JP2011142460A - Method of automatically adjusting filter characteristic - Google Patents

Method of automatically adjusting filter characteristic Download PDF

Info

Publication number
JP2011142460A
JP2011142460A JP2010001419A JP2010001419A JP2011142460A JP 2011142460 A JP2011142460 A JP 2011142460A JP 2010001419 A JP2010001419 A JP 2010001419A JP 2010001419 A JP2010001419 A JP 2010001419A JP 2011142460 A JP2011142460 A JP 2011142460A
Authority
JP
Japan
Prior art keywords
adjustment
filter
characteristic
amplitude
adjusted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010001419A
Other languages
Japanese (ja)
Other versions
JP5413841B2 (en
Inventor
Koichi Miyamoto
幸一 宮本
Koichi Ichige
弘一 市毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dengyo Kosaku Co Ltd
Yokohama National University NUC
Original Assignee
Nihon Dengyo Kosaku Co Ltd
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dengyo Kosaku Co Ltd, Yokohama National University NUC filed Critical Nihon Dengyo Kosaku Co Ltd
Priority to JP2010001419A priority Critical patent/JP5413841B2/en
Publication of JP2011142460A publication Critical patent/JP2011142460A/en
Application granted granted Critical
Publication of JP5413841B2 publication Critical patent/JP5413841B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of automatically adjusting filter characteristics that allows an automatic adjustment of a frequency adjustment screw or a coupling amount adjustment screw of a filter without involving a manual adjustment. <P>SOLUTION: A filter with the reflection properties preliminarily adjusted to predetermined ones is prepared, and an amount of phase and an amount of amplitude of the reflection properties of the adjusted filter are measured. Then, a plurality of adjusted frequency adjustment screws and a plurality of adjusted coupling amount adjustment screws in the adjusted filter, except for the last one of each, are rotated and transferred one by one at a time sequentially from the output terminal side toward the input terminal side so as to be turned into a non-adjusted state, and under this condition, an amount of phase and an amount of amplitude of the reflection properties are measured. Thereafter, the plurality of frequency adjustment screws in a non-adjusted state and the plurality of coupling amount adjustment screws in a non-adjusted state in the filter for adjustment are rotated and transferred one by one sequentially from the input terminal side toward the output terminal side so as to adjust the positions of the screws so that a square error of phase with respect to the previously measured amount of phase may be minimum. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、フィルタ特性自動調整方法に係わり、特に、複数の周波数調整ネジと複数の結合量調整ネジとを有する帯域通過フィルタなどの反射特性を自動的に調整する技術に関する。   The present invention relates to a filter characteristic automatic adjustment method, and more particularly, to a technique for automatically adjusting reflection characteristics of a band-pass filter having a plurality of frequency adjustment screws and a plurality of coupling amount adjustment screws.

一般に、同軸共振器形、誘電体共振器形の帯域通過フィルタ(以下、単に、BPFという。)等では、製造誤差などの原因により、フィルタ特性が設計値よりずれる場合がある。そのため、同軸共振器形、誘電体共振器形のBPF等では、各同軸共振器の共振周波数を調整する周波数調整ネジと、各共振器間の結合量を調整する結合量調整ネジを備え、これらのネジを調整することにより、フィルタ特性(反射特性、透過特性)を設計値に近づくように調整している。   In general, in a coaxial resonator type, dielectric resonator type band-pass filter (hereinafter simply referred to as BPF) or the like, the filter characteristics may be deviated from a design value due to a manufacturing error or the like. Therefore, coaxial resonator type, dielectric resonator type BPF, etc. are provided with a frequency adjusting screw for adjusting the resonance frequency of each coaxial resonator and a coupling amount adjusting screw for adjusting the coupling amount between the resonators. By adjusting the screws, the filter characteristics (reflection characteristics, transmission characteristics) are adjusted to approach the design values.

特許2000−114809号公報Japanese Patent No. 2000-114809

しかしながら、周波数調整ネジの調整、あるいは、結合量調整ネジの調整は、熟練度の高い作業者の手作業によって行われるため、周波数調整ネジ、あるいは、結合量調整ネジの調整は手間がかかるという問題点があった。
本発明は、前記従来技術の問題点を解決するためになされたものであり、本発明の目的は、フィルタの周波数調整ネジの調整、あるいは、結合量調整ネジの調整を、手作業の調整によることなく自動的に行うことができるフィルタ特性自動調整方法を提供することにある。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述及び添付図面によって明らかにする。
However, since adjustment of the frequency adjustment screw or adjustment of the coupling amount adjustment screw is performed manually by a highly skilled worker, adjustment of the frequency adjustment screw or coupling amount adjustment screw is troublesome. There was a point.
The present invention has been made to solve the problems of the prior art, and an object of the present invention is to adjust the frequency adjustment screw of the filter or the adjustment of the coupling amount adjustment screw by manual adjustment. An object of the present invention is to provide a filter characteristic automatic adjustment method that can be automatically performed without any problem.
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、下記の通りである。
(1)複数の周波数調整ネジと、複数の結合量調整ネジとを有するフィルタのフィルタ特性自動調整方法であって、初期設定ステップと、特性調整ステップとを有し、前記初期設定ステップは、前記複数の周波数調整ネジと前記複数の結合量調整ネジとを調整し、反射特性を予め所定の特性に調整済みのフィルタを用意し、前記調整済みのフィルタの中心周波数を含む所定の周波数帯域内の第1ないし第nの周波数の前記調整済みのフィルタの反射特性の位相量と振幅量を測定するステップ1と、前記調整済みのフィルタにおける前記調整済みの複数の周波数調整ネジと前記調整済みの複数の結合量調整ネジについて、出力端子側から入力端子側に向かって最後の一本を除いて順次一本ずつ回転・移動させて非調整状態とした状態で、前記第1ないし第nの周波数の反射特性の位相量と振幅量を測定するステップ2とを有し、前記特性調整ステップは、フィルタ特性を調整する調整用のフィルタを用意するステップ3と、前記調整用のフィルタにおける未調整状態の複数の周波数調整ネジと未調整状態の複数の結合量調整ネジについて、入力端子側から出力端子側に向かって順次一本ずつ回転・移動させて、前記第1ないし第nの周波数の反射特性の位相量を測定し、前記初期設定ステップで測定した位相量との位相2乗誤差が最小になるように、ネジ位置を調整するステップ4とを有する。
Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
(1) A filter characteristic automatic adjustment method for a filter having a plurality of frequency adjustment screws and a plurality of coupling amount adjustment screws, comprising: an initial setting step; and a characteristic adjustment step. A plurality of frequency adjusting screws and the plurality of coupling amount adjusting screws are adjusted to prepare a filter whose reflection characteristic is adjusted in advance to a predetermined characteristic, and within a predetermined frequency band including a center frequency of the adjusted filter. Measuring a phase amount and an amplitude amount of a reflection characteristic of the adjusted filter at the first to n-th frequencies, the plurality of adjusted frequency adjusting screws and the adjusted plurality of frequencies in the adjusted filter; For the coupling amount adjusting screw of the above, in the state in which the screw is rotated and moved sequentially one by one except for the last one from the output terminal side to the input terminal side, Or measuring the phase amount and the amplitude amount of the reflection characteristic of the nth frequency, and the characteristic adjustment step includes a step 3 of preparing an adjustment filter for adjusting the filter characteristic, and the adjustment The plurality of unadjusted frequency adjustment screws and the unadjusted coupling amount adjustment screws in the filter are sequentially rotated and moved one by one from the input terminal side to the output terminal side, and the first to nth And a step 4 of adjusting the screw position so that a phase square error with the phase amount measured in the initial setting step is minimized.

(2)前記特性調整ステップは、前記ステップ4の後に、少なくとも一回、前記調整用のフィルタにおける複数の周波数調整ネジと複数の結合量調整ネジについて、入力端子側から出力端子側に向かって順次一本ずつ回転・移動させて、前記第1ないし第nの周波数の反射特性の振幅量を測定し、理想フィルタの反射特性の振幅量との振幅2乗誤差が最小になるように、ネジ位置を調整するステップ5を有する。
(3)前記特性調整ステップは、前記ステップ5の後に、少なくとも一回、前記調整用のフィルタにおける複数の周波数調整ネジと複数の結合量調整ネジについて、入力端子側から出力端子側に向かって順次一本ずつ回転・移動させて、前記第1ないし第nの周波数の反射特性の振幅量を測定し、前述理想フィルタの反射特性の振幅量との振幅4乗誤差が最小になるように、ネジ位置を調整するステップ6を有する。
(2) In the characteristic adjustment step, after the step 4, at least once, the plurality of frequency adjustment screws and the plurality of coupling amount adjustment screws in the adjustment filter are sequentially applied from the input terminal side to the output terminal side. Rotate and move one by one to measure the amplitude of the reflection characteristics of the first to nth frequencies, so that the square error of amplitude with the amplitude of the reflection characteristics of the ideal filter is minimized. Step 5 is adjusted.
(3) In the characteristic adjustment step, after the step 5, at least once, the plurality of frequency adjustment screws and the plurality of coupling amount adjustment screws in the adjustment filter are sequentially applied from the input terminal side to the output terminal side. Rotate and move one by one to measure the amount of amplitude of the reflection characteristics of the first to nth frequencies, so that the fourth power error from the amplitude of the reflection characteristic of the ideal filter is minimized. Step 6 for adjusting the position is included.

本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば、下記の通りである。
本発明によれば、フィルタの周波数調整ネジの調整、あるいは、結合量調整ネジの調整を、手作業の調整によることなく自動的に行うことが可能となる。
The effects obtained by the representative ones of the inventions disclosed in the present application will be briefly described as follows.
According to the present invention, the adjustment of the frequency adjusting screw of the filter or the adjustment of the coupling amount adjusting screw can be automatically performed without manual adjustment.

本発明の実施例のフィルタ特性自動調整方法の対象となる帯域通過フィルタを説明するための図であり、同軸共振器の軸長方向と直交する方向に沿った断面構造を示す要部模式断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure for demonstrating the bandpass filter used as the object of the filter characteristic automatic adjustment method of the Example of this invention, and is principal part schematic cross section which shows the cross-section along the direction orthogonal to the axial length direction of a coaxial resonator It is. 図1のA−A’切断線に沿った断面構造を示す要部模式断面図である。It is a principal part schematic cross section which shows the cross-section along an A-A 'cutting line of FIG. 図1のB−B’切断線に沿った断面構造を示す要部模式断面図である。It is a principal part schematic cross section which shows the cross-section along a B-B 'cutting line of FIG. 本発明の実施例のフィルタ特性自動調整方法における、初期設定により得られるデータを説明するためのグラフである。It is a graph for demonstrating the data obtained by the initial setting in the filter characteristic automatic adjustment method of the Example of this invention. 本発明の実施例のフィルタ特性自動調整方法における、フィルタ特性調整1により得られる反射特性の位相特性を説明するためのグラフである。It is a graph for demonstrating the phase characteristic of the reflective characteristic obtained by the filter characteristic adjustment 1 in the filter characteristic automatic adjustment method of the Example of this invention. 本発明の実施例のフィルタ特性自動調整方法における、フィルタ特性調整1により得られる反射特性の位相特性を説明するためのグラフである。It is a graph for demonstrating the phase characteristic of the reflective characteristic obtained by the filter characteristic adjustment 1 in the filter characteristic automatic adjustment method of the Example of this invention. 本発明の実施例のフィルタ特性自動調整方法におけるフィルタ特性調整1の、コンピュータ制御の処理手順を示すフローチャートを示す図である。It is a figure which shows the flowchart which shows the process sequence of the computer control of the filter characteristic adjustment 1 in the filter characteristic automatic adjustment method of the Example of this invention. 本発明の実施例のフィルタ特性自動調整方法における、フィルタ特性調整1終了後のBPFの反射特性の振幅特性の一例を示すグラフである。It is a graph which shows an example of the amplitude characteristic of the reflection characteristic of BPF after completion | finish of filter characteristic adjustment 1 in the filter characteristic automatic adjustment method of the Example of this invention. 本発明の実施例のフィルタ特性自動調整方法における、フィルタ特性調整1終了後のBPFの反射特性の位相特性の一例を示すグラフである。It is a graph which shows an example of the phase characteristic of the reflective characteristic of BPF after completion | finish of filter characteristic adjustment 1 in the filter characteristic automatic adjustment method of the Example of this invention. 本発明の実施例のフィルタ特性自動調整方法におけるフィルタ特性調整2の、コンピュータ制御の処理手順を示すフローチャートを示す図である。It is a figure which shows the flowchart which shows the process sequence of the computer control of the filter characteristic adjustment 2 in the filter characteristic automatic adjustment method of the Example of this invention. 本発明の実施例のフィルタ特性自動調整方法における、フィルタ特性調整2終了後のBPFの反射特性の振幅特性の一例を示すグラフである。It is a graph which shows an example of the amplitude characteristic of the reflection characteristic of BPF after completion | finish of filter characteristic adjustment 2 in the filter characteristic automatic adjustment method of the Example of this invention. 本発明の実施例のフィルタ特性自動調整方法におけるフィルタ特性調整3の、コンピュータ制御の処理手順を示すフローチャートを示す図である。It is a figure which shows the flowchart which shows the process sequence of the computer control of the filter characteristic adjustment 3 in the filter characteristic automatic adjustment method of the Example of this invention. 本発明の実施例のフィルタ特性自動調整方法における、フィルタ特性調整3終了後のBPFの反射特性の振幅特性の一例を示すグラフである。It is a graph which shows an example of the amplitude characteristic of the reflection characteristic of BPF after completion | finish of filter characteristic adjustment 3 in the filter characteristic automatic adjustment method of the Example of this invention.

以下、図面を参照して本発明の実施例を詳細に説明する。
なお、実施例を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
[本発明の実施例のフィルタ特性自動調整方法の対象となる帯域通過フィルタの説明]
図1は、本発明の実施例のフィルタ特性自動調整方法の対象となる帯域通過フィルタ(以下、BPFという)を説明するための図であり、同軸共振器の軸長方向と直交する方向に沿った断面構造を示す模式断面図である。
図2は、図1のA−A’切断線に沿った断面構造を示す模式断面図であり、図3は、図1のB−B’切断線に沿った断面構造を示す模式断面図である。
図1ないし図3において、1は外部導体、2は内壁、3は入力端子、4は出力端子、9は結入力(または出力)結合ループ、10a〜10fは1/4同軸共振器、11a,11b,11c,11d,11e,11fは周波数調整ネジ、12ab,12bc,12cd,12de,12efは結合量調整ネジ、15は結合窓である。
図1ないし図3に示すBPFは、外部導体1内に、6個の同軸共振器(10a〜10f)を有する6段構成の帯域フィルタである。
図1ないし図3において、外部導体1は、内壁2により区分けされており、この区分けされた部分に、6個の同軸共振器(10a〜10f)が配置される。
各同軸共振器(10a〜10f)には、それぞれ周波数調整ネジ(11a〜11f)が設けられており、この周波数調整ネジ(11a〜11f)を回転させることにより、各同軸共振器(10a〜10f)の共振周波数を調整することができる。
また、図3に示すように、各同軸共振器(10a〜10f)間の内壁2(入力端子3から出力端子4に沿った方向の内壁)には、結合窓15が形成されており、さらに、この結合窓15には、結合量調整ネジ(12ab〜12ef)が挿入されている。この結合量調整ネジ(12ab〜12ef)を回転させることにより、各同軸共振器(10a〜10f)間の磁気結合量を調整することができる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In all the drawings for explaining the embodiments, parts having the same functions are given the same reference numerals, and repeated explanation thereof is omitted.
[Description of Bandpass Filter Subject to Automatic Filter Characteristic Adjustment Method of Embodiment of Present Invention]
FIG. 1 is a diagram for explaining a band-pass filter (hereinafter referred to as BPF) that is an object of an automatic filter characteristic adjustment method according to an embodiment of the present invention, along a direction orthogonal to the axial length direction of the coaxial resonator. 2 is a schematic cross-sectional view showing a cross-sectional structure.
2 is a schematic cross-sectional view showing a cross-sectional structure taken along the line AA ′ of FIG. 1, and FIG. 3 is a schematic cross-sectional view showing a cross-sectional structure taken along the line BB ′ of FIG. is there.
1 to 3, 1 is an outer conductor, 2 is an inner wall, 3 is an input terminal, 4 is an output terminal, 9 is a connection input (or output) coupling loop, 10a to 10f are 1/4 coaxial resonators, 11a, 11b, 11c, 11d, 11e, and 11f are frequency adjusting screws, 12ab, 12bc, 12cd, 12de, and 12ef are coupling amount adjusting screws, and 15 is a coupling window.
The BPF shown in FIGS. 1 to 3 is a band filter having a six-stage configuration having six coaxial resonators (10a to 10f) in the outer conductor 1. FIG.
1 to 3, the outer conductor 1 is divided by an inner wall 2, and six coaxial resonators (10 a to 10 f) are arranged in the divided portion.
Each coaxial resonator (10a to 10f) is provided with a frequency adjusting screw (11a to 11f). By rotating the frequency adjusting screw (11a to 11f), each coaxial resonator (10a to 10f) is rotated. ) Resonance frequency can be adjusted.
As shown in FIG. 3, a coupling window 15 is formed on the inner wall 2 (inner wall in the direction from the input terminal 3 to the output terminal 4) between the coaxial resonators (10a to 10f). The coupling window 15 is inserted with coupling amount adjusting screws (12ab to 12ef). The amount of magnetic coupling between the coaxial resonators (10a to 10f) can be adjusted by rotating the coupling amount adjusting screw (12ab to 12ef).

以下、本発明の実施例のフィルタ特性自動調整方法について説明する。
本実施例のフィルタ特性自動調整方法では、反射特性と透過特性とを最適化する。実際は、反射特性を最適化すれば、透過特性も最適化される。そこで、本実施例のフィルタ特性自動調整方法では、反射特性を最適化する。
本実施例のフィルタ特性自動調整方法は、初期設定と、フィルタ特性調整1と、フィルタ特性調整2と、フィルタ特性調整3との手順で実行される。
以下、各手順毎に説明する。
(1)初期設定
この初期設定では、所望のフィルタ特性に調整済みのBPFを用意し、データ(振幅特性と位相特性)を測定した後、周波数調整ネジと結合量調整ネジを、一つずつ回転・移動させて非調整状態のデータを測定する。即ち、初めに、所望のフィルタ特性に調整済みのBPFを用意し、第1ないし第nの周波数(ここでは、約1600の周波数)毎の反射特性の振幅特性と、反射特性の位相特性を測定する。
次に、出力端子4に最も近い周波数調整ネジ11fを回転・移動し、周波数調整ネジ11fを非調整状態として、第1ないし第nの周波数毎の反射特性の振幅特性と位相特性を測定する。なお、本実施例において、周波数調整ネジの非調整状態とは、周波数調整ネジを、調整状態の位置から外部導体1の内部に埋め込んだ状態をさす。
次に、出力端子4に次に近い結合量調整ネジ12efを回転・移動し、結合量調整ネジ12efを非調整状態として、第1ないし第nの周波数毎の反射特性の振幅特性と位相特性を測定する。なお、本実施例において、結合量調整ネジの非調整状態とは、結合量調整ネジを調整状態の位置から外部導体1の外部に向けて回転移動させた状態をさす。
前述した処理を、全ての周波数調整ネジ、全ての結合量調整ネジについて、出力端子4から入力端子3の方向に向かって、最後の1本を除いて順次実行する。
The filter characteristic automatic adjustment method according to the embodiment of the present invention will be described below.
In the filter characteristic automatic adjustment method of this embodiment, the reflection characteristic and the transmission characteristic are optimized. Actually, if the reflection characteristic is optimized, the transmission characteristic is also optimized. Therefore, in the filter characteristic automatic adjustment method of this embodiment, the reflection characteristic is optimized.
The filter characteristic automatic adjustment method of the present embodiment is executed in the sequence of initial setting, filter characteristic adjustment 1, filter characteristic adjustment 2, and filter characteristic adjustment 3.
Hereinafter, each procedure will be described.
(1) Initial setting In this initial setting, a BPF that has been adjusted to the desired filter characteristics is prepared, data (amplitude characteristics and phase characteristics) are measured, and then the frequency adjustment screw and coupling amount adjustment screw are rotated one by one. -Move and measure the data in the unadjusted state. That is, first, a BPF adjusted to a desired filter characteristic is prepared, and the amplitude characteristic of the reflection characteristic and the phase characteristic of the reflection characteristic are measured for each of the first to nth frequencies (here, about 1600 frequencies). To do.
Next, the frequency adjustment screw 11f closest to the output terminal 4 is rotated and moved, and the frequency adjustment screw 11f is set in an unadjusted state, and the amplitude characteristic and the phase characteristic of the reflection characteristic for each of the first to nth frequencies are measured. In the present embodiment, the non-adjusted state of the frequency adjusting screw refers to a state in which the frequency adjusting screw is embedded in the outer conductor 1 from the position of the adjusted state.
Next, the coupling amount adjusting screw 12ef closest to the output terminal 4 is rotated and moved, and the coupling amount adjusting screw 12ef is set in an unadjusted state, and the amplitude characteristic and the phase characteristic of the reflection characteristic for each of the first to nth frequencies are obtained. taking measurement. In the present embodiment, the non-adjusted state of the coupling amount adjusting screw refers to a state in which the coupling amount adjusting screw is rotated and moved from the position of the adjusted state toward the outside of the external conductor 1.
The above-described processing is sequentially executed for all frequency adjustment screws and all coupling amount adjustment screws from the output terminal 4 toward the input terminal 3 except for the last one.

図4は、前述の初期設定により得られるデータを説明するためのグラフである。図4のグラフにおいて、上段は、反射特性の振幅特性を、下段は、反射特性の位相特性を示す。なお、図4に示す振幅特性において、縦軸は、減衰量(dB)であり、また、横軸は、正規化周波数{(f/fo);foはBPFの設計中心周波数}であり、設計中心周波数(fo)に対する周波数の増減量を示す。同様に、図4に示す位相特性において、縦軸は、位相量(deg)であり、また、横軸は、正規化周波数(f/fo)であり、設計中心周波数(fo)に対する周波数の増減量を示す。
図4(a)は、所望のフィルタ特性に調整済みのBPFの反射特性の振幅特性と位相特性である。
図4(b)は、所望のフィルタ特性に調整済みのBPFにおいて、周波数調整ネジ(11a〜11f)と結合量調整ネジ(12ab〜12ef)の中の2つのネジを未調整状態にした時の反射特性の振幅特性と位相特性である。
同様に、図4(c)は、所望のフィルタ特性に調整済みのBPFにおいて、周波数調整ネジ(11a〜11f)と結合量調整ネジ(12ab〜12ef)の中の4つのネジを未調整状態にした時の反射特性の振幅特性と位相特性であり、図4(d)は、所望のフィルタ特性に調整済みのBPFにおいて、最後の一本を除いて全ての周波数調整ネジと結合量調整ネジを未調整状態にした時の反射特性の振幅特性と位相特性である。
なお、この初期設定において、ネジを未調整状態にする順番は、11f→12ef→11e→12de→11d→12cd→11c→12bc→11b→12ab→11aの順番でも、11f→11e→12ef→11d→12de→11c→12cd→11b→12bc→11a→12abの順番でもよい。
FIG. 4 is a graph for explaining data obtained by the above-described initial setting. In the graph of FIG. 4, the upper part shows the amplitude characteristic of the reflection characteristic, and the lower part shows the phase characteristic of the reflection characteristic. In the amplitude characteristics shown in FIG. 4, the vertical axis represents the attenuation (dB), and the horizontal axis represents the normalized frequency {(f / fo); fo is the design center frequency of the BPF}. The amount of increase / decrease of the frequency with respect to the center frequency (fo) is shown. Similarly, in the phase characteristics shown in FIG. 4, the vertical axis is the phase amount (deg), the horizontal axis is the normalized frequency (f / fo), and the increase / decrease of the frequency with respect to the design center frequency (fo). Indicates the amount.
FIG. 4A shows the amplitude characteristic and phase characteristic of the reflection characteristic of the BPF adjusted to the desired filter characteristic.
FIG. 4B shows a BPF that has been adjusted to a desired filter characteristic when two of the frequency adjusting screws (11a to 11f) and the coupling amount adjusting screws (12ab to 12ef) are in an unadjusted state. The amplitude characteristic and the phase characteristic of the reflection characteristic.
Similarly, FIG. 4C shows that in the BPF that has been adjusted to a desired filter characteristic, the four screws among the frequency adjustment screws (11a to 11f) and the coupling amount adjustment screws (12ab to 12ef) are in an unadjusted state. FIG. 4 (d) shows all frequency adjustment screws and coupling amount adjustment screws except for the last one in the BPF that has been adjusted to the desired filter characteristics. It is the amplitude characteristic and the phase characteristic of the reflection characteristic when it is in the unadjusted state.
In this initial setting, the order in which the screws are not adjusted is 11f → 12ef → 11e → 12de → 11d → 12cd → 11c → 12bc → 11b → 12ab → 11a and 11f → 11e → 12ef → 11d → The order may be 12de → 11c → 12cd → 11b → 12bc → 11a → 12ab.

(2)フィルタ特性調整1
このフィルタ特性調整1では、先ず、フィルタ特性を調整するBPFを用意する。このBPFは、前述の初期設定で使用したフィルタと、寸法などは同じものである。また、周波数調整ネジ(11a〜11f)と結合量調整ネジ(12ab〜12ef)は全て未調整の状態である。
このフィルタ特性調整1においては、各ネジ毎に、第1ないし第nの周波数毎の反射特性の位相特性を測定し、初期設定で取得した各ネジが調整状態のときの位相特性との位相2乗誤差を計算する。そして、位相2乗誤差が最小になる位置を、当該調整しているネジの調整位置として決定する。
このフィルタ特性調整1において、調整するネジの順番は、初期設定において、ネジを未調整状態にした順番と反対の順番とされる。例えば、初期設定において、ネジを未調整状態にした順番が、11f→12ef→11e→12de→11d→12cd→11c→12bc→11b→12ab→11aの順番であれば、このフィルタ特性調整1では、11a→12ab→11b→12bc→11c→12cd→11d→12de→11e→12ef→11fの順番とされる。
同様に、初期設定において、ネジを未調整状態にした順番が、11f→11e→12ef→11d→12de→11c→12cd→11b→12bc→11a→12abの順番であれば、このフィルタ特性調整1では、12ab→11a→12bc→11b→12cd→11c→12de→11d→12ef→11e→11fの順番とされる。
(2) Filter characteristic adjustment 1
In this filter characteristic adjustment 1, first, a BPF for adjusting the filter characteristic is prepared. This BPF has the same dimensions as the filter used in the initial setting. Further, the frequency adjusting screws (11a to 11f) and the coupling amount adjusting screws (12ab to 12ef) are all unadjusted.
In this filter characteristic adjustment 1, the phase characteristic of the reflection characteristic for each of the first to nth frequencies is measured for each screw, and the phase 2 with the phase characteristic when each screw acquired in the initial setting is in the adjusted state. Calculate the power error. Then, the position where the phase square error is minimized is determined as the adjustment position of the screw being adjusted.
In this filter characteristic adjustment 1, the order of screws to be adjusted is the order opposite to the order in which the screws are not adjusted in the initial setting. For example, in the initial setting, if the order in which the screws are not adjusted is 11f → 12ef → 11e → 12de → 11d → 12cd → 11c → 12bc → 11b → 12ab → 11a, this filter characteristic adjustment 1 11a->12ab->11b->12bc->11c->12cd->11d->12de->11e->12ef-> 11f.
Similarly, in the initial setting, if the order in which the screws are not adjusted is 11f → 11e → 12ef → 11d → 12de → 11c → 12cd → 11b → 12bc → 11a → 12ab, this filter characteristic adjustment 1 12ab → 11a → 12bc → 11b → 12cd → 11c → 12de → 11d → 12ef → 11e → 11f.

Figure 2011142460
Figure 2011142460

次に、前述の初期設定において、最後に残ったネジを除いて最後に未調整状態とされたネジを回転・移動し、第1ないし第nの周波数毎の反射特性の位相特性を測定し、初期設定で取得した最後に残ったネジと、最後に残ったネジを除いて最後に未調整状態とされたネジのみを調整状態したときの位相特性との位相2乗誤差を計算する。そして、位相2乗誤差が最小になる位置を、当該調整しているネジの調整位置として決定する。
前述した処理を、全ての周波数調整ネジ、全ての結合量調整ネジについて、出力端子4から入力端子3の方向に向かって、初期設定においてネジを未調整状態にした順番と反対の順番に実行する。
なお、このフィルタ特性調整1において、位相2乗誤差の変動が少なくなり、調整が困難となる場合は、位相2乗誤差に代えて、振幅2乗誤差を求め、この振幅2乗誤差の最小になる位置を、ネジ位置として決定する。本実施例では、このフィルタ特性調整1で最後に調整するネジ、あるいは、最後から1つ前のネジにおいては、振幅2乗誤差を求め、この振幅2乗誤差の最小になる位置を、ネジ位置として決定している。
図5、図6は、フィルタ特性調整1により得られる反射特性の位相特性を説明するためのグラフである。図5に示す位相特性において、縦軸は、位相量(deg)であり、また、横軸は、正規化周波数(f/fo)であり、設計中心周波数(fo)に対する周波数の増減量を示す。
図5は、最初のネジ(前述の初期設定において、入力端子3側で最後に残ったネジ)のネジ位置を調整した後の位相特性である。図6は、5本のネジのネジ位置を調整した後の位相特性である。なお、図5、図6において、実線(iedeal)は、初期設定で取得した反射特性の位相特性を、点線(tuned)が、ネジ位置を調整した後の反射特性の位相特性である。
Next, in the initial setting described above, the last unadjusted screw except the last remaining screw is rotated and moved, and the phase characteristics of the reflection characteristics for each of the first to nth frequencies are measured, The phase square error between the last remaining screw acquired in the initial setting and the phase characteristic when only the last unadjusted screw except the last remaining screw is adjusted is calculated. Then, the position where the phase square error is minimized is determined as the adjustment position of the screw being adjusted.
The above-described processing is executed for all frequency adjustment screws and all coupling amount adjustment screws from the output terminal 4 to the input terminal 3 in the order opposite to the order in which the screws are not adjusted in the initial setting. .
In this filter characteristic adjustment 1, when the variation of the phase square error is reduced and adjustment becomes difficult, an amplitude square error is obtained instead of the phase square error, and the amplitude square error is minimized. Is determined as the screw position. In the present embodiment, the screw squarely adjusted by the filter characteristic adjustment 1 or the screw immediately preceding from the last is obtained with an amplitude square error, and the position where the amplitude square error is minimized is determined as the screw position. As determined.
5 and 6 are graphs for explaining the phase characteristic of the reflection characteristic obtained by the filter characteristic adjustment 1. FIG. In the phase characteristics shown in FIG. 5, the vertical axis represents the phase amount (deg), and the horizontal axis represents the normalized frequency (f / fo), which indicates the amount of increase / decrease of the frequency with respect to the design center frequency (fo). .
FIG. 5 shows the phase characteristics after adjusting the screw position of the first screw (the last screw left on the input terminal 3 side in the above-described initial setting). FIG. 6 shows the phase characteristics after adjusting the screw positions of the five screws. 5 and 6, the solid line (ideal) is the phase characteristic of the reflection characteristic acquired by the initial setting, and the dotted line (tuned) is the phase characteristic of the reflection characteristic after adjusting the screw position.

このフィルタ特性調整1の処理は、ロボットを使用し、コンピュータ制御の下に実行される。図7は、このコンピュータ制御の処理手順を示すフローチャートを示す図である。以下、図7を用いて、コンピュータ制御により実行されるフィルタ特性調整1の処理手順について説明する。
初めに、調整対象ネジの調整用特性データ(初期設定で得られた位相特性、あるいは振幅特性)の読み込み(ステップ101)、次に、調整対象ネジが、周波数調整ネジか、あるいは結合量調整ネジかを判別し、ロボットを制御し、調整対象のネジをスタート位置に回転・移動する(ステップ102)。即ち、初期設定で使用した調整済みのBPFの調整対象ネジのネジ位置に近い位置に回転・移動する。
つぎに、第1ないし第nの周波数毎の現在の反射特性の位相特性を取得して位相2乗誤差を計算し、結果をErr_oldに代入する(ステップ103)。
次に、ロボットを制御し、lenの値だけ、ネジを回転・移動し、第1ないし第nの周波数毎の現在の反射特性の位相特性を取得して位相2乗誤差を計算し、結果をErr_newに代入する(ステップ104)。
次に、Err_new≧Err_oldか否かを判断し(ステップ105)、ステップ105でNoの場合(Err_new<Err_oldの場合)は、Err_oldをErr_newの値で置き換え、即ち、Err_old=Err_newとして(ステップ106)、
前述のステップ104、105を繰り返す。
また、ステップ105でYesの場合(Err_new≧Err_oldの場合)は、Err_oldをErr_newの値で置き換え、即ち、Err_old=Err_newとして(ステップ107)、lenの値に減衰係数を掛けて、掛けた値をlenとする(ステップ108)。
The processing of the filter characteristic adjustment 1 is executed using a robot and under computer control. FIG. 7 is a flowchart showing the processing procedure of this computer control. Hereinafter, the processing procedure of the filter characteristic adjustment 1 executed by computer control will be described with reference to FIG.
First, the adjustment characteristic data (phase characteristic or amplitude characteristic obtained in the initial setting) of the adjustment target screw is read (step 101). Next, the adjustment target screw is a frequency adjustment screw or a coupling amount adjustment screw. Is determined, the robot is controlled, and the screw to be adjusted is rotated and moved to the start position (step 102). That is, it rotates and moves to a position close to the screw position of the adjustment target screw of the adjusted BPF used in the initial setting.
Next, the phase characteristic of the current reflection characteristic for each of the first to nth frequencies is acquired to calculate a phase square error, and the result is substituted into Err_old (step 103).
Next, control the robot, rotate and move the screw by the value of len, obtain the phase characteristic of the current reflection characteristic for each of the first to nth frequencies, calculate the phase square error, and calculate the result Substitute for Err_new (step 104).
Next, it is determined whether or not Err_new ≧ Err_old (step 105). If No in step 105 (Err_new <Err_old), Err_old is replaced with the value of Err_new, that is, Err_old = Err_new (step 106). ,
The above steps 104 and 105 are repeated.
If Yes in step 105 (if Err_new ≧ Err_old), Err_old is replaced with the value of Err_new, that is, Err_old = Err_new (step 107), the value of len is multiplied by an attenuation coefficient, and the multiplied value is multiplied. len (step 108).

次に、lenの値は最小値以下かを判断し(ステップ109)、ステップ109でNoの場合は、前述のステップ104からの処理を繰り返す。なお、この前述のステップ104からの処理を繰り返す場合は、ロボットによる調整対象ネジの回転方向は、ステップ108までの回転方向とは逆方向とする。
また、ステップ109でYesの場合は、現在の調整対象ネジの調整を終了となり、ステップ110で、次の調整対象ネジがあるか否かを判断し、ステップ110でYesの場合(次の調整対象ネジがある場合)は、ロボットを次の調整対象ネジに移動させ(ステップ111)、前述のステップ101からの処理を繰り返す。
また、ステップ110でNoの場合(次の調整対象ネジがない場合)は、処理(フィルタ特性調整1の処理)を終了する。
図8は、フィルタ特性調整1終了後のBPFの反射特性の振幅特性の一例を示すグラフであり、図9は、フィルタ特性調整1終了後のBPFの反射特性の位相特性の一例を示すグラフである。
図8において、縦軸は減衰量(dB)であり、また、横軸は正規化周波数(f/fo)であり、設計中心周波数(fo)に対する周波数の増減量を示す。また、図9において、縦軸が位相量(deg)、横軸は正規化周波数(f/fo)であり、設計中心周波数(fo)に対する周波数の増減量を示す。
図8、図9において、実線(edeal)が、調整済みのBPFの振幅特性と位相特性を、点線(tuned)が、フィルタ特性調整1終了後のBPFの振幅特性と位相特性である。
このフィルタ特性調整1により、フィルタ特性を調整するために用意したBPFのフィルタ特性が所望の特性となった場合は、フィルタ特性を調整するための処理は終了となるが、フィルタ特性を調整するために用意したBPFのフィルタ特性が所望の特性とならない場合には、以下のフィルタ特性調整2を実行する。
Next, it is determined whether or not the value of len is equal to or smaller than the minimum value (Step 109). If No in Step 109, the processing from Step 104 described above is repeated. When the process from step 104 is repeated, the rotation direction of the adjustment target screw by the robot is opposite to the rotation direction up to step 108.
If YES in step 109, the adjustment of the current adjustment target screw is completed. In step 110, it is determined whether there is a next adjustment target screw. If YES in step 110 (next adjustment target) If there is a screw), the robot is moved to the next adjustment target screw (step 111), and the processing from step 101 described above is repeated.
If No in step 110 (when there is no next adjustment target screw), the process (the process of filter characteristic adjustment 1) is terminated.
FIG. 8 is a graph showing an example of the amplitude characteristic of the reflection characteristic of the BPF after completion of the filter characteristic adjustment 1, and FIG. 9 is a graph showing an example of the phase characteristic of the reflection characteristic of the BPF after completion of the filter characteristic adjustment 1. is there.
In FIG. 8, the vertical axis represents the attenuation (dB), and the horizontal axis represents the normalized frequency (f / fo), which indicates the amount of increase / decrease of the frequency with respect to the design center frequency (fo). In FIG. 9, the vertical axis represents the phase amount (deg), and the horizontal axis represents the normalized frequency (f / fo), which indicates the amount of increase / decrease of the frequency with respect to the design center frequency (fo).
8 and 9, the solid line (edeal) indicates the amplitude characteristic and phase characteristic of the adjusted BPF, and the dotted line (tuned) indicates the amplitude characteristic and phase characteristic of the BPF after completion of the filter characteristic adjustment 1.
When the filter characteristic of the BPF prepared for adjusting the filter characteristic becomes a desired characteristic by this filter characteristic adjustment 1, the process for adjusting the filter characteristic is ended, but the filter characteristic is adjusted. If the filter characteristics of the BPF prepared in step 1 do not become the desired characteristics, the following filter characteristic adjustment 2 is executed.

(3)フィルタ特性調整2
このフィルタ特性調整2においては、各ネジ毎に、第1ないし第nの周波数毎の反射特性の振幅特性を測定し、理想チェビシェフフィルタの反射特性の振幅特性との振幅2乗誤差を計算する。そして、振幅2乗誤差が最小になる位置を、当該調整しているネジの調整位置として決定する。
このフィルタ特性調整2において、調整するネジの順番は、初期設定において、ネジを未調整状態にした順番と反対の順番とされる。例えば、初期設定において、ネジを未調整状態にした順番が、11f→12ef→11e→12de→11d→12cd→11c→12bc→11b→12ab→11aの順番であれば、このフィルタ特性調整1では、11a→12ab→11b→12bc→11c→12cd→11d→12de→11e→12ef→11fの順番とされる。
同様に、初期設定において、ネジを未調整状態にした順番が、11f→11e→12ef→11d→12de→11c→12cd→11b→12bc→11a→12abの順番であれば、このフィルタ特性調整1では、12ab→11a→12bc→11b→12cd→11c→12de→11d→12ef→11e→11fの順番とされる。
(3) Filter characteristic adjustment 2
In this filter characteristic adjustment 2, the amplitude characteristic of the reflection characteristic for each of the first to nth frequencies is measured for each screw, and the amplitude square error with respect to the amplitude characteristic of the reflection characteristic of the ideal Chebyshev filter is calculated. Then, the position where the amplitude square error is minimized is determined as the adjustment position of the adjusting screw.
In the filter characteristic adjustment 2, the order of the screws to be adjusted is the order opposite to the order in which the screws are not adjusted in the initial setting. For example, in the initial setting, if the order in which the screws are not adjusted is 11f → 12ef → 11e → 12de → 11d → 12cd → 11c → 12bc → 11b → 12ab → 11a, this filter characteristic adjustment 1 11a->12ab->11b->12bc->11c->12cd->11d->12de->11e->12ef-> 11f.
Similarly, in the initial setting, if the order in which the screws are not adjusted is 11f → 11e → 12ef → 11d → 12de → 11c → 12cd → 11b → 12bc → 11a → 12ab, this filter characteristic adjustment 1 12ab → 11a → 12bc → 11b → 12cd → 11c → 12de → 11d → 12ef → 11e → 11f.

Figure 2011142460
Figure 2011142460

次に、前述の初期設定において、最後に残ったネジを除いて最後に未調整状態とされたネジを回転・移動し、第1ないし第nの周波数毎の反射特性の振幅特性を測定し、チェビシェフフィルタの理想反射特性の振幅特性との振幅2乗誤差を計算する。そして、振幅2乗誤差が最小になる位置を、当該調整しているネジの調整位置として決定する。
前述した処理を、全ての周波数調整ネジ、全ての結合量調整ネジについて、出力端子4から入力端子3の方向に向かって、初期設定においてネジを未調整状態にした順番と反対の順番に実行する。
Next, in the initial setting described above, the last unadjusted screw except the last remaining screw is rotated and moved, and the amplitude characteristic of the reflection characteristic for each of the first to nth frequencies is measured, An amplitude square error with the amplitude characteristic of the ideal reflection characteristic of the Chebyshev filter is calculated. Then, the position where the amplitude square error is minimized is determined as the adjustment position of the adjusting screw.
The above-described processing is executed for all frequency adjustment screws and all coupling amount adjustment screws from the output terminal 4 to the input terminal 3 in the order opposite to the order in which the screws are not adjusted in the initial setting. .

このフィルタ特性調整2の処理も、ロボットを使用し、コンピュータ制御の下に実行される。図10は、このコンピュータ制御の処理手順を示すフローチャートを示す図である。以下、図10を用いて、コンピュータ制御により実行されるフィルタ特性調整2の処理手順について説明する。
初めに、理想チェビシェフフィルタの反射特性のデータの読み込む(ステップ201)。
次に、第1ないし第nの周波数毎の現在の反射特性の振幅特性を取得して振幅2乗誤差を計算し、結果をErr_oldに代入する(ステップ202)。
次に、lenの値だけ、ロボットを制御し、ネジを回転・移動し、第1ないし第nの周波数毎の現在の反射特性の振幅特性を取得して振幅2乗誤差を計算し、結果をErr_newに代入する(ステップ203)。
次に、Err_new≧Err_oldか否かを判断し(ステップ204)、ステップ204でNoの場合(Err_new<Err_oldの場合)は、Err_oldをErr_newの値で置き換え、即ち、Err_old=Err_newとして(ステップ205)、
前述のステップ203、204を繰り返す。
また、ステップ204でYesの場合(Err_new≧Err_oldの場合)は、Err_oldをErr_newの値で置き換え、即ち、Err_old=Err_newとして(ステップ206)、lenの値に減衰係数を掛けて、掛けた値をlenとする(ステップ207)。
次に、lenの値は最小値以下かを判断し(ステップ208)、ステップ208でNoの場合は、前述のステップ204からの処理を繰り返す。なお、この前述のステップ204からの処理を繰り返す場合は、調整対象ネジの回転方向は、ステップ207までの回転方向とは逆方向とする。
The processing of the filter characteristic adjustment 2 is also executed under computer control using a robot. FIG. 10 is a flowchart showing the computer-controlled processing procedure. Hereinafter, the processing procedure of the filter characteristic adjustment 2 executed by computer control will be described with reference to FIG.
First, reflection characteristic data of an ideal Chebyshev filter is read (step 201).
Next, the amplitude characteristic of the current reflection characteristic for each of the first to n-th frequencies is acquired to calculate an amplitude square error, and the result is substituted into Err_old (step 202).
Next, the robot is controlled by the value of len, the screw is rotated and moved, the amplitude characteristic of the current reflection characteristic for each of the first to nth frequencies is obtained, the square error of amplitude is calculated, and the result is Substitute for Err_new (step 203).
Next, it is determined whether Err_new ≧ Err_old (step 204). If No in step 204 (if Err_new <Err_old), Err_old is replaced with the value of Err_new, that is, Err_old = Err_new (step 205). ,
Steps 203 and 204 described above are repeated.
In the case of Yes in step 204 (when Err_new ≧ Err_old), Err_old is replaced with the value of Err_new, that is, Err_old = Err_new (step 206), the value of len is multiplied by an attenuation coefficient, and the multiplied value is obtained. len (step 207).
Next, it is determined whether or not the value of len is equal to or smaller than the minimum value (step 208). If No in step 208, the processing from step 204 described above is repeated. When the process from step 204 described above is repeated, the rotation direction of the adjustment target screw is opposite to the rotation direction up to step 207.

また、ステップ208でYesの場合は、現在の調整対象ネジの調整を終了となり、ステップ209で、次の調整対象ネジがあるか否かを判断し、ステップ209でYesの場合(次の調整対象ネジがある場合)は、ロボットを次の調整対象ネジに移動させ(ステップ210)、前述のステップ201からの処理を繰り返す。
また、ステップ209でNoの場合(次の調整対象ネジがない場合)は、処理(フィルタ特性調整2の処理)を終了する。
このフィルタ特性調整2は、1回以上実行される。また、このフィルタ特性調整2により、フィルタ特性を調整するために用意したBPFのフィルタ特性が所望の特性となった場合は、フィルタ特性を調整するための処理は終了となるが、フィルタ特性を調整するために用意したBPFのフィルタ特性が所望の特性とならない場合には、以下のフィルタ特性調整3を実行する。
図11は、フィルタ特性調整2終了後のBPFの反射特性の振幅特性の一例を示すグラフである。
図11において、縦軸は減衰量(dB)であり、また、横軸は正規化周波数(f/fo)であり、設計中心周波数(fo)に対する周波数の増減量を示す。
図11において、実線(1cycle)が、フィルタ特性調整1終了後のBPFの振幅特性を、破線(2cycle)が、1回目のフィルタ特性調整2終了後のBPFの振幅特性を、点線(3cycle)が、2回目のフィルタ特性調整2終了後のBPFの振幅特性を示す。
なお、このフィルタ特性調整2において、理想チェビシェフフィルタの反射特性の振幅特性に代えて、前述のフィルタ特性調整1において取得した、所望のフィルタ特性に調整済みのBPFの反射特性の振幅特性を使用するようにしてもよい。
If YES in step 208, the adjustment of the current adjustment target screw is completed. In step 209, it is determined whether there is a next adjustment target screw. If YES in step 209, the next adjustment target screw is determined (next adjustment target). If there is a screw), the robot is moved to the next adjustment target screw (step 210), and the processing from step 201 described above is repeated.
If No in step 209 (when there is no next adjustment target screw), the processing (processing for filter characteristic adjustment 2) is terminated.
This filter characteristic adjustment 2 is executed once or more. In addition, when the filter characteristic of the BPF prepared for adjusting the filter characteristic becomes a desired characteristic by this filter characteristic adjustment 2, the process for adjusting the filter characteristic ends, but the filter characteristic is adjusted. When the filter characteristic of the BPF prepared for this is not a desired characteristic, the following filter characteristic adjustment 3 is executed.
FIG. 11 is a graph showing an example of the amplitude characteristic of the reflection characteristic of the BPF after completion of the filter characteristic adjustment 2.
In FIG. 11, the vertical axis represents the attenuation (dB), and the horizontal axis represents the normalized frequency (f / fo), which indicates the amount of increase / decrease of the frequency with respect to the design center frequency (fo).
In FIG. 11, the solid line (1 cycle) indicates the amplitude characteristic of the BPF after the end of the filter characteristic adjustment 1, the broken line (2 cycle) indicates the amplitude characteristic of the BPF after the end of the first filter characteristic adjustment 2, and the dotted line (3 cycle) indicates the amplitude characteristic. An amplitude characteristic of the BPF after completion of the second filter characteristic adjustment 2 is shown.
In this filter characteristic adjustment 2, instead of the amplitude characteristic of the reflection characteristic of the ideal Chebyshev filter, the amplitude characteristic of the reflection characteristic of the BPF that has been adjusted to the desired filter characteristic obtained in the filter characteristic adjustment 1 is used. You may do it.

(4)フィルタ特性調整3
このフィルタ特性調整3においては、各ネジ毎に、第1ないし第nの周波数毎の反射特性の振幅特性を測定し、理想チェビシェフフィルタの反射特性の振幅特性との振幅4乗誤差を計算する。そして、振幅4乗誤差が最小になる位置を、当該調整しているネジの調整位置として決定する。
このフィルタ特性調整3において、調整するネジの順番は、初期設定において、ネジを未調整状態にした順番と反対の順番とされる。例えば、初期設定において、ネジを未調整状態にした順番が、11f→12ef→11e→12de→11d→12cd→11c→12bc→11b→12ab→11aの順番であれば、このフィルタ特性調整1では、11a→12ab→11b→12bc→11c→12cd→11d→12de→11e→12ef→11fの順番とされる。
同様に、初期設定において、ネジを未調整状態にした順番が、11f→11e→12ef→11d→12de→11c→12cd→11b→12bc→11a→12abの順番であれば、このフィルタ特性調整1では、12ab→11a→12bc→11b→12cd→11c→12de→11d→12ef→11e→11fの順番とされる。
(4) Filter characteristic adjustment 3
In the filter characteristic adjustment 3, for each screw, the amplitude characteristic of the reflection characteristic for each of the first to nth frequencies is measured, and the fourth power error with the amplitude characteristic of the reflection characteristic of the ideal Chebyshev filter is calculated. Then, the position where the fourth power error is minimized is determined as the adjustment position of the adjusting screw.
In the filter characteristic adjustment 3, the order of screws to be adjusted is the order opposite to the order in which the screws are not adjusted in the initial setting. For example, in the initial setting, if the order in which the screws are not adjusted is 11f → 12ef → 11e → 12de → 11d → 12cd → 11c → 12bc → 11b → 12ab → 11a, this filter characteristic adjustment 1 11a->12ab->11b->12bc->11c->12cd->11d->12de->11e->12ef-> 11f.
Similarly, in the initial setting, if the order in which the screws are not adjusted is 11f → 11e → 12ef → 11d → 12de → 11c → 12cd → 11b → 12bc → 11a → 12ab, this filter characteristic adjustment 1 12ab → 11a → 12bc → 11b → 12cd → 11c → 12de → 11d → 12ef → 11e → 11f.

Figure 2011142460
Figure 2011142460

次に、前述の初期設定において、最後に残ったネジを除いて最後に未調整状態とされたネジを回転・移動し、第1ないし第nの周波数毎の反射特性の振幅特性を測定し、チェビシェフフィルタの理想反射特性の振幅特性との振幅4乗誤差を計算する。そして、振幅4乗誤差が最小になる位置を、当該調整しているネジの調整位置として決定する。
前述した処理を、全ての周波数調整ネジ、全ての結合量調整ネジについて、出力端子4から入力端子3の方向に向かって、初期設定においてネジを未調整状態にした順番と反対の順番に実行する。
Next, in the initial setting described above, the last unadjusted screw except the last remaining screw is rotated and moved, and the amplitude characteristic of the reflection characteristic for each of the first to nth frequencies is measured, An amplitude fourth power error with the amplitude characteristic of the ideal reflection characteristic of the Chebyshev filter is calculated. Then, the position where the fourth power error is minimized is determined as the adjustment position of the adjusting screw.
The above-described processing is executed for all frequency adjustment screws and all coupling amount adjustment screws from the output terminal 4 to the input terminal 3 in the order opposite to the order in which the screws are not adjusted in the initial setting. .

このフィルタ特性調整3の処理も、ロボットを使用し、コンピュータ制御の下に実行される。図12は、このコンピュータ制御の処理手順を示すフローチャートを示す図である。以下、図12を用いて、コンピュータ制御により実行されるフィルタ特性調整3の処理手順について説明する。
初めに、理想チェビシェフフィルタの反射特性のデータの読み込む(ステップ301)。
次に、第1ないし第nの周波数毎の現在の反射特性の振幅特性を取得して振幅4乗誤差を計算し、結果をErr_oldに代入する(ステップ302)。
次に、lenの値だけ、ロボットを制御し、ネジを回転・移動し、第1ないし第nの周波数毎の現在の反射特性の振幅特性を取得して振幅4乗誤差を計算し、結果をErr_newに代入する(ステップ303)。
次に、Err_new≧Err_oldか否かを判断し(ステップ304)、ステップ304でNoの場合(Err_new<Err_oldの場合)は、Err_oldをErr_newの値で置き換え、即ち、Err_old=Err_newとして(ステップ305)、
前述のステップ303、304を繰り返す。
また、ステップ304でYesの場合(Err_new≧Err_oldの場合)は、Err_oldをErr_newの値で置き換え、即ち、Err_old=Err_newとして(ステップ306)、lenの値に減衰係数を掛けて、掛けた値をlenとする(ステップ307)。
次に、lenの値は最小値以下かを判断し(ステップ308)、ステップ308でNoの場合は、前述のステップ304からの処理を繰り返す。なお、この前述のステップ304からの処理を繰り返す場合は、調整対象ネジの回転方向は、ステップ307までの回転方向とは逆方向とする。
The processing of the filter characteristic adjustment 3 is also executed under computer control using a robot. FIG. 12 is a flowchart showing the computer-controlled processing procedure. Hereinafter, the processing procedure of the filter characteristic adjustment 3 executed by computer control will be described with reference to FIG.
First, reflection characteristic data of an ideal Chebyshev filter is read (step 301).
Next, the amplitude characteristic of the current reflection characteristic for each of the first to n-th frequencies is acquired, an amplitude fourth power error is calculated, and the result is substituted into Err_old (step 302).
Next, the robot is controlled by the value of len, the screw is rotated / moved, the amplitude characteristic of the current reflection characteristic for each of the first to n-th frequencies is obtained, and the fourth power error is calculated. Substitute for Err_new (step 303).
Next, it is determined whether or not Err_new ≧ Err_old (step 304). If No in step 304 (if Err_new <Err_old), Err_old is replaced with the value of Err_new, that is, Err_old = Err_new (step 305). ,
Steps 303 and 304 described above are repeated.
If Yes in step 304 (if Err_new ≧ Err_old), Err_old is replaced with the value of Err_new, that is, Err_old = Err_new (step 306), and the value obtained by multiplying the value of len by the attenuation coefficient is multiplied by len (step 307).
Next, it is determined whether or not the value of len is equal to or less than the minimum value (step 308). When the process from step 304 described above is repeated, the rotation direction of the adjustment target screw is opposite to the rotation direction up to step 307.

また、ステップ308でYesの場合は、現在の調整対象ネジの調整を終了となり、ステップ309で、次の調整対象ネジがあるか否かを判断し、ステップ309でYesの場合(次の調整対象ネジがある場合)は、ロボットを次の調整対象ネジに移動させ(ステップ310)、前述のステップ301からの処理を繰り返す。
また、ステップ309でNoの場合(次の調整対象ネジがない場合)は、処理(フィルタ特性調整3の処理)を終了する。
図13は、フィルタ特性調整3終了後のBPFの反射特性の振幅特性の一例を示すグラフである。図13において、縦軸は減衰量(dB)であり、また、横軸は正規化周波数(f/fo)であり、設計中心周波数(fo)に対する周波数の増減量を示す。
図13において、実線(before)が、フィルタ特性調整2終了後のBPFの振幅特性を、点線(after)がフィルタ特性調整3終了後のBPFの振幅特性を示す。
なお、フィルタ特性調整2とフィルタ特性調整3において、反射特性の反射領域の特性はほとんど変更がないので、振幅特性を取得する周波数は、反射特性の通過帯域に限定するようにしてもよい。この場合は、調整時間を短くすることが可能である。
また、このフィルタ特性調整3においても、理想チェビシェフフィルタの反射特性の振幅特性に代えて、前述のフィルタ特性調整1において取得した、所望のフィルタ特性に調整済みのBPFの反射特性の振幅特性を使用するようにしてもよい。
If Yes in step 308, the adjustment of the current adjustment target screw is completed, and it is determined in step 309 whether there is a next adjustment target screw. If yes in step 309 (next adjustment target If there is a screw), the robot is moved to the next adjustment target screw (step 310), and the processing from step 301 described above is repeated.
If No in step 309 (when there is no next adjustment target screw), the process (the process of filter characteristic adjustment 3) ends.
FIG. 13 is a graph showing an example of the amplitude characteristic of the reflection characteristic of the BPF after completion of the filter characteristic adjustment 3. In FIG. 13, the vertical axis represents the attenuation (dB), and the horizontal axis represents the normalized frequency (f / fo), which indicates the amount of increase / decrease of the frequency with respect to the design center frequency (fo).
In FIG. 13, the solid line (before) indicates the amplitude characteristic of the BPF after completion of the filter characteristic adjustment 2, and the dotted line (after) indicates the amplitude characteristic of the BPF after completion of the filter characteristic adjustment 3.
In the filter characteristic adjustment 2 and the filter characteristic adjustment 3, since the characteristic of the reflection region of the reflection characteristic is hardly changed, the frequency for obtaining the amplitude characteristic may be limited to the pass band of the reflection characteristic. In this case, the adjustment time can be shortened.
Also in this filter characteristic adjustment 3, instead of the amplitude characteristic of the reflection characteristic of the ideal Chebyshev filter, the amplitude characteristic of the reflection characteristic of the BPF adjusted to the desired filter characteristic obtained in the above-mentioned filter characteristic adjustment 1 is used. You may make it do.

図13に示すように、本実施例のフィルタ特性自動調整方法によれば、通過帯域の反射減衰量として、−20dB〜−23dBの減衰量を得ることが可能となる。
このように、本実施例によれば、フィルタの周波数調整ネジの調整、あるいは、結合量調整ネジの調整を、手作業の調整によることなくロボットを使用して自動的に行うことが可能となる。これにより、周波数調整ネジの調整、あるいは、結合量調整ネジの調整時間を短縮できるので、BPFのコストを低減することが可能となる。
なお、前述の説明では、同軸共振器形のBPFに本発明を適用した実施例について説明したが、本発明はこれに限定されるものではなく、本発明は、誘電体共振器形のBPF等のように、周波数調整ネジ、あるいは、結合量調整ネジを備えるBPFに適用可能である。さらに、本発明は、周波数調整ネジ、あるいは、結合量調整ネジを備える帯域除去フィルタなどにも適用可能である。
以上、本発明者によってなされた発明を、前記実施例に基づき具体的に説明したが、本発明は、前記実施例に限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは勿論である。
As shown in FIG. 13, according to the filter characteristic automatic adjustment method of the present embodiment, it is possible to obtain an attenuation amount of −20 dB to −23 dB as the return loss of the passband.
As described above, according to the present embodiment, the adjustment of the frequency adjusting screw of the filter or the adjustment of the coupling amount adjusting screw can be automatically performed using the robot without manual adjustment. . Thereby, the adjustment time of the frequency adjustment screw or the adjustment time of the coupling amount adjustment screw can be shortened, so that the cost of the BPF can be reduced.
In the above description, the embodiment in which the present invention is applied to the coaxial resonator type BPF has been described. However, the present invention is not limited to this, and the present invention is not limited to the dielectric resonator type BPF. As described above, the present invention can be applied to a BPF having a frequency adjusting screw or a coupling amount adjusting screw. Furthermore, the present invention can also be applied to a band elimination filter having a frequency adjustment screw or a coupling amount adjustment screw.
As mentioned above, the invention made by the present inventor has been specifically described based on the above embodiments. However, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. Of course.

1 外部導体
2 内壁
3 入力端子
4 出力端子
9 結入力(または出力)結合ループ
10a〜10f 1/4同軸共振器
11a〜11f 周波数調整ネジ
12ab,12bc,12cd,12de,12ef 結合量調整ネジ
15 結合窓
DESCRIPTION OF SYMBOLS 1 Outer conductor 2 Inner wall 3 Input terminal 4 Output terminal 9 Connection input (or output) coupling loop 10a-10f 1/4 coaxial resonator 11a-11f Frequency adjustment screw 12ab, 12bc, 12cd, 12de, 12ef Coupling amount adjustment screw 15 Coupling window

Claims (4)

複数の周波数調整ネジと、複数の結合量調整ネジとを有するフィルタのフィルタ特性自動調整方法であって、
初期設定ステップと、
特性調整ステップとを有し、
前記初期設定ステップは、前記複数の周波数調整ネジと前記複数の結合量調整ネジとを調整し、反射特性を予め所定の特性に調整済みのフィルタを用意し、前記調整済みのフィルタの中心周波数を含む所定の周波数帯域内の第1ないし第nの周波数の前記調整済みのフィルタの反射特性の位相量と振幅量を測定するステップ1と、
前記調整済みのフィルタにおける前記調整済みの複数の周波数調整ネジと前記調整済みの複数の結合量調整ネジについて、出力端子側から入力端子側に向かって最後の一本を除いて順次一本ずつ回転・移動させて非調整状態とした状態で、前記第1ないし第nの周波数の反射特性の位相量と振幅量を測定するステップ2とを有し、
前記特性調整ステップは、フィルタ特性を調整する調整用のフィルタを用意するステップ3と、
前記調整用のフィルタにおける未調整状態の複数の周波数調整ネジと未調整状態の複数の結合量調整ネジについて、入力端子側から出力端子側に向かって順次一本ずつ回転・移動させて、前記第1ないし第nの周波数の反射特性の位相量を測定し、前記初期設定ステップで測定した位相量との位相2乗誤差が最小になるように、ネジ位置を調整するステップ4とを有することを特徴とするフィルタ特性自動調整方法。
A filter characteristic automatic adjustment method for a filter having a plurality of frequency adjustment screws and a plurality of coupling amount adjustment screws,
An initial setting step;
Characteristic adjustment step,
The initial setting step adjusts the plurality of frequency adjustment screws and the plurality of coupling amount adjustment screws, prepares a filter whose reflection characteristic is adjusted in advance to a predetermined characteristic, and sets the center frequency of the adjusted filter. Measuring a phase amount and an amplitude amount of the reflection characteristic of the adjusted filter of the first to nth frequencies within a predetermined frequency band including;
The plurality of adjusted frequency adjusting screws and the plurality of adjusted coupling amount adjusting screws in the adjusted filter are sequentially rotated one by one from the output terminal side to the input terminal side except for the last one. Measuring a phase amount and an amplitude amount of the reflection characteristics of the first to nth frequencies in a state of being moved and brought into an unadjusted state;
The characteristic adjustment step includes a step 3 of preparing an adjustment filter for adjusting a filter characteristic;
The plurality of frequency adjustment screws in an unadjusted state and the plurality of coupling amount adjustment screws in an unadjusted state in the adjustment filter are sequentially rotated and moved one by one from the input terminal side to the output terminal side, Measuring the phase amount of the reflection characteristics of the 1st to n-th frequencies, and adjusting the screw position so that the phase square error with the phase amount measured in the initial setting step is minimized. A characteristic filter characteristic automatic adjustment method.
前記ステップ4において、最も出力端子側の少なくとも1本のネジは、前記測定した前記第1ないし第nの周波数の反射特性の振幅量と、前記初期設定ステップで測定した振幅量との振幅2乗誤差が最小になるように、ネジ位置を調整することを特徴とする請求項1に記載のフィルタ特性自動調整方法。   In step 4, at least one screw on the most output terminal side is an amplitude square of the measured amplitude amount of the reflection characteristics of the first to nth frequencies and the amplitude amount measured in the initial setting step. 2. The filter characteristic automatic adjustment method according to claim 1, wherein the screw position is adjusted so that the error is minimized. 前記特性調整ステップは、前記ステップ4の後に、少なくとも一回、前記調整用のフィルタにおける複数の周波数調整ネジと複数の結合量調整ネジについて、入力端子側から出力端子側に向かって順次一本ずつ回転・移動させて、前記第1ないし第nの周波数の反射特性の振幅量を測定し、理想フィルタの反射特性の振幅量との振幅2乗誤差が最小になるように、ネジ位置を調整するステップ5を有することを特徴とする請求項1または請求項2に記載のフィルタ特性自動調整方法。   In the characteristic adjustment step, after the step 4, at least once, a plurality of frequency adjustment screws and a plurality of coupling amount adjustment screws in the adjustment filter are sequentially arranged one by one from the input terminal side to the output terminal side. Rotate and move to measure the amplitude of the reflection characteristics of the first to nth frequencies, and adjust the screw position so that the square error of amplitude with the amplitude of the reflection characteristics of the ideal filter is minimized. 3. The filter characteristic automatic adjustment method according to claim 1, further comprising step 5. 前記特性調整ステップは、前記ステップ5の後に、少なくとも一回、前記調整用のフィルタにおける複数の周波数調整ネジと複数の結合量調整ネジについて、入力端子側から出力端子側に向かって順次一本ずつ回転・移動させて、前記第1ないし第nの周波数の反射特性の振幅量を測定し、前述理想フィルタの反射特性の振幅量との振幅4乗誤差が最小になるように、ネジ位置を調整するステップ6を有することを特徴とする請求項3に記載のフィルタ特性自動調整方法。   In the characteristic adjustment step, after the step 5, at least once, a plurality of frequency adjustment screws and a plurality of coupling amount adjustment screws in the adjustment filter are sequentially arranged one by one from the input terminal side to the output terminal side. Rotate and move to measure the amplitude of the reflection characteristics of the first to nth frequencies, and adjust the screw position so that the fourth power error with the amplitude of the reflection characteristics of the ideal filter is minimized. 4. The filter characteristic automatic adjustment method according to claim 3, further comprising:
JP2010001419A 2010-01-06 2010-01-06 Automatic filter characteristic adjustment method Expired - Fee Related JP5413841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010001419A JP5413841B2 (en) 2010-01-06 2010-01-06 Automatic filter characteristic adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010001419A JP5413841B2 (en) 2010-01-06 2010-01-06 Automatic filter characteristic adjustment method

Publications (2)

Publication Number Publication Date
JP2011142460A true JP2011142460A (en) 2011-07-21
JP5413841B2 JP5413841B2 (en) 2014-02-12

Family

ID=44458018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010001419A Expired - Fee Related JP5413841B2 (en) 2010-01-06 2010-01-06 Automatic filter characteristic adjustment method

Country Status (1)

Country Link
JP (1) JP5413841B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130271233A1 (en) * 2012-04-16 2013-10-17 Electronics And Telecommunications Research Institue Apparatus and method of tuning microwave filter
JP2014086839A (en) * 2012-10-23 2014-05-12 Nec Engineering Ltd Tunable band pass filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236505A (en) * 1991-01-21 1992-08-25 Nec Corp High frequency filter adjustment device
JPH0645801A (en) * 1992-04-22 1994-02-18 Nec Corp Band pass filter characteristic adjusting system
JPH06281680A (en) * 1993-03-29 1994-10-07 Nec Corp Filter adjusting equipment
JP2005102216A (en) * 2003-09-22 2005-04-14 Matsushita Electric Ind Co Ltd Method and device for setting of filter
US7586383B2 (en) * 2005-12-06 2009-09-08 Andrew Telecommunication Products S.R.L. Automatic tuning of multicavity filters of microwave signals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236505A (en) * 1991-01-21 1992-08-25 Nec Corp High frequency filter adjustment device
JPH0645801A (en) * 1992-04-22 1994-02-18 Nec Corp Band pass filter characteristic adjusting system
JPH06281680A (en) * 1993-03-29 1994-10-07 Nec Corp Filter adjusting equipment
JP2005102216A (en) * 2003-09-22 2005-04-14 Matsushita Electric Ind Co Ltd Method and device for setting of filter
US7586383B2 (en) * 2005-12-06 2009-09-08 Andrew Telecommunication Products S.R.L. Automatic tuning of multicavity filters of microwave signals

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130271233A1 (en) * 2012-04-16 2013-10-17 Electronics And Telecommunications Research Institue Apparatus and method of tuning microwave filter
JP2014086839A (en) * 2012-10-23 2014-05-12 Nec Engineering Ltd Tunable band pass filter
US9786974B2 (en) 2012-10-23 2017-10-10 Nec Corporation Tunable band-pass filter

Also Published As

Publication number Publication date
JP5413841B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5413841B2 (en) Automatic filter characteristic adjustment method
JP2000151229A (en) Method and system for automatically adjusting characteristics of dielectric filter
Wang et al. Improved extraction of coupling matrix and unloaded Q from S-parameters of lossy resonator filters
CN108809272A (en) Multinomial kalman filter method and filter
CN108333935B (en) Precise debugging method and system based on second-order notch filter
Kozakowski et al. Computer-aided design of in-line resonator filters with multiple elliptical apertures
JP6597112B2 (en) I / O circuit characteristic adjustment method and I / O circuit characteristic adjustment system
KR100546600B1 (en) screw for tuning filter in Microwave FIlter
JP7364253B2 (en) Dielectric property measurement method and dielectric property measurement system using open resonator
Hefferman et al. Two-slot coiled coaxial cable resonator: Reaching critical coupling at a reduced number of coils
US5557530A (en) System for synthesizing microwave filters in a rectangular waveguide
JP2013073630A (en) Improved method and apparatus for eliminating aliasing
JP2012511141A (en) Continuously wound solenoid coil with final correction function for generating a uniform magnetic field inside the coil and related optimization method
JP2005102216A (en) Method and device for setting of filter
CN104300938B (en) Method for equalizing distortion caused by coupling loss and filter produced by using the same
JP2017063256A (en) Input/output circuit characteristic adjustment method, and input/output circuit characteristic adjustment system
Andreev et al. Analysis of Q-factor of dielectric resonator by means of fractional-rational approximation of reflection response
KR100476382B1 (en) Tuning Method Using a Dummy Cavity for Cavity Filter
CN111190363B (en) Method for adjusting frequency response parameters of machine tool and adjusting system applying same
CN118112332A (en) Inversion method of complex dielectric constant of material characteristics based on two-port S parameter
Ghadiya et al. Sequential parameter extraction of direct-coupled resonator filter
Hauth et al. Accurate modelling of narrow-band filters for satellite communications
JPH06281680A (en) Filter adjusting equipment
JPH0226104A (en) Resonance frequency control method for coaxial type dielectric resonator
TWI502878B (en) Current sampling apparatus and sampling method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131105

R150 Certificate of patent or registration of utility model

Ref document number: 5413841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees