JP2011144550A - Composite floor slab - Google Patents

Composite floor slab Download PDF

Info

Publication number
JP2011144550A
JP2011144550A JP2010005805A JP2010005805A JP2011144550A JP 2011144550 A JP2011144550 A JP 2011144550A JP 2010005805 A JP2010005805 A JP 2010005805A JP 2010005805 A JP2010005805 A JP 2010005805A JP 2011144550 A JP2011144550 A JP 2011144550A
Authority
JP
Japan
Prior art keywords
rib
concrete
floor slab
composite floor
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010005805A
Other languages
Japanese (ja)
Other versions
JP5635272B2 (en
Inventor
Nobuaki Sakurai
信彰 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2010005805A priority Critical patent/JP5635272B2/en
Publication of JP2011144550A publication Critical patent/JP2011144550A/en
Application granted granted Critical
Publication of JP5635272B2 publication Critical patent/JP5635272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite floor slab in which steel materials are integrated with concrete, which is simple in structure, and which has increased fatigue durability. <P>SOLUTION: This composite floor slab includes a bottom steel plate 2, a concrete 5 placed on the bottom steel plate 2, a plurality of ribs 3 which extend in the span direction, which are arranged at intervals on the bottom steel plate 2, and which are buried in the concrete 5, and distributing bars 4 extending in the direction crossing the ribs. The ribs 3 are configured so that the upper ends thereof project further upward than the neutral axis of the composite floor slab 1. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、合成床版に関し、特に、鋼・コンクリート合成床版に関する。   The present invention relates to a synthetic slab, and more particularly to a steel / concrete composite slab.

従来、鋼材とコンクリートからなる合成床版では、何らかのずれ止めを介して鋼材とコンクリートとの一体化を図っている。
例えば、特許文献1には、底鋼板上にコンクリートが打設されていて、底鋼板には上方に突出する頭付きスタッドが接合された合成床版が開示されている。この合成床版では、頭付きスタッドにコンクリートが付着することで、底鋼板とコンクリートとの一体化を図っている。
また、特許文献2には、底鋼板上にH形鋼またはI形鋼からなる補強鋼材が配設され、補強鋼材のウェブには開口部が設けられた合成床版が開示されている。この合成床版では、補強鋼材の開口部にコンクリートが入り込むことで、底鋼板とコンクリートとの一体化を図っている。
また、特許文献3には、底鋼板上に横リブと縦リブとからなる格子リブが配設され、横リブと縦リブとは底鋼板上に配設されたパイプジベル内で交差している合成床版が開示されている。この合成床版では、格子リブおよびパイプジベルを介してコンクリートと底鋼板との一体化を図っている。
Conventionally, in a synthetic slab made of steel and concrete, the steel and concrete are integrated through some kind of stopper.
For example, Patent Document 1 discloses a composite floor slab in which concrete is cast on a bottom steel plate, and a headed stud protruding upward is joined to the bottom steel plate. In this composite floor slab, the bottom steel plate and the concrete are integrated by attaching concrete to the headed stud.
Patent Document 2 discloses a composite floor slab in which a reinforcing steel material made of H-shaped steel or I-shaped steel is disposed on a bottom steel plate, and an opening is provided in a web of the reinforcing steel material. In this composite floor slab, the bottom steel plate and the concrete are integrated by the concrete entering the opening of the reinforcing steel material.
Further, in Patent Document 3, a lattice rib composed of a horizontal rib and a vertical rib is disposed on a bottom steel plate, and the horizontal rib and the vertical rib intersect in a pipe gibber disposed on the bottom steel plate. A floor slab is disclosed. In this synthetic floor slab, the concrete and the bottom steel plate are integrated through lattice ribs and pipe gibbles.

特開2005−264550号公報JP 2005-264550 A 特開2001−81729号公報JP 2001-81729 A 特開平7−119237号公報Japanese Patent Laid-Open No. 7-119237

しかしながら、特許文献1乃至3による合成床版では、鋼材とコンクリートとの一体化を図るために構造が複雑となり、製作工期やコストがかかり、コンクリートの充填性が良くないという問題があった。また、特許文献1によるスタッドの溶接部分や、特許文献2による補強鋼材の開口部は構造的に弱く、合成床版の疲労耐久性の低下の要因となっていた。   However, the composite floor slabs according to Patent Documents 1 to 3 have a problem in that the structure is complicated in order to integrate the steel material and the concrete, the production period and cost are increased, and the filling property of the concrete is not good. Further, the stud welded portion according to Patent Document 1 and the opening portion of the reinforcing steel material according to Patent Document 2 are structurally weak, which causes a decrease in fatigue durability of the composite floor slab.

本発明は、上述する問題点に鑑みてなされたもので、鋼材とコンクリートとの一体化を図れると共に、構造が単純で疲労耐久性を向上することができる合成床版を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object thereof is to provide a composite floor slab capable of integrating steel and concrete and having a simple structure and improved fatigue durability. To do.

上記目的を達成するため、本発明に係る合成床版は、底鋼板と、前記底鋼板上に打設されたコンクリートと、支間方向に延在し前記底鋼板上に互いに間隔をあけて配列され前記コンクリートに埋設された複数のリブとを備える合成床版であって、前記リブは上端部が前記合成床版の中立軸よりも上方に突出していることを特徴とする。
本発明では、リブは上端部が合成床版の中立軸よりも上方に突出していることにより、合成床版に上方から荷重により曲げモーメントが作用した際に、リブの上部側がコンクリートの圧縮側に位置し、コンクリートの曲げ圧縮応力がリブに作用するので、コンクリートの曲げ圧縮応力がリブとコンクリートとの摩擦力として作用し、リブとコンクリートとの一体化を図ることができると共に、リブを介して底鋼板とコンクリートとを一体化させることができる。
In order to achieve the above object, a composite floor slab according to the present invention includes a bottom steel plate, concrete cast on the bottom steel plate, and extends in a span direction and is arranged at intervals on the bottom steel plate. A composite floor slab comprising a plurality of ribs embedded in the concrete, wherein the rib has an upper end projecting upward from a neutral axis of the composite floor slab.
In the present invention, the upper end of the rib protrudes upward from the neutral axis of the composite floor slab, so that when the bending moment is applied to the composite floor slab from above, the upper side of the rib is on the concrete compression side. Since the bending compressive stress of the concrete acts on the rib, the bending compressive stress of the concrete acts as a frictional force between the rib and the concrete, so that the rib and the concrete can be integrated, and the rib The bottom steel plate and the concrete can be integrated.

また、本発明に係る合成床版では、前記リブの上部には、前記リブの延在方向に直交する方向に延在する配力筋が設けられていることが好ましい。
本発明では、リブの上部には、リブの延在方向に直交する方向に延在する配力筋が設けられていることにより、合成床版の剛性を高めることができると共に、合成床版に作用する荷重を分散させることができる。
In the composite floor slab according to the present invention, it is preferable that a distribution bar extending in a direction orthogonal to an extending direction of the rib is provided on an upper portion of the rib.
In the present invention, the upper part of the rib is provided with a distribution bar extending in a direction orthogonal to the extending direction of the rib, so that the rigidity of the composite floor slab can be increased, and The acting load can be dispersed.

また、本発明に係る合成床版では、前記コンクリートに補強繊維が混入されていてもよい。
本発明では、コンクリートに補強繊維が混入されていることにより、コンクリートの強度が高まり、合成床版の剛性を高めることができる。
In the composite floor slab according to the present invention, reinforcing fibers may be mixed into the concrete.
In the present invention, since the reinforcing fibers are mixed in the concrete, the strength of the concrete is increased and the rigidity of the composite slab can be increased.

また、本発明に係る合成床版では、前記リブには開口部が形成されていないことを特徴とする。
本発明では、リブに孔部などの開口部が形成されていないので、開口部が形成されたリブを備える合成床版と比べて合成床版の製造を容易に行うことができる。また、開口部に応力が集中することが無いので、応力バランスがよく安定した構造とすることができる。
Moreover, the synthetic floor slab according to the present invention is characterized in that no opening is formed in the rib.
In the present invention, since an opening such as a hole is not formed in the rib, the synthetic floor slab can be easily manufactured as compared with a synthetic floor slab provided with a rib formed with an opening. In addition, since stress does not concentrate in the opening, a stable structure with a good stress balance can be obtained.

本発明によれば、底鋼板上に立設された複数のリブの上端部がコンクリートの圧縮側に突出し、コンクリートの圧縮応力がリブに摩擦力として作用しリブとコンクリートとが一体化するので、合成床版の構造を簡易な構造とすることができ、製作工期やコストの削減および疲労耐久性の向上を実現することができる。   According to the present invention, the upper ends of the plurality of ribs erected on the bottom steel plate project to the compression side of the concrete, the compression stress of the concrete acts as a frictional force on the ribs, and the rib and the concrete are integrated, The structure of the composite slab can be made simple, and the production period and cost can be reduced and the fatigue durability can be improved.

(a)は本発明の実施の形態による合成床版の一例を示す図で(b)のA−A線断面図、(b)は(a)のB−B線断面図である。(A) is a figure which shows an example of the composite floor slab by embodiment of this invention, and is the sectional view on the AA line of (b), (b) is the sectional view on the BB line of (a). 合成床版に作用する曲げモーメントを示す概略図である。It is the schematic which shows the bending moment which acts on a synthetic floor slab. リブに作用するコンクリートの圧縮応力を示す概略図である。It is the schematic which shows the compressive stress of the concrete which acts on a rib. 載荷試験における供試体を説明する図である。It is a figure explaining the test body in a loading test. (a)、(b)、(c)は載荷試験における載荷位置を説明する図である。(A), (b), (c) is a figure explaining the loading position in a loading test. 供試体の荷重と変位の関係を示す図である。It is a figure which shows the relationship between the load of a test body, and a displacement. 図6に示す供試体の荷重と変位の関係で変位3mmまでの状態を示す図である。It is a figure which shows the state to displacement 3mm by the relationship between the load and displacement of a test body shown in FIG. (a)は1回の載荷後の供試体1の荷重とひずみの関係を示す図、(b)は30万回の載荷後の供試体1の荷重とひずみの関係を示す図である。(A) is a figure which shows the relationship between the load of the test body 1 after 1 loading, and a distortion | strain, (b) is a figure which shows the relationship between the load of the test body 1 after 300,000 times loading, and a distortion | strain. (a)は1回の載荷後の供試体2の荷重とひずみの関係を示す図、(b)は30万回の載荷後の供試体2の荷重とひずみの関係を示す図である。(A) is a figure which shows the relationship between the load of the test body 2 after 1 loading, and a distortion | strain, (b) is a figure which shows the relationship between the load of the test body 2 after 300,000 times loading, and a distortion | strain. (a)は1回の載荷後の供試体3の荷重とひずみの関係を示す図、(b)は30万回の載荷後の供試体3の荷重とひずみの関係を示す図である。(A) is a figure which shows the relationship between the load of the specimen 3 after 1 loading, and a distortion | strain, (b) is a figure which shows the relationship between the load of the specimen 3 after 300,000 times loading, and a distortion | strain. (a)は1回の載荷後の供試体4の荷重とひずみの関係を示す図、(b)は30万回の載荷後の供試体4の荷重とひずみの関係を示す図である。(A) is a figure which shows the relationship between the load of the specimen 4 after 1 loading, and a distortion | strain, (b) is a figure which shows the relationship between the load of the specimen 4 after 300,000 loadings, and a distortion | strain.

以下、本発明の実施の形態による合成床版について、図1乃至図3に基づいて説明する。
図1(a)、(b)に示すように、本実施の形態による合成床版1は、底鋼板2と、底鋼板2上に立設されたリブ3と、リブ3の上部にリブ3と交差するように配設された複数の配力筋4と、底鋼板2上に打設されたコンクリート5とから概略構成される。
Hereinafter, a composite floor slab according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3.
As shown in FIGS. 1A and 1B, the composite floor slab 1 according to this embodiment includes a bottom steel plate 2, a rib 3 erected on the bottom steel plate 2, and a rib 3 above the rib 3. And a plurality of force distribution bars 4 arranged so as to intersect with each other, and a concrete 5 placed on the bottom steel plate 2.

リブ3は、鋼材やFRPなどで形成されていて、本実施の形態ではI形鋼を採用している。リブ3は、図1(a)中の矢印の方向に示す床版支間方向Aに延在していて、床版支間方向Aに直交する方向に所定の間隔をあけて複数配列されている。リブ3は下側のフランジが底鋼板2に溶接されている。
また、図1(b)に示すように、リブ3は、上端部が合成床版1の中立軸6よりも上方に突出するように形成されている。中立軸6とは、合成床版1に上方からの荷重による曲げモーメントが作用した際に、合成床版1の上部側に圧縮応力が作用し下部側に引張応力が作用するが、中間部の圧縮応力も引張応力も作用しない部分を示す。
The rib 3 is formed of a steel material, FRP, or the like, and an I-shaped steel is adopted in the present embodiment. The rib 3 extends in the direction A between the floor slabs shown in the direction of the arrow in FIG. 1A, and a plurality of ribs 3 are arranged at a predetermined interval in a direction orthogonal to the direction A between the floor slabs. The rib 3 has a lower flange welded to the bottom steel plate 2.
Further, as shown in FIG. 1B, the rib 3 is formed so that the upper end projects upward from the neutral shaft 6 of the composite floor slab 1. The neutral shaft 6 means that when a bending moment due to a load from above acts on the composite floor slab 1, compressive stress acts on the upper side of the composite floor slab 1 and tensile stress acts on the lower side. A portion where neither compressive stress nor tensile stress acts is shown.

合成床版1の中立軸6の位置は下記の式(1)にて算出する。式(2)はコンクリート換算の断面二次モーメントの算出式を示す。   The position of the neutral axis 6 of the composite floor slab 1 is calculated by the following equation (1). Formula (2) shows the formula for calculating the second moment of inertia in terms of concrete.

Figure 2011144550
Figure 2011144550

は合成床版1の断面における圧縮縁(上端部)7から中立軸6までの距離、bはリブ3(I形鋼)の間隔、nはヤング係数比、AS1はリブ3の設置間隔あたりの底鋼板有効断面積、AS2は、リブ3の1本あたりの断面積、XS1は底鋼板2の中立軸から圧縮縁7までの距離、XS2はリブの中立軸から圧縮縁7までの距離を示す。
また、IS1はリブ3の設置間隔あたりの底鋼板断面二次モーメントを示し、IS2はリブ3の1本あたりの断面二次モーメントを示す。
X n is the distance from the compression edge (upper end) 7 to the neutral shaft 6 in the cross section of the composite slab 1, b is the interval between the ribs 3 (I-shaped steel), n is the Young's modulus ratio, and AS 1 is the installation of the rib 3 Effective cross-sectional area of bottom steel plate per interval, A S2 is the cross-sectional area per rib 3, X S1 is the distance from the neutral axis of the bottom steel plate 2 to the compression edge 7, and X S2 is the neutral axis of the rib to the compression edge The distance to 7 is shown.
Further, I S1 represents a bottom steel plate cross-sectional moment per installation interval of the ribs 3, and I S2 represents a cross-sectional second moment per rib 3.

次に、上述した構成の本実施の形態による合成床版1が上方から載荷された場合に、リブ3に作用する応力について説明する。
図2に示すように、合成床版1は上方から加力されると曲げモーメントMが作用し、中立軸6より上側に平面方向における圧縮応力が作用し、中立軸6より下側に引張応力が作用する。このとき、図3に示すように、リブ3には、中立軸6より上部側にコンクリート5の曲げ圧縮応力(支圧応力)が作用する。
Next, the stress that acts on the rib 3 when the composite floor slab 1 according to this embodiment having the above-described configuration is loaded from above will be described.
As shown in FIG. 2, when the composite slab 1 is applied from above, a bending moment M acts, compressive stress in the plane direction acts above the neutral shaft 6, and tensile stress below the neutral shaft 6. Works. At this time, as shown in FIG. 3, bending compressive stress (supporting stress) of the concrete 5 acts on the rib 3 on the upper side of the neutral shaft 6.

リブ3の延在方向に直交する方向へ作用するコンクリートの曲げ圧縮応力は、リブ3の延在方向に直交する方向に圧縮されるコンクリートの曲げ圧縮応力と、リブ3の延在方向に圧縮されるコンクリートの曲げ圧縮応力のうちポアソン比によって求められるリブ3の延在方向に直交する方向に作用する曲げ圧縮応力との合力である。   The bending compressive stress of concrete acting in the direction orthogonal to the extending direction of the rib 3 is compressed in the bending compressive stress of concrete compressed in the direction orthogonal to the extending direction of the rib 3 and the extending direction of the rib 3. This is the resultant force with the bending compressive stress acting in the direction orthogonal to the extending direction of the ribs 3 determined by the Poisson's ratio among the bending compressive stress of the concrete.

そして、リブ3に作用するコンクリート5との曲げ圧縮応力は、リブ3とコンクリート5との摩擦力となり、リブ2とコンクリート5とが互いにずれることを防止している。そして、この摩擦力が合成床版1に作用する水平せん断力よりも上回ることで、リブ3とコンクリートとが一体化する。
このとき、水平せん断力よりも摩擦力が上回るように、リブ3が中立軸6よりも上方に突出する高さや、リブ3の形状、リブ3の設置間隔等を設定する。
なお、リブ3のコンクリート5のかぶり厚さは50〜60mm程度とすることが好ましい。
And the bending compressive stress with the concrete 5 which acts on the rib 3 becomes a frictional force between the rib 3 and the concrete 5, and the rib 2 and the concrete 5 are prevented from shifting from each other. And the rib 3 and concrete are integrated when this frictional force exceeds the horizontal shearing force which acts on the synthetic floor slab 1.
At this time, the height at which the rib 3 protrudes above the neutral shaft 6, the shape of the rib 3, the installation interval of the rib 3, and the like are set so that the frictional force exceeds the horizontal shearing force.
In addition, it is preferable that the cover thickness of the concrete 5 of the rib 3 is about 50 to 60 mm.

次に、上述した合成床版1の効果について図面を用いて説明する。
本実施の形態による合成床版1によれば、リブ3が合成床版1の中立軸6の上方に突出いることにより、合成床版1に上方から荷重が作用した際に、中立軸6より上部側のリブ3にコンクリート5の曲げ圧縮応力が作用し、この曲げ圧縮応力がリブ3とコンクリート5との摩擦力となるので、リブ3とコンクリート5とが一体化すると共に、リブ3を介してコンクリート5と底鋼板2とが一体化する効果を奏する。
Next, the effect of the composite floor slab 1 described above will be described with reference to the drawings.
According to the composite floor slab 1 according to the present embodiment, the rib 3 protrudes above the neutral shaft 6 of the composite floor slab 1 so that when a load is applied to the composite floor slab 1 from above, the neutral shaft 6 The bending compressive stress of the concrete 5 acts on the rib 3 on the upper side, and this bending compressive stress becomes a frictional force between the rib 3 and the concrete 5, so that the rib 3 and the concrete 5 are integrated and the rib 3 is interposed. Thus, the concrete 5 and the bottom steel plate 2 are integrated.

そして、従来のようにリブに開口部を設けたり、底鋼板にスタッドジベルや格子状のリブなどを設けたりする複雑な構造としないで、簡易な構造で底鋼板2とコンクリート5とを一体化させることができるので、製作コストや製作工期を短縮させることができる。
また、リブに設けられた開口部や、底鋼板とスタッドジベルとの溶接部のように構造的に脆弱な部分が無いので合成床版1の疲労耐久性を高めることができる。
Then, the bottom steel plate 2 and the concrete 5 are integrated with a simple structure without providing a complicated structure in which an opening is provided in the rib or a stud gibber or a grid-like rib is provided in the bottom steel plate as in the prior art. Therefore, the production cost and the production period can be shortened.
Further, since there is no structurally fragile portion such as an opening provided in the rib or a welded portion between the bottom steel plate and the stud gibber, the fatigue durability of the composite floor slab 1 can be enhanced.

ここで、本実施の形態による合成床版のリブとコンクリートとの一体性を確認する試験を行った。
供試体は、図1(a)、(b)に示すような形態の合成床版で、幅が1.5m、床版支間が1.2m、床版厚が160mmに形成されている。リブ3はI形鋼で、隣り合うリブ3の間隔はリブ3の高さの3倍とし、300mmとした。
図4に示すように、供試体には形態の異なる4種類があり、供試体1は、リブ3に孔あきジベルを使用し、ウェブに複数の開口部が形成されている。供試体2は、リブ3に開口部が無く、上述した本発明の実施の形態による合成床版1である。供試体1および2は、リブ3の表面に無機ジンクリッチペイント30μが塗布されている。
供試体3は、リブ3の表面にテフロン(登録商標)シートが貼り付けされ、リブ3とコンクリート5との付着および摩擦をなくした形態である。供試体4は、リブ3に開口部が無く、供試体2のコンクリート5に0.5%ポリオレフィン補強繊維(長さ30mm)を混入した形態である。
供試体1〜4は、いずれもリブ3の上端部が中立軸の上方に突出している。
Here, the test which confirms the integrity of the rib and the concrete of the synthetic floor slab by this Embodiment was done.
The specimen is a composite floor slab of the form shown in FIGS. 1 (a) and 1 (b), and is formed with a width of 1.5 m, a floor slab span of 1.2 m, and a floor slab thickness of 160 mm. The ribs 3 were I-shaped steel, and the interval between the adjacent ribs 3 was three times the height of the ribs 3 and was 300 mm.
As shown in FIG. 4, there are four types of specimens having different forms, and the specimen 1 uses a perforated gibber in the rib 3 and a plurality of openings are formed in the web. The specimen 2 is the synthetic floor slab 1 according to the above-described embodiment of the present invention, in which the rib 3 has no opening. In the specimens 1 and 2, an inorganic zinc rich paint 30 μm is applied to the surface of the rib 3.
The specimen 3 has a form in which a Teflon (registered trademark) sheet is attached to the surface of the rib 3 and adhesion and friction between the rib 3 and the concrete 5 are eliminated. The specimen 4 has a shape in which the rib 3 has no opening and 0.5% polyolefin reinforcing fiber (length 30 mm) is mixed into the concrete 5 of the specimen 2.
In each of the specimens 1 to 4, the upper end portion of the rib 3 protrudes above the neutral shaft.

供試体1〜4への載荷は、ある一定期間の使用を再現するため、荷重載荷点を移動させながら繰り返し多数回の定点載荷試験を行い、その後、供試体1〜4の中央部で押し抜き耐力試験を行う。
定点載荷試験では、図5(a)に示す供試体1〜4の中心に設置されたリブ3aの中央部真上に相当する載荷位置P1、図5(b)に示す中心に設置されたリブ3aの中央部真上とリブ3aに隣接する2つのリブ3bの中央部真上との中間点の載荷位置P2、図5(c)に示す中心に設置されたリブ3aに隣接する2つのリブ3bの中央部真上に相当する載荷位置P3に順番に繰り返し載荷を行う。
各載荷位置P1、P2、P3には10万回程度の載荷を行い、荷重値は、道路橋示方書I2.2.2および鋼道路橋の疲労設計指針2.4.2(2)による下記式(3)から1箇所あたり120KNとする。
In order to reproduce the use for a certain period of time, the specimens 1 to 4 are repeatedly subjected to a fixed point loading test while moving the loading point, and then punched out at the center of the specimens 1 to 4 Perform a proof test.
In the fixed point loading test, the loading position P1 corresponding to the central portion of the rib 3a installed at the center of the specimens 1 to 4 shown in FIG. 5A, the rib installed at the center shown in FIG. 5B. Loading position P2 at the midpoint between the center portion of 3a and the center portion of the two ribs 3b adjacent to the rib 3a, two ribs adjacent to the rib 3a installed at the center shown in FIG. 5 (c) The loading is repeatedly performed in order at a loading position P3 corresponding to the central portion 3b.
Each loading position P1, P2, P3 is loaded about 100,000 times, and the load value is as follows according to the road bridge specification I.2.2.2 and the steel road bridge fatigue design guideline 2.4.2 (2). From the formula (3), it is set to 120 KN per location.

Figure 2011144550
Figure 2011144550

載荷位置P2および載荷位置P3に載荷する場合には、互いに隣接する荷重による影響があるため、120kNの基本荷重を載荷した時と同程度のリブ断面の断面せん断力とする低減率を解析により算出し、これを考慮した荷重を載荷する。また、リブ3の表面にテフロン(登録商標)シートが貼り付けされた供試体3以外は、載荷位置P2、P3の載荷の後に、載荷位置P1の載荷に戻し、設計荷重の2.5〜5倍の荷重を100〜1万回程度繰り返し載荷した。   When loading at the loading position P2 and the loading position P3, there is an influence due to the loads adjacent to each other. Therefore, the reduction rate to calculate the cross-sectional shearing force of the rib cross section similar to that when the basic load of 120 kN is loaded is calculated by analysis. Then, a load in consideration of this is loaded. Further, except for the specimen 3 in which a Teflon (registered trademark) sheet is adhered to the surface of the rib 3, after loading at the loading positions P2 and P3, the loading at the loading position P1 is returned to 2.5 to 5 of the design load. The double load was repeatedly loaded about 100 to 10,000 times.

そして、定点載荷試験の後に、載荷位置P1に設計荷重120kNをその1.5倍、3倍などと漸増載荷を繰り返して、押し抜きせん断破壊するまで載荷する押し抜き耐力試験を行う。
本試験では、計測項目として試供体1〜4の中央付近の変位、断面内ひずみ分布を確認した。
Then, after the fixed point loading test, a punching strength test is performed in which loading is repeated until the design load 120 kN is gradually increased 1.5 times, 3 times, etc., to the loading position P1 until punching shear failure occurs.
In this test, displacement near the center of specimens 1 to 4 and strain distribution in the cross section were confirmed as measurement items.

次に、上述した試験の結果について説明する。
図6に各供試体1〜4の荷重−変位関係を示し、図7に変位3mmまでの各供試体1〜4の荷重−変位関係を示す。
図中の線L1は全断面有効の合成断面の曲げ剛性を示し、点線L2はコンクリートの引張側を無視した合成断面(RC計算断面)の曲げ剛性を示し、二点差線L3は鋼材(リブおよび底鋼板)のみ曲げ剛性を示す。
Next, the results of the above test will be described.
FIG. 6 shows the load-displacement relationship of each specimen 1-4, and FIG. 7 shows the load-displacement relationship of each specimen 1-4 up to a displacement of 3 mm.
The line L1 in the figure indicates the bending rigidity of the composite section effective for all sections, the dotted line L2 indicates the bending rigidity of the composite section (RC calculation section) ignoring the tensile side of the concrete, and the two-point difference line L3 indicates steel (ribs and ribs). Only the bottom steel plate shows bending rigidity.

リブ3にテフロン(登録商標)シート貼り付けた供試体3は、リブ3とコンクリート5との付着および摩擦がほとんど無いため、載荷開始時から変位していて、コンクリート5の引張側を無視した合成断面(RC計算断面)の曲げ剛性よりも低く、鋼材のみの曲げ剛性よりやや高い状態であり、リブ3とコンクリート5とが一体化していないことがわかる。また、押抜きせん断耐力は650kNで、コンクリート標準示方書[設計編]9.2.2.3の16cmの鉄筋コンクリート版の設計押抜きせん断耐力681kNに達していない。   The specimen 3 in which the Teflon (registered trademark) sheet is attached to the rib 3 has almost no adhesion and friction between the rib 3 and the concrete 5, so it is displaced from the start of loading, and the composite is ignored with the tensile side of the concrete 5 ignored. It is lower than the bending rigidity of the cross section (RC calculated cross section) and slightly higher than the bending rigidity of the steel material alone, and it can be seen that the rib 3 and the concrete 5 are not integrated. Further, the punching shear strength is 650 kN, which does not reach the designed punching shear strength of 681 kN of the 16 cm reinforced concrete plate of the concrete standard specification [design edition] 9.2.2.3.

また、リブ3に開口部が形成された供試体1と、リブ3に開口部が無い供試体2とを比較すると、供試体1の方が、剛性が若干高く、押し抜きせん断力も6パーセント程度上がることがわかる。除荷勾配については、両者ともRC計算の勾配通りで、設計荷重の8倍程度の1,000kNまで一体化が図られていた。
その後、両者とも最大耐力付近で付着切れに伴って荷重が下がるが、変形と共に再び耐力は大きくなり、最大耐力よりやや小さい荷重値まで上昇した後、850kN程度で一定値となり変位のみが増加する傾向になる。
このように、リブの開口部の有無による差は少なく、開口部の無いリブを備える合成床版も十分耐力を確保することができる。
Further, when comparing the specimen 1 in which the opening is formed in the rib 3 and the specimen 2 in which the opening is not provided in the rib 3, the specimen 1 has a slightly higher rigidity and a punching shear force of about 6%. I understand that it goes up. As for the unloading gradient, both of them were in accordance with the gradient of RC calculation, and integration was attempted up to 1,000 kN, which is about eight times the design load.
After that, the load decreases with the breakage of adhesion near the maximum proof stress, but the proof stress again increases with deformation, rises to a load value slightly smaller than the maximum proof stress, then becomes a constant value at about 850 kN, and only the displacement tends to increase. become.
Thus, the difference by the presence or absence of the opening part of a rib is small, and a composite floor slab provided with the rib without an opening part can also ensure sufficient proof stress.

また、コンクリート5に補強繊維を混入した供試体4は、設計荷重の4倍程度の500kNまでは、全断面有効の合成断面の曲げ剛性と同じ勾配であり、その後、若干剛性が落ちてコンクリート5の引張側を無視した合成断面(RC計算断面)の曲げ剛性と同程度になる。
最大せん断耐力は、供試体1と比べて7パーセント程度向上し、供試体2と比べて13パーセント程度向上したが、最大耐力付近で付着切れに伴って荷重が下がり、その後の挙動は供試体1、2と同様であった。
In addition, the specimen 4 in which the reinforcing fibers are mixed into the concrete 5 has the same gradient as the bending rigidity of the composite cross section effective for all cross sections up to about 500 kN, which is about four times the design load. The bending rigidity of the composite cross section (RC calculated cross section) ignoring the tension side is approximately the same.
The maximum shear strength improved by about 7% compared to Specimen 1, and improved by about 13% compared to Specimen 2, but the load decreased with the break of adhesion near the maximum proof stress, and the subsequent behavior was Specimen 1. 2 was the same.

図8乃至図11に各供試体1〜4の荷重−ひずみ関係を示す。
図10(a)、(b)に示すように、リブ3にテフロン(登録商標)シート貼り付けた供試体3は、載荷当初から中立軸の位置(ひずみが0となる位置)が低く、鋼材とコンクリートとが一体化されていない挙動となっていることがわかる。これに対し、図8、9、11に示すように、供試体1、2、4は中立軸の位置がRC断面の設計上の位置であって、中立軸の位置が30万回の荷重の繰り返し載荷された後もほとんど変化しないことがわかる。また、その後の荷重の増加に伴って各部のひずみは大きくなるが、中立軸の位置は変化しないことがわかる。
FIG. 8 to FIG. 11 show the load-strain relationship of each specimen 1-4.
As shown in FIGS. 10 (a) and 10 (b), the specimen 3 in which the Teflon (registered trademark) sheet is attached to the rib 3 has a low position of the neutral axis (position where the strain becomes 0) from the beginning of loading, and the steel material. It can be seen that the behavior is not integrated with concrete. On the other hand, as shown in FIGS. 8, 9, and 11, in the specimens 1, 2, and 4, the position of the neutral axis is the design position of the RC cross section, and the position of the neutral axis is 300,000 loads. It can be seen that there is almost no change even after repeated loading. It can also be seen that the strain at each part increases as the load increases thereafter, but the position of the neutral shaft does not change.

また、リブ3に開口部がある供試体1では、開口部がある部分と無い部分とで、ひずみにバラツキが生じていることがわかる。これに対し、リブ3に開口部が形成されていない供試体2は、ひずみのバラツキが少ないので、供試体1と比べて、応力集中が無いことがわかる。   In addition, it can be seen that in the specimen 1 in which the rib 3 has an opening, there is variation in strain between the portion with the opening and the portion without the opening. On the other hand, it can be seen that the specimen 2 in which no opening is formed in the rib 3 has less strain variation than the specimen 1 because the variation in strain is small.

上記の結果より、リブ3に開口部がある従来の合成床版とリブ3に開口部を設けない合成床版1とでは、断面内ひずみ分布、曲げ剛性はほとんど差異無く、リブ3とコンクリート5との摩擦伝導によりリブ3とコンクリート5とが一体化されていることがわかる。   From the above results, there is almost no difference in the strain distribution and bending rigidity in the cross section between the conventional composite floor slab having an opening in the rib 3 and the synthetic floor slab 1 having no opening in the rib 3, and the rib 3 and the concrete 5 It can be seen that the ribs 3 and the concrete 5 are integrated by frictional conduction.

以上、本発明による合成床版1の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、上述した実施の形態ではリブ3はI形鋼であるが、I形鋼に代わってH形鋼や山型鋼、または平板状の鋼材としてもよい。
また、上記の実施の形態のコンクリート5に補強繊維を混入させてもよい。
As mentioned above, although embodiment of the synthetic floor slab 1 by this invention was described, this invention is not limited to said embodiment, In the range which does not deviate from the meaning, it can change suitably.
For example, in the above-described embodiment, the rib 3 is an I-shaped steel, but an H-shaped steel, an angle steel, or a flat steel material may be used instead of the I-shaped steel.
Moreover, you may mix a reinforcement fiber in the concrete 5 of said embodiment.

1 合成床版
2 底鋼板
3 リブ
4 配力筋
5 コンクリート
6 中立軸
DESCRIPTION OF SYMBOLS 1 Composite floor slab 2 Bottom steel plate 3 Rib 4 Reinforcement bar 5 Concrete 6 Neutral axis

Claims (4)

底鋼板と、前記底鋼板上に打設されたコンクリートと、支間方向に延在し前記底鋼板上に互いに間隔をあけて配列され前記コンクリートに埋設された複数のリブとを備える合成床版であって、
前記リブは上端部が前記合成床版の中立軸よりも上方に突出していることを特徴とする合成床版。
A composite floor slab comprising a bottom steel plate, concrete placed on the bottom steel plate, and a plurality of ribs extending in the span direction and arranged at intervals on the bottom steel plate and embedded in the concrete There,
An upper end portion of the rib protrudes upward from a neutral axis of the synthetic floor slab.
前記リブの上部には、前記リブの延在方向に直交する方向に延在する配力筋が設けられていることを特徴とする請求項1に記載の合成床版。   The synthetic floor slab according to claim 1, wherein a distribution bar extending in a direction orthogonal to an extending direction of the rib is provided on an upper portion of the rib. 前記コンクリートに補強繊維が混入されていることを特徴とする請求項1又は2に記載の合成床版。   The composite floor slab according to claim 1 or 2, wherein reinforcing fibers are mixed in the concrete. 前記リブには開口部が形成されていないことを特徴とする請求項1乃至3のいずれかに記載の合成床版。
The synthetic floor slab according to any one of claims 1 to 3, wherein an opening is not formed in the rib.
JP2010005805A 2010-01-14 2010-01-14 Integration method of bottom steel plate and concrete in composite floor slab. Active JP5635272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010005805A JP5635272B2 (en) 2010-01-14 2010-01-14 Integration method of bottom steel plate and concrete in composite floor slab.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010005805A JP5635272B2 (en) 2010-01-14 2010-01-14 Integration method of bottom steel plate and concrete in composite floor slab.

Publications (2)

Publication Number Publication Date
JP2011144550A true JP2011144550A (en) 2011-07-28
JP5635272B2 JP5635272B2 (en) 2014-12-03

Family

ID=44459632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010005805A Active JP5635272B2 (en) 2010-01-14 2010-01-14 Integration method of bottom steel plate and concrete in composite floor slab.

Country Status (1)

Country Link
JP (1) JP5635272B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019044395A (en) * 2017-08-31 2019-03-22 株式会社Ihi Steel concrete composite structural material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222707A (en) * 1991-02-27 1993-08-31 Miyaji Tekkosho:Kk Composite floor board bridge and construction thereof
JP2006219900A (en) * 2005-02-10 2006-08-24 Kajima Corp Composite floor slab
JP2008231688A (en) * 2007-03-16 2008-10-02 Nippon Steel Engineering Co Ltd Bridge structure using composite floor slab, its construction method, and form for composite floor slab

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222707A (en) * 1991-02-27 1993-08-31 Miyaji Tekkosho:Kk Composite floor board bridge and construction thereof
JP2006219900A (en) * 2005-02-10 2006-08-24 Kajima Corp Composite floor slab
JP2008231688A (en) * 2007-03-16 2008-10-02 Nippon Steel Engineering Co Ltd Bridge structure using composite floor slab, its construction method, and form for composite floor slab

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019044395A (en) * 2017-08-31 2019-03-22 株式会社Ihi Steel concrete composite structural material

Also Published As

Publication number Publication date
JP5635272B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
KR100690197B1 (en) Steel beam with plate type shear connector and Steel composite beam using the steel beam
JP5406563B2 (en) Composite beam, building, and composite beam construction method
US9217256B2 (en) Concrete lifting anchors
WO2015140890A1 (en) Column structure and base member
KR101464866B1 (en) Composite beam having tie anchor embedded in a concrete
CA2986125C (en) Slab fillers and methods for implementing fillers in two-way concrete slabs for building structures
JPWO2015140889A1 (en) Column structure and base member
JP6422795B2 (en) Composite beam, PCa composite beam member constituting the same, and composite ramen structure
KR101499337B1 (en) Wide PC beam for slim floor
KR101557226B1 (en) Prestressed steel concrete composite beam
KR20160023118A (en) Heterogeneity reinforcing composite profile beam
KR101160763B1 (en) Composite beam using deck plate having plulality of cap plate
JP5635272B2 (en) Integration method of bottom steel plate and concrete in composite floor slab.
KR101740598B1 (en) Steel girder having hollow cap beam reinforcement material
JP2016216955A (en) External facing material installing structure
JP4508293B2 (en) Structure near the intermediate fulcrum of continuous I-girder bridge
KR101105404B1 (en) Deck plate system using cap plate
KR101191545B1 (en) Deck plate having plulality of cap plate
JP4492422B2 (en) Structure near the intermediate fulcrum of continuous I-girder bridge
JP2007239270A (en) Pc box girder bridge
KR101074433B1 (en) Section shape steel and composite girder using the same
KR101914438B1 (en) Steel box girder having bended type lower flange
KR20170040022A (en) Hybrid beam with wide PSC lower flange and enlarged section upper flange and structure frame using the same
KR20090001754U (en) Shear connector with recess
JP6681709B2 (en) Stiffening structure of steel beams

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140710

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141016

R150 Certificate of patent or registration of utility model

Ref document number: 5635272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250