルの刃先の欠損状態を確認した。図6(a)は本発明の実施形態に係るCBNボールエンドミルの刃先の未使用状態での拡大写真であり、同図(b)は実施例のオイルミスト法で冷却しながら54時間切削加工を行った後の状態、(c)は比較例のエアーブロー法で冷却しながら54時間切削加工を行った後の状態である。
写真から明らかなように、同じCBNボールエンドミルで同条件で切削を行っても、実施例のオイルミスト法で冷却した場合は54時間使用後でも殆ど欠損が無く、高い工具寿命が確認された。これに対し、比較例のエアーブロー法での冷却では刃先の大きな欠損16が確認され、工具寿命が短く良好な切削が得られなかった。
And the defect | deletion state of the blade edge | tip of the CBN ball end mill after 54 hours use was confirmed in both the Example and the Comparative Example. FIG. 6 (a) is an enlarged photograph of the cutting edge of the CBN ball end mill according to the embodiment of the present invention in an unused state, and FIG. 6 (b) shows 54 hours of cutting while cooling by the oil mist method of the example. The state after being performed, (c) is the state after cutting for 54 hours while cooling by the air blow method of the comparative example.
As is apparent from the photograph, even when cutting was performed with the same CBN ball end mill under the same conditions, there was almost no defect even after 54 hours of use when cooling by the oil mist method of the example, and a high tool life was confirmed. On the other hand, in the cooling by the air blow method of the comparative example, a large chipping 16 was confirmed, and the tool life was short and good cutting was not obtained.

さらに、本実施形態におけるオイルミスト法と工具の材質との関係を調べるために、ボールエンドミルを従来の超硬ボールエンドミルを使用して実施例と同様な条件で切削を行った。図7(a)は超硬ボールエンドミル15の未使用状態での刃先部の拡大写真であり、図7(b)は実施例と同様にオイルミスト法で切削加工を行なった場合における54時間使用後の状態を示す写真である。その結果、同図(b)に示すように刃先に微細な欠け17が発生したが、これはエアーブローで冷却を行った場合とほぼ同じ状態であった。この結果から、超硬ボールエンドミルの場合は、オイルミスト法とエアーブロー法との差異は殆どないが、CBN工具の場合はその差が顕著であり、ボールエンドミルの刃先の欠損を防ぐのにCBN工具とオイルミスト法の組み合わせが有効であることが確認された。   Furthermore, in order to investigate the relationship between the oil mist method and the tool material in the present embodiment, the ball end mill was cut under the same conditions as in the example using a conventional carbide ball end mill. FIG. 7A is an enlarged photograph of the cutting edge portion when the carbide ball end mill 15 is not used, and FIG. 7B is used for 54 hours when the oil mist method is used for cutting as in the embodiment. It is a photograph showing the later state. As a result, as shown in FIG. 5B, fine chips 17 were generated at the blade edge, which was almost the same as when cooling by air blow. From this result, in the case of carbide ball end mill, there is almost no difference between oil mist method and air blow method, but in the case of CBN tool, the difference is remarkable, and CBN is used to prevent chipping of the ball end mill. It was confirmed that the combination of the tool and the oil mist method is effective.

以上の実施例に示すように、従来材料硬度がHRC40以上の高硬度材料の切削には、超硬工具を使用してエアーブロー法で行っているのが一般的であるが、CBN工具を使用してオイルミスト法で冷却することによって、高い工具寿命が得られ、その結果工具の交換回数を少なくすることができ、工具本数の削減ができた。その結果、図1に示す外型工具を20個加工すると想定した場合、比較例の超硬工具、エアーブロー法では工具本数20本を要するのに対し、実施例のCBN工具、オイルミスト法では6本で済み、その分工具交換作業に伴う調整作業、確認作業等が削減でき、加工効率化、品質の安定化、コストダウンという顕著な効果が得られた。以上のように、CBN工具は、扱いが難しい工具であるが、超硬度材料からなるワークの複雑形状の切削に適用できた場合の効果は大きく、従来の放電加工の場合と比べて短時間で付加価値の高い加工ができた。   As shown in the above examples, cutting of high-hardness materials having a material hardness of HRC40 or higher is generally performed by air blow using a carbide tool, but a CBN tool is used. By cooling with the oil mist method, a long tool life can be obtained, and as a result, the number of tool replacements can be reduced and the number of tools can be reduced. As a result, assuming that 20 external tools shown in FIG. 1 are machined, the carbide tool of the comparative example and the air blow method require 20 tools, whereas the CBN tool and the oil mist method of the embodiment require Only six tools are required, and the adjustment work and the confirmation work accompanying the tool change work can be reduced by that amount, and remarkable effects such as machining efficiency, quality stabilization, and cost reduction were obtained. As described above, the CBN tool is a difficult tool to handle, but the effect when applied to the cutting of a complex shape of a workpiece made of a super-hard material is significant, and in a shorter time than the case of conventional electric discharge machining. High value-added processing was possible.

従来複雑な模様等を形成する成形工具(成形金型)は耐摩耗性・耐久性の観点から、超硬合金製が採用されていたが、本発明の成形工具およびその加工方法によれば超硬合金によらず、成形工具として必要な硬度と耐久性を有し、複雑な形状であっても切削加工で形成できる。したがって本発明は、種々の高硬度でかつ複雑な形状の金型の製作に適用でき、産業上の利用可能性が高い。   Conventionally, a molding tool (molding die) for forming a complicated pattern or the like has been made of cemented carbide from the viewpoint of wear resistance and durability. However, according to the molding tool of the present invention and its processing method, Regardless of the hard alloy, it has the necessary hardness and durability as a forming tool, and even a complicated shape can be formed by cutting. Therefore, the present invention can be applied to the production of molds having various hardnesses and complicated shapes, and has high industrial applicability.

1 外型工具
2 内型工具
4 成形片面
5 包絡線
10 CBN工具
11 CBN焼結体
15 超硬ボールエンドミル
16 欠損
21 自由曲面
101 缶胴
102 周状多面体壁缶
103 構成単位
DESCRIPTION OF SYMBOLS 1 Outer mold tool 2 Inner mold tool 4 Molding single side 5 Envelope 10 CBN tool 11 CBN sintered body 15 Carbide ball end mill 16 Defect 21 Free curved surface 101 Can body 102 Circumferential polyhedral wall can 103 Structural unit

Claims (8)

ワークに立体的模様を形成するための成形工具であって、プリハードン鋼からなり、前記立体的模様を形成する凹凸を有する加工面が切削加工により形成されてなることを特徴とする成形工具。   A forming tool for forming a three-dimensional pattern on a workpiece, wherein the forming tool is made of pre-hardened steel, and a processed surface having irregularities for forming the three-dimensional pattern is formed by cutting. 前記プリハードン鋼の硬度がHRC35〜50である請求項1に記載の成形工具。   The forming tool according to claim 1, wherein the hardness of the pre-hardened steel is HRC35-50. 前記プリハードン鋼が、Ni−Al−Cu系時効硬化型鋼である請求項1又は2に記載の成形工具。   The forming tool according to claim 1 or 2, wherein the pre-hardened steel is Ni-Al-Cu age-hardening steel. 前記成形工具が周状多面体壁缶成形用の外型工具であり、加工面の形状が基準型を回転させて得られた包絡線からなる多面体である請求項1乃至3の何れかに記載の成形工具。   4. The molding tool according to claim 1, wherein the forming tool is an outer mold tool for forming a circumferential polyhedral wall can, and the shape of the processed surface is a polyhedron formed of an envelope obtained by rotating a reference mold. Molding tool. 前記成形工具は、加工面が円筒回転体の約半周部分に形成されている断面扇形状になっている請求項4に記載の成形工具。   The forming tool according to claim 4, wherein the forming tool has a cross-sectional fan shape in which a processing surface is formed in an approximately half circumference portion of a cylindrical rotating body. 請求項1乃至5の何れかに記載の成形工具の加工方法であって、先端部が立方晶窒化ホウ素焼結体から形成されたボールエンドミルで、切削加工を微量の油を含ませた圧縮エアを加工点に吹き付けて行うことを特徴とする成形工具の加工方法。   6. A processing method for a forming tool according to claim 1, wherein a tip end portion is a ball end mill formed of a cubic boron nitride sintered body, and the cutting is compressed air containing a small amount of oil. A method for processing a forming tool, characterized by spraying a processing point. 前記ボールエンドミルの先端部直径が1〜6mmであり、回転数10,000〜20,000rpm、送り速度1,000〜2,000mm/minで切削加工を行なう請求項6に記載の成形工具の加工方法。   7. The processing of a forming tool according to claim 6, wherein the tip end diameter of the ball end mill is 1 to 6 mm, the cutting is performed at a rotational speed of 10,000 to 20,000 rpm, and a feed rate of 1,000 to 2,000 mm / min. Method. 加工ピッチ0.05〜0.1mmで切削加工を行ない、そのR形状を用いて加工面粗さがRz2〜3である自由曲面を成形する請求項6又は7に記載の成形工具の加工方法。   The processing method of the shaping | molding tool of Claim 6 or 7 which cuts with the process pitch 0.05-0.1mm, and shape | molds the free-form surface whose process surface roughness is Rz2-3 using the R shape.
JP2010012553A 2010-01-22 2010-01-22 Forming tool processing method Active JP5610124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010012553A JP5610124B2 (en) 2010-01-22 2010-01-22 Forming tool processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010012553A JP5610124B2 (en) 2010-01-22 2010-01-22 Forming tool processing method

Publications (2)

Publication Number Publication Date
JP2011147983A true JP2011147983A (en) 2011-08-04
JP5610124B2 JP5610124B2 (en) 2014-10-22

Family

ID=44535479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010012553A Active JP5610124B2 (en) 2010-01-22 2010-01-22 Forming tool processing method

Country Status (1)

Country Link
JP (1) JP5610124B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013043255A (en) * 2011-08-25 2013-03-04 Yasuda Kogyo Kk Finish machining tool and machining method using the tool
US11103914B2 (en) * 2017-07-31 2021-08-31 Toyo Seikan Co., Ltd. Can manufacturing method, can manufacturing device, can, and can manufacturing tool set

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09192763A (en) * 1996-01-11 1997-07-29 Toyo Seikan Kaisha Ltd Manufacturing device for periphery-shaped polyhedric wall can
JP2005034982A (en) * 2003-06-27 2005-02-10 Hitachi Tool Engineering Ltd Ball end mill
JP2005082813A (en) * 2003-09-04 2005-03-31 Daido Steel Co Ltd Prehardened steel for plastic molding die
WO2005102572A1 (en) * 2004-04-20 2005-11-03 Osg Corporation Ball end mill
JP2005319538A (en) * 2004-05-10 2005-11-17 Nachi Fujikoshi Corp Ball endmill
JP2008023572A (en) * 2006-07-24 2008-02-07 Mori Machinery Corp Dimple forming method in production line of heat exchange tube and dimple forming apparatus used in production line of heat exchange tube

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09192763A (en) * 1996-01-11 1997-07-29 Toyo Seikan Kaisha Ltd Manufacturing device for periphery-shaped polyhedric wall can
JP2005034982A (en) * 2003-06-27 2005-02-10 Hitachi Tool Engineering Ltd Ball end mill
JP2005082813A (en) * 2003-09-04 2005-03-31 Daido Steel Co Ltd Prehardened steel for plastic molding die
WO2005102572A1 (en) * 2004-04-20 2005-11-03 Osg Corporation Ball end mill
JP2005319538A (en) * 2004-05-10 2005-11-17 Nachi Fujikoshi Corp Ball endmill
JP2008023572A (en) * 2006-07-24 2008-02-07 Mori Machinery Corp Dimple forming method in production line of heat exchange tube and dimple forming apparatus used in production line of heat exchange tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013043255A (en) * 2011-08-25 2013-03-04 Yasuda Kogyo Kk Finish machining tool and machining method using the tool
US11103914B2 (en) * 2017-07-31 2021-08-31 Toyo Seikan Co., Ltd. Can manufacturing method, can manufacturing device, can, and can manufacturing tool set

Also Published As

Publication number Publication date
JP5610124B2 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5370896B2 (en) Manufacturing method of forging mold
CN102303221B (en) Method for processing female die with large square hole
JP5641204B2 (en) Christmas cutter and turbine blade root cutting method using the same
JP5614511B2 (en) Ball end mill and insert
CN100556610C (en) Sensor QS-4 elastomer processing technology
CN102794622A (en) Machining method of precise inner gear
CN205816906U (en) The carbide tool that a kind of easy chip removal easily cools down
CN109396558A (en) It is a kind of for processing the Diamond Cutting Toolss of hard brittleness difficult-to-machine material
JP2010162677A (en) Small-diameter cbn ball end mill
CN103007502A (en) Manufacturing method for striking panel of golf club head
JP5939208B2 (en) Ball end mill
JP5610124B2 (en) Forming tool processing method
JP6179165B2 (en) Radius end mill
JP2013013962A (en) Cbn end mill
Nakagawa High-speed milling for die and mold making
JP4819352B2 (en) Manufacturing method of forging die, forging die and forged product
CN102990146A (en) Fillet CBN (Cubic Boron Nitride) milling cutter
JP6212863B2 (en) Radius end mill
JP2010042462A (en) Tip for lathe cutting
JP5929144B2 (en) Hard sintered ball end mill
CN114161089B (en) Processing method of thin-wall aluminum connecting piece
JP2014083642A (en) Ball end mill
JP2013027972A (en) Square end mill
CN109128324B (en) Milling cutter and die lip milling method using same
JP2012254486A (en) Extra-high pressure sintered rotary cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121218

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130513

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130522

A977 Report on retrieval

Effective date: 20131211

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140819

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5610124

Country of ref document: JP