JP2011147300A - Power inverter, and power inverting method - Google Patents

Power inverter, and power inverting method Download PDF

Info

Publication number
JP2011147300A
JP2011147300A JP2010007508A JP2010007508A JP2011147300A JP 2011147300 A JP2011147300 A JP 2011147300A JP 2010007508 A JP2010007508 A JP 2010007508A JP 2010007508 A JP2010007508 A JP 2010007508A JP 2011147300 A JP2011147300 A JP 2011147300A
Authority
JP
Japan
Prior art keywords
diode
terminal
self
power
reverse conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010007508A
Other languages
Japanese (ja)
Inventor
Tadayuki Kitahara
忠幸 北原
Shiro Fukuda
志郎 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merstech Inc
Original Assignee
Merstech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merstech Inc filed Critical Merstech Inc
Priority to JP2010007508A priority Critical patent/JP2011147300A/en
Priority to PCT/JP2011/050584 priority patent/WO2011087106A1/en
Publication of JP2011147300A publication Critical patent/JP2011147300A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/1555Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only for the generation of a regulated current to a load whose impedance is substantially inductive

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inverter Devices (AREA)
  • General Induction Heating (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power inverter which can supply power in parallel to a plurality of loads from a single power supply, has small circuit scale and can adjust the supplied power. <P>SOLUTION: A power inverter 1 is composed of a plurality of driving circuits 10i connected in parallel with a DC power supply 2. Each of the driving circuits 10i includes: a DC reactor Ldci connected to the DC power supply 2 in series; a magnetic energy regeneration switch Bi including a plurality of reverse conducting semiconductor switches SWUi, SWVi, SWYi, SWXi having DC input ends to which a series circuit of the DC power supply 2 and the DC reactor Ldci and a capacitor CMi are connected and AC output ends to which a load LDi is connected; and a control circuit 13i. The control circuit 13i turns on and off the reverse conducting semiconductor switches SWUi, SWVi with a duty ratio of 0.5, and adjusts the duty ratio of the reverse conducting semiconductor switches SWYi, SWXi to 0.5 or less. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電力逆変換装置及び電力逆変換方法に関する。   The present invention relates to a power reverse conversion device and a power reverse conversion method.

誘導性負荷に、交流電流を供給する電源装置は多数発明され、利用されている。特に、大電力・高周波応用に関しては、スイッチング損失が無視できないため、ソフトスイッチングを行うようにスイッチング制御されることが求められてきた。   Many power supply devices that supply an alternating current to an inductive load have been invented and used. In particular, for high power / high frequency applications, since switching loss cannot be ignored, switching control is required to perform soft switching.

しかし、ソフトスイッチングを実現するためには、スイッチング素子に掛かる電圧(又は電流)が0の時にスイッチングするため、電圧または電流を監視する受動的な制御になってしまう。そのため、可変周波数を実現したり、すべての動作ポイントにおいて高効率を実現したりするのは難しい。   However, in order to realize soft switching, since switching is performed when the voltage (or current) applied to the switching element is 0, the control becomes passive control for monitoring the voltage or current. Therefore, it is difficult to realize a variable frequency or to achieve high efficiency at all operating points.

このような問題を解決することが可能な技術が特許文献1に開示されている。この文献に開示された電力逆変換回路は、コンデンサと4つの逆導通型半導体スイッチとから構成される磁気エネルギー回生スイッチを用いて、直流電源から、所望の周波数の交流電流を負荷に供給する。この電力逆変換回路は、フルブリッジ型MERSの4つの逆導通型半導体スイッチのオン・オフを切り替えることにより、フルブリッジ型MERSのコンデンサと誘導性負荷のインダクタとを直列共振させ、コンデンサに発生した電圧により誘導性負荷に交流電流を供給する回路である。
この電力逆変換回路は、精密な制御なしに4つの逆導通型半導体スイッチをソフトスイッチング可能で、かつ、負荷に供給する交流電流の周波数を調整することが可能である。
A technique capable of solving such a problem is disclosed in Patent Document 1. The power reverse conversion circuit disclosed in this document supplies an alternating current of a desired frequency from a direct current power source to a load using a magnetic energy regenerative switch composed of a capacitor and four reverse conducting semiconductor switches. This power reverse conversion circuit is generated in the capacitor by switching on and off the four reverse conducting semiconductor switches of the full bridge type MERS to cause the full bridge type MERS capacitor and the inductor of the inductive load to resonate in series. This circuit supplies an alternating current to an inductive load by voltage.
This power reverse conversion circuit can perform soft switching of four reverse conducting semiconductor switches without precise control, and can adjust the frequency of an alternating current supplied to a load.

特開2008−92745号公報JP 2008-92745 A

しかしながら、この特許文献に開示された電力逆変換回路は、負荷に供給する電力の量を調整することができない。   However, the power reverse conversion circuit disclosed in this patent document cannot adjust the amount of power supplied to the load.

よって、複数の負荷に流れる電力の量を個別に制御する場合に、直流電源から負荷までのすべてのシステムが負荷と同数必要になる。例えば、近接する同一のラインに複数の誘導加熱用の負荷コイルが接続されており、それぞれのコイル電流を別々に制御したい場合がある。しかし、この構成では、この電力逆変換回路に加え、負荷毎に直流電源が必要であり、構成が大きくなり、経済性に乏しくなる。   Therefore, when individually controlling the amount of power flowing through a plurality of loads, all the systems from the DC power supply to the loads are required as many as the loads. For example, there are cases where a plurality of load coils for induction heating are connected to the same adjacent line, and it is desired to control the respective coil currents separately. However, in this configuration, in addition to the power reverse conversion circuit, a DC power supply is required for each load, the configuration becomes large, and the economy is poor.

この発明は、上記実情に鑑みてなされたものであり、供給電力を調整可能で、かつ、回路規模の小さい電力逆変換装置及び電力逆変換方法を提供することを目的とする。
また、この発明は、1つの電源から複数の負荷に並列に電力を供給可能で、かつ、供給電力を調整可能な電力逆変換装置及び電力逆変換方法を提供することを他の目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a power reverse conversion device and a power reverse conversion method that can adjust supply power and have a small circuit scale.
Another object of the present invention is to provide a power reverse conversion device and a power reverse conversion method that can supply power in parallel to a plurality of loads from one power source and that can adjust the supply power.

上記目的を達成するため、本発明の第1の観点に係る電力逆変換装置は、
直流電圧源に直列に接続される直流リアクトルと、
第1と第2の交流端子と、第1と第2の直流端子と、第1から第4のダイオードと、第1から第4の自己消弧型素子と、前記第1と第2の交流端子の間または前記第1と第2の直流端子の間に接続されたコンデンサとを備え、前記第1の交流端子には前記第1のダイオードのアノードと前記第2のダイオードのカソードが、前記第1の直流端子には前記第1のダイオードのカソードと前記第3のダイオードのカソードとが、前記第2の直流端子には前記第2のダイオードのアノードと前記第4のダイオードのアノードとが、前記第2の交流端子には前記第3のダイオードのアノードと前記第4のカソードとが接続され、前記第1のダイオードに前記第1の自己消弧型素子が、前記第2のダイオードに前記第2の自己消弧型素子が、前記第3のダイオードに前記第3の自己消弧型素子が、前記第4のダイオードに前記第4の自己消弧型素子が並列に接続されており、前記第1の直流端子と前記第2の直流端子との間に前記直流電圧源と前記直流リアクトルとの直列回路が接続され、前記第1の交流端子と前記第2の交流端子との間に誘導性負荷が接続された磁気エネルギー回生スイッチと、
前記磁気エネルギー回生スイッチを構成する各前記自己消弧型素子のオン・オフを切り替える信号を所定の周波数で出力する制御回路と、
を備え、
前記制御回路は、前記第1と第3の自己消弧型素子のペアと、前記第2と第4の自己消弧型素子のペアと、のうち、一方のペアに出力する信号のオン・オフのデューティ比を固定とし、他方のペアに出力する信号のオン・オフのデューティ比を可変とする、
ことを特徴とする。
In order to achieve the above object, a power inverter according to the first aspect of the present invention provides:
A DC reactor connected in series with a DC voltage source;
First and second AC terminals; first and second DC terminals; first to fourth diodes; first to fourth self-extinguishing elements; and the first and second AC terminals. A capacitor connected between terminals or between the first and second DC terminals, wherein the first AC terminal has an anode of the first diode and a cathode of the second diode, The first DC terminal has a cathode of the first diode and the cathode of the third diode, and the second DC terminal has an anode of the second diode and an anode of the fourth diode. The second AC terminal is connected to the anode of the third diode and the fourth cathode, the first diode is connected to the first self-extinguishing element, and the second diode is connected to the second diode. The second self-extinguishing element includes the third self-extinguishing element; The third self-extinguishing element is connected to an anode, and the fourth self-extinguishing element is connected in parallel to the fourth diode, and the first DC terminal, the second DC terminal, A magnetic energy regenerative switch in which a series circuit of the DC voltage source and the DC reactor is connected between and an inductive load is connected between the first AC terminal and the second AC terminal;
A control circuit for outputting a signal for switching on and off each self-extinguishing element constituting the magnetic energy regeneration switch at a predetermined frequency;
With
The control circuit is configured to turn on a signal output to one of the first and third self-extinguishing element pairs and the second and fourth self-extinguishing element pairs. The duty ratio of off is fixed, and the duty ratio of on / off of the signal output to the other pair is variable.
It is characterized by that.

例えば、前記所定の周波数は、前記誘導性負荷のインダクタンスと前記コンデンサの容量とで定まる共振周波数以下の周波数である。   For example, the predetermined frequency is a frequency equal to or lower than a resonance frequency determined by an inductance of the inductive load and a capacitance of the capacitor.

例えば、前記制御回路は、前記誘導性負荷のインダクタンスと前記コンデンサの容量とで定まる共振周波数と等しい周波数で前記複数の自己消弧型素子をオン・オフする。   For example, the control circuit turns on / off the plurality of self-extinguishing elements at a frequency equal to a resonance frequency determined by an inductance of the inductive load and a capacitance of the capacitor.

例えば、前記制御回路は、前記一方のペアのデューティ比を0.5とし、他方のペアのデューティ比を0.5以下で可変とする。   For example, the control circuit sets the duty ratio of the one pair to 0.5, and the duty ratio of the other pair is variable to 0.5 or less.

また、前記制御回路は、出力する信号の周波数を調整する機能をさらに備えてもよい。   The control circuit may further include a function of adjusting the frequency of the output signal.

例えば、前記磁気エネルギー回生スイッチは複数あり、複数の前記磁気エネルギー回生スイッチはそれぞれ異なる誘導性負荷に接続され、
前記制御手段は、各前記磁気エネルギー回生スイッチ毎に、前記第1乃至第4の自己消弧型素子に出力する信号を制御する。
For example, there are a plurality of magnetic energy regeneration switches, and the plurality of magnetic energy regeneration switches are connected to different inductive loads,
The control means controls a signal output to the first to fourth self-extinguishing elements for each of the magnetic energy regeneration switches.

例えば、前記自己消弧型素子は逆導通型半導体スイッチであって、前記ダイオードは、前記逆導通型半導体スイッチの寄生ダイオードである。   For example, the self-extinguishing element is a reverse conducting semiconductor switch, and the diode is a parasitic diode of the reverse conducting semiconductor switch.

例えば、本発明は誘導加熱装置に用いられる。   For example, the present invention is used in an induction heating device.

例えば、本発明はモータ制御装置に用いられる。   For example, the present invention is used in a motor control device.

また、上記目的を達成するため、本発明の第2の観点に係る電力逆変換方法は、
第1と第2の交流端子と、第1と第2の直流端子と、第1から第4のダイオードと、第1から第4の自己消弧型素子と、前記第1と第2の交流端子の間または前記第1と第2の直流端子の間に接続されたコンデンサとを備え、前記第1の交流端子には前記第1のダイオードのアノードと前記第2のダイオードのカソードが、前記第1の直流端子には前記第1のダイオードのカソードと前記第3のダイオードのカソードとが、前記第2の直流端子には前記第2のダイオードのアノードと前記第4のダイオードのアノードとが、前記第2の交流端子には前記第3のダイオードのアノードと前記第4のカソードとが接続され、前記第1のダイオードに前記第1の自己消弧型素子が、前記第2のダイオードに前記第2の自己消弧型素子が、前記第3のダイオードに前記第3の自己消弧型素子が、前記第4のダイオードに前記第4の自己消弧型素子が並列に接続されており、前記第1の直流端子と前記第2の直流端子との間に直流電圧源と直流リアクトルとの直列回路が接続され、前記第1の交流端子と前記第2の交流端子との間に誘導性負荷が接続された磁気エネルギー回生スイッチにおいて、
前記磁気エネルギー回生スイッチを構成する各前記自己消弧型素子のオン・オフを切り替える信号を所定の周波数で出力し、かつ、前記第1と第3の自己消弧型素子のペアと、前記第2と第4の自己消弧型素子のペアと、のうち、一方のペアに出力する信号のオン・オフのデューティ比を固定とし、他方のペアに出力する信号のオン・オフのデューティ比を可変とする、
ことを特徴とする。
In order to achieve the above object, a power reverse conversion method according to the second aspect of the present invention includes:
First and second AC terminals; first and second DC terminals; first to fourth diodes; first to fourth self-extinguishing elements; and the first and second AC terminals. A capacitor connected between terminals or between the first and second DC terminals, wherein the first AC terminal has an anode of the first diode and a cathode of the second diode, The first DC terminal has a cathode of the first diode and the cathode of the third diode, and the second DC terminal has an anode of the second diode and an anode of the fourth diode. The second AC terminal is connected to the anode of the third diode and the fourth cathode, the first diode is connected to the first self-extinguishing element, and the second diode is connected to the second diode. The second self-extinguishing element includes the third self-extinguishing element; The third self-extinguishing element is connected to an anode, and the fourth self-extinguishing element is connected in parallel to the fourth diode, and the first DC terminal, the second DC terminal, In a magnetic energy regenerative switch in which a series circuit of a DC voltage source and a DC reactor is connected between and an inductive load is connected between the first AC terminal and the second AC terminal.
A signal for switching on / off of each of the self-extinguishing elements constituting the magnetic energy regenerative switch is output at a predetermined frequency, and the pair of the first and third self-extinguishing elements; 2 and the fourth self-extinguishing element pair, the on / off duty ratio of the signal output to one pair is fixed, and the on / off duty ratio of the signal output to the other pair is Variable
It is characterized by that.

本発明によれば、回路規模の小さい構成で、電力を調整することができる。
更に、本発明によれば、1つの電源から複数の負荷に並列に電力を供給可能で、かつ、供給電力を調整することができる。
According to the present invention, power can be adjusted with a configuration having a small circuit scale.
Furthermore, according to the present invention, power can be supplied in parallel to a plurality of loads from one power source, and the supplied power can be adjusted.

この発明の一実施形態にかかる電力逆変換装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the power reverse conversion apparatus concerning one Embodiment of this invention. (a)乃至(d)は図1に示す電力逆変換装置のゲート信号の例を示す図である。(A) thru | or (d) is a figure which shows the example of the gate signal of the power reverse conversion apparatus shown in FIG. 図1に示す電力逆変換装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the power reverse conversion apparatus shown in FIG. 図1に示す電力逆変換装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the power reverse conversion apparatus shown in FIG. 図1に示す電力逆変換装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the power reverse conversion apparatus shown in FIG. 図1に示す電力逆変換装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the power reverse conversion apparatus shown in FIG. 図1に示す電力逆変換装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the power reverse conversion apparatus shown in FIG. 図1に示す電力逆変換装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the power reverse conversion apparatus shown in FIG. 図1に示す電力逆変換装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the power reverse conversion apparatus shown in FIG. 図1に示す電力逆変換装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the power reverse conversion apparatus shown in FIG. 図1に示す電力逆変換装置のゲート信号と電流・電圧との関係例を示す図である。It is a figure which shows the example of a relationship between the gate signal and electric current and voltage of the power reverse conversion apparatus shown in FIG. 図1に示す電力逆変換装置のゲート信号と電流・電圧との関係例を示す図である。It is a figure which shows the example of a relationship between the gate signal and electric current and voltage of the power reverse conversion apparatus shown in FIG. 図1に示す電力逆変換装置のゲート信号のデューティ比を変化させた場合の電流・電圧の変化を示す図である。It is a figure which shows the change of an electric current and voltage at the time of changing the duty ratio of the gate signal of the power reverse conversion apparatus shown in FIG. 図1に示す電力逆変換装置の変形例を示す図である。It is a figure which shows the modification of the power reverse conversion apparatus shown in FIG. 図1に示す電力逆変換装置の変形例を示す図である。It is a figure which shows the modification of the power reverse conversion apparatus shown in FIG. 図1に示す電力逆変換装置の変形例を示す図である。It is a figure which shows the modification of the power reverse conversion apparatus shown in FIG. 図1に示す電力逆変換装置の変形例を示す図である。It is a figure which shows the modification of the power reverse conversion apparatus shown in FIG.

以下、本発明の実施の形態に係る電力逆変換装置を、図面を参照しつつ説明する。   Hereinafter, a power reverse conversion device according to an embodiment of the present invention will be described with reference to the drawings.

本実施形態に係る電力逆変換装置は、1つの直流電源から供給される電力を、交流電力に変換して、複数の負荷に並列に供給可能で、かつ、複数の負荷への供給電力を個別に制御可能なものである。   The power reverse conversion device according to the present embodiment converts power supplied from one DC power source into AC power, can be supplied in parallel to a plurality of loads, and individually supplies power to the plurality of loads. Can be controlled.

以下、並列に配置されたn個(nは2以上の自然数)の負荷に交流電力を供給する例を説明する。   Hereinafter, an example in which AC power is supplied to n (n is a natural number of 2 or more) loads arranged in parallel will be described.

図1に示すように、本実施の形態に係る電力逆変換装置1は、全負荷に共通に配置されたと直流電源2と、第i(i=1〜n)の負荷LDiに配置された駆動回路10iとから構成される。
直流電源2は、交流電源11と全波整流回路12と平滑コンデンサCCとから構成される。
駆動回路10iは、直流リアクトルLdciと、磁気エネルギー回生スイッチBiと、制御回路13iとから構成される。
As shown in FIG. 1, the power inverter 1 according to the present embodiment includes a DC power supply 2 and a drive disposed in an i-th (i = 1 to n) load LDi when commonly disposed in all loads. Circuit 10i.
The DC power source 2 includes an AC power source 11, a full-wave rectifier circuit 12, and a smoothing capacitor CC.
The drive circuit 10i includes a direct current reactor Ldci, a magnetic energy regeneration switch Bi, and a control circuit 13i.

磁気エネルギー回生スイッチBiは4つの逆導通型半導体スイッチSWUi、SWXi、SWVi、SWYiと、コンデンサCMiと、から構成される。
磁気エネルギー回生スイッチBiの逆導通型半導体スイッチSWUi、SWXi、SWVi、SWYiは、ダイオード部DUi,DXi,DVi,DYiと、ダイオード部DUi,DXi,DVi,DYiに並列に接続されたスイッチ部SUi,SXi,SVi,SYiと、スイッチ部SUi,SXi,SVi,SYiに配置されたゲートGUi,GXi,GVi,GYiと、から構成される。
The magnetic energy regenerative switch Bi is composed of four reverse conducting semiconductor switches SWUi, SWXi, SWVi, SWYi, and a capacitor CMi.
The reverse conducting semiconductor switches SWUi, SWXi, SWVi, and SWYi of the magnetic energy regenerative switch Bi are diode units DUi, DXi, DVi, and DYi, and switch units SUi, connected in parallel to the diode units DUi, DXi, DVi, and DYi, respectively. SXi, SVi, SYi and gates GUi, GXi, GVi, GYi arranged in the switch units SUi, SXi, SVi, SYi.

磁気エネルギー回生スイッチBiの、交流端子AC1iにはダイオード部DUiのアノードとダイオード部DXiのカソードとが、直流端子DCPiにはダイオード部DUiのカソードとダイオード部DYiのカソードとコンデンサCMiの正極とが、直流端子DCNiにはダイオード部DXiのアノードとダイオード部DYiのアノードとコンデンサCMiの負極とが、交流端子AC2iにはダイオード部DViのアノードとダイオード部DYiのカソードとが接続されている。
また、直流端子DCPiと直流端子DCNiの間には直流電源2と直流リアクトルLdciの直列回路が接続され、交流端子AC1iと交流端子AC2iの間には、負荷LDiが接続されている。
In the magnetic energy regeneration switch Bi, the AC terminal AC1i has an anode of the diode unit DUi and a cathode of the diode unit DXi, and the DC terminal DCPi has a cathode of the diode unit DUi, a cathode of the diode unit DYi, and a positive electrode of the capacitor CMi, The direct current terminal DCNi is connected to the anode of the diode portion DXi, the anode of the diode portion DYi, and the negative electrode of the capacitor CMi, and the alternating current terminal AC2i is connected to the anode of the diode portion DVi and the cathode of the diode portion DYi.
A series circuit of a DC power supply 2 and a DC reactor Ldci is connected between the DC terminal DCPi and the DC terminal DCNi, and a load LDi is connected between the AC terminal AC1i and the AC terminal AC2i.

交流電源11の出力は、全波整流回路12に入力されている。
負荷LDi用の、電流平滑用の直流リアクトルLdciは、その一端が全波整流回路12の正の出力端と平滑コンデンサCCの接続ノードに共通に接続されている。
The output of the AC power supply 11 is input to the full-wave rectifier circuit 12.
One end of the current smoothing DC reactor Ldci for the load LDi is commonly connected to the positive output terminal of the full-wave rectifier circuit 12 and the connection node of the smoothing capacitor CC.

交流電源11は、所定周波数で所定電圧の交流電圧を出力する。
全波整流回路12は、例えば、ダイオードブリッジ回路等から構成され、交流電源11の出力電圧を全波整流して脈流の直流脈流電圧を出力する。
平滑コンデンサCCは、全波整流回路12の出力する脈流電圧を平滑化し、直流電圧源として機能する。平滑コンデンサCCの容量は、コンデンサCMiの総和よりも大きいことが望ましい。
The AC power supply 11 outputs an AC voltage having a predetermined voltage at a predetermined frequency.
The full-wave rectifier circuit 12 is composed of, for example, a diode bridge circuit and the like, and full-wave rectifies the output voltage of the AC power supply 11 to output a pulsating DC pulsating voltage.
The smoothing capacitor CC smoothes the pulsating voltage output from the full-wave rectifier circuit 12 and functions as a DC voltage source. The capacitance of the smoothing capacitor CC is preferably larger than the total sum of the capacitors CMi.

負荷LDiは、例えば、誘導加熱コイル、モータ等の誘導性負荷から構成される。負荷LDiは、インダクタLiと抵抗Riの直列回路で表される。
なお、負荷LDiのインダクタンスや抵抗は互いに異なっても良い。
The load LDi is composed of an inductive load such as an induction heating coil or a motor. The load LDi is represented by a series circuit of an inductor Li and a resistor Ri.
Note that the inductance and resistance of the load LDi may be different from each other.

磁気エネルギー回生スイッチBiの逆導通型逆導通型半導体スイッチSWUi、SWXi、SWVi、SWYiのオン・オフは、スイッチ部SUi、SXi、SVi、SYiのオン・オフが切り替わることによって、切り替わる。
スイッチ部SUi、SXi、SVi、SYiは、ゲートGUi、GXi、GVi、GYiにオン信号が入力されるとオンになり、オフ信号が入力されるとオフになる。
スイッチ部SUi、SXi、SVi、SYiがオンになると、ダイオード部DUi,DXi,DVi,DYiが短絡され、逆導通型半導体スイッチSWUi、SWXi、SWVi、SWYiがオンになる。スイッチ部SUi、SXi、SVi、SYiがオフになると、ダイオード部DUi,DXi,DVi,DYiが機能し、逆導通型半導体スイッチSWUi,SWXi,SWVi,SWYiはオフになる。
逆導通型半導体スイッチSWUi、SWXi、SWVi、SWYiは、例えば、Nチャンネル型シリコンMOSFET(MOSFET:Metal−Oxide−Semiconductor Field−Effect Transistor)である。
On / off of the reverse conduction type reverse conduction type semiconductor switches SWUi, SWXi, SWVi, and SWYi of the magnetic energy regenerative switch Bi is switched by switching on / off of the switch units SUi, SXi, SVi, and SYi.
The switch units SUi, SXi, SVi, and SYi are turned on when an on signal is input to the gates GUi, GXi, GVi, and GYi, and are turned off when an off signal is input.
When the switch units SUi, SXi, SVi, and SYi are turned on, the diode units DUi, DXi, DVi, and DYi are short-circuited, and the reverse conducting semiconductor switches SWUi, SWXi, SWVi, and SWYi are turned on. When the switch units SUi, SXi, SVi, and SYi are turned off, the diode units DUi, DXi, DVi, and DYi function, and the reverse conducting semiconductor switches SWUi, SWXi, SWVi, and SWYi are turned off.
The reverse conducting semiconductor switches SWUi, SWXi, SWVi, and SWYi are, for example, N-channel silicon MOSFETs (MOSFETs: Metal-Oxide-Semiconductor Field-Effect Transistors).

制御回路13iは、磁気エネルギー回生スイッチBiを構成する4つのスイッチ部SUi、SXi、SVi、SYiのゲートGUi,GXi,GVi,GYiに、図2(a)〜(d)に示すゲート信号SGUi、SGXi、SGVi、SGYiを供給する。ゲート信号はそれぞれハイレベルとローレベルの信号から構成され、ハイレベルはオン信号、ローレベルはオフ信号として機能する。   The control circuit 13i includes the gate signals SGUi shown in FIGS. 2A to 2D to the gates GUi, GXi, GVi, and GYi of the four switch units SUi, SXi, SVi, and SYi that constitute the magnetic energy regeneration switch Bi. SGXi, SGVi, SGYi are supplied. Each of the gate signals is composed of a high level signal and a low level signal.

図2(a),(b)に示すように、ゲート信号SGUiとSGViとは、例えば、予め設定された周波数fを有し、そのデューティ比が0.5(180°オン)の信号であり、互いにほぼ逆相の信号である。ただし、ゲート信号SGUi又はSGViの一方がハイレベルからローレベルに変化した期間ΔTの間は、ゲート信号SGUi又はSGViの他方はローレベルからハイレベルに変化しない。逆導通型半導体スイッチSWUiとSWViとが同時にオンし、負荷LDiの両端が短絡する事態を防止するためのである。   As shown in FIGS. 2A and 2B, the gate signals SGUi and SGVi are, for example, signals having a preset frequency f and a duty ratio of 0.5 (180 ° on). , The signals are almost in phase with each other. However, during the period ΔT in which one of the gate signals SGUi or SGVi changes from the high level to the low level, the other of the gate signals SGUi or SGVi does not change from the low level to the high level. This is to prevent the situation where the reverse conducting semiconductor switches SWUi and SWVi are simultaneously turned on and both ends of the load LDi are short-circuited.

図2(a)乃至図2(d)に示すように、ゲート信号SGYiは、ゲート信号SGUiと同一周波数で同期した信号で、ゲート信号SGXiは、ゲート信号SGViと同一周波数で同期した信号である。ただし、ゲート信号SGYiとSGXiとのデューティ比は、0.5以下であり、制御回路13iのつまみ13aiの調整に伴って可変である。   As shown in FIGS. 2A to 2D, the gate signal SGYi is a signal synchronized with the same frequency as the gate signal SGUi, and the gate signal SGXi is a signal synchronized with the same frequency as the gate signal SGVi. . However, the duty ratio between the gate signals SGYi and SGXi is 0.5 or less, and is variable in accordance with the adjustment of the knob 13ai of the control circuit 13i.

コンデンサCMiの容量Cと、負荷LDiのインダクタLiのインダクタンスLとの共振周波数frは、fr=1/[2π√(C・L)]である。ゲート信号SGUi、SGVi、SGXi、SGYiの周波数fは、この共振周波数fr以下の周波数に設定される。また、ゲート信号SGUi、SGVi、SGXi、SGYiがオン・オフするタイミングで、負荷電流ILDiが最大値となるように、コンデンサCMiの容量が調整されることが望ましい。
なお、本実施例では、コンデンサCMiと負荷LDiのインダクタLiの共振の周期がゲート信号の周期の95%になるように、コンデンサCMiの容量は調整されている。
The resonance frequency fr of the capacitance C of the capacitor CMi and the inductance L of the inductor Li of the load LDi is fr = 1 / [2π√ (C · L)]. The frequency f of the gate signals SGUi, SGVi, SGXi, SGYi is set to a frequency equal to or lower than the resonance frequency fr. Further, it is desirable to adjust the capacitance of the capacitor CMi so that the load current ILDi becomes the maximum value at the timing when the gate signals SGUi, SGVi, SGXi, and SGYi are turned on / off.
In this embodiment, the capacitance of the capacitor CMi is adjusted so that the resonance period of the capacitor CMi and the inductor Li of the load LDi is 95% of the period of the gate signal.

次に、上記構成の電力逆変換装置1の動作を説明する。   Next, the operation of the power inverter 1 having the above configuration will be described.

各駆動回路10iの動作は共通である。
各駆動回路10iの直流リアクトルLdciは、直流電源2から出力された電力(電流)を安定的に駆動回路10i内に供給する。
The operation of each drive circuit 10i is common.
The DC reactor Ldci of each drive circuit 10i stably supplies power (current) output from the DC power supply 2 into the drive circuit 10i.

制御回路13iは、ゲート信号SGUi、SGVi、SGXi、SGYiを、スイッチ部SUi、SVi、SXi、SYiに供給する。前述のように、ゲート信号SGUi、SGVi、SGXi、SGYiは同一の周波数を有し、SGUiとSGViとはデューティ比がほぼ0.5で、SGXiとSGYiはつまみ13aiによって調整された0.5以下のデューティ比を有する。   The control circuit 13i supplies the gate signals SGUi, SGVi, SGXi, SGYi to the switch units SUi, SVi, SXi, SYi. As described above, the gate signals SGUi, SGVi, SGXi, SGYi have the same frequency, SGUi and SGVi have a duty ratio of approximately 0.5, and SGXi and SGYi are 0.5 or less adjusted by the knob 13ai. The duty ratio is

制御回路13iにおいて、ゲート信号SGXi、SGYiのデューティ比が例えば0.5の場合、負荷LDiを流れる電流は、図3A乃至図3Fの矢印に示すように流れる。
以下、初期状態が、ゲート信号SGViとSGXiはオフ信号で、ゲート信号SGUiとSGYiはオン信号で、電流が後述する図3Fの経路で流れている時刻T10の状態である、として説明する。
なお、理解を容易にするために、図3A乃至図3Fにおいて、交流電源11と全波整流回路12は表記していない。
In the control circuit 13i, when the duty ratio of the gate signals SGXi, SGYi is, for example, 0.5, the current flowing through the load LDi flows as indicated by arrows in FIGS. 3A to 3F.
In the following description, it is assumed that the initial state is the state at time T10 when the gate signals SGVi and SGXi are off signals, the gate signals SGUi and SGYi are on signals, and the current flows through the path of FIG.
For ease of understanding, the AC power supply 11 and the full-wave rectifier circuit 12 are not shown in FIGS. 3A to 3F.

(時刻T11−T12)
時刻T11になると、制御回路13iは、ゲート信号SGViとSGXiとをオフ信号からオン信号に切り替え、ゲート信号SGUiとSGYiをオン信号からオフ信号に切り替える。逆導通型半導体スイッチSWViとSWXiはオンに切り替わり、逆導通型半導体スイッチSWUiとSWYiはオフに切り替わる。
電流は、図3Aに示すように、負荷LDiから交流端子AC2iを通り、オンの逆導通型半導体スイッチSWViを介して直流端子DCPiを通り、コンデンサCMiの正極に流入する。コンデンサCMiの負極から流れだす電流は、直流端子DCNiを通り、オンの逆導通型半導体スイッチSWXiを介して交流端子AC1iを通り、負荷LDiを流れる。
(Time T11-T12)
At time T11, the control circuit 13i switches the gate signals SGVi and SGXi from the off signal to the on signal, and switches the gate signals SGUi and SGYi from the on signal to the off signal. The reverse conducting semiconductor switches SWVi and SWXi are switched on, and the reverse conducting semiconductor switches SWUi and SWYi are switched off.
As shown in FIG. 3A, the current flows from the load LDi through the AC terminal AC2i, through the ON reverse conducting semiconductor switch SWVi, through the DC terminal DCPi, and flows into the positive electrode of the capacitor CMi. The current flowing from the negative electrode of the capacitor CMi passes through the DC terminal DCNi, passes through the AC terminal AC1i through the ON reverse conducting semiconductor switch SWXi, and flows through the load LDi.

(時刻T12−T13)
インダクタLiとの共振によって、コンデンサCMiの充電が終わる時刻T12においてコンデンサCMiは放電を始め、電流は図3Bに示すように流れ始める。電流は、負荷LDiから交流端子AC1iを通り、オンの逆導通型半導体スイッチSWXiを介して直流端子DCNiを通り、コンデンサCMiの負極に流入する。コンデンサCMiの正極から流れだす電流は、直流端子DCPiを通り、オンの逆導通型半導体スイッチSWViを介して交流端子AC2iを通り、負荷LDiを流れる。
(Time T12-T13)
Due to resonance with the inductor Li, the capacitor CMi starts discharging at time T12 when the charging of the capacitor CMi ends, and current starts to flow as shown in FIG. 3B. The current flows from the load LDi through the AC terminal AC1i, through the ON reverse conducting semiconductor switch SWXi, through the DC terminal DCNi, and flows into the negative electrode of the capacitor CMi. The current flowing from the positive electrode of the capacitor CMi passes through the DC terminal DCPi, passes through the AC terminal AC2i via the ON reverse conducting semiconductor switch SWVi, and flows through the load LDi.

(時刻T13−T14)
コンデンサCMの両端電圧が略0になる時刻T13において、電流は図3Cに示すように流れ始める。電流は、交流端子AC1iを通り、オフの逆導通型半導体スイッチSWUiとオンの逆導通型半導体スイッチSWViとを介して交流端子AC2iを通るルートと、交流端子AC1iを通り、オンの逆導通型半導体スイッチSWXiとオフの逆導通型半導体スイッチSWYiとを介して交流端子AC2iを通るルートと、の2つのルートで負荷LDiに流れる。
(Time T13-T14)
At time T13 when the voltage across the capacitor CM becomes substantially zero, current starts to flow as shown in FIG. 3C. The current passes through the AC terminal AC1i, passes through the AC terminal AC2i via the OFF reverse conducting semiconductor switch SWUi and the ON reverse conducting semiconductor switch SWVi, and passes through the AC terminal AC1i to turn on the reverse conducting semiconductor. The current flows to the load LDi through two routes, the route passing through the AC terminal AC2i through the switch SWXi and the off reverse conducting semiconductor switch SWYi.

(時刻T14−T15)
時刻T14になると、制御回路13iは、予め設定された周波数fにより、ゲート信号SGUiとSGYiをオフ信号からオン信号に切り替え、ゲート信号SGViとSGXiをオン信号からオフ信号に切り替える。
逆導通型半導体スイッチSWUiとSWYiはオンに切り替わり、逆導通型半導体スイッチSWViとSWXiはオフに切り替わる。
電流は、図3Dに示すように、負荷LDiから交流端子AC1iを通り、オンの逆導通型半導体スイッチSWUiを介して直流端子DCPiを通り、コンデンサCMiの正極に流入する。コンデンサCMiの負極から流れだす電流は、直流端子DCNiを通り、オンの逆導通型半導体スイッチSWYiを介して交流端子AC2iを通り、負荷LDiを流れる。
(Time T14-T15)
At time T14, the control circuit 13i switches the gate signals SGUi and SGYi from the off signal to the on signal and switches the gate signals SGVi and SGXi from the on signal to the off signal at a preset frequency f.
The reverse conducting semiconductor switches SWUi and SWYi are turned on, and the reverse conducting semiconductor switches SWVi and SWXi are turned off.
As shown in FIG. 3D, the current flows from the load LDi through the AC terminal AC1i, through the ON reverse conducting semiconductor switch SWUi, through the DC terminal DCPi, and flows into the positive electrode of the capacitor CMi. The current flowing from the negative electrode of the capacitor CMi passes through the DC terminal DCNi, passes through the AC terminal AC2i via the ON reverse conducting semiconductor switch SWYi, and flows through the load LDi.

(時刻T15−T16)
インダクタLiとの共振によってコンデンサCMiの充電が終わる時刻T15において、コンデンサCMiは放電をし始める。電流は図3Eに示すように、負荷LDiから交流端子AC2iを通り、オンの逆導通型半導体スイッチSWYiを介して直流端子DCNiを通り、コンデンサCMiの負極に流入する。コンデンサCMiの正極から流れだす電流は、直流端子DCPiを通り、オンの逆導通型半導体スイッチSWUiを介して交流端子AC1iを通り、負荷LDiを流れる。
(Time T15-T16)
At time T15 when charging of the capacitor CMi ends due to resonance with the inductor Li, the capacitor CMi starts to discharge. As shown in FIG. 3E, the current flows from the load LDi through the AC terminal AC2i, through the ON reverse conducting semiconductor switch SWYi, through the DC terminal DCNi, and flows into the negative electrode of the capacitor CMi. The current flowing from the positive electrode of the capacitor CMi passes through the DC terminal DCPi, passes through the AC terminal AC1i via the ON reverse conducting semiconductor switch SWUi, and flows through the load LDi.

(時刻T16−T17)
コンデンサCMiの両端電圧が略0になる時刻T16において、電流は図3Fに示すように流れ始める。電流は、交流端子AC2iを通り、オフの逆導通型半導体スイッチSWViとオンの逆導通型半導体スイッチSWUiとを介して交流端子AC1iを通るルートと、交流端子AC2iを通り、オンの逆導通型半導体スイッチSWYiとオフの逆導通型半導体スイッチSWXiとを介して交流端子AC1iを通るルートと、の2つのルートで負荷LDiに流れる。
(Time T16-T17)
At time T16 when the voltage across the capacitor CMi becomes substantially zero, the current starts to flow as shown in FIG. 3F. The current passes through the AC terminal AC2i, passes through the AC terminal AC1i via the OFF reverse conducting semiconductor switch SWVi and the ON reverse conducting semiconductor switch SWUi, and passes through the AC terminal AC2i to turn on the reverse conducting semiconductor. The current flows to the load LDi through two routes, the route passing through the AC terminal AC1i through the switch SWYi and the off reverse conducting semiconductor switch SWXi.

時刻T17において制御回路13iは、予め設定された周波数fにより、再びゲート信号SGXiとSGViをオン信号に切り替え、ゲート信号SGUiとSGYiをオフ信号に切り替える。   At time T17, the control circuit 13i switches the gate signals SGXi and SGVi to the on signal again and switches the gate signals SGUi and SGYi to the off signal at the preset frequency f.

上述の動作を繰り返すことにより、図4に示すような交流電流が負荷LDiに流れる。図4は、ゲート信号SGVi,SGXi,SGUi,SGYiのオン信号・オフ信号の切り替わりに伴う負荷LDiの電流ILDi,電圧VLDiと、コンデンサCMiの電圧Vcmの関係を示すもので、図中のT10乃至T17は上述のT10乃至T17に対応する。
ゲート信号SGUi,SGVi,SGXi,SGYiの切り替わりに応じて、コンデンサ電圧Vcmが充放電を繰り返し、コンデンサ電圧Vcmが負荷電圧VLDiとして負荷LDiに印加され、交流電流が負荷LDiに流れることがわかる。しかも、負荷LDi、各逆導通型半導体スイッチにかかる電圧がほぼ0のタイミングで逆導通型半導体スイッチのオン・オフを切り替えられるので、いわゆるソフトスイッチングが可能となる。
By repeating the above operation, an alternating current as shown in FIG. 4 flows through the load LDi. FIG. 4 shows the relationship between the current ILDi and voltage VLDi of the load LDi and the voltage Vcm of the capacitor CMi in accordance with switching of the on signal / off signal of the gate signals SGVi, SGXi, SGUi, and SGYi. T17 corresponds to the above-described T10 to T17.
It can be seen that the capacitor voltage Vcm is repeatedly charged and discharged in response to switching of the gate signals SGUi, SGVi, SGXi, SGYi, the capacitor voltage Vcm is applied to the load LDi as the load voltage VLDi, and an alternating current flows to the load LDi. In addition, since the reverse conduction type semiconductor switch can be switched on and off at the timing when the voltage applied to the load LDi and each reverse conduction type semiconductor switch is almost zero, so-called soft switching is possible.

制御回路13iの出力するゲート信号SGXi、SGYiのデューティ比が、例えば0.4の時、電流は、図3A,図3B,図3D,図3E,図3G,図3Hに示すように流れる。
以下、初期状態はゲート信号SGViとSGYiとSGXiはオフ信号で、ゲート信号SGUiはオン信号で、電流が後述する図3Hの経路で流れている時刻T20の状態である、として説明する。
When the duty ratio of the gate signals SGXi and SGYi output from the control circuit 13i is, for example, 0.4, the current flows as shown in FIGS. 3A, 3B, 3D, 3E, 3G, and 3H.
In the following description, it is assumed that the initial state is the state at time T20 when the gate signals SGVi, SGYi, and SGXi are off signals, the gate signal SGUi is the on signal, and the current flows through the path of FIG.

(時刻T21−T22)
時刻T21になると、制御回路13iは、ゲート信号SGViとSGXiとをオフ信号からオン信号に、ゲート信号SGUiをオン信号からオフ信号に切り替え、ゲート信号SGYiはオフ信号を保持する。逆導通型半導体スイッチSWViとSWXiはオンに、逆導通型半導体スイッチSWUiはオフに切り替わり、逆導通型半導体スイッチSWYiはオフまま変化しない。
電流は、図3Aに示すように、負荷LDiから交流端子AC2iを通り、オンの逆導通型半導体スイッチSWViを介して直流端子DCPiを通り、コンデンサCMiの正極に流入する。コンデンサCMiの負極から流れだす電流は、直流端子DCNiを通り、オンの逆導通型半導体スイッチSWXiを介して交流端子AC1iを通り、負荷LDiを流れる。
(Time T21-T22)
At time T21, the control circuit 13i switches the gate signals SGVi and SGXi from the off signal to the on signal and the gate signal SGUi from the on signal to the off signal, and the gate signal SGYi holds the off signal. The reverse conducting semiconductor switches SWVi and SWXi are turned on, the reverse conducting semiconductor switch SWUi is turned off, and the reverse conducting semiconductor switch SWYi remains off.
As shown in FIG. 3A, the current flows from the load LDi through the AC terminal AC2i, through the ON reverse conducting semiconductor switch SWVi, through the DC terminal DCPi, and flows into the positive electrode of the capacitor CMi. The current flowing from the negative electrode of the capacitor CMi passes through the DC terminal DCNi, passes through the AC terminal AC1i through the ON reverse conducting semiconductor switch SWXi, and flows through the load LDi.

(時刻T22−T23)
インダクタLiとの共振によってコンデンサCMiの充電が終わる時刻T22において、コンデンサCMiは放電を始め、電流は図3Bに示すように流れ始める。電流は、負荷LDiから交流端子AC1iを通り、オンの逆導通型半導体スイッチSWXiを介して直流端子DCNiを通り、コンデンサCMiの負極に流入する。コンデンサCMiの正極から流れだす電流は、直流端子DCPiを通り、オンの逆導通型半導体スイッチSWViを介して交流端子AC2iを通り、負荷LDiを流れる。
(Time T22-T23)
At time T22 when charging of the capacitor CMi ends due to resonance with the inductor Li, the capacitor CMi starts discharging, and current starts to flow as shown in FIG. 3B. The current flows from the load LDi through the AC terminal AC1i, through the ON reverse conducting semiconductor switch SWXi, through the DC terminal DCNi, and flows into the negative electrode of the capacitor CMi. The current flowing from the positive electrode of the capacitor CMi passes through the DC terminal DCPi, passes through the AC terminal AC2i via the ON reverse conducting semiconductor switch SWVi, and flows through the load LDi.

(時刻T23−T24)
時刻T23になると、設定されたデューティ比によって、制御回路13iは、ゲート信号SGXiをオフ信号に切り替え、ゲート信号SGViはオン信号のままに、ゲート信号SGUiとSGYiとをオフ信号のままにする。逆導通型半導体スイッチSWViとSWUiとSWYiとはオン・オフを保持し、逆導通型半導体スイッチSWXiがオフに切り替わる。電流は図3Gに示すように、交流端子AC1iを通り、オフの逆導通型半導体スイッチSWUiとオンの逆導通型半導体スイッチSWViとを介して交流端子AC2iを通り、負荷LDiに流れる。コンデンサCMiの電圧はほとんど変動しない。
(Time T23-T24)
At time T23, according to the set duty ratio, the control circuit 13i switches the gate signal SGXi to the off signal, the gate signal SGVi remains on, and the gate signals SGUi and SGYi remain off. The reverse conducting semiconductor switches SWVi, SWUi, and SWYi are kept on / off, and the reverse conducting semiconductor switch SWXi is turned off. As shown in FIG. 3G, the current flows through the AC terminal AC1i, passes through the AC terminal AC2i through the OFF reverse conducting semiconductor switch SWUi and the ON reverse conducting semiconductor switch SWVi, and flows to the load LDi. The voltage of the capacitor CMi hardly fluctuates.

(時刻T24−T25)
時刻T24になると、予め設定された周波数fにより、制御回路13iは、ゲート信号SGUiとSGYiをオフ信号からオン信号に、ゲート信号SGViをオン信号からオフ信号に切り替え、ゲート信号SGXiはオフ信号のままにする。
逆導通型半導体スイッチSWUiとSWYiはオンに、逆導通型半導体スイッチSWViはオフに切り替わり、逆導通型半導体スイッチSWXiはオフを保持する。
電流は、図3Dに示すように、負荷LDiから交流端子AC1iを通り、オンの逆導通型半導体スイッチSWUiを介して直流端子DCPiを通り、コンデンサCMiの正極に流入する。コンデンサCMiの負極から流れだす電流は、直流端子DCNiを通り、オンの逆導通型半導体スイッチSWYiを介して交流端子AC1iを通り、負荷LDiを流れる。
(Time T24-T25)
At time T24, the control circuit 13i switches the gate signals SGUi and SGYi from the off signal to the on signal and the gate signal SGVi from the on signal to the off signal at a preset frequency f, and the gate signal SGXi is the off signal. Leave.
The reverse conducting semiconductor switches SWUi and SWYi are turned on, the reverse conducting semiconductor switch SWVi is turned off, and the reverse conducting semiconductor switch SWXi is kept off.
As shown in FIG. 3D, the current flows from the load LDi through the AC terminal AC1i, through the ON reverse conducting semiconductor switch SWUi, through the DC terminal DCPi, and flows into the positive electrode of the capacitor CMi. The current flowing from the negative electrode of the capacitor CMi passes through the DC terminal DCNi, passes through the AC terminal AC1i via the ON reverse conducting semiconductor switch SWYi, and flows through the load LDi.

(時刻T25−T26)
インダクタLiとの共振によって、コンデンサCMiの充電が終わる時刻T25において、コンデンサCMiは放電をし始め、電流は図3Eに示すよう流れる。電流は、負荷LDiから交流端子AC2iを通り、オンの逆導通型半導体スイッチSWYiを介して直流端子DCNiを通り、コンデンサCMiの負極に流入する。
コンデンサCMiの正極から流れだす電流は、直流端子DCPiを通り、オンの逆導通型半導体スイッチSWUiを介して交流端子AC1iを通り、負荷LDiを流れる。
(Time T25-T26)
At time T25 when charging of the capacitor CMi ends due to resonance with the inductor Li, the capacitor CMi starts to discharge, and current flows as shown in FIG. 3E. The current flows from the load LDi through the AC terminal AC2i, through the ON reverse conducting semiconductor switch SWYi, through the DC terminal DCNi, and flows into the negative electrode of the capacitor CMi.
The current flowing from the positive electrode of the capacitor CMi passes through the DC terminal DCPi, passes through the AC terminal AC1i via the ON reverse conducting semiconductor switch SWUi, and flows through the load LDi.

(時刻T26−T27)
時刻T26になると、制御回路13iは、設定されたデューティ比によって、ゲート信号SGYiをオフ信号に切り替え、ゲート信号SGUiはオン信号のまま、ゲート信号SGViとSGXiとをオフ信号のままにする。逆導通型半導体スイッチSWUiとSWViとSWXiとはオン・オフを保持し、逆導通型半導体スイッチSWYiがオフに切り替わる。
電流は図3Hに示すように、交流端子AC2iを通り、オフの逆導通型半導体スイッチSWViとオンの逆導通型半導体スイッチSWUiとを介して交流端子AC1iを通り負荷LDiに流れる。コンデンサCMiの電圧はほとんど変動しない。
(Time T26-T27)
At time T26, the control circuit 13i switches the gate signal SGYi to the off signal according to the set duty ratio, the gate signal SGUi remains on, and the gate signals SGVi and SGXi remain off. The reverse conducting semiconductor switches SWUi, SWVi, and SWXi are kept on / off, and the reverse conducting semiconductor switch SWYi is turned off.
As shown in FIG. 3H, the current flows through the AC terminal AC2i, and flows through the AC terminal AC1i to the load LDi through the OFF reverse conducting semiconductor switch SWVi and the ON reverse conducting semiconductor switch SWUi. The voltage of the capacitor CMi hardly fluctuates.

時刻T27において制御回路13iは、予め設定された周波数fにより、再び、ゲート信号SGXiとSGViとをオン信号に、ゲート信号SGUiをオフ信号に切り替える。ゲート信号SGYiはオフ信号を保持される。   At time T27, the control circuit 13i switches the gate signals SGXi and SGVi to the on signal and the gate signal SGUi to the off signal again at the preset frequency f. The gate signal SGYi is held as an off signal.

上述の動作を繰り返すことによって、図5に示すような交流電流が負荷LDiに流れる。図5は、ゲート信号SGVi,SGUi,SGXi,SGYiのオン信号・オフ信号の切り替わりに伴う負荷LDiの電流ILDi・電圧VLDiと、コンデンサCMiの電圧Vcmの関係を示すもので、図中のT20乃至T27は上述のT20乃至T27に対応する。
上述したように、ゲート信号SGUi,SGVi,SGXi,SGYiの切り替わりに応じて、コンデンサ電圧Vcmが負荷LDiに順方向で印加される・逆方向で印加される・印加されない状態が切り替わり、それに伴い交流電流が負荷LDiに流れることがわかる。
この場合、いわゆるソフトスイッチングではなくなるが、逆導通型半導体スイッチSWUi,SWVi,SWXi,SWYiにかかる印加電圧は小さく、大きな損失は発生しない。
By repeating the above operation, an alternating current as shown in FIG. 5 flows through the load LDi. FIG. 5 shows the relationship between the current ILDi / voltage VLDi of the load LDi and the voltage Vcm of the capacitor CMi as the gate signals SGVi, SGUi, SGXi, SGYi are switched. T27 corresponds to the above-described T20 to T27.
As described above, according to the switching of the gate signals SGUi, SGVi, SGXi, SGYi, the capacitor voltage Vcm is applied to the load LDi in the forward direction, applied in the reverse direction, or not applied, and the AC is switched accordingly. It can be seen that current flows through the load LDi.
In this case, although not so-called soft switching, the applied voltage applied to the reverse conducting semiconductor switches SWUi, SWVi, SWXi, SWYi is small, and no large loss occurs.

ゲート信号SGUiとSGViのデューティ比が0.5の場合と0.4の場合の負荷LDiの電流・電圧を比べると、図6(a)〜(d)のようになる。   When the current and voltage of the load LDi when the duty ratio of the gate signals SGUi and SGVi is 0.5 and 0.4 are compared, the results are as shown in FIGS.

図6(a),図6(b)は、ゲート信号SGUi、SGVi、SGXi、SGYiのデューティ比を図6(d)に示すように0.5とした場合と、図6(c)に示すようにゲート信号SGUiとSGViのデューティ比を0.5でゲート信号SGXiとSGYiのデューティ比を0.4とした場合との、負荷LDiに印加される電圧と負荷LDiに流れる電流との関係をに示したものである。   6A and 6B show the case where the duty ratio of the gate signals SGUi, SGVi, SGXi, and SGYi is 0.5 as shown in FIG. 6D, and FIG. 6C. Thus, the relationship between the voltage applied to the load LDi and the current flowing through the load LDi when the duty ratio of the gate signals SGUi and SGVi is 0.5 and the duty ratio of the gate signals SGXi and SGYi is 0.4. It is shown in.

ここで、図6(a)と(b)において、実線は、デューティ比が全て0.5とした場合のもの、破線は、ゲート信号SGUiとSGViのデューティ比を0.5、SGXiとSGYiのデューティ比を0.4とした場合のものである。   Here, in FIGS. 6A and 6B, the solid lines are for the case where the duty ratio is all 0.5, and the broken lines are for the duty ratio of the gate signals SGUi and SGVi to 0.5, and SGXi and SGYi. This is for a duty ratio of 0.4.

図6(a)に示す実線の負荷電圧VLDi1と破線の負荷電圧VLDi2の対比から、負荷電圧がデューティ比により抑制されているのが確認できる。同様に、図6(a)に示す実線の負荷電流ILDi1と破線の負荷電流ILDi2とから、負荷電圧の抑制に伴って負荷電流も少なくなっていることが確認される。また、図6(a)と(d)に示すように、ゲート信号SGUiとSGYiのデューティ比を0.5とすると、負荷電圧がほぼ0でスイッチングされており、ソフトスイッチングが実現されている。一方、図6(a)と(c)に示すように、ゲート信号SGUiよりもSGYiを先にオフ信号にすると、ソフトスイッチングという特性は、失われるが、比較的低い電圧でスイッチングすることができている。   From the comparison of the solid line load voltage VLDi1 and the broken line load voltage VLDi2 shown in FIG. 6A, it can be confirmed that the load voltage is suppressed by the duty ratio. Similarly, it is confirmed from the solid line load current ILDi1 and the broken line load current ILDi2 shown in FIG. 6A that the load current decreases as the load voltage is suppressed. Further, as shown in FIGS. 6A and 6D, when the duty ratio of the gate signals SGUi and SGYi is 0.5, the load voltage is switched at almost 0, and soft switching is realized. On the other hand, as shown in FIGS. 6A and 6C, when SGYi is turned off before gate signal SGUi, the characteristic of soft switching is lost, but switching can be performed at a relatively low voltage. ing.

このように、負荷LDiに流れる電流は、ゲート信号SGXiとSGYiのデューティ比を0.5から減少させるにつれて減少する。このため、負荷LDiに供給される電力も、減少する。即ち、負荷LDiに供給する電力を、つまみ13aiを操作して、ゲート信号SGXiとSGYiのデューティ比を0.5以下の範囲で調整することで調整することができる。   Thus, the current flowing through the load LDi decreases as the duty ratio of the gate signals SGXi and SGYi is decreased from 0.5. For this reason, the power supplied to the load LDi also decreases. That is, the power supplied to the load LDi can be adjusted by operating the knob 13ai to adjust the duty ratio of the gate signals SGXi and SGYi within a range of 0.5 or less.

また、平滑コンデンサCCの容量が各コンデンサCMiの容量に比較して大きいため、各駆動回路10iには、安定的に電力が供給され、各駆動回路10iを互いに独立して駆動することができ、各負荷LDiに供給する電力を個別に調整することが可能となる。   Further, since the capacity of the smoothing capacitor CC is larger than the capacity of each capacitor CMi, power can be stably supplied to each drive circuit 10i, and each drive circuit 10i can be driven independently of each other. It is possible to individually adjust the power supplied to each load LDi.

以上説明したように、本実施の形態の電力逆変換装置1によれば、ゲート信号のデューティ比をそれぞれ制御することで、1つの電流源から複数の負荷LDiに個別に電力を供給することができる。また、ゲート信号のデューティ比の制御により、負荷LDiに供給する電力を個別に制御することが可能となる。   As described above, according to the power inverse conversion device 1 of the present embodiment, it is possible to individually supply power to a plurality of loads LDi from one current source by controlling the duty ratio of each gate signal. it can. Further, the power supplied to the load LDi can be individually controlled by controlling the duty ratio of the gate signal.

なお、図7に示すように、負荷電流ILDiを測定する電流(電力)測定装置21iを取り付け、測定値を制御回路13iにフィードバックし、制御回路13iが所定の電流値(電力値)が得られるように、ゲート信号SGXiとSGYiのデューティ比を制御するようにしてもよい。   As shown in FIG. 7, a current (power) measuring device 21i for measuring the load current ILDi is attached, and the measured value is fed back to the control circuit 13i, so that the control circuit 13i obtains a predetermined current value (power value). As described above, the duty ratio of the gate signals SGXi and SGYi may be controlled.

また、図8に示すように、交流電源11と全波整流回路12と平滑コンデンサCCに代えて、1つの直流電源22を使用してもよい。   In addition, as shown in FIG. 8, instead of the AC power supply 11, the full-wave rectifier circuit 12, and the smoothing capacitor CC, one DC power supply 22 may be used.

また、上記実施の形態では、磁気エネルギー回生スイッチBiを構成する逆導通型半導体スイッチのうち、逆導通型半導体スイッチSWXiとSWYiに供給するゲート信号SGXiとSGYiのデューティ比を制御したが、逆導通型半導体スイッチSWXiとSWYiに供給するゲート信号SGXiとSGYiのデューティ比を0.5に固定し、逆導通型半導体スイッチSWUiとSWViに供給するゲート信号SGUiとSGViのデューティ比を制御してもよい。ただし、電圧の低い側のスイッチ部のゲート信号、即ち、ゲート信号SGXiとSGYiのデューティ比を制御する方が望ましい。   In the above embodiment, the duty ratio of the gate signals SGXi and SGYi supplied to the reverse conducting semiconductor switches SWXi and SWYi among the reverse conducting semiconductor switches constituting the magnetic energy regenerative switch Bi is controlled. The duty ratio of the gate signals SGXi and SGYi supplied to the type semiconductor switches SWXi and SWYi may be fixed to 0.5, and the duty ratio of the gate signals SGUi and SGVi supplied to the reverse conduction type semiconductor switches SWUi and SWVi may be controlled. . However, it is desirable to control the duty ratio of the gate signal of the switch section on the lower voltage side, that is, the gate signals SGXi and SGYi.

また、図9に示すように、駆動回路10iにおいて、磁気エネルギー回生スイッチBiの直流端子DCP−DCN間に配置されたコンデンサCMiの代わりに、交流端子AC1i−AC2i間に無極性のコンデンサCPiを接続してもよい。ゲート信号等に変更は必要ない。
磁気エネルギー回生スイッチBiの逆導通型半導体スイッチSWUi,SWVi,SWXi,SWYiのオン・オフの切り替わりに伴い、直流電源2から交流端子AC1iあるいはAC2iを介して供給される電力によって、インダクタLiとコンデンサCPiは共振を繰り返す。
この場合、図3A,B,D,Eで説明した流路での共振が、逆導通型半導体スイッチSW1乃至SW4を介さずに繰り返されるため、逆導通型半導体スイッチSW1乃至SW4に電流負担が減少する。そのため、逆導通型半導体スイッチSW1乃至SW4の寿命が延びる。
もちろんコンデンサCPiとコンデンサCMiとの両方を備えることも可能である。この場合のインダクタLiとコンデンサとの共振周波数は、コンデンサCMiとコンデンサCPiとの合成容量とインダクタLiのインダクタンスによって定まる。
As shown in FIG. 9, in the drive circuit 10i, a nonpolar capacitor CPi is connected between the AC terminals AC1i and AC2i instead of the capacitor CMi disposed between the DC terminals DCP and DCN of the magnetic energy regenerative switch Bi. May be. There is no need to change the gate signal.
In accordance with the on / off switching of the reverse conduction semiconductor switches SWUi, SWVi, SWXi, and SWYi of the magnetic energy regenerative switch Bi, the inductor Li and the capacitor CPi are supplied by the power supplied from the DC power supply 2 through the AC terminal AC1i or AC2i. Repeats resonance.
In this case, since the resonance in the flow path described with reference to FIGS. 3A, 3B, 3D and 3E is repeated without going through the reverse conducting semiconductor switches SW1 to SW4, the current burden on the reverse conducting semiconductor switches SW1 to SW4 is reduced. To do. Therefore, the lifetime of the reverse conducting semiconductor switches SW1 to SW4 is extended.
Of course, it is possible to provide both the capacitor CPi and the capacitor CMi. In this case, the resonance frequency of the inductor Li and the capacitor is determined by the combined capacitance of the capacitor CMi and the capacitor CPi and the inductance of the inductor Li.

さらに、例えば図10に示すような、寄生振動を減衰させる振動抑制回路20を配置してもよい。   Furthermore, for example, a vibration suppression circuit 20 that attenuates the parasitic vibration as shown in FIG. 10 may be arranged.

また、各逆導通型半導体スイッチは、スイッチ部とダイオード部の組み合わせに限定されない。その他、回路構成等は適宜変更可能である。
実施形態に記載した構成の全てを備える必要はなく、所期の目的を達成できるならば、一部の構成の組み合わせであってもよい。
Each reverse conducting semiconductor switch is not limited to a combination of a switch part and a diode part. In addition, the circuit configuration and the like can be changed as appropriate.
It is not necessary to provide all of the configurations described in the embodiment, and a combination of some configurations may be used as long as the intended purpose can be achieved.

また上記実施例では、共振周波数frがゲート信号の周波数fより小さい場合を例に説明したが、共振周波数frとゲート信号の周波数fとが等しくてもよいし、大きくてもよい。ただし、共振周波数frとゲート信号の周波数fの2倍以下であることがこのましい。特に、共振周波数frとゲート信号の周波数fとが略等しいことが好ましい。
共振周波数frとゲート信号の周波数fとが等しい場合、図3C及び図3Fに示した経路で流れる電流がなく、効率よくコンデンサCMiと負荷LDiのインダクタLiを効率よく共振させることができる。
In the above embodiment, the case where the resonance frequency fr is smaller than the frequency f of the gate signal has been described as an example. However, the resonance frequency fr and the frequency f of the gate signal may be equal or larger. However, the resonance frequency fr and the frequency f of the gate signal are preferably not more than twice. In particular, it is preferable that the resonance frequency fr and the frequency f of the gate signal are substantially equal.
When the resonance frequency fr is equal to the frequency f of the gate signal, there is no current flowing through the paths shown in FIGS. 3C and 3F, and the capacitor CMi and the inductor Li of the load LDi can be efficiently resonated.

なお負荷LDiの種類は、誘導性負荷であればその種類や組み合わせは任意である。
例えば、本発明は出力の違う複数のモータを制御するモータ制御装置に用いることができる。
この場合、使用したいモータに接続された磁気エネルギー回生スイッチの逆導通型半導体スイッチに入力するゲート信号のデューティ比を制御して供給する電力を定格に近づけ、磁気エネルギー回生スイッチから使用しないモータに供給される電力を少なくする。ただし、使用しないモータを完全に停止させることなく低速で運転すると、停止状態のモータを再始動させる際のモータへの負担が少なくなり、駆動がスムーズになる。
また、本発明は1つの電源と複数の誘導加熱装置との間に接続して用いることも効果的である。
この場合、本発明によって、それぞれの誘導加熱装置に所望の周波数で所望の電力を供給することができる。これにより、誘導加熱装置の加熱対象の加熱部分や加熱の強さを制御することができる。
Note that the type and combination of the loads LDi are arbitrary as long as they are inductive loads.
For example, the present invention can be used in a motor control device that controls a plurality of motors having different outputs.
In this case, the power supplied by controlling the duty ratio of the gate signal input to the reverse conduction type semiconductor switch of the magnetic energy regenerative switch connected to the motor to be used is brought close to the rating, and supplied from the magnetic energy regenerative switch to the unused motor. Reduce the power consumed. However, if the unused motor is operated at a low speed without being completely stopped, the burden on the motor when the stopped motor is restarted is reduced, and the driving becomes smooth.
In addition, it is also effective to use the present invention by connecting between one power source and a plurality of induction heating devices.
In this case, according to the present invention, desired power can be supplied to each induction heating device at a desired frequency. Thereby, the heating part of the heating object of the induction heating apparatus and the intensity of heating can be controlled.

1 電力逆変換装置
2,22 直流電源
10i 駆動回路
11 交流電源
12 全波整流回路
13i 制御回路
13ai つまみ
20i 振動抑制回路
21i 電流計又は電力計
Bi 磁気エネルギー回生スイッチ
Ldci(i=1〜n) 直流リアクトル
LDi 負荷
Li インダクタ
Ri 抵抗
CC 平滑コンデンサ
CMi、CPi コンデンサ
SWUi、SWVi、SWXi、SWYi 逆導通型半導体スイッチ
SUi、SVi、SXi、SYi スイッチ部
DUi、DVi、DXi、DYi ダイオード部
GUi、GVi、GXi、GYi ゲート
DCPi、DCNi 直流端子
AC1i、AC2i 交流端子
SGUi、SGVi、SGXi、SGYi ゲート信号
DESCRIPTION OF SYMBOLS 1 Power reverse converter 2,22 DC power supply 10i Drive circuit 11 AC power supply 12 Full wave rectifier circuit 13i Control circuit 13ai Knob 20i Vibration suppression circuit 21i Ammeter or Wattmeter Bi Magnetic energy regeneration switch Ldci (i = 1-n) DC Reactor LDi Load Li Inductor Ri Resistor CC Smoothing capacitor CMi, CPi Capacitors SWUi, SWVi, SWXi, SWYi Reverse conduction type semiconductor switch SUi, SVi, SXi, SYi Switch unit DUi, DVi, DXi, DYi Diode unit GUi, GVi, GXi, GYi gate DCPi, DCNi DC terminal AC1i, AC2i AC terminal SGUi, SGVi, SGXi, SGYi Gate signal

Claims (10)

直流電圧源に直列に接続される直流リアクトルと、
第1と第2の交流端子と、第1と第2の直流端子と、第1から第4のダイオードと、第1から第4の自己消弧型素子と、前記第1と第2の交流端子の間または前記第1と第2の直流端子の間に接続されたコンデンサとを備え、前記第1の交流端子には前記第1のダイオードのアノードと前記第2のダイオードのカソードが、前記第1の直流端子には前記第1のダイオードのカソードと前記第3のダイオードのカソードとが、前記第2の直流端子には前記第2のダイオードのアノードと前記第4のダイオードのアノードとが、前記第2の交流端子には前記第3のダイオードのアノードと前記第4のカソードとが接続され、前記第1のダイオードに前記第1の自己消弧型素子が、前記第2のダイオードに前記第2の自己消弧型素子が、前記第3のダイオードに前記第3の自己消弧型素子が、前記第4のダイオードに前記第4の自己消弧型素子が並列に接続されており、前記第1の直流端子と前記第2の直流端子との間に前記直流電圧源と前記直流リアクトルとの直列回路が接続され、前記第1の交流端子と前記第2の交流端子との間に誘導性負荷が接続された磁気エネルギー回生スイッチと、
前記磁気エネルギー回生スイッチを構成する各前記自己消弧型素子のオン・オフを切り替える信号を所定の周波数で出力する制御回路と、
を備え、
前記制御回路は、前記第1と第3の自己消弧型素子のペアと、前記第2と第4の自己消弧型素子のペアと、のうち、一方のペアに出力する信号のオン・オフのデューティ比を固定とし、他方のペアに出力する信号のオン・オフのデューティ比を可変とする、
ことを特徴とする電力逆変換装置。
A DC reactor connected in series with a DC voltage source;
First and second AC terminals; first and second DC terminals; first to fourth diodes; first to fourth self-extinguishing elements; and the first and second AC terminals. A capacitor connected between terminals or between the first and second DC terminals, wherein the first AC terminal has an anode of the first diode and a cathode of the second diode, The first DC terminal has a cathode of the first diode and the cathode of the third diode, and the second DC terminal has an anode of the second diode and an anode of the fourth diode. The second AC terminal is connected to the anode of the third diode and the fourth cathode, the first diode is connected to the first self-extinguishing element, and the second diode is connected to the second diode. The second self-extinguishing element includes the third self-extinguishing element; The third self-extinguishing element is connected to an anode, and the fourth self-extinguishing element is connected in parallel to the fourth diode, and the first DC terminal, the second DC terminal, A magnetic energy regenerative switch in which a series circuit of the DC voltage source and the DC reactor is connected between and an inductive load is connected between the first AC terminal and the second AC terminal;
A control circuit for outputting a signal for switching on and off each self-extinguishing element constituting the magnetic energy regeneration switch at a predetermined frequency;
With
The control circuit is configured to turn on a signal output to one of the first and third self-extinguishing element pairs and the second and fourth self-extinguishing element pairs. The duty ratio of off is fixed, and the duty ratio of on / off of the signal output to the other pair is variable.
The power reverse conversion apparatus characterized by the above-mentioned.
前記所定の周波数は、前記誘導性負荷のインダクタンスと前記コンデンサの容量とで定まる共振周波数以下の周波数である、
ことを特徴とする請求項1に記載の電力逆変換装置。
The predetermined frequency is a frequency equal to or lower than a resonance frequency determined by an inductance of the inductive load and a capacitance of the capacitor.
The power reverse conversion apparatus according to claim 1.
前記制御回路は、前記誘導性負荷のインダクタンスと前記コンデンサの容量とで定まる共振周波数と等しい周波数で前記複数の自己消弧型素子をオン・オフする、
ことを特徴とする請求項2に記載の電力逆変換装置。
The control circuit turns on and off the plurality of self-extinguishing elements at a frequency equal to a resonance frequency determined by an inductance of the inductive load and a capacitance of the capacitor.
The power reverse conversion apparatus according to claim 2.
前記制御回路は、前記一方のペアのデューティ比を0.5とし、他方のペアのデューティ比を0.5以下で可変とする、
ことを特徴とする請求項1乃至3のいずれか1項に記載の電力逆変換装置。
The control circuit is configured such that the duty ratio of the one pair is 0.5 and the duty ratio of the other pair is variable below 0.5.
The power reverse conversion device according to any one of claims 1 to 3, wherein the power reverse conversion device is provided.
前記制御回路は、出力する信号の周波数を調整する機能をさらに備える、
ことを特徴とする請求項1乃至4のいずれか1項に記載の電力逆変換装置。
The control circuit further includes a function of adjusting a frequency of an output signal.
The power reverse conversion device according to any one of claims 1 to 4, wherein the power reverse conversion device is provided.
前記磁気エネルギー回生スイッチは複数あり、複数の前記磁気エネルギー回生スイッチはそれぞれ異なる誘導性負荷に接続され、
前記制御手段は、各前記磁気エネルギー回生スイッチ毎に、前記第1乃至第4の自己消弧型素子に出力する信号を制御する、
ことを特徴とする請求項1乃至5のいずれか1項に記載の電力逆変換装置。
There are a plurality of the magnetic energy regeneration switches, and the plurality of magnetic energy regeneration switches are connected to different inductive loads,
The control means controls a signal output to the first to fourth self-extinguishing elements for each of the magnetic energy regeneration switches.
The power reverse conversion device according to any one of claims 1 to 5, wherein
前記自己消弧型素子は逆導通型半導体スイッチであって、前記ダイオードは、前記逆導通型半導体スイッチの寄生ダイオードである、
ことを特徴とする請求項1乃至6のいずれか1項に記載の電力逆変換装置。
The self-extinguishing element is a reverse conducting semiconductor switch, and the diode is a parasitic diode of the reverse conducting semiconductor switch.
The power reverse conversion device according to any one of claims 1 to 6, wherein
請求項1乃至7の何れか1項に記載の電力逆変換装置を用いた誘導加熱装置。   An induction heating device using the power reverse conversion device according to any one of claims 1 to 7. 請求項1乃至7の何れか1項に記載の電力逆変換装置を用いたモータ制御装置。   A motor control device using the power reverse conversion device according to claim 1. 第1と第2の交流端子と、第1と第2の直流端子と、第1から第4のダイオードと、第1から第4の自己消弧型素子と、前記第1と第2の交流端子の間または前記第1と第2の直流端子の間に接続されたコンデンサとを備え、前記第1の交流端子には前記第1のダイオードのアノードと前記第2のダイオードのカソードが、前記第1の直流端子には前記第1のダイオードのカソードと前記第3のダイオードのカソードとが、前記第2の直流端子には前記第2のダイオードのアノードと前記第4のダイオードのアノードとが、前記第2の交流端子には前記第3のダイオードのアノードと前記第4のカソードとが接続され、前記第1のダイオードに前記第1の自己消弧型素子が、前記第2のダイオードに前記第2の自己消弧型素子が、前記第3のダイオードに前記第3の自己消弧型素子が、前記第4のダイオードに前記第4の自己消弧型素子が並列に接続されており、前記第1の直流端子と前記第2の直流端子との間に直流電圧源と直流リアクトルとの直列回路が接続され、前記第1の交流端子と前記第2の交流端子との間に誘導性負荷が接続された磁気エネルギー回生スイッチにおいて、
前記磁気エネルギー回生スイッチを構成する各前記自己消弧型素子のオン・オフを切り替える信号を所定の周波数で出力し、かつ、前記第1と第3の自己消弧型素子のペアと、前記第2と第4の自己消弧型素子のペアと、のうち、一方のペアに出力する信号のオン・オフのデューティ比を固定とし、他方のペアに出力する信号のオン・オフのデューティ比を可変とする、
ことを特徴とする電力逆変換方法。
First and second AC terminals; first and second DC terminals; first to fourth diodes; first to fourth self-extinguishing elements; and the first and second AC terminals. A capacitor connected between terminals or between the first and second DC terminals, wherein the first AC terminal has an anode of the first diode and a cathode of the second diode, The first DC terminal has a cathode of the first diode and the cathode of the third diode, and the second DC terminal has an anode of the second diode and an anode of the fourth diode. The second AC terminal is connected to the anode of the third diode and the fourth cathode, the first diode is connected to the first self-extinguishing element, and the second diode is connected to the second diode. The second self-extinguishing element includes the third self-extinguishing element; The third self-extinguishing element is connected to an anode, and the fourth self-extinguishing element is connected in parallel to the fourth diode, and the first DC terminal, the second DC terminal, In a magnetic energy regenerative switch in which a series circuit of a DC voltage source and a DC reactor is connected between and an inductive load is connected between the first AC terminal and the second AC terminal.
A signal for switching on / off of each of the self-extinguishing elements constituting the magnetic energy regenerative switch is output at a predetermined frequency, and the pair of the first and third self-extinguishing elements; 2 and the fourth self-extinguishing element pair, the on / off duty ratio of the signal output to one pair is fixed, and the on / off duty ratio of the signal output to the other pair is Variable
The power reverse conversion method characterized by the above-mentioned.
JP2010007508A 2010-01-15 2010-01-15 Power inverter, and power inverting method Pending JP2011147300A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010007508A JP2011147300A (en) 2010-01-15 2010-01-15 Power inverter, and power inverting method
PCT/JP2011/050584 WO2011087106A1 (en) 2010-01-15 2011-01-14 Power inverter, induction heater, motor control device, and power inverting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010007508A JP2011147300A (en) 2010-01-15 2010-01-15 Power inverter, and power inverting method

Publications (1)

Publication Number Publication Date
JP2011147300A true JP2011147300A (en) 2011-07-28

Family

ID=44304375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010007508A Pending JP2011147300A (en) 2010-01-15 2010-01-15 Power inverter, and power inverting method

Country Status (2)

Country Link
JP (1) JP2011147300A (en)
WO (1) WO2011087106A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8766584B2 (en) 2011-11-14 2014-07-01 Rockwell Automation Technologies, Inc. System and method for managing DC link switching harmonics
US8860335B2 (en) 2011-11-14 2014-10-14 Rockwell Automation Technologies, Inc. System for managing DC link switching harmonics
CN104602376B (en) * 2014-12-29 2016-05-11 重庆恒锐机电有限公司 High-power eddy-current heating parallel operation power-supply device
CN118017859A (en) * 2024-04-10 2024-05-10 深圳市瀚强科技股份有限公司 Voltage inversion device and electronic device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236679A (en) * 1999-02-16 2000-08-29 Fuji Electric Co Ltd Control method of power converter for motor control
JP4399405B2 (en) * 2005-08-25 2010-01-13 株式会社MERSTech AC voltage controller using phase advance current
JP4406733B2 (en) * 2006-10-05 2010-02-03 国立大学法人東京工業大学 Inverter power supply
JP4441691B2 (en) * 2007-02-06 2010-03-31 国立大学法人東京工業大学 AC / DC power converter

Also Published As

Publication number Publication date
WO2011087106A1 (en) 2011-07-21

Similar Documents

Publication Publication Date Title
JP6341386B2 (en) Switching power supply
JP5590124B2 (en) DC-DC converter
JP6063919B2 (en) Apparatus and method for efficient DC-DC conversion through a wide range of voltage amplitudes
US20150015181A1 (en) Dc/dc converter
WO2018016106A1 (en) Dc/dc converter
JP2009529305A (en) Interleaved soft switching bridge power converter
JP2006262619A (en) Switched-capacitor type dc/dc converter device
JP2009011109A (en) Dc-dc converter
US20120037616A1 (en) Power inverter
JP5501857B2 (en) Switching power supply
JP2014204660A (en) Integrated converter with single-ended control, power factor correction, and low output ripple
JP2011130521A (en) Dc-dc converter
JP2008072856A (en) Dc/dc power conversion system
WO2011087106A1 (en) Power inverter, induction heater, motor control device, and power inverting method
JP2009177899A (en) Power conversion system
JP2011125102A (en) Inverter apparatus for driving motor
JP2010098782A (en) Voltage balance correcting circuit of serial cell and power storage apparatus
JP2015192470A (en) Resonance type dc/dc converter
JP2018120987A (en) Capacitor test device
JP4119985B2 (en) Series electric double layer capacitor device
JPWO2020225842A1 (en) DC / DC converter and power converter
US10517148B2 (en) Induction heat cooking apparatus and method for driving the same
JP2010172146A (en) Switching power supply and power supply control semiconductor integrated circuit
US9755513B2 (en) Bidirectional DC converter comprising a core with permanent magnetization
JP2018038190A (en) Power conversion device