JP2011144539A - Injection tube for soil improvement - Google Patents

Injection tube for soil improvement Download PDF

Info

Publication number
JP2011144539A
JP2011144539A JP2010005410A JP2010005410A JP2011144539A JP 2011144539 A JP2011144539 A JP 2011144539A JP 2010005410 A JP2010005410 A JP 2010005410A JP 2010005410 A JP2010005410 A JP 2010005410A JP 2011144539 A JP2011144539 A JP 2011144539A
Authority
JP
Japan
Prior art keywords
injection
nozzle
material liquid
nozzles
ground improvement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010005410A
Other languages
Japanese (ja)
Other versions
JP5548942B2 (en
Inventor
Takeo Nasu
丈夫 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hara Kougyou Co Ltd
Original Assignee
Hara Kougyou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hara Kougyou Co Ltd filed Critical Hara Kougyou Co Ltd
Priority to JP2010005410A priority Critical patent/JP5548942B2/en
Publication of JP2011144539A publication Critical patent/JP2011144539A/en
Application granted granted Critical
Publication of JP5548942B2 publication Critical patent/JP5548942B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an injection tube for soil improvement which is formed in a double simple structure with a small diameter, includes a monitor mechanism with high cutting and stirring performance in spite of the small diameter simple structure, and can be raised in rotational speed and lifting speed to shorten the construction period. <P>SOLUTION: This injection tube for soil improvement includes, at the bottom part, the monitor mechanism provided with an injection nozzle. The injection nozzle of the monitor mechanism is configured so that a solidification material liquid injection nozzle is positioned at the center, and an air injection nozzle is coaxially positioned on the outside thereof in the form of a double nozzle so that air can be injected around the solidification material liquid injected from the solidification material liquid injection nozzle simultaneously in the same direction. A set of a plurality of injection nozzles of the monitor mechanism of the injection tube are installed so that the center axes thereof in the injection directions are positioned parallel to each other. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、固化材液噴射ノズルおよびエア噴射ノズルが設けられたモニター機構を下部に有する注入管を地盤中に挿入し、該注入管の上部にスイベルを連結し、該スイベルより固化材液およびエアを高圧供給し、注入管を通しモニター機構の固化材液噴射ノズルから固化材液を管外方(例えば、水平方向)へ連続的に噴射させるとともに、エア噴射ノズルから固化材液噴射ノズルの周囲にエアを高圧で連続的に噴射させて注入管を回転させつつ地盤中より引き上げることにより、主に固化材液の噴射力で周囲の地盤を切削し、その切削領域に固化材液を注入撹拌して地盤改良体を築造する地盤改良用注入管に関する。   The present invention inserts an injection pipe having a monitor mechanism provided with a solidifying material liquid injection nozzle and an air injection nozzle in the lower part into the ground, and connects a swivel to the upper part of the injection pipe. Air is supplied at a high pressure, and the solidification material liquid is continuously ejected from the solidification material liquid injection nozzle of the monitor mechanism through the injection pipe to the outside of the pipe (for example, in the horizontal direction), and from the air injection nozzle to the solidification material liquid injection nozzle. The surrounding ground is cut mainly by the injection force of the solidified material liquid by injecting air continuously at a high pressure around the periphery and pulling up from the ground while rotating the injection tube, and the solidified material liquid is injected into the cutting area. The present invention relates to a ground improvement injection pipe which is stirred to build a ground improvement body.

従来、固化材液を高圧噴射撹拌して軟弱地盤を固化改良する軟弱地盤改良工法は、よく知られている。この軟弱地盤改良工法は、下部にモニター機構を有する注入管の上部にスイベルを連結し、この注入管を地上から地盤中の所定深さまで挿入し、その後、注入管の上部に設けたスイベルの固化材液供給口から固化材液を高圧で供給し、注入管下部のモニター機構の固化材液噴射ノズルから固化材液を管外方水平方向へ連続的に噴射させ、注入管を回転させつつ引き上げることにより、連続的に噴射する固化材液の噴射力(噴流)でその周囲の地盤を切削するとともに、その切削領域に固化材液を注入撹拌して地盤改良体を築造するものである。   Conventionally, a soft ground improvement method for solidifying and improving a soft ground by high-pressure jet stirring of a solidifying material liquid is well known. In this soft ground improvement method, a swivel is connected to the upper part of the injection pipe having a monitoring mechanism at the lower part, this injection pipe is inserted from the ground to a predetermined depth in the ground, and then the swivel provided at the upper part of the injection pipe is solidified. Supply the solidified material liquid at high pressure from the material liquid supply port, continuously inject the solidified material liquid horizontally from the solidified material liquid injection nozzle of the monitor mechanism at the lower part of the injection tube, and pull it up while rotating the injection tube Thus, the ground around the ground is cut by the injection force (jet flow) of the solidified material liquid that is continuously sprayed, and the ground improved body is constructed by injecting and stirring the solidified material liquid into the cutting region.

この地盤改良工法では、図7に示すような内管32内が固化材液の供給通路34となり、内管32と外管33の間がエアの供給通路35となっている二重管の注入管31を用い、この注入管31は下部に固化材液噴射ノズル41と、この固化材液噴射ノズル41の周囲からエアを噴射するエア噴射ノズル42が設けられたモニター機構39を有し、この注入管31の上部には固化材液供給口37とエア供給口38が設けられたスイベル36が連結され、該スイベル36の固化材液供給口37より高圧供給した固化材液を固化材液の供給通路34を介しモニター機構39の固化材液噴射ノズル41より噴射させると同時に、スイベル36のエア供給口38より高圧供給したエアをエアの供給通路35を介しエア噴射ノズル42より固化材液噴射ノズル41の周囲に噴射させて地盤改良するものと、
図8に示すような内管32内が固化材液の供給通路34となり、内管32と中間管40の間が水の供給通路43となり、中間管40と外管33の間がエアの供給通路35となっている三重管の注入管45を用い、この注入管45は、下部に固化材液噴射ノズル41と、この固化材液噴射ノズル41の周囲からエアを噴射するエア噴射ノズル42と、固化材液噴射ノズル41より上方の180度対称位置に設けられた水噴射ノズル44とが設けられたモニター機構39を有し、この注入管45の上部には、固化材液供給口37と、エア供給口38と、水供給口46とを有するスイベル36が連結され、該スイベル36の固化材液供給口37より高圧供給した固化材液を固化材液の供給通路34を介しモニター機構39の固化材液噴射ノズル41より噴射させると同時に、スイベル36のエア供給口38より高圧供給したエアをエアの供給通路35を介しエア噴射ノズル42より固化材液噴射ノズル41の周囲に噴射させるとともに、スイベル36の水供給口46より高圧供給した水を水噴射ノズル44から噴射させて地盤改良するものと、がある(例えば、特許文献1参照)。
In this ground improvement method, injection of a double pipe in which the inside of the inner pipe 32 as shown in FIG. 7 serves as a solidified material liquid supply passage 34 and the space between the inner pipe 32 and the outer pipe 33 serves as an air supply passage 35. The injection pipe 31 has a monitor mechanism 39 provided with a solidifying material liquid injection nozzle 41 and an air injection nozzle 42 for injecting air from the periphery of the solidifying material liquid injection nozzle 41 at the bottom. A swivel 36 provided with a solidified material liquid supply port 37 and an air supply port 38 is connected to the upper portion of the injection pipe 31, and the solidified material liquid supplied at a high pressure from the solidified material liquid supply port 37 of the swivel 36 is supplied with the solidified material liquid. At the same time, the air supplied from the air supply port 38 of the swivel 36 is injected through the air supply nozzle 35 through the air injection nozzle 42 through the air supply nozzle 42. And those ground improvement by injection around the nozzle 41,
The inside of the inner pipe 32 as shown in FIG. 8 is a solidification material liquid supply passage 34, the water supply passage 43 is between the inner pipe 32 and the intermediate pipe 40, and the air is supplied between the intermediate pipe 40 and the outer pipe 33. A triple pipe injection pipe 45 serving as a passage 35 is used. The injection pipe 45 includes a solidified material liquid injection nozzle 41 at a lower portion and an air injection nozzle 42 for injecting air from the periphery of the solidified material liquid injection nozzle 41. A monitor mechanism 39 provided with a water injection nozzle 44 provided at a 180-degree symmetrical position above the solidification material liquid injection nozzle 41, and a solidification material liquid supply port 37 and an upper portion of the injection pipe 45. A swivel 36 having an air supply port 38 and a water supply port 46 is connected, and a solidification material liquid supplied at a high pressure from a solidification material liquid supply port 37 of the swivel 36 is connected to a monitor mechanism 39 via a solidification material liquid supply passage 34. Solidification material liquid injection nozzle 41 At the same time, the air supplied at a high pressure from the air supply port 38 of the swivel 36 is injected around the solidified material liquid injection nozzle 41 from the air injection nozzle 42 via the air supply passage 35 and the water supply port of the swivel 36. There are some which improve the ground by jetting water supplied at a high pressure from 46 from a water jet nozzle 44 (see, for example, Patent Document 1).

また、上部にスイベル36を、下部にモニター機構39を備える注入管31、45の地盤中への挿入は、スイベル36の固化材液供給口37から水を高圧供給し、固化材液の供給通路34を介しモニター機構39の先端の開口47より下向き吐き出しつつ地盤を削孔し挿入する場合と、ボーリングマシン等で先行して削孔した後に、この削孔に挿入する場合とがある。   Further, when the injection pipes 31 and 45 having the swivel 36 at the upper part and the monitor mechanism 39 at the lower part are inserted into the ground, water is supplied from the solidification liquid supply port 37 of the swivel 36 at a high pressure to supply the solidification liquid supply path. There are a case where the ground is drilled and inserted while discharging downward from the opening 47 at the tip of the monitor mechanism 39 via 34, and a case where the ground is first drilled by a boring machine or the like and then inserted into this hole.

そして、従来の地盤改良用注入管のモニター機構では、単口の固化材液噴射ノズルが1個のもの、単口の固化材液噴射ノズルが180度対称位置に配置されて2個が存在するもの及び単口の固化材液噴射ノズルが1個で、該固化材液噴射ノズルより上方の180度反対側に水噴射ノズルが1個設けられているもの、等がある。   And in the conventional monitoring mechanism of the injection pipe for ground improvement, there is one single-port solidified material liquid injection nozzle, and there are two single-port solidified material liquid injection nozzles arranged at 180 ° symmetrical positions. There are one and one single-portion solidifying liquid jet nozzle, and one water jet nozzle is provided on the opposite side of 180 degrees above the solidified liquid jet nozzle.

特公平04−48894JP 04-48894

従来の地盤改良用注入管のモニター機構は、個々の噴射ノズル(噴射口)が個々に分散配置され、各噴射ノズルが互いに相乗効果を発揮する構成となっていないために、切削撹拌能力が高いとはいえず、そのために注入管の1回の回転では同一深度の地盤を拡径できないため、数回の回転で少しずつ拡径して所定の径にしている。従って、地盤改良用注入管の回転速度、引き上げ速度を遅くしなければならず、長時間を要するから、工期も長くかかるし、施工費用も多くかかることになる。
そこで、切削撹拌効率を向上させるために、噴射圧力を上昇させたり、大型大容量ポンプによる噴射用量を増大させたりしているが、これでは、高エネルギー使用の大規模なプラント設備が必要になるので、大型工事でないと経済的にも困難となる。
また、地盤改良用注入管として三重管を用いるものは、固化材液、エアおよび水のそれぞれの供給装置および高圧ポンプを使用するため、消費エネルギーも多く、設備も大型化する課題がある。
The conventional monitoring mechanism of the injection pipe for ground improvement has a high cutting agitation ability because the individual injection nozzles (injection ports) are dispersedly arranged and the injection nozzles do not have a synergistic effect with each other. However, since the diameter of the ground at the same depth cannot be increased by one rotation of the injection tube, the diameter is gradually increased to a predetermined diameter by several rotations. Accordingly, the rotation speed and the pulling speed of the ground improvement infusion pipe must be slowed down, which requires a long time, and therefore requires a long construction period and high construction costs.
Therefore, in order to improve cutting agitation efficiency, the injection pressure is increased or the injection dose by a large large-capacity pump is increased, but this requires a large-scale plant facility using high energy. Therefore, it will be difficult economically if it is not a large construction.
Moreover, since the thing using a triple pipe | tube as an injection pipe for ground improvement uses each supply apparatus and high-pressure pump of a solidification material liquid, air, and water, there exists a subject which requires much energy and enlarges an installation.

本発明は、このような課題を解決せんと提案されたものであり、その目的は、二重管のシンプル構造の小口径の注入管で、モニター機構も小口径の簡単構造でありながら、切削撹拌能力が高く、注入管の回転速度および引き上げ速度を上げての施工が可能で、工期短縮ができる地盤改良用注入管の提供にある。   The present invention has been proposed to solve such a problem. The purpose of the present invention is to provide a simple double-pipe small-diameter injection pipe and a monitoring mechanism with a small-diameter simple structure while cutting. The purpose of the present invention is to provide an injection pipe for ground improvement that has high agitation ability, can be installed at a higher rotation speed and a higher pulling speed, and can shorten the construction period.

前記目的を達成するために、本発明の請求項1にかかる地盤改良用注入管は、噴射ノズルが設けられたモニター機構を下部に有し、該モニター機構の噴射ノズルは、固化材液噴射ノズルが中心に位置し、その外側にエア噴射ノズルが同心的に二重ノズルの格好で設けられ、固化材液噴射ノズルから噴射する固化材液の周囲に同時に同方向にエアが噴射可能となっている地盤改良用注入管であり、該注入管の上部にスイベルを連結し、この注入管を地上から地盤中の所定深度まで挿入し、その後スイベルより固化材液およびエアを高圧供給し、注入管下部のモニター機構の固化材液噴射ノズルおよびエア噴射ノズルより固化材液およびエアを噴射しつつ注入管を回転させて引き上げることにより、固化材液およびエアの噴射力で、周囲の地盤を切削し、その切削領域に固化材液を注入して地盤改良体を築造する地盤改良用注入管であって、
該注入管のモニター機構の噴射ノズルは、複数を組として、その互いの噴射方向の中心軸を平行して設けたことを特徴とする。
In order to achieve the above object, a ground improvement injection pipe according to claim 1 of the present invention has a monitor mechanism provided with an injection nozzle at the lower part, and the injection nozzle of the monitor mechanism is a solidified material liquid injection nozzle. Is located in the center and the air injection nozzle is concentrically provided on the outer side in the form of a double nozzle, allowing air to be injected simultaneously in the same direction around the solidified liquid ejected from the solidified liquid spray nozzle. A ground improvement injection pipe, a swivel is connected to the top of the injection pipe, this injection pipe is inserted from the ground to a predetermined depth in the ground, and then a solidified material liquid and air are supplied from the swivel at a high pressure. The injection pipe is rotated and pulled up while injecting the solidified material liquid and air from the solidified material liquid injection nozzle and air injection nozzle of the lower monitor mechanism. Cutting to, a soil improvement for injection tube for construction of the soil improvement material by injecting hardening material liquid to the cutting area,
The injection nozzles of the monitoring mechanism of the injection tube are characterized in that a plurality of injection nozzles are provided in parallel and the central axes of the injection directions of the injection nozzles are arranged in parallel.

この構成により平行する組の噴射ノズルから平行(並行)して噴射流体(固化材液およびエア)を噴射できるため、噴射流体の地盤切削過程での減衰を最小限に抑え、多軸流体派生による相乗効果で地盤の切削撹拌機能を向上させることができる。従って、地盤改良用注入管の回転速度および引き上げ速度を速めることができるため、結果として施工速度を速めることができ、改良時間の短縮による改良速度の向上による工期短縮が可能となる。また、流体(固化材液およびエア)の噴射エネルギーの効率がよくなる結果、従来工法用のポンプが使用できるため、高価な大容量のポンプの必要もなく、標準的消耗品、配管装備で施工でき、費用が低減できる。   With this configuration, jet fluid (solidified material liquid and air) can be jetted in parallel (parallel) from a pair of jet nozzles in parallel, minimizing the damping of the jet fluid in the ground cutting process, resulting from multiaxial fluid derivation The cutting and stirring function of the ground can be improved with a synergistic effect. Therefore, since the rotation speed and pulling speed of the ground improvement injection pipe can be increased, the construction speed can be increased as a result, and the construction period can be shortened by improving the improvement speed by shortening the improvement time. In addition, the efficiency of fluid (solidification material liquid and air) injection energy is improved. As a result, pumps for conventional construction methods can be used, so there is no need for expensive large-capacity pumps, and construction with standard consumables and piping equipment is possible. Cost can be reduced.

また、本発明の請求項2に係る地盤改良用注入管は、前記地盤改良用注入管が、内管と外管の二重管で、内管内が固化材液供給通路となり、内管と外管との間がエア供給通路となっており、固化材液供給通路がモニター機構の固化材液噴射ノズルに連通し、エア供給通路がエア噴射ノズルに連通していることを特徴とする。   In the ground improvement injection pipe according to claim 2 of the present invention, the ground improvement injection pipe is a double pipe of an inner pipe and an outer pipe, and the inside of the inner pipe serves as a solidified material liquid supply passage. An air supply passage is formed between the tube and the solidified material liquid supply passage. The solidified material liquid supply passage communicates with the solidified material liquid injection nozzle of the monitor mechanism, and the air supply passage communicates with the air injection nozzle.

これにより二重管のシンプル構造の小口径の注入管で、モニター機構も小口径の簡単構造とすることができ、設備も標準的なものが使用できる。しかも、二重管のシンプル構造の小口径の注入管で、そのモニター機構も小口径の簡単構造でありながら、地盤の切削撹拌能力は高い。   As a result, the double-tube simple structure small-diameter injection tube, the monitor mechanism can be a small-diameter simple structure, and standard equipment can be used. Moreover, it is a double pipe simple structure small diameter injection pipe, and its monitoring mechanism has a simple structure with a small diameter, but the cutting stirring ability of the ground is high.

また、本発明の請求項3に係る地盤改良用注入管は、前記モニター機構の噴射ノズルが複数の組で設けられ、この組の噴射ノズルが水平円周方向の対称位置に設けられていることを特徴とする。
これにより噴射流体(固化材液およびエア)を平行(並行)して噴射できる組の噴射ノズルが、対称位置に設けられているので、多軸流体派生(例えば、噴射ノズルが対の組である場合は、2軸流体派生)による相乗効果での地盤の切削撹拌機能はさらに向上する。
Further, in the ground improvement injection pipe according to claim 3 of the present invention, the injection nozzles of the monitor mechanism are provided in a plurality of sets, and the injection nozzles of the set are provided at symmetrical positions in the horizontal circumferential direction. It is characterized by.
As a result, a set of spray nozzles capable of spraying the spray fluid (solidified material liquid and air) in parallel (in parallel) are provided at symmetrical positions, so that a multi-axis fluid derivative (for example, a pair of spray nozzles is a pair) In this case, the cutting and stirring function of the ground with a synergistic effect due to the biaxial fluid derivation is further improved.

また、本発明の前記モニター機構の噴射ノズルの組は、噴射ノズルが水平円周方向に並列して組となっていることを特徴とし(請求項4)、
また、本発明の前記モニター機構の噴射ノズルの組は、噴射ノズルが上下方向に並列して組となっていることを特徴とし(請求項5)、
また、本発明の前記モニター機構の噴射ノズルの組は、噴射ノズルが上下方向に並列して組となっており、この組の噴射ノズルが水平円周方向の対称位置に設けられ、一方側の組の噴射ノズルと他方側の対称位置の組の噴射ノズルとは、互いに上下に位置がずれて設けられていることを特徴とし(請求項6)、
また、本発明の前記モニター機構の噴射ノズルの組は、噴射ノズルが斜め上下に並列して組となっていることを特徴とする(請求項7)。
The set of spray nozzles of the monitoring mechanism of the present invention is characterized in that the spray nozzles are set in parallel in the horizontal circumferential direction (Claim 4),
The set of spray nozzles of the monitor mechanism of the present invention is characterized in that the spray nozzles are set in parallel in the vertical direction (Claim 5).
Further, the set of spray nozzles of the monitoring mechanism of the present invention is a set of jet nozzles arranged in parallel in the vertical direction, and the jet nozzles of this set are provided at symmetrical positions in the horizontal circumferential direction, The pair of spray nozzles and the pair of spray nozzles at the symmetrical position on the other side are provided so that their positions are shifted from each other vertically (Claim 6).
Further, the set of spray nozzles of the monitoring mechanism of the present invention is characterized in that the spray nozzles are paired obliquely vertically.

また、本発明の前記モニター機構の噴射ノズルは、噴射ノズルの組が、水平円周方向の対称位置に設けられ、一方側が水平円周方向に並列した組であり、他方側の対称位置が上下に並列した組であることを特徴とし(請求項8)、
また、本発明の前記モニター機構の噴射ノズルは、噴射ノズルの組が、水平円周方向の対称位置に設けられ、一方側が水平円周方向に並列した組であり、他方側の対称位置が斜め上下に並列した組であることを特徴とし(請求項9)、
また、本発明の前記モニター機構の噴射ノズルは、噴射ノズルの組が、水平円周方向の対称位置に設けられ、一方側が上下に並列した組であり、他方側の対称位置が斜め上下に並列した組であることを特徴とする(請求項10)、
Further, the spray nozzle of the monitoring mechanism of the present invention is a set in which the set of spray nozzles is provided at a symmetrical position in the horizontal circumferential direction, and one side is arranged in parallel in the horizontal circumferential direction, and the symmetrical position on the other side is up and down. (Claim 8),
In the spray nozzle of the monitor mechanism of the present invention, the pair of spray nozzles is provided at a symmetrical position in the horizontal circumferential direction, and one side is parallel to the horizontal circumferential direction, and the symmetrical position on the other side is oblique. It is a group that is vertically parallel (Claim 9),
In the spray nozzle of the monitor mechanism of the present invention, the pair of spray nozzles is provided at a symmetrical position in the horizontal circumferential direction, and one side is vertically aligned, and the other side is symmetrically aligned vertically. (Claim 10),

また、本発明の前記モニター機構の噴射ノズルは、水平円周方向の対称位置に設けられ、少なくとも対称位置のいずれか一方側の噴射ノズルは、複数を組としてその互いの噴射方向の中心軸を平行して設け、かつ噴射ノズルは対称位置で噴射ノズルの数および噴射ノズルの口径を異にするが、相対する噴射反力は近似値になるよう設定されていることを特徴とする(請求項11)。
この構成により、対称位置で噴射ノズルの数および口径を異にしても、相対する噴射反力は近似値となるので、注入管の撓みを防止することができる。
Further, the spray nozzle of the monitor mechanism of the present invention is provided at a symmetrical position in the horizontal circumferential direction, and at least one of the spray nozzles at the symmetrical position has a central axis in the mutual spray direction as a group. The injection nozzles are provided in parallel and the number of injection nozzles and the diameter of the injection nozzles are different at symmetrical positions, but the opposing injection reaction forces are set to be approximate values (claims). 11).
With this configuration, even if the number and the diameter of the injection nozzles are different at the symmetrical position, the opposing injection reaction force becomes an approximate value, so that the injection pipe can be prevented from bending.

また、本発明の前記モニター機構の組の噴射ノズルは、噴射ノズルの噴射中心軸間の間隔が、5〜10cmの間隔で並び組となっていることを特徴とする(請求項12)。
これにより多軸噴流による相乗効果を向上させることができる。組内での各噴射ノズルの間隔が、5cm未満だと互いの距離が近すぎて互いに噴射する噴流が接触して噴射流体の減衰が生じ、10cmを超えると互いの距離が開きすぎ、噴射流体の地盤への到達位置も開くため相乗効果が低下する。従って、組内での各噴射ノズルの間隔は、5〜10cmの範囲が好ましい。
In addition, the jet nozzles of the set of the monitor mechanism of the present invention are characterized in that the jet nozzles are arranged side by side with an interval between the jet central axes of the jet nozzles (claim 12).
Thereby, the synergistic effect by a multi-axis jet can be improved. If the interval between the spray nozzles in the set is less than 5 cm, the distance between the jet nozzles is too close, and jets ejected from each other come into contact with each other, resulting in attenuation of the jet fluid. Since the position where the ground reaches is also opened, the synergistic effect is reduced. Accordingly, the interval between the spray nozzles in the set is preferably in the range of 5 to 10 cm.

さらに、本発明の前記モニター機構の噴射ノズルは、噴射角度を水平方向より斜め下方に5度〜10度傾斜させたことを特徴とする(請求項13)。
これにより噴射流体に下向きに傾斜した噴射角度が付与されるため、切削した土砂が地盤から剥離して下方に移動しやすくなり、切削機能が向上する。
Furthermore, the spray nozzle of the monitor mechanism of the present invention is characterized in that the spray angle is inclined 5 degrees to 10 degrees obliquely downward from the horizontal direction (claim 13).
As a result, the jetting fluid is provided with a jetting angle that is inclined downward, so that the cut earth and sand are easily separated from the ground and moved downward, and the cutting function is improved.

本発明の地盤改良用注入管によれば、次のような効果を奏する。
(1)複数が組となっている噴射ノズルから平行(並行)して噴射流体(固化材液およびエア)を噴射できるため、噴射流体の地盤切削過程での減衰を最小限に抑えられ、多軸流体派生(例えば、噴射ノズルが対の組である場合は、2軸流体派生)による相乗効果で地盤の切削撹拌機能を向上させることができる。
(2)従って、施工時には地盤改良用注入管の回転速度および引き上げ速度を速めることができるため、結果として施工速度を速めることができ、工期を大幅に短縮することができる。
(3)施工速度を速め地盤改良速度が向上するため、それに伴い余剰液(廃泥)の発生も少なくて済む。
(4)噴射流体(固化材液およびエア)の噴射エネルギーの効率がよくなる結果、従来の標準工法用のポンプが使用できるため、高価な大容量ポンプや大規模なプラント設備は必要なく、標準的消耗品、配管設備で施工でき、費用も安く済む。
The ground improvement injection pipe of the present invention has the following effects.
(1) Since the injection fluid (solidified material liquid and air) can be injected in parallel (parallel) from a plurality of injection nozzles, the attenuation of the injection fluid in the ground cutting process can be minimized, and The ground cutting and stirring function can be improved by a synergistic effect due to axial fluid derivation (for example, biaxial fluid derivation when the injection nozzle is a pair).
(2) Accordingly, since the rotation speed and the pulling speed of the ground improvement injection pipe can be increased during construction, the construction speed can be increased as a result, and the construction period can be greatly shortened.
(3) Since the construction speed is increased and the ground improvement speed is improved, the generation of excess liquid (waste mud) can be reduced accordingly.
(4) Since the efficiency of the injection energy of the injection fluid (solidified material liquid and air) is improved, the conventional standard pump can be used, so there is no need for an expensive large-capacity pump or large-scale plant equipment. Construction is possible with consumables and piping equipment, and costs are low.

(5)二重管のシンプル構造の小口径の注入管で、モニター機構も小口径の簡単構造とすることができ、設備も標準的なものが使用できる。しかも、二重管のシンプル構造の小口径の注入管で、そのモニター機構も小口径の簡単構造でありながら、地盤の切削撹拌能力は高い。
(6)噴射流体(固化材液およびエア)を平行(並行)して噴射できる組の噴射ノズルが、水平円周方向の対称位置に設けられているので、多軸流体派生(例えば、噴射ノズルが対の組である場合は、2軸流体派生)による相乗効果での地盤の切削撹拌機能は、さらに向上し、施工速度もさらに速くすることができる。
(7)水平円周方向の対称位置で噴射ノズルの数および口径を異にしても、相対する噴射反力は近似値となるので、注入管の撓みを防止することができる。
(5) A small-diameter injection pipe with a simple structure of a double pipe, the monitor mechanism can be a simple structure with a small diameter, and standard equipment can be used. Moreover, it is a double pipe simple structure small diameter injection pipe, and its monitoring mechanism has a simple structure with a small diameter, but the cutting stirring ability of the ground is high.
(6) Since a set of injection nozzles capable of injecting parallel (parallel) injection fluids (solidified material liquid and air) are provided at symmetrical positions in the horizontal circumferential direction, a multiaxial fluid derivative (for example, an injection nozzle) When the pair is a pair, the cutting and stirring function of the ground due to the synergistic effect by the biaxial fluid derivation can be further improved, and the construction speed can be further increased.
(7) Even if the number and the diameter of the injection nozzles are different at symmetrical positions in the horizontal circumferential direction, the opposing injection reaction force becomes an approximate value, so that the bending of the injection tube can be prevented.

(8)組内の各噴射ノズルは、噴射ノズルの噴射中心軸間の間隔を5〜10cmとしたので、多軸噴流(例えば、噴射ノズルが対の組である場合は、2軸流体派生)による相乗効果が向上し、施工速度をさらに高めることができる。
(9)噴射流体(固化材液およびエア)に下向きに傾斜した噴射角度を付与できるため、切削した土砂が地盤から剥離して下方に移動しやすくなり、切削撹拌機能が向上する。
(8) Since each injection nozzle in the set has an interval between the injection central axes of the injection nozzles of 5 to 10 cm, a multi-axis jet (for example, a biaxial fluid derivative when the injection nozzle is a pair) The synergistic effect can be improved and the construction speed can be further increased.
(9) Since a spray angle inclined downward can be imparted to the jet fluid (solidified material liquid and air), the cut earth and sand are easily separated from the ground and moved downward, and the cutting stirring function is improved.

本発明の実施の形態を示す地盤改良用注入管の中央縦断面図である。It is a center longitudinal cross-sectional view of the injection pipe for ground improvement which shows embodiment of this invention. 本発明の実施の形態を示す地盤改良用注入管のモニター機構部分の要部正面図である。It is a principal part front view of the monitor mechanism part of the injection pipe for ground improvement which shows embodiment of this invention. 本発明の他の実施の形態を示す地盤改良用注入管のモニター機構部分の要部正面図である。It is a principal part front view of the monitoring mechanism part of the injection pipe for ground improvement which shows other embodiment of this invention. 本発明のさらに他の実施の形態を示す地盤改良用注入管のモニター機構部分の要部正面図である。It is a principal part front view of the monitoring mechanism part of the injection pipe for ground improvement which shows other embodiment of this invention. 本発明のまた更に他の実施の形態を示す地盤改良用注入管のモニター機構部分の要部正面図(a)およびその中央縦断面図(b)である。It is the principal part front view (a) of the monitoring mechanism part of the injection pipe for ground improvement which shows other embodiment of this invention, and its center longitudinal cross-sectional view (b). 本発明の地盤改良用注入管を使用しての地盤改良工法を、施工工程順(a)(b)(c)(d)に示す説明図である。It is explanatory drawing which shows the ground improvement construction method using the injection pipe for ground improvement of this invention to construction process order (a) (b) (c) (d). 従来の地盤改良用注入管を示す断面図である。It is sectional drawing which shows the conventional injection pipe for ground improvement. 従来の他の地盤改良用注入管を示す断面図である。It is sectional drawing which shows the injection pipe for other conventional ground improvement.

以下、本発明の実施の形態を図面を参照して詳細に説明する。図1は、本発明の実施の形態を示す地盤改良用注入管の中央縦断面図、図2は、本発明の実施の形態を示す地盤改良用注入管のモニター機構部分の要部正面図、図3は、本発明の他の実施の形態を示す地盤改良用注入管のモニター機構部分の要部正面図、図4は、本発明の更に他の実施の形態を示す地盤改良用注入管のモニター機構部分の要部正面図、図5は、本発明のまた更に他の実施の形態を示す地盤改良用注入管のモニター機構部分の要部正面図(a)およびその中央縦断面図(b)である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a central longitudinal sectional view of a ground improvement injection pipe showing an embodiment of the present invention. FIG. 2 is a front view of a main part of a monitor mechanism portion of the ground improvement injection pipe showing an embodiment of the present invention. FIG. 3 is a front view of an essential part of a monitoring mechanism portion of a ground improvement injection pipe showing another embodiment of the present invention, and FIG. 4 is a ground improvement injection pipe showing still another embodiment of the present invention. FIG. 5 is a front view of the main part of the monitoring mechanism part of the injection pipe for ground improvement showing still another embodiment of the present invention, and FIG. ).

図1は、上部にスイベル6が連結され、下部にモニター機構9を備える地盤改良用注入管1(単に、注入管と称することもある。)を示している。地盤改良用注入管1は、内管2と外管3の二重管で形成され、内管2内が固化材液の供給通路4となり、内管2と外管3との間がエアの供給通路5となっている。
スイベル6は、固化材液の供給口7と、エアの供給口8を備え、固化材液の供給口7は、通路7aを介し注入管1の固化材液の供給通路4に連通し、エアの供給口8は、通路8aを介し注入管1のエアの供給通路5に連通している。
FIG. 1 shows a ground improvement injection pipe 1 (sometimes simply referred to as an injection pipe) having a swivel 6 connected to the upper part and a monitor mechanism 9 on the lower part. The ground improvement injection pipe 1 is formed by a double pipe of an inner pipe 2 and an outer pipe 3, the inside of the inner pipe 2 serves as a solidified material liquid supply passage 4, and the space between the inner pipe 2 and the outer pipe 3 is air. A supply passage 5 is provided.
The swivel 6 includes a solidification material liquid supply port 7 and an air supply port 8. The solidification material liquid supply port 7 communicates with the solidification material liquid supply passage 4 of the injection pipe 1 through a passage 7 a, The supply port 8 communicates with the air supply passage 5 of the injection tube 1 through the passage 8a.

モニター機構9には、噴射ノズル10が設けられている。該モニター機構9の噴射ノズル10は、固化材液噴射ノズル11が中心に位置し、その外側にエア噴射ノズル12が同心的に二重ノズルの格好で設けられ、固化材液噴射ノズル11から噴射する固化材液の周囲に同時に同方向にエアが噴射可能になっている。固化材液噴射ノズル11には注入管1の固化材液供給通路4が連通し、エア噴射ノズル12には注入管1のエア供給通路5が連通し、スイベル6の固化材液供給口7より高圧供給された固化材液は、注入管1の固化材液供給通路4を介し固化材液噴射ノズル11から噴射でき、スイベル6のエア供給口8より高圧供給されたエアは、注入管1のエア供給通路5を介しエア噴射ノズル12から噴射できるようになっている。   The monitor mechanism 9 is provided with an injection nozzle 10. The injection nozzle 10 of the monitor mechanism 9 has a solidified material liquid injection nozzle 11 located at the center, and an air injection nozzle 12 is provided concentrically in the form of a double nozzle on the outside of the injection nozzle 10. The air can be simultaneously jetted around the solidifying material liquid in the same direction. The solidified material liquid injection nozzle 11 communicates with the solidified material liquid supply passage 4 of the injection tube 1, and the air injection nozzle 12 communicates with the air supply passage 5 of the injection tube 1 through the solidified material liquid supply port 7 of the swivel 6. The solidified material liquid supplied at high pressure can be injected from the solidified material liquid injection nozzle 11 via the solidified material liquid supply passage 4 of the injection tube 1, and the air supplied at high pressure from the air supply port 8 of the swivel 6 is supplied to the injection tube 1. The air can be injected from the air injection nozzle 12 through the air supply passage 5.

この固化材液噴射ノズル11とエア噴射ノズル12とで構成される噴射ノズル10は、複数を組として、その互いの噴射方向の中心軸を平行にして設けられる。この実施の形態では、噴射ノズル12の組は、対の場合で示しているが、対に制限されるものではない。例えば、噴射ノズル10は3個とか4個を組としてもよい。この噴射ノズル10の対は、モニター機構9の水平円周方向の対称位置に設けられる。これにより互いの噴射ノズル10より噴射される固化材液とエアの噴射反力が均衡し、注入管1の撓みを防止することができる。   A plurality of injection nozzles 10 including the solidifying material liquid injection nozzles 11 and the air injection nozzles 12 are provided in parallel with the central axes of the respective injection directions. In this embodiment, the pair of injection nozzles 12 is shown as a pair, but is not limited to a pair. For example, the number of spray nozzles 10 may be three or four. The pair of injection nozzles 10 are provided at symmetrical positions in the horizontal circumferential direction of the monitor mechanism 9. Thereby, the solidification material liquid injected from each injection nozzle 10 and the injection reaction force of air are balanced, and the bending of the injection tube 1 can be prevented.

図2は、固化材液噴射ノズル11とエア噴射ノズル12で構成する噴射ノズル10が、モニター機構9の水平円周方向に並列し対となって設けられている場合を示している。
本例では、注入管1を回転させたとき、同一円周線上を4個の噴射ノズル10が通過することになり、しかも、一方側の噴射ノズル10と対称位置の他方側の噴射ノズル10は、対となり、相乗効果で地盤の切削撹拌機能を高める構成となっているので、地盤の切削撹拌能力が高くなる。
FIG. 2 shows a case where the injection nozzle 10 constituted by the solidifying material liquid injection nozzle 11 and the air injection nozzle 12 is provided as a pair in parallel in the horizontal circumferential direction of the monitor mechanism 9.
In this example, when the injection tube 1 is rotated, four injection nozzles 10 pass on the same circumferential line, and the injection nozzle 10 on the other side in a symmetrical position with the injection nozzle 10 on one side is Since it becomes a pair and is configured to enhance the ground cutting agitation function with a synergistic effect, the ground agitation ability of the ground is increased.

図3は、固化材液噴射ノズル11とエア噴射ノズル12で構成する噴射ノズル10が、モニター機構9の上下方向に並列して対となって設けられている場合を示している。
この構成では、対の噴射ノズル10による切削撹拌機能の相乗効果とともに、噴射ノズル10が上下方向に並列して対となっているので、注入管1の回転による噴射流体の地盤(削孔壁面)への切削幅が広くなる。また、噴射ノズル10を上下に並列して対とする構成だと、注入管1(モニター機構9)が小口径のものでも対応可能となる。
FIG. 3 shows a case where the injection nozzle 10 composed of the solidifying material liquid injection nozzle 11 and the air injection nozzle 12 is provided as a pair in parallel in the vertical direction of the monitor mechanism 9.
In this configuration, since the spray nozzles 10 are paired in parallel in the vertical direction, together with the synergistic effect of the cutting stirring function by the pair of spray nozzles 10, the ground of the fluid to be sprayed by the rotation of the injection pipe 1 (the hole wall surface). The cutting width is widened. Further, when the injection nozzles 10 are paired in parallel in the vertical direction, the injection tube 1 (monitor mechanism 9) can be used even with a small diameter.

図4は、固化材液噴射ノズル11とエア噴射ノズル12で構成する噴射ノズル10が、互いに水平円周方向にずれた上下であり、互いに斜め位置で並列して対となって設けられている場合である。
この構成では、対の噴射ノズル10による切削撹拌機能の相乗効果とともに、噴射ノズル10が上下の斜め位置に並列して対となっているので、注入管1を回転して流体を噴射すると、噴射流体は地盤の孔壁面に時間差を持って切削撹拌するので切削撹拌能力は更に向上する。また、噴射ノズル10を上下の斜め位置に並列して対となっているので、水平円周方向に並列して対とするものより小口径の注入管1(モニター機構9)で対応可能となる。
In FIG. 4, the injection nozzles 10 constituted by the solidifying material liquid injection nozzle 11 and the air injection nozzle 12 are vertically displaced from each other in the horizontal circumferential direction, and are provided in pairs in parallel at oblique positions. Is the case.
In this configuration, since the injection nozzle 10 is paired in parallel with the upper and lower diagonal positions together with the synergistic effect of the cutting stirring function by the pair of injection nozzles 10, when the fluid is injected by rotating the injection tube 1, the injection Since the fluid stirs and stirs the hole wall surface of the ground with a time difference, the cutting stirrability is further improved. Further, since the injection nozzles 10 are paired in parallel in the upper and lower oblique positions, it is possible to cope with the injection pipe 1 (monitor mechanism 9) having a smaller diameter than the pair in parallel in the horizontal circumferential direction. .

図5(a)(b)は、固化材液噴射ノズル11とエア噴射ノズル12で構成する噴射ノズル10が、モニター機構9の上下方向に並列して対となって設けられている場合で、一方側と対称位置の他方側とで、上下にずれている場合である。本例では、例えば、正面側より見て、一方側の噴射ノズル10、10と対称位置の他方側の噴射ノズル10、10を垂直方向に縦列したとき、一方側の噴射ノズル10、10は最上位と3番目に位置し、対称位置の他方側の噴射ノズル10、10は、上から2番目と4番目(最下位)に位置するように配置したものを例示している。
この構成では、対の噴射ノズル10による地盤の切削撹拌機能の相乗効果と共に噴射ノズル10は、例えば、正面側より見ると垂直方向に一列に4個が縦列した格好となるので、地盤の削孔壁面の切削幅が広いものとなる。
FIGS. 5A and 5B show a case where the injection nozzle 10 constituted by the solidifying material liquid injection nozzle 11 and the air injection nozzle 12 is provided as a pair in parallel in the vertical direction of the monitor mechanism 9. This is a case where the one side and the other side of the symmetrical position are shifted up and down. In this example, for example, when viewed from the front side, when the injection nozzles 10, 10 on the other side of the symmetric position are vertically aligned in the vertical direction, the injection nozzles 10, 10 on the one side are the The injection nozzles 10 and 10 which are located at the upper and third positions and located at the other side of the symmetrical position are illustrated as being disposed at the second and fourth positions (the lowest position) from the top.
In this configuration, together with the synergistic effect of the ground cutting and stirring function by the pair of injection nozzles 10, for example, the injection nozzles 10 look like four vertically aligned in a vertical direction when viewed from the front side. The wall has a wide cutting width.

なお、対の噴射ノズル10、10の構成は、前記図2乃至図5(a)(b)に示すものに限定されるものではない。例えば、図2に示すような噴射ノズル10が水平円周方向に並列して対となって設けられている構成、図3に示すような噴射ノズル10が上下方向に並列して対となっている構成および図4に示すような噴射ノズル10が上下の斜め位置に並列して対となっている構成を、モニター機構9の一方側と対称位置の他方側とで組み合わせる構成であってもよい。
即ち、固化材液噴射ノズル11とエア噴射ノズル12で構成する噴射ノズル10が、モニター機構9の一方側では水平円周方向に並列して対となっており、対称位置の他方側では上下方向に並列して対となっている場合、噴射ノズル10が、モニター機構9の一方側では水平円周方向に並列して対となっており、対称位置の他方側では上下の斜め位置に並列して対となっている場合、噴射ノズル10が、モニター機構9の一方側では上下方向に並列して対となっており、対称位置の他方側では上下の斜め位置に並列して対となっている場合、である。
このような組合せによって、それぞれ異なる対の噴射ノズルの特長で、地盤の切削撹拌機能の相乗効果を期待できる。
The configuration of the pair of injection nozzles 10 and 10 is not limited to that shown in FIGS. 2 to 5A and 5B. For example, a configuration in which the injection nozzles 10 as shown in FIG. 2 are provided in pairs in the horizontal circumferential direction, and the injection nozzles 10 as shown in FIG. 3 are paired in parallel in the vertical direction. 4 and a configuration in which the jet nozzles 10 as shown in FIG. 4 are paired in parallel in the upper and lower oblique positions may be combined on one side of the monitor mechanism 9 and the other side of the symmetrical position. .
In other words, the injection nozzle 10 composed of the solidifying material liquid injection nozzle 11 and the air injection nozzle 12 is paired in parallel in the horizontal circumferential direction on one side of the monitor mechanism 9, and vertically on the other side of the symmetrical position. In parallel, the spray nozzles 10 are paired in parallel in the horizontal circumferential direction on one side of the monitor mechanism 9, and in parallel in the upper and lower diagonal positions on the other side of the symmetrical position. When the nozzles 10 are paired, the jet nozzles 10 are paired in parallel in the vertical direction on one side of the monitor mechanism 9, and are paired in parallel in diagonally up and down positions on the other side of the symmetrical position. If yes.
By such a combination, a synergistic effect of the ground cutting agitation function can be expected with the characteristics of different pairs of injection nozzles.

また、図示は省略したが前記モニター機構9の噴射ノズル10は、水平円周方向の対称位置に設けられ、少なくとも対称位置のいずれか一方側の噴射ノズル10は、複数を対とし、その互いの噴射方向の中心軸を平行して設け、しかも噴射ノズル10は対称位置で噴射ノズル10の数および噴射ノズル10の口径を異にして設けてもよい。この場合は、一方側の噴射ノズル10と対称位置の他方側の噴射ノズル10での、相対する噴射反力を近似値になるように設定する。これによりモニター機構9の対称位置で噴射ノズル10の数および口径を異にしても、相対する噴射反力は近似値となるので、注入管1の撓みを防止することができる。   Although not shown, the spray nozzle 10 of the monitor mechanism 9 is provided at a symmetrical position in the horizontal circumferential direction, and at least one of the spray nozzles 10 at the symmetrical position is a plurality of pairs. The central axis of the injection direction may be provided in parallel, and the injection nozzle 10 may be provided at a symmetrical position with the number of injection nozzles 10 and the diameter of the injection nozzle 10 being different. In this case, the opposing injection reaction force between the injection nozzle 10 on one side and the injection nozzle 10 on the other side at the symmetrical position is set to be an approximate value. Accordingly, even if the number and the diameter of the injection nozzles 10 are different at the symmetrical position of the monitor mechanism 9, the opposing injection reaction force becomes an approximate value, so that the injection pipe 1 can be prevented from being bent.

また、前記モニター機構9の対の噴射ノズル10、10は、噴射ノズル10、10の噴射中心軸間の間隔hが、5〜10cmの間隔で並び対となっているのが好ましい。
噴射ノズル10、10の対の間隔hが、5cm未満だと互いの間隔hが近すぎて互いに噴射する流体噴流が接触(衝突)して噴射流体の噴射力の減衰が生じ、10cmを超えると互いの間隔hが開きすぎ、噴射流体の地盤孔壁面への到達位置も開くため相乗効果が低下する。従って、噴射ノズル10、10の対の間隔hは、5〜10cmの範囲が好ましい。
Moreover, it is preferable that the pair of injection nozzles 10 and 10 of the monitor mechanism 9 are arranged in pairs with an interval h between the injection central axes of the injection nozzles 10 and 10 being 5 to 10 cm.
When the distance h between the pair of the injection nozzles 10 and 10 is less than 5 cm, the distance h is too close to each other, and the jets of fluid jetting each other come into contact (impact) and the injection force of the injection fluid is attenuated. Since the mutual interval h is too large and the position where the jet fluid reaches the ground hole wall surface is also opened, the synergistic effect is lowered. Therefore, the distance h between the pair of injection nozzles 10 and 10 is preferably in the range of 5 to 10 cm.

また、前記モニター機構9の噴射ノズル10の噴射角度は、水平方向から斜め下方に10度の範囲がよい。
噴射ノズル10の噴射角度が水平方向(注入管1に直交する方向)だと、地盤孔壁面との距離が最も近いために、噴射ノズル10からの噴射流体の減衰を小さく押さえて地盤の切削撹拌が可能となるので好ましい。しかし、噴射ノズル10の噴射角度を水平方向より斜め下方とすると、噴射ノズル10と地盤孔壁面との距離が離れるため、その分噴射流体の減衰も生ずるが、噴射流体に下向きに傾斜した噴射角度が付与されるため、地盤の切削した土砂が地盤から剥離して下方に移動しやすくなり、切削機能が向上するので、水平方向より斜め下方10度までの噴射角度は許容される。噴射角度が、水平方向より斜め下方10度を超えると、噴射流体の地盤孔壁面への到達距離が長くなるし、流体噴流の減衰が生じ、しかも地盤孔壁面への流体の衝突が斜めになりすぎ、切削能力が低下するので好ましくない。
The spray angle of the spray nozzle 10 of the monitor mechanism 9 is preferably in the range of 10 degrees obliquely downward from the horizontal direction.
If the spray angle of the spray nozzle 10 is in the horizontal direction (the direction perpendicular to the injection pipe 1), the distance from the ground hole wall surface is the shortest. Is preferable. However, if the injection angle of the injection nozzle 10 is set obliquely downward from the horizontal direction, the distance between the injection nozzle 10 and the ground hole wall surface is increased. Therefore, the injection fluid is attenuated by that distance, but the injection angle is inclined downward with respect to the injection fluid. Therefore, the earth and sand cut by the ground are easily separated from the ground and moved downward, and the cutting function is improved. Therefore, an injection angle of 10 degrees obliquely downward from the horizontal direction is allowed. If the jet angle exceeds 10 degrees diagonally below the horizontal direction, the distance that the jet fluid reaches the ground hole wall surface becomes long, the fluid jet flow attenuates, and the fluid collision with the ground hole wall surface becomes diagonal. This is not preferable because the cutting ability is reduced.

次に、前記実施の形態に係る地盤改良用注入管1を用いて、地盤改良する方法の施工手順を、図6について説明する。
まず、この地盤改良方法で使用する施工装置20の一例を説明する。施工装置20はリーダ21を備え、このリーダ21にはスライド板22がリーダ21に沿って摺動自在(進退自在)に設けられ、このスライド板22にはドリルヘッド23が固設され、スライド板22には給進装置(図示省略)が連結され、リーダ21に沿って進退移動できるようになっている。下部にモニター機構9を有する地盤改良用注入管1は、ドリルヘッド23に取り付けられ、注入管1にはこのドリルヘッド23の駆動で回転を与えられることができ、また、スライド板22にはドリルヘッド23が固設されているので、給進装置(図示省略)でスライド板22をリーダ21に沿って進退させることで、注入管1はドリルヘッド23と共に進退させることができる。給進装置としては、シリンダまたはリーダ21の上端乃至下端に設けられたスプロケットに懸回されて駆動するチェーン、を例示することができる。
Next, the construction procedure of the ground improvement method using the ground improvement injection pipe 1 according to the embodiment will be described with reference to FIG.
First, an example of the construction apparatus 20 used in this ground improvement method will be described. The construction apparatus 20 includes a reader 21, and a slide plate 22 is slidably (moved forward and backward) along the reader 21, and a drill head 23 is fixed to the slide plate 22. A feeding device (not shown) is connected to 22 so that it can move forward and backward along the reader 21. A ground improvement injection pipe 1 having a monitor mechanism 9 at the bottom is attached to a drill head 23, and the injection pipe 1 can be rotated by driving the drill head 23. Since the head 23 is fixed, the injection tube 1 can be advanced and retracted together with the drill head 23 by advancing and retracting the slide plate 22 along the leader 21 with a feeding device (not shown). Examples of the feeding device include a cylinder or a chain that is suspended and driven by sprockets provided at the upper end or the lower end of the leader 21.

そこで、まず、図6(a)に示すように施工装置20のドリルヘッド23に注入管1を取付け、施工装置20を地盤改良する位置にセットする。この時の注入管1の上部には、スイベル6が連結される。
次に図6(b)に示すように地盤改良する位置に注入管1を、地盤の所定の深度まで挿入する。この注入管1の地盤への挿入は、スイベル6の固化材液供給口7から水を高圧供給し、固化材液の供給通路4を介しモニター機構9の先端の開口13より下向きに吐出しつつ地盤を削孔し挿入するか、ボーリングマシン等で先行して削孔し、その削孔に挿入する。前者の方法で注入管1を挿入した場合には、所定の深度に到達した後に固化材液供給通路4よりボール15を投入し、開口13を閉塞する。なお、14は逆止弁である。
次に、図6(c)に示すようにスイベル6より固化材液およびエアを高圧供給し、注入管1下端のモニター機構9の固化材液噴射ノズル11およびエア噴射ノズル12より固化材液およびエアを噴射しつつ注入管1を回転させて引き上げる。すると固化材液およびエアの噴射力が周辺地盤の削孔壁面に衝突し、周囲の地盤を切削し、その噴射された固化材液で切削領域が充填され地盤改良体16が築造される。従って、図6(c)から(d)に示すように注入管1を引き上げるにつれて下方より順次上方に亘って地盤改良体16が築造される。図6(d)は、注入管1が地上に引き上げられ、地盤の所定区間に地盤改良体6が築造された様子を示している。
Therefore, first, as shown in FIG. 6A, the injection pipe 1 is attached to the drill head 23 of the construction apparatus 20, and the construction apparatus 20 is set at a position where the ground is improved. A swivel 6 is connected to the upper portion of the injection tube 1 at this time.
Next, as shown in FIG. 6B, the injection tube 1 is inserted to a predetermined depth of the ground at a position where the ground is improved. The injection tube 1 is inserted into the ground by supplying high-pressure water from the solidifying material liquid supply port 7 of the swivel 6 and discharging it downward from the opening 13 at the tip of the monitor mechanism 9 through the solidifying material liquid supply passage 4. Drill the ground and insert it, or drill in advance with a boring machine and insert it into the hole. When the injection tube 1 is inserted by the former method, after reaching a predetermined depth, the ball 15 is introduced from the solidifying material liquid supply passage 4 to close the opening 13. Reference numeral 14 denotes a check valve.
Next, as shown in FIG. 6 (c), the solidified material liquid and air are supplied from the swivel 6 at a high pressure, and the solidified material liquid and air are supplied from the solidified material liquid injection nozzle 11 and the air injection nozzle 12 of the monitor mechanism 9 at the lower end of the injection pipe 1. While injecting air, the injection tube 1 is rotated and pulled up. Then, the injection force of the solidified material liquid and the air collides with the hole wall surface of the surrounding ground, the surrounding ground is cut, the cutting area is filled with the injected solidified material liquid, and the ground improvement body 16 is built. Accordingly, as shown in FIGS. 6C to 6D, the ground improvement body 16 is constructed from the lower side to the upper side as the injection pipe 1 is pulled up. FIG.6 (d) has shown a mode that the injection pipe 1 was pulled up on the ground and the ground improvement body 6 was built in the predetermined area of the ground.

前記固化材液およびエアの供給は、施工装置20が固化材液およびエアのそれぞれの供給用のポンプ(図示省略)を備え、それぞれのポンプが配管によりスイベル6の固化材液供給口7およびエアの供給口8に連結している。従って、固化材液は、スイベル6の固化材液供給口7より高圧供給され、通路7aおよび固化材液供給通路4を介し固化材液噴射ノズル11に供給され、エアは、スイベル6のエア供給口8より高圧供給され、通路8aおよびエア供給通路5を介してエア噴射ノズル12に供給される。   For supplying the solidified material liquid and air, the construction apparatus 20 includes pumps (not shown) for supplying the solidified material liquid and air, and each pump is connected to the solidified material liquid supply port 7 of the swivel 6 and the air by piping. The supply port 8 is connected. Accordingly, the solidified material liquid is supplied at a high pressure from the solidified material liquid supply port 7 of the swivel 6 and is supplied to the solidified material liquid injection nozzle 11 via the passage 7 a and the solidified material liquid supply passage 4, and the air is supplied to the swivel 6. High pressure is supplied from the port 8 and supplied to the air injection nozzle 12 through the passage 8 a and the air supply passage 5.

1 地盤改良用注入管
2 内管
3 外管
4 固化材液供給通路
5 エア供給通路
6 スイベル
7 固化材液供給口
8 エア供給口
9 モニター機構
10 噴射ノズル
11 固化材液噴射ノズル
12 エア噴射ノズル

DESCRIPTION OF SYMBOLS 1 Ground improvement injection pipe 2 Inner pipe 3 Outer pipe 4 Solidification material liquid supply path 5 Air supply path 6 Swivel 7 Solidification material liquid supply port 8 Air supply port 9 Monitor mechanism 10 Injection nozzle 11 Solidification material liquid injection nozzle 12 Air injection nozzle

Claims (13)

噴射ノズルが設けられたモニター機構を下部に有し、該モニター機構の噴射ノズルは、固化材液噴射ノズルが中心に位置し、その外側にエア噴射ノズルが同心的に二重ノズルの格好で設けられ、固化材液噴射ノズルから噴射する固化材液の周囲に同時に同方向にエアが噴射可能となっている地盤改良用注入管であり、該注入管の上部にスイベルを連結し、この注入管を地上から地盤中の所定深度まで挿入し、その後スイベルより固化材液およびエアを高圧供給し、注入管下部のモニター機構の固化材液噴射ノズルおよびエア噴射ノズルより固化材液およびエアを噴射しつつ注入管を回転させて引き上げることにより、固化材液およびエアの噴射力で、周囲の地盤を切削し、その切削領域に固化材液を注入して地盤改良体を築造する地盤改良用注入管であって、
該注入管のモニター機構の噴射ノズルは、複数を組として、その互いの噴射方向の中心軸を平行して設けたことを特徴とする地盤改良用注入管。
There is a monitor mechanism provided with an injection nozzle at the bottom, the injection nozzle of the monitor mechanism is located at the center of the solidified material liquid injection nozzle, and the air injection nozzle is concentrically provided on the outside of it as a double nozzle An injection pipe for ground improvement in which air can be jetted simultaneously in the same direction around the solidification liquid ejected from the solidification liquid jet nozzle, and a swivel is connected to the upper part of the injection pipe. Is inserted from the ground to a predetermined depth in the ground, and then the solidified material liquid and air are supplied from the swivel at high pressure, and the solidified material liquid and air are ejected from the solidified material liquid injection nozzle and air injection nozzle of the monitor mechanism at the bottom of the injection pipe. While rotating the injection tube while pulling up, the surrounding ground is cut by the solidified material liquid and air injection force, and the ground improvement body is built by injecting the solidified material liquid into the cutting area A pipe,
An injection pipe for ground improvement, characterized in that a plurality of injection nozzles of the monitoring mechanism of the injection pipe are provided in parallel and the central axes of the injection directions are parallel to each other.
前記注入管は、内管と外管の二重管で、内管内が固化材液供給通路となり、内管と外管との間がエア供給通路となっており、固化材液供給通路がモニター機構の固化材液噴射ノズルに連通し、エア供給通路がエア噴射ノズルに連通していることを特徴とする請求項1記載の地盤改良用注入管。   The injection pipe is a double pipe of an inner pipe and an outer pipe. The inner pipe serves as a solidified material liquid supply passage, and the space between the inner tube and the outer pipe serves as an air supply passage. The solidified material liquid supply passage is monitored. 2. The ground improvement injection pipe according to claim 1, wherein the solidification material liquid injection nozzle communicates with the mechanism, and the air supply passage communicates with the air injection nozzle. 前記モニター機構の噴射ノズルは、噴射ノズルの組が、水平円周方向の対称位置に設けられていることを特徴とする請求項1または2記載の地盤改良用注入管。   3. The ground improvement injection pipe according to claim 1, wherein the spray nozzle of the monitoring mechanism has a pair of spray nozzles provided at symmetrical positions in the horizontal circumferential direction. 前記モニター機構の噴射ノズルの組は、噴射ノズルが水平円周方向に複数並列して組となっていることを特徴とする請求項1乃至3のいずれか1項に記載の地盤改良用注入管。   4. The ground improvement injection pipe according to claim 1, wherein a plurality of spray nozzles are arranged in parallel in a horizontal circumferential direction as a set of spray nozzles of the monitoring mechanism. 5. . 前記モニター機構の噴射ノズルの組は、噴射ノズルが上下方向に複数並列して組となっていることを特徴とする請求項1乃至3のいずれか1項に記載の地盤改良用注入管。   4. The ground improvement injection pipe according to claim 1, wherein a plurality of spray nozzles are arranged in parallel in the vertical direction as a set of spray nozzles of the monitoring mechanism. 5. 前記モニター機構の噴射ノズルの組は、噴射ノズルが上下方向に複数並列して組となっており、この組の噴射ノズルが水平円周方向の対称位置に設けられ、一方側の組の噴射ノズルと他方側の対称位置の組の噴射ノズルとが、互いに上下に位置がずれて設けられていることを特徴とする請求項1、2、3および5のいずれか1項に記載の地盤改良用注入管。   The set of spray nozzles of the monitoring mechanism is a set of a plurality of spray nozzles arranged in parallel in the vertical direction, and this set of spray nozzles is provided at a symmetrical position in the horizontal circumferential direction, and one set of spray nozzles The ground-improving jet nozzle according to any one of claims 1, 2, 3, and 5, wherein the jet nozzles having a symmetrical position on the other side are provided so as to be displaced from each other vertically. Injection tube. 前記モニター機構の噴射ノズルの組は、噴射ノズルが斜め上下に複数並列して組となっていることを特徴とする請求項1乃至3のいずれか1項に記載の地盤改良用注入管。   4. The ground improvement injection pipe according to claim 1, wherein a plurality of the injection nozzles of the monitoring mechanism are arranged in a diagonally parallel manner. 5. 前記モニター機構の噴射ノズルは、噴射ノズルの組が、水平円周方向の対称位置に設けられ、一方側が水平円周方向に複数並列した組であり、他方側の対称位置が上下に複数並列した組であることを特徴とする請求項1乃至3のいずれか1項に記載の地盤改良用注入管。   The injection nozzle of the monitoring mechanism is a set in which a set of injection nozzles are provided at symmetrical positions in the horizontal circumferential direction, a plurality of one side are arranged in parallel in the horizontal circumferential direction, and a plurality of symmetrical positions on the other side are arranged in parallel vertically. The ground improvement injection pipe according to any one of claims 1 to 3, wherein the injection pipe is a set. 前記モニター機構の噴射ノズルは、噴射ノズルの組が、水平円周方向の対称位置に設けられ、一方側が水平円周方向に複数並列した組であり、他方側の対称位置が斜め上下に複数並列した組であることを特徴とする請求項1乃至3のいずれか1項に記載の地盤改良用注入管。   The spray nozzle of the monitor mechanism is a set in which a set of spray nozzles are provided at symmetrical positions in the horizontal circumferential direction, and a plurality of one side are arranged in parallel in the horizontal circumferential direction, and a plurality of symmetrical positions on the other side are arranged in parallel diagonally up and down. The ground improvement injection pipe according to any one of claims 1 to 3, wherein the ground improvement pipe is a set. 前記モニター機構の噴射ノズルは、噴射ノズルの組が、水平円周方向の対称位置に設けられ、一方側が上下に複数並列した組であり、他方側の対称位置が斜め上下に複数並列した組であることを特徴とする請求項1乃至3のいずれか1項に記載の地盤改良用注入管。   The spray nozzle of the monitor mechanism is a set in which a set of spray nozzles is provided at a symmetrical position in the horizontal circumferential direction, and a plurality of one side are vertically aligned in parallel and a plurality of symmetrical positions on the other side are obliquely vertically aligned in parallel. The ground improvement injection pipe according to any one of claims 1 to 3, wherein the injection pipe is provided. 前記モニター機構の噴射ノズルは、水平円周方向の対称位置に設けられ、少なくとも対称位置のいずれか一方側の噴射ノズルは、複数を組としてその互いの噴射方向の中心軸を平行して設け、かつ噴射ノズルは対称位置で噴射ノズルの数および噴射ノズルの口径を異にするが、相対する噴射反力は近似値になるよう設定されていることを特徴とする請求項1乃至3のいずれか1項に記載の地盤改良用注入管。   The injection nozzle of the monitor mechanism is provided at a symmetrical position in the horizontal circumferential direction, and at least one of the injection nozzles at the symmetrical position is provided in parallel with the central axis in the injection direction of each other as a set, The injection nozzles are different in the number of injection nozzles and the diameter of the injection nozzles at symmetrical positions, but the opposing injection reaction force is set to be an approximate value. The ground improvement injection pipe according to item 1. 前記モニター機構の組の噴射ノズルは、噴射ノズルの噴射中心軸間の間隔が、5〜10cmの間隔で並び組となっていることを特徴とする請求項1乃至11のいずれか1項に記載の地盤改良用注入管。   The spray nozzles of the set of the monitor mechanisms are arranged in a line with a spacing between spray center axes of the spray nozzles of 5 to 10 cm. Injection pipe for ground improvement. 前記モニター機構の噴射ノズルは、噴射角度を水平方向より斜め下方に5度〜10度傾斜させたことを特徴とする請求項1乃至12のいずれか1項に記載の地盤改良用注入管。   The injection nozzle for ground improvement according to any one of claims 1 to 12, wherein the injection nozzle of the monitor mechanism is inclined at an angle of 5 to 10 degrees obliquely downward from the horizontal direction.
JP2010005410A 2010-01-14 2010-01-14 Ground improvement injection pipe Active JP5548942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010005410A JP5548942B2 (en) 2010-01-14 2010-01-14 Ground improvement injection pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010005410A JP5548942B2 (en) 2010-01-14 2010-01-14 Ground improvement injection pipe

Publications (2)

Publication Number Publication Date
JP2011144539A true JP2011144539A (en) 2011-07-28
JP5548942B2 JP5548942B2 (en) 2014-07-16

Family

ID=44459621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010005410A Active JP5548942B2 (en) 2010-01-14 2010-01-14 Ground improvement injection pipe

Country Status (1)

Country Link
JP (1) JP5548942B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167750A (en) * 2018-03-23 2019-10-03 ライト工業株式会社 High pressure injection and stirring method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841859A (en) * 1994-08-03 1996-02-13 Chem Grouting Co Ltd Soil improvement method
JP2006336256A (en) * 2005-05-31 2006-12-14 Eikou Sangyo Kk Jet mixing method and jet mixing apparatus
JP2008285811A (en) * 2007-05-15 2008-11-27 Nit:Kk Method of injecting ground hardener and device therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841859A (en) * 1994-08-03 1996-02-13 Chem Grouting Co Ltd Soil improvement method
JP2006336256A (en) * 2005-05-31 2006-12-14 Eikou Sangyo Kk Jet mixing method and jet mixing apparatus
JP2008285811A (en) * 2007-05-15 2008-11-27 Nit:Kk Method of injecting ground hardener and device therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167750A (en) * 2018-03-23 2019-10-03 ライト工業株式会社 High pressure injection and stirring method
JP7058154B2 (en) 2018-03-23 2022-04-21 ライト工業株式会社 High-pressure injection stirring method

Also Published As

Publication number Publication date
JP5548942B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5712144B2 (en) Equipment for down-the-hole hammer drill used in soil fortification by jet grouting method
JP5774147B2 (en) Blow-type drilling fluid injection device and high-pressure injection ground improvement method
JP2009280966A (en) Steel pipe pile and construction method therefor
JP3884026B2 (en) Quick setting agent injection device using high-speed jet fluid
JP6236632B2 (en) Ground improvement device and ground improvement method
KR101028218B1 (en) Jet-propelled rotational tube for grouting and jet-propelled rotational device for the same
JP2019027238A (en) High-pressure injection device
JP5717148B2 (en) Underground consolidated body construction method
JP5548942B2 (en) Ground improvement injection pipe
CN212898473U (en) Jet suction joint for drilling
JP2016006260A5 (en) Ground improvement device and ground improvement method
JP2012021275A (en) Soil improvement method and monitor mechanism used in the same
CN203783497U (en) Fragment-cleaning tool for drillable bridge plug for oil-gas well
JP2010084495A (en) Soil improvement method, and soil stabilization material
JP2014015731A (en) Nozzle head for high-pressure water drilling
JP2016075040A (en) Ground improvement method
JP6271240B2 (en) Ground improvement method and apparatus
JP2008069549A (en) Equipment and construction method for creating underground consolidation body
JP5734601B2 (en) Ground improvement method and equipment
JP2008081942A (en) Construction method for water passage portion of underground wall
JP5716198B2 (en) Ground improvement injection device
JP5573235B2 (en) Jet agitator and ground improvement method
JP2017106265A (en) High-pressure jet mixing method and soil improvement equipment for use in the same
JP5250729B2 (en) Underground consolidated body construction method and underground solid body creation device for creating a solid body using the method
JP7209683B2 (en) soil improvement equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R150 Certificate of patent or registration of utility model

Ref document number: 5548942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250