JP2011145315A - Imaging lens, imaging optical system and imaging apparatus - Google Patents

Imaging lens, imaging optical system and imaging apparatus Download PDF

Info

Publication number
JP2011145315A
JP2011145315A JP2010003642A JP2010003642A JP2011145315A JP 2011145315 A JP2011145315 A JP 2011145315A JP 2010003642 A JP2010003642 A JP 2010003642A JP 2010003642 A JP2010003642 A JP 2010003642A JP 2011145315 A JP2011145315 A JP 2011145315A
Authority
JP
Japan
Prior art keywords
lens
imaging
image
imaging lens
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010003642A
Other languages
Japanese (ja)
Other versions
JP5363354B2 (en
Inventor
Takashi Miyano
俊 宮野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010003642A priority Critical patent/JP5363354B2/en
Publication of JP2011145315A publication Critical patent/JP2011145315A/en
Application granted granted Critical
Publication of JP5363354B2 publication Critical patent/JP5363354B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve image quality at a periphery part of an image, while maintaining a wide angle and long back focus in an imaging lens. <P>SOLUTION: The imaging lens includes, in the order starting from an object side, a first negative lens L1 having a meniscus shape turning a concave surface to an image side; a first cemented lens LC1 obtained by cementing a second lens L2 and a third lens L3, one of which being positive and the other of which being negative; a fourth positive lens L4 turning a plane or a surface having a larger absolute value of the radius of curvature to the object side; and a second cemented lens LC2m obtained by cementing a fifth lens L5 and a sixth lens L6, one of which is positive and the other of which is negative, and satisfies the conditional expressions, wherein (1): 0.20<f/R1<0.35, expression (2): 0.14<R2/R1≤0.20, and expression (3): Bf/f>1.8, where f: the focal length of the total system, R1: the radius of curvature of an object-side surface of the first lens, R2: the radius of curvature of an image-side surface of the first lens, and Bf: the back focus of the total system. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、撮像レンズ、撮像光学系、および撮像装置に関し、より詳しくは、広い画角と長いバックフォーカスを有する撮像レンズ、この撮像レンズとその像面の間に光路変換部材が挿入された撮像光学系、およびこの撮像レンズを備えた撮像装置に関するものである。   The present invention relates to an imaging lens, an imaging optical system, and an imaging device. More specifically, the imaging lens has a wide angle of view and a long back focus, and imaging in which an optical path conversion member is inserted between the imaging lens and its image plane. The present invention relates to an optical system and an image pickup apparatus including the image pickup lens.

従来、監視カメラや内視鏡等の分野において小型で広角の撮像レンズが用いられている。例えば内視鏡用の撮像レンズとしては、本発明者により考案された下記特許文献1〜5に記載のものがある。このような広角の撮像レンズでは、広い範囲を写し込みながら、画像中心部付近を大きく撮影することが求められる場合がある。例えば、内視鏡用の撮像レンズに対しては、体内への挿入時は視野角を広くしたいが、患部の観察時は患部を出来るだけ大きく見たいという要望が寄せられている。このような要望を満たすため、画像中心部は大きく見えて、画像周辺部の対象物は小さくなっても広い範囲が見えるようにと、大きな負の歪曲収差を発生させた撮像レンズが考案されていた。   Conventionally, small and wide-angle imaging lenses are used in the fields of surveillance cameras and endoscopes. For example, as an imaging lens for an endoscope, there are those described in Patent Documents 1 to 5 devised by the present inventors. In such a wide-angle imaging lens, it may be required to photograph a large area near the center of the image while capturing a wide range. For example, an imaging lens for an endoscope is desired to have a wide viewing angle when inserted into the body, but to view the affected area as large as possible when observing the affected area. In order to satisfy such a demand, an imaging lens that has generated large negative distortion has been devised so that the center of the image can be seen large and the object in the periphery of the image can be seen even if it is small. It was.

特開2008−257108号公報JP 2008-257108 A 特開2008−257109号公報JP 2008-257109 A 特許第4265909号公報Japanese Patent No. 4265909 特開昭63−261213号公報JP 63-261213 A 特願2009−130377号Japanese Patent Application No. 2009-130377

ところで、近年の撮像装置では一般に、撮像レンズと固体撮像素子とを組み合わせて使用している。しかしながら、固体撮像素子の開発が進み、その高画素化が進むにつれ、従来問題とされなかったことが問題視されるようになってきた。すなわち、上記のような大きな負の歪曲収差を発生させた広角レンズと固体撮像素子を組み合わせた装置において、得られる像の画像中心部の解像力は十分高いが、画像周辺部では物体が小さく見えすぎて十分な解像力が得られない点が注目されるようになり、この点の改善が望まれるようになってきた。   By the way, in recent imaging apparatuses, an imaging lens and a solid-state imaging device are generally used in combination. However, as the development of solid-state imaging devices has progressed and the number of pixels has increased, it has become a problem that it has not been a problem in the past. In other words, in a device that combines a wide-angle lens that generates large negative distortion as described above and a solid-state image sensor, the resolution at the center of the resulting image is sufficiently high, but the object appears too small at the periphery of the image. Therefore, attention has been paid to the point that sufficient resolution cannot be obtained, and improvement of this point has been desired.

また、固体撮像素子の高画素化とともに、レンズ系に対する画質向上の要求も厳しくなってきている。歪曲収差の他にこのような広角撮像レンズの画質劣化の大きな要因となるものとしては、倍率色収差が挙げられる。固体撮像素子の高密度化が進み、画素数が増大するにつれ、倍率色収差の十分な補正が必要となってきている。   In addition, as the number of pixels of the solid-state image sensor increases, the demand for improving the image quality of the lens system has become stricter. In addition to distortion, a chromatic aberration of magnification is a major factor in image quality degradation of such a wide-angle imaging lens. As the density of solid-state imaging devices increases and the number of pixels increases, it is necessary to sufficiently correct lateral chromatic aberration.

固体撮像素子と組み合わせて使用される撮像レンズにその他に要望される事項としては、十分長いバックフォーカスを持つことが挙げられる。撮像レンズが固体撮像素子と組み合わせて使用される場合、レンズ系と固体撮像素子の間に、光学ローパスフィルタ、赤外線カットフィルタ等を配置することが多く、このために十分なバックフォーカスが必要となる。さらに、内視鏡では、固体撮像素子の撮像面が内視鏡の挿入部の長軸方向と平行に配置されるタイプのものがあり、このタイプでは一般に、撮像レンズと固体撮像素子との間に光路の方向を変換するための光路変換プリズム等の光路変換部材が挿入配置されるため、十分長いバックフォーカスを確保しておく必要がある。   Another requirement for an imaging lens used in combination with a solid-state imaging device is to have a sufficiently long back focus. When an imaging lens is used in combination with a solid-state imaging device, an optical low-pass filter, an infrared cut filter, or the like is often disposed between the lens system and the solid-state imaging device, which requires sufficient back focus. . Furthermore, there is a type of endoscope in which the imaging surface of the solid-state imaging device is arranged in parallel with the major axis direction of the insertion portion of the endoscope, and in this type, generally between the imaging lens and the solid-state imaging device. In addition, since an optical path conversion member such as an optical path conversion prism for converting the direction of the optical path is inserted and disposed, it is necessary to ensure a sufficiently long back focus.

本発明は、上記事情に鑑みてなされたもので、広角および長いバックフォーカスを維持するとともに画像周辺部の画質を改善可能な撮像レンズ、該撮像レンズを備えた撮像装置、および該撮像レンズを備え該撮像レンズとその像面の間で光路の方向を変換可能な撮像光学系を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and includes an imaging lens capable of maintaining a wide angle and a long back focus and improving the image quality of an image peripheral portion, an imaging device including the imaging lens, and the imaging lens. An object of the present invention is to provide an imaging optical system capable of changing the direction of the optical path between the imaging lens and its image plane.

本発明の撮像レンズは、物体側から順に、像側に凹面を向けたメニスカス形状の負の第1レンズと、いずれか一方が正で他方が負の第2レンズおよび第3レンズを接合してなる第1の接合レンズと、物体側に平面または曲率半径の絶対値の大きい方の面を向けた正の第4レンズと、いずれか一方が正で他方が負の第5レンズおよび第6レンズを接合してなる第2の接合レンズとが配列された4群6枚構成であり、第1の接合レンズと第4レンズとの間に絞りが配置され、下記条件式(1)〜(3)を満たすことを特徴とするものである。
0.20<f/R1<0.35 … (1)
0.14<R2/R1≦0.20 … (2)
1.8<Bf/f … (3)
ただし、
f:全系の焦点距離
R1:第1レンズの物体側の面の曲率半径
R2:第1レンズの像側の面の曲率半径
Bf:全系のバックフォーカス
The imaging lens of the present invention includes, in order from the object side, a meniscus negative first lens having a concave surface facing the image side, and a second lens and a third lens, one of which is positive and the other is negative. A first cemented lens, a positive fourth lens having a plane or a surface with a larger absolute value of the radius of curvature facing the object side, and a fifth lens and a sixth lens, one of which is positive and the other is negative And a second cemented lens in which the second cemented lenses are arrayed, and a stop is disposed between the first cemented lens and the fourth lens, and the following conditional expressions (1) to (3) ) Is satisfied.
0.20 <f / R1 <0.35 (1)
0.14 <R2 / R1 ≦ 0.20 (2)
1.8 <Bf / f (3)
However,
f: focal length of entire system R1: radius of curvature of object side surface of first lens R2: radius of curvature of image side surface of first lens Bf: back focus of entire system

なお、上記の「いずれか一方が正で他方が負の第2レンズおよび第3レンズを接合してなる第1の接合レンズ」は、第2レンズが正レンズで第3レンズが負レンズの場合、および、第2レンズが負レンズで第3レンズが正レンズの場合の両方の場合を含むものであり、さらに、第2レンズが第3レンズよりも物体側に配置されていることを意味するものである。上記の「いずれか一方が正で他方が負の第5レンズおよび第6レンズを接合してなる第2の接合レンズ」についても同様である。   The above-mentioned “first cemented lens formed by cementing a second lens and a third lens, one of which is positive and the other is negative” is a case where the second lens is a positive lens and the third lens is a negative lens. And the case where the second lens is a negative lens and the third lens is a positive lens, and further means that the second lens is disposed on the object side of the third lens. Is. The same applies to the “second cemented lens formed by cementing the fifth lens and the sixth lens, one of which is positive and the other is negative”.

なお、上述した本発明の撮像レンズの各レンズの符号および面形状は、当該レンズが非球面レンズの場合は、近軸領域におけるものとし、上記条件式(1)、(2)および下に述べる条件式(5)で用いられる面の曲率半径についても、当該面が非球面の場合は、近軸曲率半径を用いるものとする。曲率半径の符号は、物体側に凸形状の面のものを正、像側に凸形状の面のものを負として考えることにする。また、上記条件式(3)および下に述べる条件式(5)で用いられるバックフォーカスは、空気換算長を用いるものとする。   It should be noted that the sign and surface shape of each lens of the imaging lens of the present invention described above are in the paraxial region when the lens is an aspheric lens, and are described in the conditional expressions (1) and (2) and below. As for the curvature radius of the surface used in the conditional expression (5), when the surface is an aspheric surface, the paraxial curvature radius is used. Regarding the sign of the radius of curvature, a convex surface on the object side is considered positive and a convex surface on the image side is considered negative. The back focus used in the conditional expression (3) and the conditional expression (5) described below uses an air-converted length.

本発明の撮像レンズにおいては、下記条件式(4)を満たすことが好ましい。
15.0<|ν2−ν3| … (4)
ただし、
ν2:第2レンズのd線におけるアッベ数
ν3:第3レンズのd線におけるアッベ数
In the imaging lens of the present invention, it is preferable that the following conditional expression (4) is satisfied.
15.0 <| ν2-ν3 | (4)
However,
ν2: Abbe number of the second lens at the d-line ν3: Abbe number of the third lens at the d-line

また、本発明の撮像レンズにおいては、下記条件式(5)を満たすことが好ましい。

Figure 2011145315
ただし、
ν5:第5レンズのd線におけるアッベ数
ν6:第6レンズのd線におけるアッベ数
RA:第5レンズと第6レンズの接合面の曲率半径
D10:第6レンズの中心厚
N6:第6レンズのd線における屈折率 In the imaging lens of the present invention, it is preferable that the following conditional expression (5) is satisfied.
Figure 2011145315
However,
ν5: Abbe number of the fifth lens at the d-line ν6: Abbe number of the sixth lens at the d-line RA: Radius of curvature of the cemented surface of the fifth lens and the sixth lens D10: Center thickness of the sixth lens N6: Sixth lens Refractive index at d-line

また、本発明の撮像レンズにおいては、第1レンズ、第2レンズ、第3レンズ全てのd線における屈折率が1.8以上であることが好ましい。   In the imaging lens of the present invention, it is preferable that the refractive index of all of the first lens, the second lens, and the third lens at the d-line is 1.8 or more.

本発明の撮像光学系は、上記記載の本発明の撮像レンズと、該撮像レンズの像面と第6レンズとの間に配置されて、光路の向きを変換する光路変換部材とを備えたことを特徴とするものである。   An imaging optical system of the present invention includes the imaging lens of the present invention described above, and an optical path conversion member that is disposed between the image plane of the imaging lens and the sixth lens and converts the direction of the optical path. It is characterized by.

本発明の撮像装置は、上記記載の本発明の撮像レンズを備えたことを特徴とするものである。   An image pickup apparatus of the present invention includes the above-described image pickup lens of the present invention.

本発明の撮像レンズによれば、各レンズのパワーおよび形状等を好適に設定し、所定の条件式を満足するようにしているため、広い画角と長いバックフォーカスを維持するとともに画像周辺部の画質を改善することができる。本発明の撮像装置によれば、上記長所を有する本発明の撮像レンズを備えているため、広い画角の範囲で良好な画質の像を得ることができる。また、本発明の撮像光学系によれば、本発明の撮像レンズと光路変換部材を備えているため、広い画角の範囲で良好な画質の像を得ることができるとともに、装置レイアウトの自由度を高くすることができ、例えば、固体撮像素子の撮像面が内視鏡の挿入部の長軸方向と平行に配置される内視鏡にも対応可能となる。   According to the imaging lens of the present invention, the power and shape of each lens are suitably set to satisfy a predetermined conditional expression, so that a wide angle of view and a long back focus are maintained, and an image peripheral portion is The image quality can be improved. According to the image pickup apparatus of the present invention, since the image pickup lens of the present invention having the above-mentioned advantages is provided, an image with good image quality can be obtained in a wide range of angle of view. Further, according to the imaging optical system of the present invention, since the imaging lens of the present invention and the optical path changing member are provided, it is possible to obtain an image with a good image quality in a wide range of angles of view and the degree of freedom of apparatus layout. For example, an endoscope in which the imaging surface of the solid-state imaging device is arranged in parallel with the major axis direction of the insertion portion of the endoscope can be handled.

本発明の実施形態にかかる撮像レンズおよび撮像光学系の構成を示す図The figure which shows the structure of the imaging lens and imaging optical system concerning embodiment of this invention 本発明の実施例1の撮像レンズの構成および光路を示す断面図Sectional drawing which shows the structure and optical path of the imaging lens of Example 1 of this invention 本発明の実施例2の撮像レンズの構成および光路を示す断面図Sectional drawing which shows the structure and optical path of the imaging lens of Example 2 of this invention 本発明の実施例3の撮像レンズの構成および光路を示す断面図Sectional drawing which shows a structure and optical path of the imaging lens of Example 3 of this invention. 本発明の実施例4の撮像レンズの構成および光路を示す断面図Sectional drawing which shows the structure and optical path of the imaging lens of Example 4 of this invention 本発明の実施例5の撮像レンズの構成および光路を示す断面図Sectional drawing which shows a structure and optical path of the imaging lens of Example 5 of this invention. 本発明の実施例6の撮像レンズの構成および光路を示す断面図Sectional drawing which shows a structure and optical path of the imaging lens of Example 6 of this invention. 本発明の実施例7の撮像レンズの構成および光路を示す断面図Sectional drawing which shows a structure and optical path of the imaging lens of Example 7 of this invention. 本発明の実施例8の撮像レンズの構成および光路を示す断面図Sectional drawing which shows the structure and optical path of the imaging lens of Example 8 of this invention. 本発明の実施例9の撮像レンズの構成および光路を示す断面図Sectional drawing which shows a structure and optical path of the imaging lens of Example 9 of this invention. 本発明の実施例10の撮像レンズの構成および光路を示す断面図Sectional drawing which shows a structure and optical path of the imaging lens of Example 10 of this invention. 本発明の実施例11の撮像レンズの構成および光路を示す断面図Sectional drawing which shows a structure and optical path of the imaging lens of Example 11 of this invention. 本発明の実施例12の撮像レンズの構成および光路を示す断面図Sectional drawing which shows a structure and optical path of the imaging lens of Example 12 of this invention. 本発明の実施例13の撮像レンズの構成および光路を示す断面図Sectional drawing which shows a structure and optical path of the imaging lens of Example 13 of this invention. 本発明の実施例1の撮像レンズの各収差図であり、(A)は球面収差図、(B)は非点収差図、(C)は歪曲収差図、(D)は倍率色収差図FIG. 4 is each aberration diagram of the imaging lens of Example 1 of the present invention, (A) is a spherical aberration diagram, (B) is an astigmatism diagram, (C) is a distortion aberration diagram, and (D) is a chromatic aberration diagram of magnification. 本発明の実施例2の撮像レンズの各収差図であり、(A)は球面収差図、(B)は非点収差図、(C)は歪曲収差図、(D)は倍率色収差図FIG. 4 is each aberration diagram of the imaging lens of Example 2 of the present invention, (A) is a spherical aberration diagram, (B) is an astigmatism diagram, (C) is a distortion aberration diagram, and (D) is a chromatic aberration diagram of magnification. 本発明の実施例3の撮像レンズの各収差図であり、(A)は球面収差図、(B)は非点収差図、(C)は歪曲収差図、(D)は倍率色収差図FIG. 4 is each aberration diagram of the imaging lens of Example 3 of the present invention, (A) is a spherical aberration diagram, (B) is an astigmatism diagram, (C) is a distortion aberration diagram, and (D) is a chromatic aberration diagram of magnification. 本発明の実施例4の撮像レンズの各収差図であり、(A)は球面収差図、(B)は非点収差図、(C)は歪曲収差図、(D)は倍率色収差図FIG. 6A is an aberration diagram of the imaging lens of Example 4 of the present invention, where FIG. 6A is a spherical aberration diagram, FIG. 5B is an astigmatism diagram, FIG. C is a distortion aberration diagram, and FIG. 本発明の実施例5の撮像レンズの各収差図であり、(A)は球面収差図、(B)は非点収差図、(C)は歪曲収差図、(D)は倍率色収差図FIG. 6A is an aberration diagram of the imaging lens according to the fifth exemplary embodiment of the present invention. FIG. 6A is a spherical aberration diagram, FIG. 5B is an astigmatism diagram, FIG. C is a distortion aberration diagram, and FIG. 本発明の実施例6の撮像レンズの各収差図であり、(A)は球面収差図、(B)は非点収差図、(C)は歪曲収差図、(D)は倍率色収差図FIG. 9A is an aberration diagram of the imaging lens of Example 6 of the present invention, where FIG. 9A is a spherical aberration diagram, FIG. 9B is an astigmatism diagram, FIG. C is a distortion aberration diagram, and FIG. 図本発明の実施例7の撮像レンズの各収差図であり、(A)は球面収差図、(B)は非点収差図、(C)は歪曲収差図、(D)は倍率色収差図FIGS. 9A and 9B are aberration diagrams of the image pickup lens of Example 7 of the present invention, where FIG. 9A is a spherical aberration diagram, FIG. 9B is an astigmatism diagram, FIG. C is a distortion aberration diagram, and FIG. 本発明の実施例8の撮像レンズの各収差図であり、(A)は球面収差図、(B)は非点収差図、(C)は歪曲収差図、(D)は倍率色収差図It is each aberration figure of the imaging lens of Example 8 of this invention, (A) is a spherical aberration figure, (B) is an astigmatism figure, (C) is a distortion aberration figure, (D) is a magnification chromatic aberration figure. 本発明の実施例9の撮像レンズの各収差図であり、(A)は球面収差図、(B)は非点収差図、(C)は歪曲収差図、(D)は倍率色収差図FIG. 10 is aberration diagrams of the image pickup lens of Example 9 of the present invention, where (A) is a spherical aberration diagram, (B) is an astigmatism diagram, (C) is a distortion aberration diagram, and (D) is a chromatic aberration diagram of magnification. 本発明の実施例10の撮像レンズの各収差図であり、(A)は球面収差図、(B)は非点収差図、(C)は歪曲収差図、(D)は倍率色収差図FIG. 11A is a diagram illustrating aberrations of the imaging lens according to the tenth embodiment of the present invention, where FIG. 9A is a spherical aberration diagram, FIG. 9B is an astigmatism diagram, FIG. C is a distortion diagram, and FIG. 本発明の実施例11の撮像レンズの各収差図であり、(A)は球面収差図、(B)は非点収差図、(C)は歪曲収差図、(D)は倍率色収差図FIG. 14A is a diagram illustrating aberrations of the imaging lens according to the eleventh embodiment of the present invention, in which (A) is a spherical aberration diagram, (B) is an astigmatism diagram, (C) is a distortion diagram, and (D) is a chromatic aberration diagram of magnification. 本発明の実施例12の撮像レンズの各収差図であり、(A)は球面収差図、(B)は非点収差図、(C)は歪曲収差図、(D)は倍率色収差図FIG. 14 is each aberration diagram of the imaging lens of Example 12 of the present invention, (A) is a spherical aberration diagram, (B) is an astigmatism diagram, (C) is a distortion aberration diagram, and (D) is a chromatic aberration diagram of magnification. 本発明の実施例13の撮像レンズの各収差図であり、(A)は球面収差図、(B)は非点収差図、(C)は歪曲収差図、(D)は倍率色収差図FIG. 14A is a diagram illustrating aberrations of the imaging lens according to the thirteenth embodiment of the present invention, in which (A) is a spherical aberration diagram, (B) is an astigmatism diagram, (C) is a distortion diagram, and (D) is a chromatic aberration diagram of magnification. 比較例の撮像レンズの構成および光路を示す断面図Sectional drawing which shows the structure and optical path of the imaging lens of a comparative example 比較例の撮像レンズの各収差図であり、(A)は球面収差図、(B)は非点収差図、(C)は歪曲収差図、(D)は倍率色収差図It is each aberration figure of the imaging lens of a comparative example, (A) is a spherical aberration figure, (B) is an astigmatism figure, (C) is a distortion aberration figure, (D) is a magnification chromatic aberration figure. 半画角θに対するsinθとtanθの値を比較するための図Diagram for comparing values of sin θ and tan θ with respect to half angle of view θ 本発明の実施形態にかかる内視鏡の概略構成を示す図The figure which shows schematic structure of the endoscope concerning embodiment of this invention. 本発明の実施形態にかかる車載用の撮像装置の配置を説明するための図The figure for demonstrating arrangement | positioning of the vehicle-mounted imaging device concerning embodiment of this invention

以下、本発明の実施形態について図面を参照して詳細に説明する。図1は、本発明の一実施形態にかかる撮像光学系10の光軸Zを含む断面における断面図である。この撮像光学系10は、本発明の実施形態にかかる撮像レンズ1と、光路の向きを変換するための光路変換部材2とを備える。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view of a cross section including an optical axis Z of an imaging optical system 10 according to an embodiment of the present invention. The imaging optical system 10 includes an imaging lens 1 according to an embodiment of the present invention and an optical path conversion member 2 for converting the direction of the optical path.

図1に示す光路変換部材2は、反射面を有するプリズムからなる。図1では、撮像レンズ1の左側が物体側であり、光軸Zを一点鎖線で示している。撮像光学系10においては、物体からの光は撮像レンズ1を透過した後、撮像レンズ1に対向する光路変換部材2の一面から入射し、この入射面に対して斜めに形成された反射面で反射されて光路が垂直に折り曲げられ、入射面と垂直に形成された出射面に接合された固体撮像素子3に入射する。図1に示す撮像光学系10においては、撮像レンズ1の像面が固体撮像素子3の撮像面に一致するように配置される。なお、図1に示す例では、光路変換部材2により略垂直に光路の方向が変換されているが、本発明の撮像光学系の光路の変換方向は必ずしもこの例に限定されず、任意に設定可能である。また、光路変換部材としては、ミラーや回折光学素子等の別の光学部材で構成することも可能である。   The optical path conversion member 2 shown in FIG. 1 is composed of a prism having a reflecting surface. In FIG. 1, the left side of the imaging lens 1 is the object side, and the optical axis Z is indicated by a one-dot chain line. In the imaging optical system 10, light from an object passes through the imaging lens 1, then enters from one surface of the optical path conversion member 2 facing the imaging lens 1, and is a reflection surface formed obliquely with respect to the incident surface. The light path is reflected and bent vertically, and is incident on the solid-state imaging device 3 bonded to the exit surface formed perpendicular to the entrance surface. In the imaging optical system 10 shown in FIG. 1, the imaging lens 1 is arranged so that the image plane of the imaging lens 1 coincides with the imaging plane of the solid-state imaging device 3. In the example shown in FIG. 1, the direction of the optical path is converted substantially vertically by the optical path conversion member 2, but the conversion direction of the optical path of the imaging optical system of the present invention is not necessarily limited to this example, and is arbitrarily set. Is possible. Further, the optical path changing member can be constituted by another optical member such as a mirror or a diffractive optical element.

次に、撮像レンズ1の詳細構成について説明する。撮像レンズ1は、4群6枚構成であり、物体側から順に、像側に凹面を向けたメニスカス形状の負の第1レンズL1と、いずれか一方が正で他方が負の第2レンズL2および第3レンズL3を接合してなる第1の接合レンズLC1と、物体側に平面または曲率半径の絶対値の大きい方の面を向けた正の第4レンズL4と、いずれか一方が正で他方が負の第5レンズL5および第6レンズL6を接合してなる第2の接合レンズLC2とが配列されてなる。   Next, a detailed configuration of the imaging lens 1 will be described. The imaging lens 1 has a four-group, six-element configuration, and in order from the object side, a negative first meniscus lens L1 having a concave surface directed toward the image side, and a second lens L2 in which one is positive and the other is negative. And a first cemented lens LC1 formed by cementing the third lens L3 and a positive fourth lens L4 having a plane or a surface with a larger absolute value of the radius of curvature facing the object side, either one is positive A second cemented lens LC2 formed by cementing a negative fifth lens L5 and a sixth lens L6 on the other side is arranged.

なお、図1には、接合レンズLC1として、負の第2レンズL2と正の第3レンズL3とを物体側から順に配列して接合した例を示しているが、代わりに、正の第2レンズL2と負の第3レンズL3とを物体側から順に配列して接合した構成としてもよい。同様に、図1には、接合レンズLC2として、正の第5レンズL5と負の第6レンズL6とを物体側から順に配列して接合した例を示しているが、代わりに、負の第5レンズL5と正の第6レンズL6とを物体側から順に配列して接合した構成としてもよい。ただし、接合レンズLC2については、図1の例のように、物体側から正レンズ、負レンズの順に配列した構成とした方が倍率の色収差の良好な補正により有効となる。   FIG. 1 shows an example in which a negative second lens L2 and a positive third lens L3 are sequentially arranged from the object side and cemented as the cemented lens LC1, but instead a positive second lens L1 is used. The lens L2 and the negative third lens L3 may be arranged in order from the object side and joined. Similarly, FIG. 1 shows an example in which a positive fifth lens L5 and a negative sixth lens L6 are sequentially arranged from the object side and cemented as the cemented lens LC2, but instead, a negative first lens L5 is joined. A configuration may be adopted in which the five lenses L5 and the positive sixth lens L6 are arranged in order from the object side and joined. However, as for the cemented lens LC2, as in the example of FIG. 1, it is more effective to correct the chromatic aberration of magnification by arranging the positive lens and the negative lens in this order from the object side.

第1の接合レンズLC1と第4レンズL4との間には、開口絞りStが配置される。なお、図1中の開口絞りは形状や大きさを表すものではなく、光軸Z上の位置を示すものである。撮像レンズ1は、正負のレンズからなる接合レンズを開口絞りStの物体側および像側の両方に配置することで、倍率色収差の補正に有利な構成となっている。   An aperture stop St is disposed between the first cemented lens LC1 and the fourth lens L4. Note that the aperture stop in FIG. 1 does not indicate the shape or size, but indicates the position on the optical axis Z. The imaging lens 1 has a configuration advantageous for correcting chromatic aberration of magnification by disposing a cemented lens composed of positive and negative lenses on both the object side and the image side of the aperture stop St.

撮像レンズ1は、下記条件式(1)〜(3)を満たすように構成されている。
0.20<f/R1<0.35 … (1)
0.14<R2/R1≦0.20 … (2)
1.8<Bf/f … (3)
ただし、
f:全系の焦点距離
R1:第1レンズL1の物体側の面の曲率半径
R2:第1レンズL1の像側の面の曲率半径
Bf:全系のバックフォーカス(空気換算長)
The imaging lens 1 is configured to satisfy the following conditional expressions (1) to (3).
0.20 <f / R1 <0.35 (1)
0.14 <R2 / R1 ≦ 0.20 (2)
1.8 <Bf / f (3)
However,
f: focal length of entire system R1: radius of curvature of object-side surface of first lens L1 R2: radius of curvature of image-side surface of first lens L1 Bf: back focus of entire system (air equivalent length)

条件式(1)〜(3)は、広い画角と長いバックフォーカスを維持しながら、良好に歪曲収差を補正するための条件を示すものであり、特に条件式(1)、(2)はこのための第1レンズL1のパワーと形状の条件を示すものである。   Conditional expressions (1) to (3) indicate conditions for favorably correcting distortion while maintaining a wide angle of view and a long back focus. In particular, conditional expressions (1) and (2) The power and shape conditions of the first lens L1 for this purpose are shown.

条件式(1)の上限を上回ると、十分な長さのバックフォーカスを得にくくなる。条件式(1)の下限を下回ると、歪曲収差を抑える効果が弱まり、画像周辺部の解像力の向上が図れなくなるため、近年の固体撮像素子の高画素化に伴う要望に応えることが困難になる。   If the upper limit of conditional expression (1) is exceeded, it will be difficult to obtain a sufficiently long back focus. If the lower limit of conditional expression (1) is not reached, the effect of suppressing distortion will be weakened and the resolution of the image periphery cannot be improved, making it difficult to meet the demands associated with the recent increase in the number of pixels in solid-state imaging devices. .

条件式(2)の上限を上回ると、広い画角が得られなくなる。条件式(2)の下限を下回ると、歪曲収差を抑える効果が弱まるとともに、第1レンズL1の像側の面の凹面が深くなり、加工性が低下する。   If the upper limit of conditional expression (2) is exceeded, a wide angle of view cannot be obtained. If the lower limit of conditional expression (2) is not reached, the effect of suppressing distortion will be weakened, and the concave surface of the image side surface of the first lens L1 will become deep, and the workability will deteriorate.

なお、第1レンズL1の物体側の面または像側の面が非球面の場合は、上記R1またはR2には近軸曲率半径を用いることにする。収差補正上は球面よりも非球面の方が有利であるが、生産性やコストの面では非球面よりも球面の方が好ましい。このような事情から、本実施形態の撮像レンズ1は、第1レンズL1を球面レンズとして構成した場合でも、広画角と実用上十分な長さのバックフォーカスを確保しながら、歪曲収差を抑制することができるように、条件式(1)、(2)を満たすように曲率半径を選択している。   When the object side surface or the image side surface of the first lens L1 is an aspherical surface, a paraxial radius of curvature is used for R1 or R2. In terms of aberration correction, an aspherical surface is more advantageous than a spherical surface, but a spherical surface is preferable to an aspherical surface in terms of productivity and cost. For this reason, the imaging lens 1 of the present embodiment suppresses distortion aberration while ensuring a wide field angle and a practically sufficient back focus even when the first lens L1 is configured as a spherical lens. Therefore, the radius of curvature is selected so as to satisfy the conditional expressions (1) and (2).

条件式(3)は、バックフォーカスに関する式である。条件式(3)を満たすように構成することで、焦点距離に比して長いバックフォーカスを確保でき、撮像レンズと像面の間に各種フィルタや光路変換部材2等を配置することが可能となる。具体的には例えば、光路変換部材2として図1に示すような厚みのあるプリズムを配置することも可能になる。   Conditional expression (3) is an expression relating to the back focus. By configuring so as to satisfy the conditional expression (3), it is possible to secure a long back focus as compared with the focal length, and it is possible to arrange various filters, the optical path conversion member 2 and the like between the imaging lens and the image plane. Become. Specifically, for example, a prism having a thickness as shown in FIG.

撮像レンズ1は、下記条件式(4)を満たすことが好ましい。
15.0<|ν2−ν3| … (4)
ただし、
ν2:第2レンズL2のd線におけるアッベ数
ν3:第3レンズL3のd線におけるアッベ数
The imaging lens 1 preferably satisfies the following conditional expression (4).
15.0 <| ν2-ν3 | (4)
However,
ν2: Abbe number of the second lens L2 at the d-line ν3: Abbe number of the third lens L3 at the d-line

条件式(4)は、開口絞りStより物体側の1枚の正レンズと1枚の負レンズからなる第1の接合レンズLC1を構成する材質のアッベ数の差を定義するものであり、倍率色収差および軸上色収差を補正するために必要な条件である。なお、このレンズ系においては、第1の接合レンズLC1を構成する負レンズの材質のアッベ数が、第1の接合レンズLC1を構成する正レンズの材質のアッベ数より大きいことが好ましい。   Conditional expression (4) defines the difference in the Abbe number of the materials constituting the first cemented lens LC1 composed of one positive lens and one negative lens on the object side with respect to the aperture stop St. This is a condition necessary for correcting chromatic aberration and axial chromatic aberration. In this lens system, it is preferable that the Abbe number of the material of the negative lens constituting the first cemented lens LC1 is larger than the Abbe number of the material of the positive lens constituting the first cemented lens LC1.

撮像レンズ1は、下記条件式(5)を満たすことが好ましい。

Figure 2011145315
ただし、
f:全系の焦点距離
ν5:第5レンズL5のd線におけるアッベ数
ν6:第6レンズL6のd線におけるアッベ数
RA:第5レンズL5と第6レンズL6の接合面の曲率半径
Bf:全系のバックフォーカス(空気換算長)
D10:第6レンズL6の中心厚
N6:第6レンズL6のd線における屈折率 The imaging lens 1 preferably satisfies the following conditional expression (5).
Figure 2011145315
However,
f: focal length ν5 of the entire system: Abbe number ν6 at the d-line of the fifth lens L5: Abbe number RA at the d-line of the sixth lens L6: radius of curvature Bf of the cemented surface between the fifth lens L5 and the sixth lens L6: Back focus of the entire system (air equivalent length)
D10: Center thickness of the sixth lens L6 N6: Refractive index of the sixth lens L6 at the d-line

条件式(5)は開口絞りStより像側の後群収束系の一部を構成する第5レンズL5と第6レンズL6とからなる第2の接合レンズLC2において、第5レンズL5と第6レンズL6のアッベ数の差と接合面に注目して、倍率色収差の補正の好適な度合いを示したものである。条件式(5)は以下の式(5A)のように変形することができる。

Figure 2011145315
Conditional expression (5) indicates that the fifth lens L5 and the sixth lens L2 in the second cemented lens LC2 including the fifth lens L5 and the sixth lens L6 that constitute a part of the rear group focusing system on the image side from the aperture stop St. Focusing on the difference between the Abbe number of the lens L6 and the cemented surface, the preferred degree of correction of the lateral chromatic aberration is shown. Conditional expression (5) can be modified as the following expression (5A).
Figure 2011145315

条件式(5A)からわかるように、条件式(5)の右辺は、第5レンズL5と第6レンズL6のアッベ数の差からなる第1の項と、第5レンズL5と第6レンズL6の接合面の曲率半径の絶対値を焦点距離で規格化した第2の項と、全系のバックフォーカスと第6レンズL6の光軸上の空気換算長との和、すなわち第5レンズL5と第6レンズL6の接合面から結像位置までの距離、を焦点距離で規格化した第3の項とに分けて考えることができる。   As can be seen from conditional expression (5A), the right side of conditional expression (5) is the first term consisting of the difference between the Abbe numbers of the fifth lens L5 and the sixth lens L6, and the fifth lens L5 and the sixth lens L6. The sum of the second term obtained by normalizing the absolute value of the radius of curvature of the cemented surface with the focal length and the back focus of the entire system and the air-converted length on the optical axis of the sixth lens L6, that is, the fifth lens L5 The distance from the cemented surface of the sixth lens L6 to the imaging position can be divided into the third term normalized by the focal length.

これら第1〜第3の項は、倍率色収差の補正に有利な3つの条件を示している。倍率色収差の補正は、第2の接合レンズLC2を構成する2つの正負のレンズのアッベ数の差(第1の項)が大きく、接合面の曲率半径の絶対値(第2の項)が小さく、接合面から結像位置までの距離(第3の項)が短いほど有利である。条件式(5)の下限を下回ると、バックフォーカスを長くしたまま倍率色収差を良好に保つことが困難になる。   These first to third terms indicate three conditions that are advantageous for correcting the lateral chromatic aberration. The correction of the lateral chromatic aberration is such that the difference between the Abbe numbers of the two positive and negative lenses constituting the second cemented lens LC2 (first term) is large and the absolute value of the radius of curvature of the cemented surface (second term) is small. The shorter the distance (third term) from the joint surface to the imaging position, the more advantageous. If the lower limit of conditional expression (5) is not reached, it will be difficult to satisfactorily maintain lateral chromatic aberration while keeping the back focus longer.

また、撮像レンズ1においては、第2の接合レンズLC2を構成する負レンズの分散が大きいほど倍率色収差の補正に有利であるため、第2の接合レンズLC2を構成する負レンズのアッベ数が20以下であることが望ましい。   Further, in the imaging lens 1, the larger the dispersion of the negative lens constituting the second cemented lens LC2, the more advantageous for correcting the lateral chromatic aberration. Therefore, the Abbe number of the negative lens constituting the second cemented lens LC2 is 20 The following is desirable.

通常、色収差の補正が不十分な結像レンズにおいては、短波長における焦点距離が長波長における焦点距離よりも短いので、軸上色収差、倍率色収差ともに、短波長側の収差が基準波長のものに比べ、マイナス(アンダー)となる。倍率色収差のアンダーを補正する場合、開口絞りStより像側では、正レンズのアッベ数は大きく、負レンズのアッベ数は小さくすると良い。   Normally, in an imaging lens with insufficient correction of chromatic aberration, the focal length at the short wavelength is shorter than the focal length at the long wavelength, so both the longitudinal chromatic aberration and the lateral chromatic aberration have the short wavelength side aberration of the reference wavelength. Compared to minus (under). When correcting under magnification chromatic aberration, it is preferable that the Abbe number of the positive lens is large and the Abbe number of the negative lens is small on the image side from the aperture stop St.

さらに、倍率色収差を補正するには、開口絞りStより離れた位置に倍率色収差補正を担う光学部材が配置されていること、特に開口絞りStより像側では、結像面に近い位置に配置されているほどその効果がより顕著であるが、全系のバックフォーカスが長いレンズ系においては、結像面に近い位置に光学部材を配置できず、倍率色収差の補正は容易ではなかった。しかし、本実施形態の撮像レンズによれば、上記の好ましい構成を採用することで、長いバックフォーカス、例えば焦点距離の1.8倍よりも長いバックフォーカス、と良好な倍率色収差の補正を両立させることが容易になる。   Further, in order to correct the lateral chromatic aberration, an optical member responsible for correcting the lateral chromatic aberration is disposed at a position distant from the aperture stop St. In particular, on the image side from the aperture stop St, the optical member is disposed at a position close to the imaging plane. However, in the lens system having a long back focus of the entire system, the optical member cannot be disposed at a position close to the image plane and correction of the lateral chromatic aberration is not easy. However, according to the imaging lens of the present embodiment, by adopting the above preferable configuration, it is possible to achieve both long back focus, for example, back focus longer than 1.8 times the focal length, and good correction of chromatic aberration of magnification. It becomes easy.

内視鏡用の撮像レンズは、被写界深度を深くするためにFナンバーの大きなものが多いことから、球面収差やコマ収差などが画質を決める重要な要因となることは少なく、画質劣化の大きな要因としては、倍率色収差が挙げられる。倍率色収差は、画像周辺部に行くほど顕著に表れるため、画像周辺部の画質を向上させるためには、倍率色収差を良好に補正することが非常に有効である。   Since many imaging lenses for endoscopes have a large F number in order to increase the depth of field, spherical aberration and coma are rarely important factors in determining image quality. A major factor is lateral chromatic aberration. Since the lateral chromatic aberration appears more prominently toward the image peripheral portion, it is very effective to correct the lateral chromatic aberration well in order to improve the image quality of the image peripheral portion.

また、撮像レンズ1においては、開口絞りStより物体側に位置する全てのレンズ、すなわち第1レンズL1、第2レンズL2、第3レンズL3全てのd線における屈折率が1.8以上であることが好ましい。このような材質を選択することで広角化および歪曲収差の補正に有利となる。   Further, in the imaging lens 1, the refractive indexes of all the lenses located on the object side of the aperture stop St, that is, the first lens L1, the second lens L2, and the third lens L3, in the d-line are 1.8 or more. It is preferable. Selecting such a material is advantageous for widening the angle and correcting distortion.

撮像レンズ1が保護部材なしで内視鏡や車載用カメラ等の撮像装置に搭載される場合、最も物体側に配置される第1レンズL1は、体液、洗浄液、直射日光、風雨、油脂等にさらさることになる。したがって、第1レンズL1の材質には、耐水性、耐候性、耐酸性、耐薬品性等が高いものを用いることが好ましい。第1レンズL1の材質には例えば、日本光学硝子工業会が定める粉末耐水性、粉末耐酸性規格の減量率ランク、表面法耐候性ランクが1のものを用いることが好ましい。   When the imaging lens 1 is mounted on an imaging device such as an endoscope or a vehicle-mounted camera without a protective member, the first lens L1 arranged closest to the object side is used for body fluid, cleaning fluid, direct sunlight, wind and rain, oils and fats, etc. Will be exposed. Therefore, it is preferable to use a material having high water resistance, weather resistance, acid resistance, chemical resistance and the like as the material of the first lens L1. As the material of the first lens L1, for example, a material having a powder water resistance, a powder acid resistance standard weight loss rate rank, and a surface method weather resistance rank of 1 defined by the Japan Optical Glass Industry Association is preferably used.

次に、本発明の撮像レンズの数値実施例について説明する。実施例1〜実施例13の撮像レンズのレンズ断面図をそれぞれ図2〜図14に示す。図2〜図14では、図の左側が物体側、右側が像側であり、第1レンズL1の物体側の面から像面までの、軸上光束4および最大像高に対応する軸外光束5の光路も示している。図2〜図9、図11〜図13では、光路変換部材、各種フィルタ、カバーガラス等を想定した平行平面板PPも合わせて示し、図10、図14では、各種フィルタ、カバーガラス等を想定した平行平面板PPaも合わせて示している。各撮像レンズの像面の位置は、それぞれ平行平面板PPの像側の面、平行平面板PPaの像側の面の位置となる。なお、図2〜図9、図11〜図13では、簡単のために撮像レンズから像面までの光路が一直線上となるように光学系を展開して平行平面板PPを図示している。   Next, numerical examples of the imaging lens of the present invention will be described. Lens cross-sectional views of the imaging lenses of Examples 1 to 13 are shown in FIGS. 2 to 14, the left side of the figure is the object side, the right side is the image side, and the on-axis light beam 4 and the off-axis light beam corresponding to the maximum image height from the object-side surface of the first lens L1 to the image surface. The optical path of 5 is also shown. 2 to 9 and FIGS. 11 to 13 also show a parallel plane plate PP that assumes an optical path conversion member, various filters, a cover glass, and the like, and FIGS. 10 and 14 assume various filters, a cover glass, and the like. The parallel plane plate PPa is also shown. The position of the image plane of each imaging lens is the position of the image side surface of the plane parallel plate PP and the position of the image side surface of the plane parallel plate PPa. In FIGS. 2 to 9 and FIGS. 11 to 13, for the sake of simplicity, the parallel plane plate PP is illustrated by developing the optical system so that the optical path from the imaging lens to the image plane is in a straight line.

実施例1〜実施例13の撮像レンズのレンズデータをそれぞれ表1〜表13に示す。各実施例のレンズデータの表において、Siの欄は最も物体側の構成要素の面を1番目として像側に向かうに従い順次増加するi番目(i=1、2、3、…)の面番号を示し、Riの欄はi番目の面の曲率半径を示し、Diの欄はi番目の面とi+1番目の面との光軸Z上の面間隔を示し、Ndjの欄は最も物体側の光学要素を1番目として像側に向かうに従い順次増加するj番目(j=1、2、3、…)の光学要素のd線(波長587.6nm)に対する屈折率を示し、νdjの欄はj番目の光学要素のd線に対するアッベ数を示している。なお、レンズデータには、開口絞りStおよび平行平面板PPも含めて示しており、開口絞りStに対応する面の最も右の欄には開口絞りの径を記載している。   Lens data of the imaging lenses of Examples 1 to 13 are shown in Tables 1 to 13, respectively. In the lens data table of each example, the Si column indicates the i-th (i = 1, 2, 3,...) Surface number that sequentially increases toward the image side with the most object-side component surface as the first surface. The Ri column indicates the radius of curvature of the i-th surface, the Di column indicates the surface spacing on the optical axis Z between the i-th surface and the i + 1-th surface, and the Ndj column is the most object side. Indicates the refractive index for the d-line (wavelength 587.6 nm) of the j-th (j = 1, 2, 3,...) Optical element that increases sequentially toward the image side with the optical element being first, and the column of νdj is j The Abbe number with respect to d line of the 2nd optical element is shown. The lens data includes the aperture stop St and the plane parallel plate PP, and the rightmost column of the surface corresponding to the aperture stop St describes the diameter of the aperture stop.

曲率半径の符号は、物体側に凸の場合を正、像側に凸の場合を負としている。レンズデータにおける曲率半径および面間隔の単位としては、「mm」を用いているが、これは一例であり、光学系は比例拡大または比例縮小しても同等の光学性能が得られるので、他の適当な単位を用いることもできる。   The sign of the radius of curvature is positive when convex on the object side and negative when convex on the image side. “Mm” is used as the unit of the radius of curvature and the surface interval in the lens data, but this is an example, and the optical system can obtain the same optical performance even when proportionally enlarged or reduced. Appropriate units can also be used.

なお、前述の条件式における「R1」、「R2」、「ν2」、「ν3」、「ν5」、「ν6」、「RA」、「D10」、「N6」はそれぞれ、レンズデータにおける「R1」、「R2」、「νd2」、「νd3」、「νd5」、「νd6」、「R10」、「D10」、「Nd6」に対応する。   It should be noted that “R1”, “R2”, “ν2”, “ν3”, “ν5”, “ν6”, “RA”, “D10”, and “N6” in the above conditional expressions are “R1” in the lens data, respectively. ”,“ R2 ”,“ νd2 ”,“ νd3 ”,“ νd5 ”,“ νd6 ”,“ R10 ”,“ D10 ”, and“ Nd6 ”.

Figure 2011145315
Figure 2011145315

Figure 2011145315
Figure 2011145315

Figure 2011145315
Figure 2011145315

Figure 2011145315
Figure 2011145315

Figure 2011145315
Figure 2011145315

Figure 2011145315
Figure 2011145315

Figure 2011145315
Figure 2011145315

Figure 2011145315
Figure 2011145315

Figure 2011145315
Figure 2011145315

Figure 2011145315
Figure 2011145315

Figure 2011145315
Figure 2011145315

Figure 2011145315
Figure 2011145315
Figure 2011145315
Figure 2011145315

図15(A)〜図15(D)にそれぞれ実施例1の撮像レンズの球面収差、非点収差、歪曲収差(ディストーション)、倍率色収差(倍率の色収差)の各収差図を示す。球面収差、非点収差、歪曲収差の各収差図には、d線(波長587.6nm)を基準波長とした収差を示すが、球面収差図にはF線(波長486.1nm)、C線(波長656.3nm)についての収差も示している。倍率色収差図ではF線とC線についての収差を示している。球面収差図のFno.はF値を意味し、その他の収差図のωは半画角を意味する。   FIGS. 15A to 15D show aberration diagrams of the spherical aberration, astigmatism, distortion (distortion), and chromatic aberration of magnification (chromatic aberration of magnification) of the imaging lens of Example 1, respectively. The aberration diagrams for spherical aberration, astigmatism, and distortion show aberrations with the d-line (wavelength 587.6 nm) as the reference wavelength, while the spherical aberration diagram shows the F-line (wavelength 486.1 nm) and C-line. The aberration for (wavelength 656.3 nm) is also shown. The lateral chromatic aberration diagram shows aberrations for the F-line and the C-line. Fno. Of spherical aberration diagram. Means F value, and ω in other aberration diagrams means half angle of view.

同様に、図16(A)〜図16(D)、図17(A)〜図17(D)、図18(A)〜図18(D)、図19(A)〜図19(D)、図20(A)〜図20(D)、図21(A)〜図21(D)、図22(A)〜図22(D)、図23(A)〜図23(D)、図24(A)〜図24(D)、図25(A)〜図25(D)、図26(A)〜図26(D)、図27(A)〜図27(D)に、実施例2〜13の撮像レンズの球面収差、非点収差、歪曲収差(ディストーション)、倍率色収差(倍率の色収差)の各収差図を示す。各収差図からわかるように、上記実施例1〜実施例13は各収差が良好に補正されている。   Similarly, FIGS. 16 (A) to 16 (D), FIGS. 17 (A) to 17 (D), FIGS. 18 (A) to 18 (D), and FIGS. 19 (A) to 19 (D). 20 (A) to 20 (D), 21 (A) to 21 (D), 22 (A) to 22 (D), 23 (A) to 23 (D), FIG. 24 (A) to FIG. 24 (D), FIG. 25 (A) to FIG. 25 (D), FIG. 26 (A) to FIG. 26 (D), FIG. 27 (A) to FIG. The aberration diagrams of spherical aberration, astigmatism, distortion (distortion), and chromatic aberration of magnification (chromatic aberration of magnification) of the imaging lenses 2 to 13 are shown. As can be seen from the respective aberration diagrams, in the first to thirteenth embodiments, each aberration is corrected well.

比較例として、図28に従来の撮像レンズの一例のレンズ断面図を示す。この比較例は特許文献1の実施例1の撮像レンズに相当するものである。図28に示す比較例の撮像レンズは、物体側から順に、負の第1レンズL1’と、負の第2レンズL2’および正の第3レンズL3’を接合してなる接合レンズと、正の第4レンズL4’と、正の第5レンズL5’および負の第6レンズL6’を接合してなる接合レンズとが配列された4群6枚構成であり、第3レンズL3’と第4レンズL4’との間に開口絞りStが配置されている。図28にも平行平面板PP、および第1レンズL1’の物体側の面から像面までの軸上光束4および最大像高に対応する軸外光束5の光路を合わせて示している。   As a comparative example, FIG. 28 shows a lens cross-sectional view of an example of a conventional imaging lens. This comparative example corresponds to the imaging lens of Example 1 of Patent Document 1. The imaging lens of the comparative example shown in FIG. 28 includes, in order from the object side, a negative first lens L1 ′, a cemented lens formed by cementing a negative second lens L2 ′ and a positive third lens L3 ′, and a positive lens. The fourth lens L4 ′ and the cemented lens formed by cementing the positive fifth lens L5 ′ and the negative sixth lens L6 ′ are arranged in a four-group six-lens configuration, and the third lens L3 ′ and the third lens L3 ′ are arranged. An aperture stop St is disposed between the four lenses L4 ′. FIG. 28 also shows the optical paths of the parallel plane plate PP and the on-axis light beam 4 from the object-side surface of the first lens L1 'to the image plane and the off-axis light beam 5 corresponding to the maximum image height.

この比較例のレンズデータを表14に示す。表14の記号の意味は、前述の実施例1〜実施例13のレンズデータのものと同様である。   Table 14 shows lens data of this comparative example. The meanings of the symbols in Table 14 are the same as those in the lens data of Examples 1 to 13 described above.

Figure 2011145315
Figure 2011145315

図29(A)〜図29(D)に、この比較例の球面収差、非点収差、歪曲収差(ディストーション)、倍率色収差(倍率の色収差)の各収差図を示す。図29(A)〜図29(D)の図示方法は、前述の実施例1〜実施例13の各収差図のものと同様である。   FIGS. 29A to 29D show aberration diagrams of spherical aberration, astigmatism, distortion (distortion), and chromatic aberration of magnification (chromatic aberration of magnification) of this comparative example. The methods shown in FIGS. 29A to 29D are the same as those shown in the aberration diagrams of Examples 1 to 13 described above.

表15、表16に、上記実施例1〜実施例13と上記比較例の各種データを示す。表15、表16のデータは、d線におけるものであり、長さの単位は全てmmであり、角度の単位は全て度である。   Tables 15 and 16 show various data of Examples 1 to 13 and the comparative example. The data in Tables 15 and 16 are for the d-line, the unit of length is all mm, and the unit of angle is all degrees.

Figure 2011145315
Figure 2011145315

Figure 2011145315
Figure 2011145315

以下に、表15、表16に記載の語句についてまとめて説明する。「構成枚数」は全系を構成するレンズ群とレンズ枚数である。「前群接合」は開口絞りStより物体側の第1の接合レンズLC1を構成する2枚のレンズのパワーの符号と配列順を表し、例えば「凹凸接合」は物体側から順に負レンズと正レンズが配列されて接合された接合レンズを意味し、「凸凹接合」は物体側から順に正レンズと負レンズが配列されて接合された接合レンズを意味する。「平行平面板厚」は平行平面板PPの光軸方向の厚みである。   Below, the words and phrases described in Tables 15 and 16 will be described together. “Number of components” is the number of lenses and the number of lenses constituting the entire system. “Front group cementing” indicates the power sign and arrangement order of the two lenses constituting the first cemented lens LC1 closer to the object side than the aperture stop St. For example, “concave / convex joining” refers to the negative lens and the positive lens in order from the object side. This means a cemented lens in which lenses are arranged and cemented, and “convex / concave cementing” means a cemented lens in which a positive lens and a negative lens are arranged in order from the object side. The “parallel plane plate thickness” is the thickness of the parallel plane plate PP in the optical axis direction.

「物体距離」は最も物体側のレンズ面から物体までの光軸方向の距離である。「物体面曲率半径」は物体面の曲率半径である。「最大像高」は最大の像高である。「視野角(度)」は全画角での視野角であり、前述の記号をωを用いると2ωで表されるものである。「有効F値」は有効F値(有効Fナンバー)である。「開口絞り径」は開口絞りStの直径である。   “Object distance” is the distance in the optical axis direction from the lens surface closest to the object to the object. “Object surface radius of curvature” is the radius of curvature of the object surface. “Maximum image height” is the maximum image height. “Viewing angle (degree)” is a viewing angle at all angles of view, and is expressed by 2ω when ω is used as the above-mentioned symbol. “Effective F value” is an effective F value (effective F number). “Aperture stop diameter” is the diameter of the aperture stop St.

表15、表16に示すように、実施例1、2、3、4、5、6、7、8、9および比較例は、第1レンズL1の物体側の面頂点から15mmの位置に置かれた半径15mmの球面を物体面として、最大像高は1.75mmで収差等の計算をしている。そして、実施例1、2、3、4、5、6、7、8および比較例のレンズ系の像側には、d線における屈折率が1.51680、光軸方向の厚さ4.0mmの平行平面板PPを挿入し、その最終面を結像面としていて、バックフォーカスは、この平行平面板PPを除いた値、すなわち空気換算値である。実施例9は平行平面板PPの厚さを0.2mmの平行平面板としている。   As shown in Tables 15 and 16, Examples 1, 2, 3, 4, 5, 6, 7, 8, 9 and comparative examples are placed at a position 15 mm from the surface vertex of the first lens L1 on the object side. Using the spherical surface with a radius of 15 mm as the object surface, the maximum image height is 1.75 mm, and aberrations are calculated. Then, on the image side of the lens systems of Examples 1, 2, 3, 4, 5, 6, 7, and 8 and the comparative example, the refractive index at the d-line is 1.51680, and the thickness in the optical axis direction is 4.0 mm. The parallel plane plate PP is inserted and the final plane is used as the imaging plane, and the back focus is a value excluding the plane parallel plate PP, that is, an air equivalent value. In Example 9, the plane parallel plate PP has a thickness of 0.2 mm.

実施例10、11、12、13は、第1レンズL1の物体側の面頂点から10mmの位置に置かれた半径10mmの球面を物体面として、最大像高は1.45mmで収差等の計算をしている。そして、実施例10、11、12のレンズ系の像側には、d線における屈折率が1.51680、光軸方向の厚さ3.0mmの平行平面板PPを挿入し、その最終面を結像面としていて、バックフォーカスは、この平行平面板PPを除いた値、すなわち空気換算値である。実施例13は平行平面板PPaの厚さを0.2mmとしている。   In Examples 10, 11, 12, and 13, a spherical surface with a radius of 10 mm placed at a position 10 mm from the surface apex of the first lens L1 is used as the object surface, and the maximum image height is 1.45 mm. I am doing. Then, on the image side of the lens systems of Examples 10, 11, and 12, a parallel plane plate PP having a refractive index of 1.51680 in the d-line and a thickness of 3.0 mm in the optical axis direction is inserted, and the final surface thereof is As the imaging plane, the back focus is a value excluding the plane parallel plate PP, that is, an air equivalent value. In Example 13, the thickness of the plane parallel plate PPa is 0.2 mm.

比較例は、第1レンズL1’の物体側の面頂点から15mmの位置に置かれた半径15mmの球面を物体面として、最大像高は1.008mmで収差等の計算をしている。そして、比較例のレンズ系の像側には、d線における屈折率が1.51633、光軸方向の厚さ3.0mmの平行平面板PPを挿入し、その最終面を結像面としていて、バックフォーカスは、この平行平面板をこの平行平面板PPを除いた値、すなわち空気換算値である。   In the comparative example, a spherical surface with a radius of 15 mm placed at a position 15 mm from the surface apex of the first lens L <b> 1 ′ is used as an object surface, and aberrations are calculated with a maximum image height of 1.008 mm. Then, on the image side of the lens system of the comparative example, a parallel plane plate PP having a refractive index of 1.51633 at the d-line and a thickness of 3.0 mm in the optical axis direction is inserted, and its final surface is used as an imaging surface. The back focus is a value obtained by removing the parallel flat plate PP from the parallel flat plate, that is, an air equivalent value.

表15、表16の「有効F値」より下の欄には、前述した条件式(1)〜(5)で用いられる各値および各条件式の対応値を示している。実施例1〜13は全て条件式(1)〜(5)を満たしているが、比較例は条件式(1)、(2)、(5)を満たしていない。   In the columns below “Effective F value” in Tables 15 and 16, the values used in the conditional expressions (1) to (5) and the corresponding values of the conditional expressions are shown. Examples 1 to 13 all satisfy conditional expressions (1) to (5), but the comparative example does not satisfy conditional expressions (1), (2), and (5).

次に、図15(C)、図16(C)、図17(C)、図18(C)、図19(C)、図20(C)、図21(C)、図22(C)、図23(C)、図24(C)、図25(C)、図26(C)、図27(C)および図29(C)を参照して、本発明の実施例1〜実施例13と比較例における歪曲収差の比較を行う。比較例の歪曲収差は8割像高付近でほぼゼロであり最大像高で大きな負の値になっているのに対し、実施例1〜実施例13の歪曲収差は8割像高付近で比較的小さな正の値をとり最大像高でその正の値をほぼ維持しているかあるいはそれよりさらに小さな正の値もしくは小さな負の値をとっている。このことから、画像周辺部の物体が小さく見えすぎて解像力が不十分だった比較例に比べて、実施例1〜実施例13は歪曲収差が改善され、画像周辺部で解像力が向上していることがわかる。   Next, FIGS. 15 (C), 16 (C), 17 (C), 18 (C), 19 (C), 20 (C), 21 (C), and 22 (C). 23 (C), FIG. 24 (C), FIG. 25 (C), FIG. 26 (C), FIG. 27 (C), and FIG. 13 and the distortion in the comparative example are compared. The distortion of the comparative example is almost zero near the 80% image height and has a large negative value at the maximum image height, whereas the distortion aberrations of Examples 1 to 13 are compared near the 80% image height. It takes a small positive value and keeps the positive value almost at the maximum image height, or takes a smaller positive value or a smaller negative value. From this, compared to the comparative example in which the object in the image peripheral portion looks too small and the resolving power is insufficient, Examples 1 to 13 have improved distortion aberration and the resolving power is improved in the image peripheral portion. I understand that.

このような特性の相違により、同じ像サイズ、同じ画角という条件であれば、比較例よりも本願の実施例の方が焦点距離が短くなり、同じF値、同じ許容錯乱円径という条件で算出すれば、比較例よりも本願の実施例の方が被写界深度を深くできるという効果を奏することもできる。   Due to the difference in characteristics, if the conditions are the same image size and the same angle of view, the embodiment of the present application has a shorter focal length than the comparative example, and the same F value and the same permissible circle of confusion diameter. If it calculates, the Example of this application can also show the effect that the depth of field can be deepened rather than a comparative example.

なお、図15〜図27および図29に示す本発明の実施例1〜実施例13と比較例の歪曲収差図はともに同じ射影方式を採用しており、全系の焦点距離f、半画角θ(変数扱い、0≦θ≦ω)を用いて理想像高の大きさをf×sinθとしたとき、この理想像高からのずれ量を示したものである。このような理想像高を採用するのは、8割像高における、実施例1〜実施例13の歪曲収差と比較例の歪曲収差の差異を認識しやすくするためである。以下にこの点について説明する。   Note that the distortion diagrams of Examples 1 to 13 and Comparative Example of the present invention shown in FIGS. 15 to 27 and 29 both adopt the same projection method, and the focal length f and the half angle of view of the entire system. When θ (variable treatment, 0 ≦ θ ≦ ω) is used and the size of the ideal image height is f × sin θ, the deviation from the ideal image height is shown. The reason for adopting such an ideal image height is to make it easy to recognize the difference between the distortion aberration of Examples 1 to 13 and the distortion aberration of the comparative example at 80% image height. This point will be described below.

一般に、歪曲収差Disは、理想像高Yと、実際の像高Yとを用いて下式で表される。
Dis=100×(Y−Y)/Y
In general, distortion Dis is the ideal image height Y 0, represented by the following formula by using the actual image height Y.
Dis = 100 × (Y−Y 0 ) / Y 0

通常、一般的な撮像レンズ系では、理想像高Yとして、Y=−f×tanθが用いられる。しかし、広角レンズ系ではθは大きな値をとることになり、θ>60°となることもある。このようなθが大きな範囲では、図30に示すようにθに対するtanθの変化率が非常に大きなものとなり、tanθの値が大きなものとなる。 Usually, in a general imaging lens system, Y 0 = −f × tan θ is used as the ideal image height Y 0 . However, in a wide-angle lens system, θ takes a large value, and θ> 60 ° may be obtained. In such a large θ range, as shown in FIG. 30, the rate of change of tan θ with respect to θ is very large, and the value of tan θ is large.

図30は横軸に半画角θ、縦軸にtanθまたはsinθの値をとったものである。θは半画角であることから図30に示すθは0°〜90°の角度範囲のみ図示しており、以下の歪曲収差図の説明でもこの角度範囲でのみ考えるものとする。図30では、理解を助けるために、本実施形態の撮像レンズが想定している画像周辺部となる60°〜70°の範囲に斜線を付している。   In FIG. 30, the horizontal axis represents the half angle of view θ, and the vertical axis represents the value of tan θ or sin θ. Since θ is a half angle of view, θ shown in FIG. 30 is shown only in the angle range of 0 ° to 90 °, and the following description of the distortion aberration diagram is considered only in this angle range. In FIG. 30, in order to help understanding, the range of 60 ° to 70 ° that is the peripheral portion of the image assumed by the imaging lens of the present embodiment is hatched.

θが60°、70°のときのtanθの値はそれぞれ、tan60°=1.732、tan70°=2.747である。このため、理想像高Yとして−f×tanθを用いた場合、θが大きな画像周辺部では、実施例1〜13と比較例の歪曲収差はともに−50%を超えた値となり、本発明の実施例1〜13と比較例の差を認識しにくい。 The values of tan θ when θ is 60 ° and 70 ° are tan 60 ° = 1.732 and tan 70 ° = 2.747, respectively. For this reason, when −f × tan θ is used as the ideal image height Y 0 , the distortion aberrations of Examples 1 to 13 and the comparative example both exceed −50% in the image peripheral portion where θ is large. It is difficult to recognize the difference between Examples 1 to 13 and the comparative example.

一方、理想像高Yを、Y=−f×sinθとすると、図30に示すようにθ>60°の範囲においては、tanθの場合と比べて、θに対するsinθの変化率は小さなものとなり、sinθの値が小さなものとなる。θが60°、70°のときのsinθの値はそれぞれ、sin60°=0.866、sin70°=0.940である。よって、理想像高Yとして−f×sinθを用いれば、θが大きな画像周辺部における、実施例1〜13と比較例の歪曲収差の差が顕著なものとなり、これらの差が認識しやすくなる。 On the other hand, if the ideal image height Y 0 is Y 0 = −f × sin θ, the rate of change of sin θ with respect to θ is small in the range of θ> 60 ° as compared with tan θ as shown in FIG. Thus, the value of sin θ is small. The values of sin θ when θ is 60 ° and 70 ° are sin 60 ° = 0.866 and sin 70 ° = 0.940, respectively. Therefore, when −f × sin θ is used as the ideal image height Y 0 , the difference in distortion between Examples 1 to 13 and the comparative example becomes remarkable in the peripheral portion of the image where θ is large, and these differences are easily recognized. Become.

次に、本発明の撮像レンズが適用される撮像装置の実施形態について図31、図32を参照しながら説明する。図31は、内視鏡の概略的な構成図である。図31に示す内視鏡100は、主として、操作部102と、挿入部104と、ユニバーサルコード106を引き出すコネクタ部(図示せず)を備える。操作部102の先端側には、患者の体内に挿入される挿入部104が連結され、操作部102の基端側からは、光源装置等と接続するためのコネクタ部に接続するためのユニバーサルコード106が引き出されている。   Next, an embodiment of an imaging apparatus to which the imaging lens of the present invention is applied will be described with reference to FIGS. FIG. 31 is a schematic configuration diagram of an endoscope. The endoscope 100 shown in FIG. 31 mainly includes an operation unit 102, an insertion unit 104, and a connector unit (not shown) for pulling out the universal cord 106. An insertion portion 104 to be inserted into the patient's body is connected to the distal end side of the operation portion 102. From the proximal end side of the operation portion 102, a universal cord for connecting to a connector portion for connecting to a light source device or the like. 106 is pulled out.

挿入部104の大半は挿入経路に沿って任意の方向に曲がる軟性部107であり、この軟性部107の先端には、湾曲部108が連結され、この湾曲部108の先端には、先端硬質部110が順次連結されている。湾曲部108は、先端硬質部110を所望の方向に向けるために設けられるものであり、操作部102に設けられた湾曲走査ノブ109を回動させることにより湾曲操作が可能となっている。先端硬質部110の内部には、本実施形態の撮像光学系が配設される。   Most of the insertion portion 104 is a soft portion 107 that bends in an arbitrary direction along the insertion path. 110 are sequentially connected. The bending portion 108 is provided to direct the distal end hard portion 110 in a desired direction, and the bending operation can be performed by rotating the bending scanning knob 109 provided in the operation portion 102. The imaging optical system of this embodiment is disposed inside the distal end hard portion 110.

図32は、自動車200に本実施形態の車載用カメラを搭載した様子を示すものである。図32において、自動車200は、その助手席側の側面の死角範囲を撮像するための車外カメラ201と、自動車200の後側の死角範囲を撮像するための車外カメラ202と、ルームミラーの背面に取り付けられ、ドライバーと同じ視野範囲を撮影するための車内カメラ203とを備えている。車外カメラ201と車外カメラ202と車内カメラ203とは、本実施の形態にかかる撮像装置であり、本発明の実施形態による撮像レンズと、該撮像レンズにより形成される光学像を電気信号に変換する撮像素子とを備えている。   FIG. 32 shows a state where the vehicle-mounted camera of the present embodiment is mounted on the automobile 200. In FIG. 32, an automobile 200 has an on-vehicle camera 201 for imaging the blind spot range on the side surface on the passenger seat side, an on-vehicle camera 202 for imaging the blind spot range on the rear side of the automobile 200, and the rear surface of the rearview mirror. An in-vehicle camera 203 is mounted for photographing the same field of view as the driver. The outside camera 201, the outside camera 202, and the inside camera 203 are imaging devices according to the present embodiment, and convert an imaging lens according to the embodiment of the present invention and an optical image formed by the imaging lens into an electrical signal. And an image sensor.

以上、実施形態および実施例を挙げて本発明を説明したが、本発明は上記実施形態および実施例に限定されず、種々の変形が可能である。例えば、各レンズ成分の曲率半径、面間隔、屈折率、アッベ数等の値は、上記各数値実施例で示した値に限定されず、他の値をとり得るものである。   The present invention has been described with reference to the embodiments and examples. However, the present invention is not limited to the above embodiments and examples, and various modifications can be made. For example, the values of the radius of curvature, the surface spacing, the refractive index, the Abbe number, etc. of each lens component are not limited to the values shown in the above numerical examples, but can take other values.

また、撮像装置の実施形態では、内視鏡および車載用カメラの例について図を示して説明したが、本発明はこの用途に限定されるものではなく、例えば、携帯端末用カメラや監視カメラ等にも適用可能である。   Further, in the embodiment of the imaging device, the example of the endoscope and the vehicle-mounted camera has been described with reference to the drawings. However, the present invention is not limited to this application, for example, a mobile terminal camera, a monitoring camera, or the like It is also applicable to.

1 撮像レンズ
2 光路変換部材
3 固体撮像素子
4 軸上光束
5 軸外光束
10 撮像光学系
100 内視鏡
102 操作部
104 挿入部
106 ユニバーサルコード
107 軟性部
108 湾曲部
109 湾曲走査ノブ
110 先端硬質部
200 自動車
201、202 車外カメラ
203 車内カメラ
L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
L4 第4レンズ
L5 第5レンズ
L6 第6レンズ
LC1 第1の接合レンズ
LC2 第2の接合レンズ
PP、PPa 光学部材
St 開口絞り
Z 光軸
DESCRIPTION OF SYMBOLS 1 Imaging lens 2 Optical path conversion member 3 Solid-state image sensor 4 On-axis light beam 5 Off-axis light beam 10 Imaging optical system 100 Endoscope 102 Operation part 104 Insertion part 106 Universal code 107 Soft part 108 Curved part 109 Curved scanning knob 110 Tip hard part 200 Automotive 201, 202 Outside camera 203 Inside camera L1 1st lens L2 2nd lens L3 3rd lens L4 4th lens L5 5th lens L6 6th lens LC1 1st cemented lens LC2 2nd cemented lens PP, PPa optics Member St Aperture stop Z Optical axis

Claims (6)

物体側から順に、像側に凹面を向けたメニスカス形状の負の第1レンズと、いずれか一方が正で他方が負の第2レンズおよび第3レンズを接合してなる第1の接合レンズと、物体側に平面または曲率半径の絶対値の大きい方の面を向けた正の第4レンズと、いずれか一方が正で他方が負の第5レンズおよび第6レンズを接合してなる第2の接合レンズとが配列された4群6枚構成であり、前記第1の接合レンズと前記第4レンズとの間に絞りが配置され、下記条件式(1)〜(3)を満たすことを特徴とする撮像レンズ。
0.20<f/R1<0.35 … (1)
0.14<R2/R1≦0.20 … (2)
1.8<Bf/f … (3)
ただし、
f:全系の焦点距離
R1:前記第1レンズの物体側の面の曲率半径
R2:前記第1レンズの像側の面の曲率半径
Bf:全系のバックフォーカス
A first meniscus negative first lens having a concave surface directed toward the image side in order from the object side, and a first cemented lens formed by cementing a second lens and a third lens, one of which is positive and the other is negative A second lens formed by bonding a positive fourth lens having a plane or a surface having a larger absolute value of the radius of curvature toward the object side, and a fifth lens and a sixth lens, one of which is positive and the other is negative. And a cemented lens is arranged between the first cemented lens and the fourth lens, and the following conditional expressions (1) to (3) are satisfied. A characteristic imaging lens.
0.20 <f / R1 <0.35 (1)
0.14 <R2 / R1 ≦ 0.20 (2)
1.8 <Bf / f (3)
However,
f: focal length of entire system R1: radius of curvature of object side surface of the first lens R2: radius of curvature of image side surface of the first lens Bf: back focus of the entire system
下記条件式(4)を満たすことを特徴とする請求項1記載の撮像レンズ。
15.0<|ν2−ν3| … (4)
ただし、
ν2:前記第2レンズのd線におけるアッベ数
ν3:前記第3レンズのd線におけるアッベ数
The imaging lens according to claim 1, wherein the following conditional expression (4) is satisfied.
15.0 <| ν2-ν3 | (4)
However,
ν2: Abbe number of the second lens at the d-line ν3: Abbe number of the third lens at the d-line
下記条件式(5)を満たすことを特徴とする請求項1または2記載の撮像レンズ。
Figure 2011145315
ただし、
ν5:前記第5レンズのd線におけるアッベ数
ν6:前記第6レンズのd線におけるアッベ数
RA:前記第5レンズと前記第6レンズの接合面の曲率半径
D10:前記第6レンズの中心厚
N6:前記第6レンズのd線における屈折率
The imaging lens according to claim 1, wherein the following conditional expression (5) is satisfied.
Figure 2011145315
However,
ν5: Abbe number at the d-line of the fifth lens ν6: Abbe number at the d-line of the sixth lens RA: radius of curvature of the cemented surface of the fifth lens and the sixth lens D10: center thickness of the sixth lens N6: Refractive index at the d-line of the sixth lens
前記第1レンズ、前記第2レンズ、前記第3レンズ全てのd線における屈折率が1.8以上であることを特徴とする請求項1から3のいずれか1項に記載の撮像レンズ。   4. The imaging lens according to claim 1, wherein a refractive index in d-line of all of the first lens, the second lens, and the third lens is 1.8 or more. 5. 請求項1から4のいずれか1項に記載の撮像レンズと、
該撮像レンズの像面と前記第6レンズとの間に配置されて、光路の向きを変換する光路変換部材とを備えたことを特徴とする撮像光学系。
The imaging lens according to any one of claims 1 to 4,
An imaging optical system comprising: an optical path conversion member that is disposed between an image plane of the imaging lens and the sixth lens and converts the direction of the optical path.
請求項1から4のいずれか1項に記載の撮像レンズを備えたことを特徴とする撮像装置。   An imaging apparatus comprising the imaging lens according to claim 1.
JP2010003642A 2010-01-12 2010-01-12 Imaging lens, imaging optical system, imaging device Active JP5363354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010003642A JP5363354B2 (en) 2010-01-12 2010-01-12 Imaging lens, imaging optical system, imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010003642A JP5363354B2 (en) 2010-01-12 2010-01-12 Imaging lens, imaging optical system, imaging device

Publications (2)

Publication Number Publication Date
JP2011145315A true JP2011145315A (en) 2011-07-28
JP5363354B2 JP5363354B2 (en) 2013-12-11

Family

ID=44460260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010003642A Active JP5363354B2 (en) 2010-01-12 2010-01-12 Imaging lens, imaging optical system, imaging device

Country Status (1)

Country Link
JP (1) JP5363354B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065296A1 (en) * 2011-11-01 2013-05-10 富士フイルム株式会社 Objective optical system, and endoscope device using same
WO2013065295A1 (en) * 2011-11-01 2013-05-10 富士フイルム株式会社 Object optical assembly and endoscope device employing object optical assembly
WO2013065294A1 (en) * 2011-11-01 2013-05-10 富士フイルム株式会社 Objective optical system, and endoscope device using same
WO2014104263A1 (en) * 2012-12-27 2014-07-03 Canon Kabushiki Kaisha Optical system for endoscope and endoscope
US8861095B2 (en) 2012-05-22 2014-10-14 Optical Logic Inc. Imaging lens
JP2015125149A (en) * 2013-12-25 2015-07-06 富士フイルム株式会社 Imaging lens and imaging apparatus
US9091837B2 (en) 2012-08-17 2015-07-28 Optical Logic Inc. Imaging lens
CN105182505A (en) * 2015-09-06 2015-12-23 舜宇光学(中山)有限公司 Panoramic optical lens and panoramic optical lens device
US9366841B2 (en) 2012-06-21 2016-06-14 Optical Logic Inc. Imaging lens
KR20170089135A (en) 2016-01-26 2017-08-03 삼성전기주식회사 Optical Imaging System
CN107305282A (en) * 2016-04-25 2017-10-31 今国光学工业股份有限公司 Six chip wide-angle lens
CN107422461A (en) * 2017-09-22 2017-12-01 江西联创电子有限公司 Monitoring camera
US10082648B2 (en) 2016-03-16 2018-09-25 Hoya Corporation Imaging optical system
CN108761766A (en) * 2018-05-29 2018-11-06 浙江大学 Have the endoscope lens of optical amplifier function
JP2020056995A (en) * 2018-10-01 2020-04-09 キヤノン株式会社 Optical system and image capturing device having the same
JP2020523627A (en) * 2018-05-14 2020-08-06 コアフォトニクス リミテッド Bendable camera lens design
CN112198627A (en) * 2020-09-22 2021-01-08 天津欧菲光电有限公司 Optical system, lens module and electronic equipment
CN113376801A (en) * 2021-06-04 2021-09-10 江西凤凰光学科技有限公司 Large-field-of-view, large-depth-of-field and low-distortion scanning lens
US11703668B2 (en) 2014-08-10 2023-07-18 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US11743587B2 (en) 2019-01-03 2023-08-29 Corephotonics Ltd. Multi-aperture cameras with at least one two state zoom camera
US11835694B2 (en) 2013-07-04 2023-12-05 Corephotonics Ltd. Miniature telephoto lens assembly
US11852845B2 (en) 2013-07-04 2023-12-26 Corephotonics Ltd. Thin dual-aperture zoom digital camera
US11860515B2 (en) 2019-11-25 2024-01-02 Corephotonics Ltd. Folded zoom camera module with adaptive aperture
US11947247B2 (en) 2020-12-01 2024-04-02 Corephotonics Ltd. Folded camera with continuously adaptive zoom factor
US11962901B2 (en) 2020-05-30 2024-04-16 Corephotonics Ltd. Systems and methods for obtaining a super macro image
US11985407B2 (en) 2021-11-02 2024-05-14 Corephotonics Ltd. Compact double folded tele cameras including four lenses of +−+−, +−++; OR +−−+; or six lenses of +−+−+− or +−+−−− refractive powers
US12000996B2 (en) 2019-08-21 2024-06-04 Corephotonics Ltd. Low total track length lens assembly including seven lenses of +−+−++− refractive powers for large sensor format
US12019363B2 (en) 2021-09-23 2024-06-25 Corephotonics Lid. Large aperture continuous zoom folded tele cameras

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6313241B2 (en) 2015-02-17 2018-04-18 富士フイルム株式会社 Endoscope objective lens and endoscope
JP6797105B2 (en) 2017-12-18 2020-12-09 富士フイルム株式会社 Objective optical system for endoscopes and endoscopes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281544A (en) * 2000-03-29 2001-10-10 Matsushita Electric Ind Co Ltd Variable focal lens
JP2004145256A (en) * 2002-08-26 2004-05-20 Minolta Co Ltd Wide angle lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281544A (en) * 2000-03-29 2001-10-10 Matsushita Electric Ind Co Ltd Variable focal lens
JP2004145256A (en) * 2002-08-26 2004-05-20 Minolta Co Ltd Wide angle lens

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013065296A1 (en) * 2011-11-01 2015-04-02 富士フイルム株式会社 Objective optical system and endoscope apparatus using the same
CN103959127A (en) * 2011-11-01 2014-07-30 富士胶片株式会社 Object optical assembly and endoscope device employing object optical assembly
WO2013065296A1 (en) * 2011-11-01 2013-05-10 富士フイルム株式会社 Objective optical system, and endoscope device using same
CN103959127B (en) * 2011-11-01 2016-03-09 富士胶片株式会社 Objective lens optical system and the endoscope apparatus using it
US9063340B2 (en) 2011-11-01 2015-06-23 Fujifilm Corporation Objective optical system and endoscope using same
JP5571255B2 (en) * 2011-11-01 2014-08-13 富士フイルム株式会社 Objective optical system and endoscope apparatus using the same
JP5571256B2 (en) * 2011-11-01 2014-08-13 富士フイルム株式会社 Objective optical system and endoscope apparatus using the same
CN104024908A (en) * 2011-11-01 2014-09-03 富士胶片株式会社 Objective optical system, and endoscope device using same
JP5587513B2 (en) * 2011-11-01 2014-09-10 富士フイルム株式会社 Objective optical system and endoscope apparatus using the same
US8902515B2 (en) 2011-11-01 2014-12-02 Fujifilm Corporation Objective optical system and endoscope using same
US8896940B2 (en) 2011-11-01 2014-11-25 Fujifilm Corporation Objective optical system and endoscope using same
WO2013065295A1 (en) * 2011-11-01 2013-05-10 富士フイルム株式会社 Object optical assembly and endoscope device employing object optical assembly
JPWO2013065295A1 (en) * 2011-11-01 2015-04-02 富士フイルム株式会社 Objective optical system and endoscope apparatus using the same
JPWO2013065294A1 (en) * 2011-11-01 2015-04-02 富士フイルム株式会社 Objective optical system and endoscope apparatus using the same
WO2013065294A1 (en) * 2011-11-01 2013-05-10 富士フイルム株式会社 Objective optical system, and endoscope device using same
US9726855B2 (en) 2012-05-22 2017-08-08 Optical Logic Inc. Imaging lens
US8861095B2 (en) 2012-05-22 2014-10-14 Optical Logic Inc. Imaging lens
US9036268B2 (en) 2012-05-22 2015-05-19 Optical Logic Inc. Imaging lens
US9798113B2 (en) 2012-05-22 2017-10-24 Optical Logic Inc. Imaging lens
US9703075B2 (en) 2012-05-22 2017-07-11 Optical Logic Inc. Imaging lens
US9042033B2 (en) 2012-05-22 2015-05-26 Optical Logic Inc. Imaging lens
US10386600B2 (en) 2012-06-21 2019-08-20 Kantatsu Co., Ltd. Imaging lens
US10678022B2 (en) 2012-06-21 2020-06-09 Kantatsu Co., Ltd. Imaging lens
US9366841B2 (en) 2012-06-21 2016-06-14 Optical Logic Inc. Imaging lens
US10338343B2 (en) 2012-06-21 2019-07-02 Kantatsu Co., Ltd. Imaging lens
US10288839B2 (en) 2012-06-21 2019-05-14 Kantatsu Co., Ltd. Imaging lens
US10802248B2 (en) 2012-06-21 2020-10-13 Kantatsu Co., Ltd. Imaging lens
US10684448B2 (en) 2012-06-21 2020-06-16 Kantatsu Co., Ltd. Imaging lens
US10754126B2 (en) 2012-06-21 2020-08-25 Kantatsu Co., Ltd. Imaging lens
US9304292B2 (en) 2012-08-17 2016-04-05 Optical Logic Inc. Imaging lens
US9091837B2 (en) 2012-08-17 2015-07-28 Optical Logic Inc. Imaging lens
US9482843B2 (en) 2012-08-17 2016-11-01 Optical Logic Inc. Imaging lens
US9575310B2 (en) 2012-12-27 2017-02-21 Canon Kabushiki Kaisha Optical system for endoscope and endoscope
WO2014104263A1 (en) * 2012-12-27 2014-07-03 Canon Kabushiki Kaisha Optical system for endoscope and endoscope
US11953659B2 (en) 2013-07-04 2024-04-09 Corephotonics Ltd. Miniature telephoto lens assembly
US11852845B2 (en) 2013-07-04 2023-12-26 Corephotonics Ltd. Thin dual-aperture zoom digital camera
US11835694B2 (en) 2013-07-04 2023-12-05 Corephotonics Ltd. Miniature telephoto lens assembly
US9664882B2 (en) 2013-12-25 2017-05-30 Fujifilm Corporation Imaging lens and imaging apparatus
JP2015125149A (en) * 2013-12-25 2015-07-06 富士フイルム株式会社 Imaging lens and imaging apparatus
US11982796B2 (en) 2014-08-10 2024-05-14 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US12007537B2 (en) 2014-08-10 2024-06-11 Corephotonics Lid. Zoom dual-aperture camera with folded lens
US11703668B2 (en) 2014-08-10 2023-07-18 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
CN105182505A (en) * 2015-09-06 2015-12-23 舜宇光学(中山)有限公司 Panoramic optical lens and panoramic optical lens device
KR20170089135A (en) 2016-01-26 2017-08-03 삼성전기주식회사 Optical Imaging System
US10884217B2 (en) 2016-01-26 2021-01-05 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
US12013591B2 (en) 2016-01-26 2024-06-18 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
US10209494B2 (en) 2016-03-16 2019-02-19 Hoya Corporation Imaging optical system
US10082648B2 (en) 2016-03-16 2018-09-25 Hoya Corporation Imaging optical system
CN107305282B (en) * 2016-04-25 2019-11-26 今国光学工业股份有限公司 Six chip wide-angle lens
CN107305282A (en) * 2016-04-25 2017-10-31 今国光学工业股份有限公司 Six chip wide-angle lens
CN107422461B (en) * 2017-09-22 2021-11-16 江西联创电子有限公司 Monitoring lens
CN107422461A (en) * 2017-09-22 2017-12-01 江西联创电子有限公司 Monitoring camera
JP2020523627A (en) * 2018-05-14 2020-08-06 コアフォトニクス リミテッド Bendable camera lens design
CN108761766B (en) * 2018-05-29 2023-08-04 浙江大学 Endoscope objective lens with optical amplification function
CN108761766A (en) * 2018-05-29 2018-11-06 浙江大学 Have the endoscope lens of optical amplifier function
JP2020056995A (en) * 2018-10-01 2020-04-09 キヤノン株式会社 Optical system and image capturing device having the same
JP7387312B2 (en) 2018-10-01 2023-11-28 キヤノン株式会社 Optical system and imaging device including it
US11743587B2 (en) 2019-01-03 2023-08-29 Corephotonics Ltd. Multi-aperture cameras with at least one two state zoom camera
US12000996B2 (en) 2019-08-21 2024-06-04 Corephotonics Ltd. Low total track length lens assembly including seven lenses of +−+−++− refractive powers for large sensor format
US11860515B2 (en) 2019-11-25 2024-01-02 Corephotonics Ltd. Folded zoom camera module with adaptive aperture
US11962901B2 (en) 2020-05-30 2024-04-16 Corephotonics Ltd. Systems and methods for obtaining a super macro image
CN112198627A (en) * 2020-09-22 2021-01-08 天津欧菲光电有限公司 Optical system, lens module and electronic equipment
US11947247B2 (en) 2020-12-01 2024-04-02 Corephotonics Ltd. Folded camera with continuously adaptive zoom factor
US12001125B1 (en) 2020-12-01 2024-06-04 Corephotonics Ltd. Folded camera with continuously adaptive zoom factor
CN113376801B (en) * 2021-06-04 2022-11-29 江西凤凰光学科技有限公司 Large-field-of-view, large-depth-of-field and low-distortion scanning lens
CN113376801A (en) * 2021-06-04 2021-09-10 江西凤凰光学科技有限公司 Large-field-of-view, large-depth-of-field and low-distortion scanning lens
US12019363B2 (en) 2021-09-23 2024-06-25 Corephotonics Lid. Large aperture continuous zoom folded tele cameras
US11985407B2 (en) 2021-11-02 2024-05-14 Corephotonics Ltd. Compact double folded tele cameras including four lenses of +−+−, +−++; OR +−−+; or six lenses of +−+−+− or +−+−−− refractive powers

Also Published As

Publication number Publication date
JP5363354B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5363354B2 (en) Imaging lens, imaging optical system, imaging device
US8947789B2 (en) Imaging lens and imaging apparatus
JP5042767B2 (en) Imaging lens and imaging apparatus
JP5620607B2 (en) Imaging lens and imaging apparatus provided with the same
JP6048882B2 (en) Imaging lens
JP5006118B2 (en) Super wide-angle imaging lens and imaging device
JP4949871B2 (en) Image pickup lens and image pickup apparatus including the image pickup lens
JP5651861B2 (en) Imaging lens
JP6837194B2 (en) Single focus lens system and camera
WO2015040808A1 (en) Image pickup lens system and image pickup device
JP2009092798A (en) Imaging lens and imaging device
JP5727678B2 (en) Imaging lens and imaging apparatus provided with the same
JP2010014855A (en) Imaging lens and imaging apparatus
JP2016212134A (en) Imaging lens and imaging device
JP6619968B2 (en) Imaging lens and imaging apparatus
JP2014228570A (en) Wide-angle imaging lens and imaging device
JP2009216858A (en) Imaging lens and imaging apparatus
JP2018141825A (en) Image capturing lens
JP2017068164A (en) Wide angle optical system and image capturing device having the same
JP4794915B2 (en) Zoom lens and imaging apparatus having the same
WO2017068726A1 (en) Imaging device and optical device provided with same
JP6390907B2 (en) Single focus lens system, interchangeable lens device and camera system
JP2009145809A (en) Image pickup lens and image pickup apparatus
JP2013007968A (en) Image pickup lens
JP5568732B2 (en) Imaging lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130905

R150 Certificate of patent or registration of utility model

Ref document number: 5363354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250