JP2011141240A - Apparatus for measuring physical quantity for rotating shaft - Google Patents

Apparatus for measuring physical quantity for rotating shaft Download PDF

Info

Publication number
JP2011141240A
JP2011141240A JP2010003207A JP2010003207A JP2011141240A JP 2011141240 A JP2011141240 A JP 2011141240A JP 2010003207 A JP2010003207 A JP 2010003207A JP 2010003207 A JP2010003207 A JP 2010003207A JP 2011141240 A JP2011141240 A JP 2011141240A
Authority
JP
Japan
Prior art keywords
physical quantity
encoder
rotating shaft
detected
characteristic change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010003207A
Other languages
Japanese (ja)
Other versions
JP2011141240A5 (en
JP5407878B2 (en
Inventor
Ichiu Tanaka
一宇 田中
Koichiro Ono
浩一郎 小野
Hiroyuki Yamamura
浩之 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2010003207A priority Critical patent/JP5407878B2/en
Publication of JP2011141240A publication Critical patent/JP2011141240A/en
Publication of JP2011141240A5 publication Critical patent/JP2011141240A5/ja
Application granted granted Critical
Publication of JP5407878B2 publication Critical patent/JP5407878B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an apparatus capable of highly accurately measuring a physical quantity such as a load applied on a rotating shaft rotated at a high speed while receiving loads like main shafts of various machine tools or a displacement amount of the rotating shaft at a low cost while securing sufficient reliability. <P>SOLUTION: The apparatus for measuring the physical quantity for the rotating shaft forms a plurality of detected characteristic change combination parts 17, 17 comprising a pair by a pair of recess grooves 18a, 18b different in inclination directions from each as shown in (A) on a detected face of an encoder 4a circumferentially at a regular interval. Output signals of sensors facing the detected face are changed as shown in (B) and (C). A computing unit obtains the physical quantity concerning the main shaft or the like on the basis of a timing ratio which is a ratio of a cycle in which the output signal is changed once to a cycle in which the output signal is changed twice. The size of the timing ratio regulates a dimension of each part so that it is always reversed between the adjacent timing ratios regardless of the displacement of the encoder 4a. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

この発明は、フライス盤、マシニングセンタ等の各種工作機械の主軸の如く、荷重を受けつつ高速で回転する回転軸に加わる荷重、或はこの回転軸の変位量等の物理量を精度良く測定できる装置を、低コストで実現すべく発明したものである。   This invention is an apparatus capable of accurately measuring a physical quantity such as a load applied to a rotating shaft rotating at high speed while receiving a load, or a displacement amount of the rotating shaft, such as a main shaft of various machine tools such as a milling machine and a machining center. It was invented to be realized at low cost.

工作機械の主軸は、先端部に刃物等の工具を固定した状態で高速回転し、加工台上に固定した被加工物に、切削等の加工を施す。前記主軸を回転自在に支持したヘッドは、この被加工物の加工の進行に伴って、所定方向に所定量だけ移動し、この被加工物を、所定の寸法及び形状に加工する。この様な加工作業時、前記ヘッドの移動速度を適正にする事が、加工能率を確保しつつ、前記工具の耐久性及び前記被加工物の品質を確保する為に必要である。前記移動速度が速過ぎると、前記工具に無理な力が加わり、この工具の耐久性が著しく損なわれるだけでなく、前記被加工物の表面性状が悪化したり、著しい場合にはこの被加工物に亀裂等の損傷が発生する。逆に、前記移動速度が遅過ぎると、前記被加工物の加工能率が徒に悪化する。   The spindle of the machine tool rotates at a high speed with a tool such as a blade fixed at the tip, and performs processing such as cutting on the workpiece fixed on the processing table. The head that rotatably supports the main shaft moves by a predetermined amount in a predetermined direction as the workpiece is processed, and processes the workpiece into a predetermined size and shape. In such a machining operation, it is necessary to make the moving speed of the head appropriate in order to ensure the durability of the tool and the quality of the workpiece while ensuring the machining efficiency. If the moving speed is too high, an excessive force is applied to the tool, and not only the durability of the tool is remarkably deteriorated, but also the surface property of the workpiece is deteriorated or, in the case of remarkable, the workpiece. Damage such as cracks occurs. On the contrary, when the moving speed is too slow, the processing efficiency of the workpiece is easily deteriorated.

前記ヘッダの移動速度の適正値は一定ではなく、工具の種類(大きさ)、被加工物の材質や形状により大きく変わる為、前記移動速度を一定としたまま、この移動速度を適正値に維持する事は難しい。この為、前記工具を固定した回転軸に加わる荷重を測定する事により、前記移動速度を適正値に調節する事が、従来から知られている。即ち、工具により被加工物に切削等の加工を施す際には、加工抵抗により、この工具及びこの工具を固定した回転軸に荷重が加わる。この加工抵抗、延いてはこの回転軸に加わる荷重は、前記移動速度が速くなる程大きくなり、逆に、この移動速度が遅くなる程小さくなる。そこで、前記荷重が所定範囲に収まる様に、前記移動速度を調節すれば、この移動速度を適正範囲に収める事ができる。   The appropriate value of the moving speed of the header is not constant, but varies greatly depending on the type (size) of the tool and the material and shape of the work piece. Therefore, the moving speed is kept constant while keeping the moving speed constant. It is difficult to do. For this reason, it is conventionally known to adjust the moving speed to an appropriate value by measuring the load applied to the rotating shaft to which the tool is fixed. That is, when a work such as cutting is performed on a workpiece with a tool, a load is applied to the tool and a rotating shaft to which the tool is fixed due to processing resistance. The machining resistance, and hence the load applied to the rotating shaft, increases as the moving speed increases, and conversely decreases as the moving speed decreases. Therefore, if the moving speed is adjusted so that the load falls within a predetermined range, the moving speed can be kept within an appropriate range.

又、この移動速度等、他の条件を同じとした場合に前記荷重は、前記工具の切削性(切れ味)が劣化する程大きくなる。そこで、前記移動速度との関係で前記荷重の大小を観察すれば、前記工具が寿命に達した事を知る事ができて、寿命に達した不良工具で加工を継続する事による、歩留まりの悪化を防止できる。又、前記荷重を、前記移動速度等、他の加工条件と関連付けて継続的に観察する事により、最適な加工条件を見出して、省エネルギ化や工具の長寿命化に繋げる事もできる。更に、継続的観察により、工具破損等の事故発生時に、その原因を特定する事もできる。   In addition, when other conditions such as the moving speed are the same, the load increases as the cutting property (sharpness) of the tool deteriorates. Therefore, by observing the magnitude of the load in relation to the moving speed, it is possible to know that the tool has reached the end of its life, and deterioration in yield due to continuing processing with a defective tool that has reached the end of its life. Can be prevented. In addition, by continuously observing the load in association with other machining conditions such as the moving speed, it is possible to find the optimum machining conditions and lead to energy saving and long tool life. Furthermore, by continuous observation, the cause of an accident such as tool breakage can be identified.

この様な目的で、工作機械の主軸等の回転軸に加わる荷重を測定する為の装置として、特許文献1に記載された発明装置が記載されている。この特許文献1に記載された発明装置は、水晶圧電式の荷重センサを複数個、荷重の作用方向に対して直列に配置し、この荷重センサの測定信号に基づいて、切削工具を支持固定した回転軸(スピンドル)に加わる荷重(切削抵抗)を測定する様に構成している。この様な特許文献1に記載された発明装置の場合、高価な水晶圧電式の荷重センサを使用する為、荷重測定装置全体としてのコストが嵩む事が避けられない。   For such a purpose, the invention apparatus described in Patent Document 1 is described as an apparatus for measuring a load applied to a rotating shaft such as a main shaft of a machine tool. In the invention apparatus described in Patent Document 1, a plurality of quartz piezoelectric load sensors are arranged in series with respect to the direction of the load, and the cutting tool is supported and fixed based on the measurement signal of the load sensor. The load (cutting resistance) applied to the rotating shaft (spindle) is measured. In the case of the inventive device described in Patent Document 1, since an expensive quartz piezoelectric load sensor is used, it is inevitable that the cost of the entire load measuring device increases.

一方、特許文献2〜4には、水晶圧電式の荷重センサに比べて低コストで調達できる、磁気式のエンコーダとセンサとにより構成する、荷重測定装置付転がり軸受ユニットに関する発明が記載されている。図10〜12は、前記特許文献2〜4に記載される等により、従来から知られている荷重測定装置付転がり軸受ユニットの1例を示している。この従来から知られている荷重測定装置付転がり軸受ユニットは、使用時にも回転しない外輪1の内径側に、使用時に車輪を支持固定した状態でこの車輪と共に回転するハブ2を、複数個の転動体3、3を介して回転自在に支持している。これら各転動体3、3には、互いに逆向きの(図示の場合には背面組み合わせ型の)接触角と共に、予圧を付与している。   On the other hand, Patent Documents 2 to 4 describe inventions related to a rolling bearing unit with a load measuring device, which includes a magnetic encoder and a sensor, which can be procured at a lower cost than a quartz piezoelectric load sensor. . 10 to 12 show an example of a conventionally known rolling bearing unit with a load measuring device as described in Patent Documents 2 to 4 and the like. This conventionally known rolling bearing unit with a load measuring device is provided with a plurality of rolling hubs 2 on the inner diameter side of an outer ring 1 that does not rotate even when used. It is rotatably supported via the moving bodies 3 and 3. A preload is applied to each of the rolling elements 3 and 3 together with contact angles that are opposite to each other (in the illustrated case, a rear combination type).

又、上記ハブ2の内端部には、円筒状のエンコーダ4を、上記ハブ2と同心に支持固定している。又、上記外輪1の内端開口を塞ぐ有底円筒状のカバー5の内側に、1対のセンサ6a、6bを支持すると共に、これら両センサ6a、6bの検出部を、上記エンコーダ4の被検出面である外周面に近接対向させている。このうちのエンコーダ4は、磁性金属板製である。被検出面である、このエンコーダ4の外周面の先半部(軸方向内半部)には、透孔7、7と柱部8、8とを、円周方向に関して交互に且つ等間隔で配置している。これら各透孔7、7と各柱部8、8との境界は、上記エンコーダ4の軸方向に対し同じ角度だけ傾斜させると共に、この軸方向に対する傾斜方向を、上記エンコーダ4の軸方向中間部を境に互いに逆方向としている。従って、上記各透孔7、7と上記各柱部8、8とは、軸方向中間部が円周方向に関して最も突出した「く」字形となっている。そして、上記境界の傾斜方向が互いに異なる、上記被検出面の軸方向外半部と軸方向内半部とのうち、軸方向外半部を第一の特性変化部9とし、軸方向内半部を第二の特性変化部10としている。   A cylindrical encoder 4 is supported and fixed concentrically with the hub 2 at the inner end portion of the hub 2. A pair of sensors 6 a and 6 b are supported inside a bottomed cylindrical cover 5 that closes the inner end opening of the outer ring 1, and the detection portions of both the sensors 6 a and 6 b are connected to the encoder 4. The outer peripheral surface, which is the detection surface, is placed close to and opposed to the detection surface. Of these, the encoder 4 is made of a magnetic metal plate. In the front half of the outer peripheral surface of the encoder 4 (the inner half in the axial direction), which is the detection surface, the through holes 7 and 7 and the column portions 8 and 8 are alternately arranged at equal intervals in the circumferential direction. It is arranged. The boundaries between the through holes 7 and 7 and the pillars 8 and 8 are inclined at the same angle with respect to the axial direction of the encoder 4, and the inclined direction with respect to the axial direction is set to the intermediate portion in the axial direction of the encoder 4. The directions are opposite to each other. Accordingly, each of the through holes 7 and 7 and each of the column portions 8 and 8 has a "<" shape with the axially intermediate portion protruding most in the circumferential direction. And among the axially outer half part and the axially inner half part of the detected surface, the inclination directions of the boundaries are different from each other, the axially outer half part is defined as the first characteristic changing part 9, and the axially inner half part is formed. This portion is the second characteristic changing portion 10.

又、上記1対のセンサ6a、6bはそれぞれ、永久磁石と、検出部を構成する磁気検知素子とから成る。これら両センサ6a、6bは、上記カバー5の内側に支持固定した状態で、一方のセンサ6aの検出部を上記第一の特性変化部9に、他方のセンサ6bの検出部を上記第二の特性変化部10に、それぞれ近接対向させている。これら両センサ6a、6bの検出部が上記両特性変化部9、10に対向する位置は、上記エンコーダ4の円周方向に関して同じ位置としている。又、上記外輪1とハブ2との間にアキシアル荷重が作用しない状態で、上記各透孔7、7及び柱部8、8の軸方向中間部で円周方向に関して最も突出した部分(境界の傾斜方向が変化する部分)が、上記両センサ6a、6bの検出部同士の間の丁度中央位置に存在する様に、各部材の設置位置を規制している。   Each of the pair of sensors 6a and 6b includes a permanent magnet and a magnetic sensing element constituting a detection unit. The two sensors 6a and 6b are supported and fixed inside the cover 5, with the detection part of one sensor 6a serving as the first characteristic changing part 9 and the detection part of the other sensor 6b serving as the second sensor. The characteristic changing portions 10 are respectively close to and opposed to each other. The positions where the detection parts of both the sensors 6 a and 6 b face both the characteristic change parts 9 and 10 are the same position in the circumferential direction of the encoder 4. Further, in the state where an axial load does not act between the outer ring 1 and the hub 2, the portion that protrudes most in the circumferential direction in the axial direction intermediate portion of each of the through holes 7 and 7 and the column portions 8 and 8 (boundary boundary). The position where each member is installed is regulated so that the portion in which the inclination direction changes) is just at the center position between the detection parts of the sensors 6a and 6b.

上述の様に構成する荷重測定装置付転がり軸受ユニットの場合、上記外輪1とハブ2との間にアキシアル荷重が作用し、これら外輪1とハブ2とがアキシアル方向に相対変位すると、上記両センサ6a、6bの出力信号が変化する位相がずれる。即ち、上記外輪1とハブ2との間にアキシアル荷重が作用していない、中立状態では、上記両センサ6a、6bの検出部は、図12の(A)の実線イ、イ上、即ち、上記最も突出した部分から軸方向に同じだけずれた部分に対向する。従って、上記両センサ6a、6bの出力信号の位相は、同図の(C)に示す様に一致する。   In the case of the rolling bearing unit with a load measuring device configured as described above, when an axial load acts between the outer ring 1 and the hub 2 and the outer ring 1 and the hub 2 are relatively displaced in the axial direction, the two sensors The phase at which the output signals 6a and 6b change is shifted. That is, in the neutral state in which an axial load is not applied between the outer ring 1 and the hub 2, the detection portions of the sensors 6a and 6b are on the solid lines A and B in FIG. It faces a portion that is shifted by the same amount in the axial direction from the most protruding portion. Therefore, the phases of the output signals of the sensors 6a and 6b coincide as shown in FIG.

これに対して、上記エンコーダ4を固定したハブ2に、図12の(A)で下向きのアキシアル荷重が作用した場合には、上記両センサ6a、6bの検出部は、図12の(A)の破線ロ、ロ上、即ち、上記最も突出した部分からの軸方向に関するずれが互いに異なる部分に対向する。この状態では上記両センサ6a、6bの出力信号の位相は、同図の(B)に示す様にずれる。更に、上記エンコーダ4を固定したハブ2に、図12の(A)で上向きのアキシアル荷重が作用した場合には、上記両センサ6a、6bの検出部は、図12の(A)の鎖線ハ、ハ上、即ち、上記最も突出した部分からの軸方向に関するずれが、前述の場合と逆方向に互いに異なる部分に対向する。この状態では上記両センサ6a、6bの出力信号の位相は、同図の(D)に示す様にずれる。   On the other hand, when a downward axial load is applied to the hub 2 to which the encoder 4 is fixed in FIG. 12A, the detecting portions of the sensors 6a and 6b are shown in FIG. , Opposite to the portions where the deviations in the axial direction from the most protruding portion are different from each other. In this state, the phases of the output signals of the sensors 6a and 6b are shifted as shown in FIG. Further, when an upward axial load is applied to the hub 2 to which the encoder 4 is fixed as shown in FIG. 12A, the detecting portions of both the sensors 6a and 6b are connected to the chain line H shown in FIG. The deviation in the axial direction from the uppermost part, that is, the most protruding part, faces different parts in the opposite direction to the above case. In this state, the phases of the output signals of the sensors 6a and 6b are shifted as shown in FIG.

上述の様に、特許文献2〜4に記載される等により従来から知られている構造の場合には、上記両センサ6a、6bの出力信号の位相が、上記外輪1とハブ2との間に加わるアキシアル荷重の作用方向(これら外輪1とハブ2とのアキシアル方向の相対変位の方向)に応じた向きにずれる。又、このアキシアル荷重(相対変位)により上記両センサ6a、6bの出力信号の位相がずれる程度は、このアキシアル荷重(相対変位)が大きくなる程大きくなる。従って、上記両センサ6a、6bの出力信号の位相ずれの有無、ずれが存在する場合にはその向き及び大きさに基づいて、上記外輪1とハブ2とのアキシアル方向の相対変位の向き及び大きさ、並びに、これら外輪1とハブ2との間に作用しているアキシアル荷重の作用方向及び大きさを求められる。   As described above, in the case of a structure that is conventionally known as described in Patent Documents 2 to 4, the phase of the output signals of both the sensors 6a and 6b is between the outer ring 1 and the hub 2. Is shifted in a direction corresponding to the direction of action of the axial load applied to the outer ring 1 (the direction of relative displacement between the outer ring 1 and the hub 2 in the axial direction). Further, the degree of the phase shift of the output signals of the sensors 6a and 6b due to the axial load (relative displacement) increases as the axial load (relative displacement) increases. Therefore, the direction and magnitude of the relative displacement in the axial direction between the outer ring 1 and the hub 2 based on the presence or absence of the phase shift of the output signals of the sensors 6a and 6b and the direction and magnitude of the deviation, if any. In addition, the acting direction and magnitude of the axial load acting between the outer ring 1 and the hub 2 can be obtained.

上述の図10〜12に示した従来構造の様な荷重測定装置付転がり軸受ユニットの構造を、工作機械の主軸等の回転軸と、ハウジング等の回転しない部分との間に組み込めば、切削工具を支持固定した回転軸に加わる荷重を測定し、最適な加工条件を見出して、省エネルギ化や工具の長寿命化に繋げたり、工具破損等の原因を特定できる。但し、前記従来構造の場合には、複数個のセンサ6a、6bが必要になる為、コスト面からも、小型化の面からも不利になる。特願2009−37075、同2009−37076、同2009−225792に開示されている様に、1対のセンサ素子を1個のホルダに組み付ける事も可能であるが、コスト低減の面から不十分であるだけでなく、センサユニットの径が大きくなり、小型化の面からも不十分になる。   If the structure of the rolling bearing unit with a load measuring device like the conventional structure shown in FIGS. 10 to 12 described above is incorporated between a rotating shaft such as a spindle of a machine tool and a non-rotating portion such as a housing, a cutting tool By measuring the load applied to the rotating shaft that supports and fixes the tool, the optimum machining conditions can be found, leading to energy saving and longer tool life, and the cause of tool breakage can be identified. However, in the case of the conventional structure, a plurality of sensors 6a and 6b are required, which is disadvantageous in terms of cost and size. As disclosed in Japanese Patent Application Nos. 2009-37075, 2009-37076, and 2009-225792, it is possible to assemble a pair of sensor elements in one holder, but this is not sufficient in terms of cost reduction. In addition to this, the diameter of the sensor unit is increased, which is insufficient in terms of miniaturization.

この様な事情に鑑みて、特許文献2の図8〜10、15及び明細書中でのこれら各図の説明部分に記載されている様に、エンコーダの被検出面に複数の被検出用特性変化組み合わせ部を、周方向に関して等間隔に、それぞれ測定すべき荷重の作用方向に一致する、前記被検出面の幅方向に形成する事が考えられる。この点に就いて、本発明の実施の形態を含む、図1〜9を参照しつつ説明する。   In view of such circumstances, as described in FIGS. 8 to 10 and 15 of Patent Document 2 and the explanation part of each figure in the specification, a plurality of characteristics to be detected are detected on the detection surface of the encoder. It is conceivable that the change combination portions are formed at equal intervals in the circumferential direction in the width direction of the surface to be detected, which coincides with the direction of the load to be measured. This point will be described with reference to FIGS. 1 to 9 including the embodiment of the present invention.

先ず、図1〜2は、前記特許文献2の図8〜10及び明細書中でのこれら各図の説明部分に記載されている回転軸用物理量測定装置に関する構造を、工作機械の主軸11に加わるアキシアル荷重を測定するのに適用すべく、先に考えた構造(先発明構造)を示している。工作機械のハウジング(主軸頭)12の内径側に前記主軸11を、多列転がり軸受ユニット13により回転自在に支持すると共に、電動モータ14により、前記主軸11を回転駆動自在としている。前記多列転がり軸受ユニット13を構成する複数個の転がり軸受15a〜15dのうち、先端寄りに配置した2個の転がり軸受15a、15bと、基端寄りに配置した2個の転がり軸受15c、15dとには、互いに逆向きの接触角を付与すると共に、これら各転がり軸受15a〜15dに、予圧を付与している。そして、前記主軸11を前記ハウジング12に対して、ラジアル荷重及び両方向のスラスト荷重を支承する状態で、がたつきなく、回転自在に支持している。前記工作機械の運転時には、前記主軸11の先端部(図1の左端部)に固定した工具(図示省略)を、高速で回転しつつ被加工物に押し付け、この被加工物に、切削等の加工を施す。この様にして加工を施す際に、前記主軸11には、この被加工物に前記工具を押し付ける事の反作用として、各方向の荷重が加わる。図1に示した先発明構造では、このうち、前記主軸11の軸方向に一致する、アキシアル方向の荷重を求められる様にしている。   First, FIGS. 1 and 2 show a structure relating to a physical quantity measuring device for a rotating shaft described in FIGS. 8 to 10 of the Patent Document 2 and an explanation of each drawing in the specification, on a spindle 11 of a machine tool. The structure (prior invention structure) previously considered to be applied to measure the applied axial load is shown. The spindle 11 is rotatably supported by an inner diameter side of a machine tool housing (spindle head) 12 by a multi-row rolling bearing unit 13, and the spindle 11 is rotatably driven by an electric motor 14. Among the plurality of rolling bearings 15a to 15d constituting the multi-row rolling bearing unit 13, two rolling bearings 15a and 15b arranged near the distal end and two rolling bearings 15c and 15d arranged near the proximal end. In addition to applying contact angles opposite to each other, a preload is applied to each of the rolling bearings 15a to 15d. The main shaft 11 is supported rotatably with respect to the housing 12 in a state in which a radial load and a thrust load in both directions are supported. During operation of the machine tool, a tool (not shown) fixed to the tip end portion (left end portion in FIG. 1) of the spindle 11 is pressed against the workpiece while rotating at high speed, and the workpiece is subjected to cutting or the like. Apply processing. When machining is performed in this manner, a load in each direction is applied to the main shaft 11 as a reaction of pressing the tool against the workpiece. In the prior invention structure shown in FIG. 1, the axial load corresponding to the axial direction of the main shaft 11 can be obtained.

この為に先発明構造の場合には、前記主軸11の中間部先端寄り部分で、前記多列転がり軸受ユニット13を構成する転がり軸受15b、15c同士の間に、図3に示す様なエンコーダ4aを外嵌固定すると共に、前記ハウジング12に、図2、4、5に示す様なセンサユニット16を支持固定している。このうちのエンコーダ4aは、内輪間座を兼ねるもので、鋼等の磁性金属により造り、全体を円筒状としている。そして、被検出面である前記エンコーダ4aの外周面に前記センサユニット16の検出部を近接対向させ、このセンサユニット16の出力信号中に含まれる、位相に関する情報に基づいて、前記主軸11に作用するアキシアル荷重を求める様にしている。   For this reason, in the case of the structure of the prior invention, an encoder 4a as shown in FIG. 3 is provided between the rolling bearings 15b, 15c constituting the multi-row rolling bearing unit 13 near the tip of the intermediate portion of the main shaft 11. And a sensor unit 16 as shown in FIGS. 2, 4, and 5 is supported and fixed to the housing 12. Of these, the encoder 4a also serves as an inner ring spacer, is made of a magnetic metal such as steel, and has a cylindrical shape as a whole. Then, the detection unit of the sensor unit 16 is brought close to and opposed to the outer peripheral surface of the encoder 4a, which is the detection surface, and acts on the main shaft 11 based on the information regarding the phase included in the output signal of the sensor unit 16. The axial load to be calculated is determined.

本発明の対象となる回転軸用物理量測定装置の場合には、コスト低減及び小型化の面から、単一のセンサ6cの出力信号のタイミング比A/L(出力信号が1回変化する周期/出力信号が2回変化する周期)により、前記エンコーダ4a(を固定した前記主軸11)に関する物理量(軸方向に関する変位量とアキシアル荷重との一方又は双方)を求める様にしている。この為に使用する前記センサ6cは、前記エンコーダ4aの被検出面の性状に基づき、出力信号が1周期の途中で変化するもので、ホールIC、磁気抵抗素子等の磁気検出素子である前記センサ6cの背面(前記エンコーダ4aの外周面と対向する検出部と反対側の面)に、永久磁石19を配置し、これらセンサ6cと永久磁石19とを、合成樹脂製のホルダ20の先端部に包埋保持して成る。この永久磁石19の着磁方向は、前記センサ6cが前記エンコーダ4aの被検出面に対向している方向とする。そして、これらセンサ6cとエンコーダ4aとの相対変位に伴って、前記1周期の間で変化するタイミング(1周期の初めから途中で変化する瞬間迄の時間)がずれるものとする。   In the case of the physical quantity measuring device for a rotating shaft that is the subject of the present invention, the timing ratio A / L of the output signal of the single sensor 6c (period / cycle at which the output signal changes once) from the viewpoint of cost reduction and size reduction. The physical quantity (one or both of the displacement amount and the axial load in the axial direction) related to the encoder 4a (the main shaft 11 to which the encoder 4a is fixed) is obtained by the cycle in which the output signal changes twice. The sensor 6c used for this purpose is a sensor that is a magnetic detection element such as a Hall IC, a magnetoresistive element, etc., whose output signal changes in the middle of one cycle based on the property of the detection surface of the encoder 4a. A permanent magnet 19 is disposed on the back surface of 6c (the surface opposite to the detection portion facing the outer peripheral surface of the encoder 4a), and the sensor 6c and the permanent magnet 19 are placed on the tip of a holder 20 made of synthetic resin. It is embedded and held. The permanent magnet 19 is magnetized in the direction in which the sensor 6c faces the surface to be detected of the encoder 4a. Then, the timing of changing between the one cycle (time from the beginning of one cycle to the moment of changing in the middle) is shifted with the relative displacement between the sensor 6c and the encoder 4a.

この為に、前記エンコーダ4aの外周面に、複数の被検出用特性変化組み合わせ部17、17を、周方向に関して等間隔に、それぞれ前記物理量の測定方向に一致する前記被検出面の幅方向である、前記エンコーダ4aの軸方向に形成している。前記各被検出用特性変化組み合わせ部17、17は、この軸方向に対する傾斜方向が互いに異なる1対の特性変化部である、それぞれが直線状の凹溝18a、18bを、前記エンコーダ4aの周方向に離隔した状態で設けている。この様な凹溝18a、18bを形成した、このエンコーダ4aの外周面に検出部を近接対向させた、前記センサ6cの出力信号は、このセンサ6cの検出部が対向する部分(検出部の直前部分)を前記各凹溝18a、18bが通過する(前記センサ6cの検出部がこれら各凹溝18a、18bを形成した、前記エンコーダ4aの外周面を走査する)のに伴って変化する(パルス信号を出力する)。又、この変化のタイミング(パルスが発生する位相)は、前記センサ6cの検出部が、前記エンコーダ4aの外周面のうち、軸方向に関して何れの部分を走査するかによって変化する。そして、この変化に基づいて、前記エンコーダ4a(を外嵌した前記主軸11)の軸方向変位量を求められる。この点に就いて、図9により説明する。   For this purpose, a plurality of detected characteristic change combination parts 17 and 17 are arranged on the outer peripheral surface of the encoder 4a at equal intervals in the circumferential direction, respectively in the width direction of the detected surface that coincides with the measurement direction of the physical quantity. It is formed in the axial direction of the encoder 4a. Each of the detected characteristic change combination parts 17 and 17 is a pair of characteristic change parts whose inclination directions with respect to the axial direction are different from each other. Each of the detected characteristic change combination parts 17 and 17 has a linear groove 18a or 18b in the circumferential direction of the encoder 4a. It is provided in a separated state. An output signal of the sensor 6c in which the detection unit is closely opposed to the outer peripheral surface of the encoder 4a in which such concave grooves 18a and 18b are formed is a portion where the detection unit of the sensor 6c is opposed (immediately before the detection unit). Change in accordance with the passage of each of the concave grooves 18a and 18b (the detection portion of the sensor 6c scans the outer peripheral surface of the encoder 4a in which the concave grooves 18a and 18b are formed). Output a signal). The timing of the change (the phase at which the pulse is generated) varies depending on which part of the outer peripheral surface of the encoder 4a scans in the axial direction of the encoder 4a. Based on this change, the axial displacement amount of the encoder 4a (the main shaft 11 with which the encoder 4a is fitted) can be obtained. This point will be described with reference to FIG.

例えば、前記エンコーダ4aを外嵌した前記主軸11にアキシアル荷重が加わらず、このエンコーダ4aが軸方向中立位置に存在する場合、前記センサ6cの検出部は、図9の(A)に実線aで示す様に、前記エンコーダ4aの外周面のうちで、ほぼ軸方向中央部を走査する。この結果、前記センサ6cの出力信号は、例えば、図9の(B)に示す様に変化する。   For example, when an axial load is not applied to the main shaft 11 fitted with the encoder 4a and the encoder 4a exists at the neutral position in the axial direction, the detection unit of the sensor 6c is indicated by a solid line a in FIG. As shown, the axial center portion of the outer peripheral surface of the encoder 4a is scanned substantially. As a result, the output signal of the sensor 6c changes, for example, as shown in FIG.

これに対して、前記エンコーダ4a(を外嵌固定した前記主軸11)に、図9の(A)で上向きのアキシアル荷重が作用し、前記エンコーダ4aが、この図9の(A)で上方に変位すると、前記センサ4aの検出部は、図9の(A)に鎖線bで示す様に、このエンコーダ4aの外周面のうちで、軸方向片側{図9の(A)の下側}に偏った部分を走査する。この結果、前記センサ6cの出力信号は、例えば、図9の(C)に示す様に変化する。アキシアル荷重の作用方向が逆向きの場合には、前記出力信号は、逆方向に変化する。尚、工作機械用の主軸11の場合、アキシアル荷重の作用方向は一定である場合が多い。そこで、アキシアル荷重が加わらない状態で、前記センサ6cの検出部が前記エンコーダ4aの外周面の軸方向一端側を走査し、前記アキシアル荷重が大きくなるに従って、前記センサ6cの走査位置が軸方向他端側に変位する事にしても良い。   On the other hand, an upward axial load acts in FIG. 9A on the encoder 4a (the main shaft 11 on which the outer fitting is fixed), and the encoder 4a moves upward in FIG. 9A. When displaced, the detection part of the sensor 4a is positioned on one axial side {lower side of (A) in FIG. 9} on the outer peripheral surface of the encoder 4a as indicated by a chain line b in FIG. 9 (A). Scan the biased part. As a result, the output signal of the sensor 6c changes, for example, as shown in FIG. When the acting direction of the axial load is reverse, the output signal changes in the reverse direction. In the case of the spindle 11 for a machine tool, the acting direction of the axial load is often constant. Therefore, in a state where an axial load is not applied, the detection portion of the sensor 6c scans one end side in the axial direction of the outer peripheral surface of the encoder 4a, and as the axial load increases, the scanning position of the sensor 6c changes in the axial direction or the like. It may be displaced to the end side.

これら図9の(B)(C)に記載した各周期A、B、Lのうち、全周期Lは、円周方向に隣り合う1対の被検出用特性変化組み合わせ部17、17に関する、前記センサ4aの出力信号の周期である。具体的には、回転方向前側(図9の左側)の被検出用特性変化組み合わせ部17に関する所定部分(図示の例では、この被検出用特性変化組み合わせ部17を構成する1対の凹溝18a、18bのうち、回転方向前側の凹溝18aの回転方向後端縁)での、前記出力信号の立ち上がり部から、回転方向後側(図9の右側)の被検出用特性変化組み合わせ部17に関する同等部分での前記出力信号の立ち上がり部までの時間である。又、第一部分周期Aは、回転方向前側の被検出用特性変化組み合わせ部17を構成する1対の凹溝18a、18bのうち、回転方向前側の凹溝18aに関する(前記所定部分での)前記出力信号の立ち上がり部から、回転方向後側の凹溝18bに関する前記出力信号の立ち上がり部までの時間である。更に、第二部分周期Bは、回転方向前側の被検出用特性変化組み合わせ部17を構成する1対の凹溝18a、18bのうち、回転方向後側の凹溝18bに関する前記出力信号の立ち上がり部から、回転方向後側の被検出用特性変化組み合わせ部17を構成する1対の凹溝18a、18bのうち、回転方向前側の凹溝18aに関する(前記同等部分での)前記出力信号の立ち上がり部までの時間である。   Of the periods A, B, and L described in FIGS. 9B and 9C, the entire period L relates to the pair of detected characteristic change combination units 17 and 17 that are adjacent in the circumferential direction. This is the cycle of the output signal of the sensor 4a. Specifically, a predetermined portion (in the illustrated example, a pair of concave grooves 18a constituting the detected characteristic change combination unit 17 on the detected characteristic change combination unit 17 on the front side in the rotation direction (left side in FIG. 9). , 18b, from the rising portion of the output signal at the rotation direction rear end edge of the concave groove 18a on the rotation direction front side to the detected characteristic change combination unit 17 on the rear side in the rotation direction (right side in FIG. 9). This is the time until the rising edge of the output signal in the equivalent part. The first partial period A relates to the groove 18a on the front side in the rotational direction (in the predetermined portion) of the pair of concave grooves 18a and 18b constituting the detected characteristic change combination portion 17 on the front side in the rotational direction. This is the time from the rising edge of the output signal to the rising edge of the output signal related to the concave groove 18b on the rear side in the rotation direction. Further, the second partial period B is a rising portion of the output signal related to the concave groove 18b on the rear side in the rotational direction among the pair of concave grooves 18a and 18b constituting the detected characteristic change combination portion 17 on the front side in the rotational direction. From the pair of concave grooves 18a, 18b constituting the detected characteristic change combination section 17 on the rear side in the rotational direction, the rising portion of the output signal related to the concave groove 18a on the front side in the rotational direction (at the same portion) It is time until.

前記各周期A、B、Lのうちの全周期Lは、前記第一部分周期Aと前記第二部分周期Bとの和(L=A+B)になる。又、前記タイミング比は、A/L(又はB/L)となる。尚、前記各周期のうちの全周期Lが、出力信号が2回変化する周期(2パルス分の周期)であり、前記エンコーダ4aの回転速度が一定である限り、一定である。又、前記第一部分周期A及び前記第二部分周期Bが、前記出力信号が1回変化する周期(1パルス分の周期)であり、前記エンコーダ4aの回転速度が一定であっても、このエンコーダ4aの軸方向位置が変化すると変化する。   The total period L of the periods A, B, and L is the sum of the first partial period A and the second partial period B (L = A + B). The timing ratio is A / L (or B / L). The total period L of the respective periods is a period in which the output signal changes twice (a period corresponding to two pulses), and is constant as long as the rotation speed of the encoder 4a is constant. The first partial period A and the second partial period B are periods in which the output signal changes once (periods for one pulse), and even if the rotational speed of the encoder 4a is constant, the encoder It changes when the axial position of 4a changes.

図9から明らかな通り、前記タイミング比A/L(出力信号が1回変化する周期/出力信号が2回変化する周期)は、前記エンコーダ6cの軸方向位置に伴って変化し、このタイミング比A/Lの変化量は、この軸方向位置の変化量(軸方向変位量)が大きくなる程大きくなる。又、この軸方向変位量は、前記エンコーダ4aを外嵌固定した、前記主軸11に加わるアキシアル荷重が大きくなる程大きくなる。又、このアキシアル荷重に基づく前記軸方向変位量は、前記多列転がり軸受ユニット13を構成する前記各転がり軸受15a〜15dのうち、前記アキシアル荷重を支承する転がり軸受の剛性が大きくなる程小さくなる。又、このアキシアル荷重と前記軸方向変位量との関係は、この剛性を勘案した計算により、或は既知のアキシアル荷重と軸方向変位量との関係を測定する実験により、予め求めておく事ができる。従って、図1〜5、9に示す様な構造を採用すれば、低コストで、しかも小型に構成できる構造で、工作機械の主軸11に加わるアキシアル荷重を求められる。   As is clear from FIG. 9, the timing ratio A / L (the cycle in which the output signal changes once / the cycle in which the output signal changes twice) changes with the axial position of the encoder 6c. The amount of change in A / L increases as the amount of change in the axial position (axial displacement) increases. The axial displacement amount increases as the axial load applied to the main shaft 11 with the encoder 4a fitted and fixed increases. The axial displacement amount based on the axial load decreases as the rigidity of the rolling bearing that supports the axial load among the rolling bearings 15a to 15d constituting the multi-row rolling bearing unit 13 increases. . Further, the relationship between the axial load and the axial displacement amount may be obtained in advance by calculation taking this rigidity into account, or by an experiment measuring the relationship between the known axial load and axial displacement amount. it can. Therefore, if the structures as shown in FIGS. 1 to 5 and 9 are employed, the axial load applied to the spindle 11 of the machine tool can be obtained with a structure that can be configured at low cost and in a small size.

但し、上述の様な先発明構造で、測定結果の信頼性を確保する為には、次の(1)(2)の様な問題を解決する必要がある。
(1) 前記タイミング比としては、前述した様に、A/LとB/Lとの2通りのものがある。例えば前記主軸11に加わるアキシアル荷重を求める場合には、これら2通りのタイミング比のうちの何れかを採用し、演算器は、採用したタイミング比(A/LとB/Lとのうちの何れか一方のみ)に基づいて、前記アキシアル荷重を算出する。この場合に、前記演算器に取り入れたタイミング比が、この演算器が採用しているタイミング比である事が必要である。過って、採用していないタイミング比に基づいて前記アキシアル荷重を算出すると、算出結果に大きな誤差を生じる。
(2) 外乱ノイズ等、何らかの原因で、前記センサ6cの出力信号に異常パルスが混入した場合に、この出力信号が異常である事を検知する為の手段を設ける必要がある。前述の図10〜12に示した様な、1対のセンサ6a、6bを使用する従来構造の場合には、これら両センサ6a、6bの出力信号を相互監視して、これら両センサの出力信号中に異常パルスが混入しているか否かを判定できる。これに対して、前記先発明構造の場合には、単一のセンサ6cしか使用しない為、相互監視に基づいては、異常パルスの有無を判定する事ができない。
However, the following problems (1) and (2) need to be solved in order to ensure the reliability of the measurement results with the above-described prior invention structure.
(1) As described above, there are two timing ratios, A / L and B / L. For example, when the axial load applied to the spindle 11 is obtained, any one of these two timing ratios is adopted, and the computing unit selects any one of the adopted timing ratios (A / L and B / L). The axial load is calculated based on only one of them. In this case, it is necessary that the timing ratio incorporated in the computing unit is the timing ratio adopted by the computing unit. Therefore, if the axial load is calculated based on a timing ratio that is not employed, a large error occurs in the calculation result.
(2) When an abnormal pulse is mixed into the output signal of the sensor 6c for some reason such as disturbance noise, it is necessary to provide means for detecting that this output signal is abnormal. In the case of a conventional structure using a pair of sensors 6a and 6b as shown in FIGS. 10 to 12 described above, the output signals of both sensors 6a and 6b are mutually monitored, and the output signals of both sensors are detected. Whether or not an abnormal pulse is mixed can be determined. On the other hand, in the structure of the prior invention, since only a single sensor 6c is used, it is impossible to determine the presence or absence of an abnormal pulse based on mutual monitoring.

このうちの(1) の問題点に就いて、図9を参照しつつ更に詳しく説明する。前記センサ6cが図9の(B)(C)に示した様なパルス信号を出力する場合に、前記主軸11に作用するアキシアル荷重を求める為のタイミング比として、前記第一部分周期Aを分子とするタイミング比A/Lを採用する場合と、前記第二部分周期Bを分子とするタイミング比B/Lを採用する場合とが考えられる。何れを採用しても、これら両タイミング比A/L、B/Lを混同しなければ(取り違えなければ)、採用したタイミング比に応じた計算式、マップ等を採用する事により、前記アキシアル荷重を正しく求められる。但し、これら両タイミング比A/L、B/Lは、このアキシアル荷重に関する変化の傾向が互いに逆である為、これら両タイミング比A/L、B/Lを混同した(取り違えた)場合には、前記アキシアル荷重の測定結果に、到底許容できない程に大きな誤差を生じる。これらを考慮した場合に、前記両タイミング比A/L、B/Lを混同しない(取り違えない)様にする為の考慮が必要である。   Of these, the problem (1) will be described in more detail with reference to FIG. When the sensor 6c outputs a pulse signal as shown in FIGS. 9B and 9C, the first partial period A is defined as a numerator as a timing ratio for obtaining an axial load acting on the spindle 11. The case where the timing ratio A / L is adopted and the case where the timing ratio B / L where the second partial period B is a numerator are adopted are considered. Regardless of which of these timing ratios A / L and B / L are not confused (if not confused), the above-mentioned axial load can be obtained by employing a calculation formula, map, etc. according to the employed timing ratio. Is required correctly. However, since these two timing ratios A / L and B / L are opposite to each other in the tendency of change with respect to the axial load, when these two timing ratios A / L and B / L are confused (misunderstood) In the axial load measurement result, an unacceptably large error occurs. When these are considered, it is necessary to consider not to confuse (do not confuse) the two timing ratios A / L and B / L.

本発明は、上述の様な事情に鑑みて、各種工作機械の主軸の如く、荷重を受けつつ高速で回転する回転軸に加わる荷重、或はこの回転軸の変位量等の物理量を、十分な信頼性を確保しつつ、精度良く測定できる装置を、低コストで実現すべく発明したものである。   In view of the circumstances as described above, the present invention provides sufficient physical quantities such as a load applied to a rotating shaft that rotates at high speed while receiving a load, such as a main shaft of various machine tools, or a physical amount such as a displacement amount of the rotating shaft. The invention was invented to realize a device capable of measuring with high accuracy while ensuring reliability at a low cost.

本発明の回転軸用物理量測定装置は、ハウジングと、回転軸と、エンコーダと、1個のセンサと、演算器とを備える。
このうちのハウジングは、回転しない。
又、前記回転軸は、それぞれが予圧を付与された複数の転がり軸受により、このハウジングの内側に回転自在に支持されている。
又、前記エンコーダは、前記回転軸と同心の被検出面を有し、この回転軸の一部に支持固定されている。
又、前記センサは、検出部をこの被検出面に対向させた状態で前記ハウジングに、(直接又は他の部材を介して)支持されている。
更に、前記演算器は、前記センサの出力信号を処理するもので、この出力信号の位相に関する情報に基づいて、前記回転軸に関する物理量を求める機能を有する。
The rotating shaft physical quantity measuring device of the present invention includes a housing, a rotating shaft, an encoder, one sensor, and a computing unit.
Of these, the housing does not rotate.
The rotating shaft is rotatably supported inside the housing by a plurality of rolling bearings each provided with a preload.
The encoder has a detection surface concentric with the rotating shaft, and is supported and fixed to a part of the rotating shaft.
The sensor is supported by the housing (directly or via another member) with the detection unit facing the detection surface.
Furthermore, the computing unit processes the output signal of the sensor, and has a function of obtaining a physical quantity related to the rotating shaft based on information related to the phase of the output signal.

又、前記エンコーダの被検出面は、複数の被検出用特性変化組み合わせ部を、周方向に関して等間隔に、それぞれ前記物理量の測定方向に一致する前記被検出面の幅方向に形成している。又、前記各被検出用特性変化組み合わせ部は、この幅方向に対する傾斜方向が互いに異なる1対の特性変化部を、前記エンコーダの周方向に離隔した状態で設けたものである。
又、前記センサは、前記各被検出用特性変化組み合わせ部を構成する前記各特性変化部が前記検出部が対向する部分を通過する瞬間に出力信号を変化させるものである。
そして、前記演算器は、この出力信号が1回変化する周期と2回変化する周期との比であるタイミング比に基づいて、前記物理量を求めるものである。
The detected surface of the encoder is formed with a plurality of detected characteristic change combination portions at equal intervals in the circumferential direction in the width direction of the detected surface that coincides with the measurement direction of the physical quantity. Each of the detected characteristic change combination portions is provided with a pair of characteristic change portions having different inclination directions with respect to the width direction in a state of being separated in the circumferential direction of the encoder.
Further, the sensor changes the output signal at the moment when each of the characteristic changing parts constituting each of the detected characteristic changing combination parts passes through a portion facing the detecting part.
The computing unit obtains the physical quantity based on a timing ratio that is a ratio of a cycle in which the output signal changes once and a cycle in which the output signal changes twice.

特に、本発明の回転軸用物理量測定装置に於いては、前記被検出面の幅方向に関する、前記センサの検出部が前記各被検出用特性変化組み合わせ部に対向する位置に関係なく、前記エンコーダの回転に伴って順次発生する前記タイミング比の大小が、隣り合うタイミング比同士の間で常に逆転する様に、前記各被検出用特性変化組み合わせ部を構成する前記1対ずつの特性変化部の周方向に関するピッチと、周方向に隣り合うこれら各被検出用特性変化組み合わせ部同士のピッチとを規制している。
具体的には、請求項2に記載した発明の様に、前記エンコーダの周方向に関して、前記各被検出用特性変化組み合わせ部を構成する1対の特性変化部が最も遠くなった部分のピッチを、隣り合う被検出用特性変化組み合わせ部が最も近付いた部分のピッチよりも小さくする。
上述の様な本発明を実施する場合に好ましくは、請求項3に記載した発明の様に、タイミング比に関して、閾値を設定する。又、前記エンコーダの回転に伴って順次取得するタイミング比をこの閾値と比較する比較器及びこの比較器の判定結果に基づいて異常の有無を判定する判定器を備える。そして、この判定器は、前記タイミング比が2回以上連続して前記閾値未満の場合、及び、2回以上連続して閾値以上の場合に、異常ありと判定する。
或は、請求項4に記載した発明の様に、前記出力信号が2回変化する周期が変化する割合に関して第二の閾値を設定する。又、この周期が変化する割合を求めてその求めた結果をこの第二の閾値と比較する比較器及び判定器を備える。そして、この判定器は、前記周期が変化する割合が前記第二の閾値を超えて大きい場合に異常ありと判定する。
この様な請求項3〜4に記載した発明を実施する場合に好ましくは、請求項5に記載した発明の様に、前記判定器が異常ありと判定した場合に、前記演算器から物理量に関する信号の出力を停止する。
或は、請求項6に記載した発明の様に、前記判定器が異常ありと判定した場合に、前記演算器から物理量に関する信号の出力を継続しつつ、異常がある事を表す信号を出力する。
或は、請求項7に記載した発明の様に、判定器が異常ありと判定した場合に、前記演算器から物理量に関する信号の出力を停止すると共に、異常がある事を表す信号を出力する。
In particular, in the physical quantity measuring device for a rotating shaft according to the present invention, the encoder is independent of the position of the sensor detection unit facing each of the detected characteristic change combination units in the width direction of the detection surface. Of each of the pair of characteristic change parts constituting each detected characteristic change combination part so that the magnitudes of the timing ratios sequentially generated along with the rotation of the counter are always reversed between adjacent timing ratios. The pitch in the circumferential direction and the pitch between the detected characteristic change combination portions adjacent to each other in the circumferential direction are regulated.
Specifically, as in the invention described in claim 2, with respect to the circumferential direction of the encoder, the pitch of the portion where the pair of characteristic change parts constituting each detected characteristic change combination part is farthest is determined. The pitch of the adjacent characteristic change combination for detection is made smaller than the closest pitch.
When implementing the present invention as described above, it is preferable to set a threshold value for the timing ratio as in the third aspect of the present invention. In addition, a comparator that compares a timing ratio sequentially acquired with the rotation of the encoder with the threshold value and a determiner that determines the presence or absence of an abnormality based on the determination result of the comparator are provided. Then, the determination unit determines that there is an abnormality when the timing ratio is continuously less than the threshold value twice or more, and when the timing ratio is continuously more than twice.
Alternatively, as in the invention described in claim 4, the second threshold value is set with respect to the rate at which the cycle in which the output signal changes twice is changed. Further, a comparator and a determination unit are provided for determining a rate at which the period changes and comparing the obtained result with the second threshold value. The determiner determines that there is an abnormality when the rate at which the period changes is greater than the second threshold.
Preferably, when the invention described in claims 3 to 4 is implemented, a signal related to a physical quantity is output from the arithmetic unit when the determiner determines that there is an abnormality as in the invention described in claim 5. Stop the output of.
Alternatively, as in the invention described in claim 6, when the determination unit determines that there is an abnormality, a signal indicating that there is an abnormality is output while continuing to output a signal relating to the physical quantity from the arithmetic unit. .
Alternatively, as in the invention described in claim 7, when the determiner determines that there is an abnormality, the output of the signal related to the physical quantity is stopped from the arithmetic unit and a signal indicating that there is an abnormality is output.

上述の様に構成する本発明の回転軸用物理量測定装置によれば、荷重を受けつつ高速で回転する回転軸に加わる荷重、或はこの回転軸の変位量等の物理量を精度良く測定できる装置を、低コストで実現できる。
即ち、本発明の回転軸用物理量測定装置の場合には、エンコーダの回転に伴って順次発生する前記タイミング比の大小が、隣り合うタイミング比同士の間で常に逆転する。この為、出力信号が2回変化する周期(全周期)の間に長短2種類存在する、出力信号が1回変化する周期を分子とする、大小2種類のタイミング比のうちの、例えば常に小さい方のタイミング比を選択できる。即ち、常に、前述した第一部分周期Aを分子とするタイミング比A/Lを採用して、前記物理量を正しく求める事ができる。過って、前記第二部分周期Bを分子とするタイミング比B/Lを採用し、不正な物理量を求める事を防止できる{前述した(1) の問題を解決できる}。
According to the physical quantity measuring device for a rotating shaft of the present invention configured as described above, a device that can accurately measure a physical amount such as a load applied to a rotating shaft rotating at a high speed while receiving a load, or a displacement amount of the rotating shaft. Can be realized at low cost.
That is, in the case of the physical quantity measuring device for a rotating shaft according to the present invention, the magnitude of the timing ratio that is sequentially generated as the encoder rotates is always reversed between the adjacent timing ratios. For this reason, there are two types of timing ratios in which the output signal changes twice (long and short) during the cycle (all cycles), and the cycle in which the output signal changes once makes the numerator, for example, always small. The timing ratio can be selected. That is, the physical quantity can always be obtained correctly by employing the timing ratio A / L with the first partial period A as a numerator. Therefore, the timing ratio B / L with the second partial period B as a numerator can be employed to prevent an illegal physical quantity from being obtained {the above-mentioned problem (1) can be solved}.

又、請求項3に記載した発明の様に、隣り合うタイミング比に関して閾値を設定し、前記エンコーダの回転に伴って順次取得するタイミング比をこの閾値と比較すれば、前記センサの出力信号に異常パルスが混入した場合に、この出力信号が異常である事を検知できる。言い換えれば、単一のセンサしか使用しない構造で、異常パルスの有無を判定できる{前述した(2) の問題を解決できる}。
或は、請求項4に記載した発明の様に、前記出力信号が2回変化する周期を第二の閾値と比較する事でも、単一のセンサしか使用しない構造で、異常パルスの有無を判定できる{前述した(2) の問題を解決できる}。
Further, as in the third aspect of the present invention, if a threshold is set for adjacent timing ratios, and the timing ratio sequentially acquired with the rotation of the encoder is compared with this threshold, the output signal of the sensor is abnormal. When a pulse is mixed, it can be detected that this output signal is abnormal. In other words, it is possible to determine the presence or absence of an abnormal pulse with a structure that uses only a single sensor {can solve the above-mentioned problem (2)}.
Alternatively, as in the invention described in claim 4, it is possible to determine the presence or absence of an abnormal pulse with a structure in which only a single sensor is used even by comparing a cycle in which the output signal changes twice with a second threshold value. Yes {Can solve the problem (2) above}.

本発明の対象となる構造の1例を示す断面図。Sectional drawing which shows one example of the structure used as the object of this invention. 図1のX部拡大図。The X section enlarged view of FIG. エンコーダを取り出して示す斜視図。The perspective view which takes out and shows an encoder. センサユニットを取り出して、先端のセンサ装着部を被覆していない状態(A)と被覆した状態(B)とで示す斜視図。The perspective view which takes out a sensor unit and shows with the state (A) which is not covering the sensor mounting part of the front-end | tip, and the state (B) which covered. センサの模式図。The schematic diagram of a sensor. 本発明の技術的範囲に属するエンコーダを使用した場合に於ける、アキシアル荷重に基づくエンコーダの変位により1個センサの出力信号のタイミング比が変化する状況を説明する為の模式図。The schematic diagram for demonstrating the situation where the timing ratio of the output signal of one sensor changes by the displacement of the encoder based on an axial load in the case of using the encoder which belongs to the technical scope of the present invention. 同じく外乱等による異常が発生した状況を説明する為の模式図。The schematic diagram for demonstrating the condition where abnormality similarly by disturbance etc. occurred. 本発明の技術的範囲からは外れるエンコーダを使用した場合に適切なタイミング比を採用できなくなる理由を説明する為に使用する、図6と同様の模式図。FIG. 7 is a schematic diagram similar to FIG. 6, used to explain the reason why an appropriate timing ratio cannot be adopted when using an encoder that is out of the technical scope of the present invention. 本発明に先立って考えた構造を説明する為に使用する、図6と同様の模式図。The schematic diagram similar to FIG. 6 used in order to demonstrate the structure considered prior to this invention. 車輪支持用転がり軸受ユニットに加わるアキシアル荷重を測定する為に考えられた、従来構造の1例を示す断面図。Sectional drawing which shows one example of the conventional structure considered in order to measure the axial load added to the rolling bearing unit for wheel support. エンコーダの被検出面の一部を径方向から見た図。The figure which looked at a part of the to-be-detected surface of an encoder from radial direction. アキシアル荷重に基づくエンコーダの変位により1対のセンサの出力信号同士の間に位相差が生じる状況を説明する為の模式図。The schematic diagram for demonstrating the condition where a phase difference arises between the output signals of a pair of sensors by the displacement of the encoder based on an axial load.

図1〜8を参照しつつ、本発明の実施の形態の1例に就いて説明する。尚、本例の特徴は、エンコーダ4aの被検出面である、このエンコーダ4aの外周面に設けた複数の被検出用特性変化組み合わせ部17、17の、このエンコーダ4aの周方向に関するピッチを、これら各被検出用特性変化組み合わせ部17、17を構成する1対ずつの凹溝18a、18bの同方向に関するピッチとの関係で規制する事により、単一のセンサ6cのみを使用しても、主軸11に加わる荷重等の物理量を、十分な信頼性を確保した状態で測定できる様にする点にある。その他の点に就いては、前述の先発明構造の場合と同様であるから、同等部分に関する説明は、省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。   An example of an embodiment of the present invention will be described with reference to FIGS. The feature of this example is the pitch in the circumferential direction of the encoder 4a of the plurality of detected characteristic change combination portions 17 and 17 provided on the outer peripheral surface of the encoder 4a. Even if only a single sensor 6c is used by restricting in relation to the pitch in the same direction of the pair of concave grooves 18a, 18b constituting each of these detected characteristic change combination parts 17, 17, A physical quantity such as a load applied to the spindle 11 can be measured in a state where sufficient reliability is ensured. Since the other points are the same as in the case of the above-described prior invention structure, the description of the equivalent parts will be omitted or simplified, and hereinafter, the characteristic parts of this example will be mainly described.

本例の場合、前述した(1)(2)の課題を解決する為、図6、7の(A)に示す様に、各被検出用特性変化組み合わせ部17、17を構成する1対の凹溝18a、18b同士の間隔よりも、周方向に隣り合うこれら各被検出用特性変化組み合わせ部17、17同士の間隔を十分に大きくしている。即ち、これら各被検出用特性変化組み合わせ部17、17を構成する1対の特性変化部18a、18bが最も遠くなった部分のピッチP18を、隣り合う被検出用特性変化組み合わせ部17、17が最も近付いた部分のピッチP17よりも小さく(P18<P17)している。 In the case of this example, in order to solve the problems (1) and (2) described above, as shown in FIGS. 6 and 7 (A), as shown in FIG. The interval between the detected characteristic change combination portions 17 and 17 adjacent in the circumferential direction is made sufficiently larger than the interval between the concave grooves 18a and 18b. That is, the pitch P 18 of the portion where the pair of characteristic change portions 18a and 18b constituting each of the detected characteristic change combination portions 17 and 17 is the farthest is determined as the adjacent detected characteristic change combination portions 17 and 17. Is smaller than the pitch P 17 of the closest part (P 18 <P 17 ).

従って、前記エンコーダ4aの外周面に検出部を対向させたセンサ6cの出力信号が変化する周期のうち、前記両特性変化部18a、18bが最も遠くなった部分のピッチP18に対応して変化する周期{前述の図9の(B)に示した第一部分周期Aの最大値}が、前記隣り合う被検出用特性変化組み合わせ部17、17が最も近付いた部分のピッチP17に対応して変化する周期{前述の図9の(B)に示した第二部分周期Bの最小値}よりも大きくなる事はない。言い換えれば、前記第一部分周期Aは、常にこの第二部分周期Bよりも小さく、前述したタイミング比の分子として前記第一部分周期Aを採用した{タイミング比=A/L=A/(A+B)とした}場合には、タイミング比A/Lは、常に0.5(50%)未満の値となる。これに対して、前記タイミング比の分子として前記第二部分周期Bを採用した{タイミング比=B/L=B/(A+B)とした}場合には、タイミング比B/Lは、常に0.5(50%)を超えた値となる。 Therefore, the one period of the output signal of the sensor 6c that are opposed to the detection section is changed to the outer circumferential surface of the encoder 4a, corresponding to the two characteristic changing portion 18a, the portion of the pitch P 18 of 18b becomes farthest change The period {the maximum value of the first partial period A shown in FIG. 9B} corresponds to the pitch P 17 of the part where the adjacent detected characteristic change combination parts 17 and 17 are closest. It does not become longer than the changing period {minimum value of the second partial period B shown in FIG. 9B). In other words, the first partial period A is always smaller than the second partial period B, and the first partial period A is adopted as the numerator of the timing ratio described above {timing ratio = A / L = A / (A + B) The timing ratio A / L is always less than 0.5 (50%). On the other hand, when the second partial period B is adopted as the numerator of the timing ratio {the timing ratio = B / L = B / (A + B)}, the timing ratio B / L is always 0. The value exceeds 5 (50%).

この為、前記エンコーダ4aの軸方向変位量、延いてはこのエンコーダを外嵌固定した主軸11に加わるアキシアル荷重を求める為のタイミング比の分子として、前記第一部分周期Aと前記第二部分周期Bとの何れを採用しても、採用したタイミング比に応じた計算式、マップ等を採用する事により、前記アキシアル荷重を正しく求められる。即ち、前記第一部分周期Aを採用した場合には、0.5未満のタイミング比に基づいて、前記第二部分周期Bを採用した場合には、0.5を超えるタイミング比に基づいて、前記アキシアル荷重を算出すれば、これら2種類のタイミング比(A/L、B/L)を混同する(取り違える)事がなくなり、前記アキシアル荷重を、大きな誤差を生じる事なく求められる。   For this reason, the first partial period A and the second partial period B are used as the numerator of the timing ratio for obtaining the axial displacement amount of the encoder 4a, and hence the axial load applied to the main shaft 11 on which the encoder is fitted and fixed. In any case, the axial load can be correctly obtained by employing a calculation formula, a map, or the like corresponding to the employed timing ratio. That is, when the first partial period A is employed, the timing ratio is less than 0.5, and when the second partial period B is employed, the timing ratio is greater than 0.5. If the axial load is calculated, these two types of timing ratios (A / L, B / L) will not be confused (misunderstood), and the axial load can be obtained without causing a large error.

これに対して、前記第一部分周期Aが常に前記第二部分周期Bよりも小さくならない場合(これら両部分周期A、Bの大小関係が逆転する事がある場合)には、前記2種類のタイミング比(A/L、B/L)の混同(取り違え)防止を図る事は難しい。即ち、前記各被検出用特性変化組み合わせ部17、17を構成する1対の特性変化部18a、18bのうちの一方の特性変化部18aに基づくパルスと、他方の特性変化部18bに基づくパルスとを、前記タイミング比によっては見分けられない。従って、本発明とは異なる、何らかの手段により、一方の特性変化部18aに基づくパルスと、他方の特性変化部18bに基づくパルスとを見分ける様にしない限り、前記2種類のタイミング比(A/L、B/L)の混同(取り違え)防止を図れない。この点に就いて、図8を参照しつつ、以下に説明する。   On the other hand, when the first partial period A is not always smaller than the second partial period B (when the relationship between the two partial periods A and B may be reversed), the two types of timings are used. It is difficult to prevent confusion (mixture) of the ratios (A / L, B / L). That is, a pulse based on one characteristic changing unit 18a of the pair of characteristic changing units 18a, 18b constituting each of the detected characteristic change combining units 17, 17 and a pulse based on the other characteristic changing unit 18b Cannot be distinguished depending on the timing ratio. Accordingly, the two kinds of timing ratios (A / L) are not used unless the pulse based on one characteristic changing unit 18a and the pulse based on the other characteristic changing unit 18b are distinguished from each other by some means different from the present invention. , B / L) cannot be prevented. This point will be described below with reference to FIG.

例えば、図8の(A)に示す様に、互いに傾斜方向が逆である2種類の特性変化部18a、18bを、円周方向に関して等間隔に配置{各被検出用特性変化組み合わせ部17、17を構成する1対の特性変化部18a、18bが最も近くなった部分のピッチp18と、隣り合う被検出用特性変化組み合わせ部17、17が最も近付いた部分のピッチp17とを、互いに等しく(p18=p17)}した場合、図8の(B)に示す様に、第一部分周期Aが前記第二部分周期Bよりも小さくなる場合と、同図(C)に示す様に、前記第一部分周期Aが前記第二部分周期Bよりも大きくなる場合とが生じる。この様に、これら第一、第二両部分周期A、B同士の大小関係が逆転する可能性がある場合には、前述した様に、本発明とは異なる手段を採用しない限り、一方の特性変化部18aに基づくパルスと、他方の特性変化部18bに基づくパルスとを見分けられない。例えば、前記2種類の特性変化部18a、18bの、円周方向に関する幅寸法を互いに異ならせ、一方の特性変化部18a、18aに基づくパルス幅と他方の特性変化部18b、18bに基づくパルス幅とを互いに異ならせれば、これら両特性変化部18a、18bに基づくパルスを見分けられる。但し、この様な構成を採用した場合には、パルスが発生するタイミングだけでなく、パルス幅を求める必要があり、演算器の処理が複雑化する為、この演算器として、特に高速処理が可能なものを使用する必要が生じ、コストが嵩む原因となる。 For example, as shown in FIG. 8A, two types of characteristic changing portions 18a and 18b whose inclination directions are opposite to each other are arranged at equal intervals in the circumferential direction {each detected characteristic change combining portion 17, The pitch p 18 of the portion where the pair of characteristic changing portions 18a and 18b constituting the portion 17 are closest to each other, and the pitch p 17 of the portion where the adjacent detected characteristic change combining portions 17 and 17 are closest to each other are When equal (p 18 = p 17 )}, as shown in FIG. 8B, the first partial period A is smaller than the second partial period B, as shown in FIG. In some cases, the first partial period A is larger than the second partial period B. In this way, when there is a possibility that the magnitude relationship between the first and second partial periods A and B may be reversed, as described above, unless one means different from the present invention is adopted, one characteristic is obtained. The pulse based on the change part 18a cannot be distinguished from the pulse based on the other characteristic change part 18b. For example, the width dimensions of the two types of characteristic changing portions 18a and 18b in the circumferential direction are different from each other, and the pulse width based on one of the characteristic changing portions 18a and 18a and the pulse width based on the other characteristic changing portions 18b and 18b. Are different from each other, it is possible to distinguish the pulses based on both of these characteristic changing portions 18a and 18b. However, when such a configuration is adopted, it is necessary to obtain not only the pulse generation timing but also the pulse width, and the processing of the arithmetic unit becomes complicated, so this arithmetic unit can be processed at a particularly high speed. It becomes necessary to use a new one, which causes an increase in cost.

これに対して本発明の場合には、元々前記アキシアル荷重を求める為に必要な、前記タイミング比と、予め設定した閾値(例えば0.5)との大小関係を比較するだけで済むので、演算器の処理が複雑化する事はなく、この演算器として、特に高速処理が可能なものを使用する必要がなく、コストを抑えられる。
尚、採用した部分周期以外の部分周期で前記アキシアル荷重の算出を行わない様にする為に採用する前記閾値の値は、上述の様な0.5に限る必要はない。例えば、第一部分周期Aを分子とするタイミング比A/Lで前記アキシアル荷重を求める場合、前記閾値として、例えば0.4、0.3等、0.5よりも小さい値にする事もできる。又、第二部分周期Bを分子とするタイミング比B/Lで前記アキシアル荷重を求める場合には、前記閾値として、例えば0.6、0.7等、0.5よりも大きい値にする事もできる。この場合には、前記各被検出用特性変化組み合わせ部17、17を構成する1対の特性変化部18a、18bが最も遠くなった部分のピッチP18よりも、隣り合う被検出用特性変化組み合わせ部17、17が最も近付いた部分のピッチP17を、十分に大きく(P18≪P17)する。又、前記演算器の演算誤差等による誤判定を防止する為に、設定した閾値に不感帯を設ける事が望ましい。例えば、この閾値として0.5なる値を設定した場合に、0.45〜0.55を不感帯とし、上述した2種類のタイミング比A/L、B/Lのうちのタイミング比A/Lを0.45以下とし(このタイミング比A/Lの最大値を0.45とし)、タイミング比B/Lを0.55以上とする(このタイミング比B/Lの最小値を0.55とする)。
On the other hand, in the case of the present invention, it is only necessary to compare the magnitude relationship between the timing ratio and a preset threshold value (for example, 0.5), which is originally necessary for obtaining the axial load. The processing of the calculator is not complicated, and it is not necessary to use a calculator capable of high-speed processing as this arithmetic unit, thereby reducing the cost.
It should be noted that the threshold value employed in order not to calculate the axial load in a partial period other than the employed partial period need not be limited to 0.5 as described above. For example, when the axial load is obtained at the timing ratio A / L with the first partial period A as a numerator, the threshold value can be set to a value smaller than 0.5, such as 0.4, 0.3, or the like. Further, when the axial load is obtained with the timing ratio B / L with the second partial period B as the numerator, the threshold value is set to a value larger than 0.5, for example, 0.6, 0.7, etc. You can also. In this case, the detected characteristic change combination parts 17 and 17 that constitute the respective detected characteristic change combination parts 17 and 17 are adjacent to the detected characteristic change combination that is adjacent to the pitch P 18 at the farthest part. The pitch P 17 of the portion where the portions 17 and 17 are closest is made sufficiently large (P 18 << P 17 ). In order to prevent erroneous determination due to calculation error of the calculator, it is desirable to provide a dead band at the set threshold value. For example, when a value of 0.5 is set as the threshold value, the dead zone is 0.45 to 0.55, and the timing ratio A / L of the two types of timing ratios A / L and B / L described above is set. 0.45 or less (the maximum value of this timing ratio A / L is 0.45), and the timing ratio B / L is 0.55 or more (the minimum value of this timing ratio B / L is 0.55) ).

次に、前述の(2) の課題を解決できる、即ち、前記センサ6cの出力信号に異常パルスが混入した場合に、この出力信号が異常である事を検知できる理由に就いて、図7を参照しつつ説明する。上述の様に本例の場合には、前記2種類のタイミング比A/L、B/Lの大小関係が逆転する事はないので、前記アキシアル荷重を求める為のタイミング比として何れのタイミング比A/L(B/L)を採用した場合でも、前記出力信号が正常である限り、当該タイミング比A/L(B/L)と閾値との大小関係が、図7の(C)に正常として表した部分の様に、交互に逆転する。即ち、正常時には、タイミング比が、常に「閾値以上→閾値未満→閾値以上→閾値未満→・・・」の繰り返しとなる。これに対して、図7の(B)の中間部左寄り部分に示す様に、ノイズ等の外乱により異常パルスが発生すると、図7の(C)に異常として表した部分の様に、タイミング比が、「閾値以上→閾値未満→閾値未満→閾値以上→閾値未満→・・・」となり、閾値未満が2回連続する。この様に、閾値に対する大小関係が逆転しない状態(閾値以上が2回以上、又は、閾値未満が2回以上続く)場合に、前記センサ6cの出力信号が異常であると判定できる(請求項3に係る発明)。   Next, FIG. 7 shows the reason why the above problem (2) can be solved, that is, when an abnormal pulse is mixed in the output signal of the sensor 6c, it can be detected that the output signal is abnormal. This will be described with reference to FIG. As described above, in the case of this example, since the magnitude relationship between the two types of timing ratios A / L and B / L does not reverse, any timing ratio A can be used as the timing ratio for obtaining the axial load. Even when / L (B / L) is adopted, as long as the output signal is normal, the magnitude relationship between the timing ratio A / L (B / L) and the threshold is normal in FIG. It reverses alternately as shown. That is, at the normal time, the timing ratio always repeats “more than threshold value → less than threshold value → more than threshold value → less than threshold value →...”. On the other hand, when an abnormal pulse is generated due to a disturbance such as noise as shown in the middle left part of FIG. 7B, the timing ratio is changed as shown in FIG. However, “threshold value or more → less than threshold value → less than threshold value → threshold value or more → less than threshold value →. In this way, when the magnitude relationship with respect to the threshold does not reverse (when the threshold is greater than or equal to twice or less than the threshold is continued twice or more), it can be determined that the output signal of the sensor 6c is abnormal. Invention).

但し、前記閾値に関して、誤判定を防止する為に、前記(1) の課題を解決する為に設定した閾値に不感帯を設けたり、この閾値を0.5以外の値を採用した場合には、前記各凹溝18a、18bが前記センサ6cの検出部を通過する事に伴って発生する正常のパルス以外の異常パルスが、正常パルスに近いタイミングで発生すると、この異常パルスの存在に拘らず、異常の有無の判定基準である、タイミング比と閾値との大小関係が、正常の場合と同じ(閾値以上→閾値未満→閾値以上→閾値未満→・・・)ままとなる可能性がある。この様な場合には、請求項3に係る発明によっては、異常パルスの存在を検出できない。   However, regarding the threshold, in order to prevent misjudgment, a dead zone is provided in the threshold set to solve the problem (1), or when this threshold is a value other than 0.5, When an abnormal pulse other than a normal pulse that occurs as each of the concave grooves 18a and 18b passes through the detection unit of the sensor 6c occurs at a timing close to the normal pulse, regardless of the presence of the abnormal pulse, There is a possibility that the magnitude relationship between the timing ratio and the threshold value, which is a criterion for determining whether or not there is an abnormality, may remain the same as in the normal case (threshold value or higher, lower than threshold value, higher than threshold value, lower than threshold value,. In such a case, the presence of the abnormal pulse cannot be detected by the invention according to claim 3.

そこで、この様な状態での異常を検出する為に、前記タイミング比と閾値との大小関係を比較するだけでなく、このタイミング比を算出する際の分母(正常状態での全周期L)となる、出力信号が2回変化する周期(2パルス分の周期)の変化を見張る。この2パルス分の周期は、前記主軸11の回転速度に応じて変化するが、この回転速度の変化に基づく変化が急激になる事はない。これに対して、前記異常パルスの出現に伴う、前記2パルス分の周期の変化は、急激な変化として発生する。そこで、隣り合う2パルス分の周期(L)が変化する割合に就いて第二の閾値を設け、見張っていた前記2パルス分の周期の変化がこの第二の閾値を超えて大きくなった場合に異常ありと判定すれば、上述した請求項3に係る発明によっては判定できない、異常パルスの有無の判定を行って、前記アキシアル荷重測定の信頼性をより向上させられる(請求項4に係る発明)。   Therefore, in order to detect an abnormality in such a state, not only the magnitude relationship between the timing ratio and the threshold value is compared, but also the denominator (total period L in a normal state) when calculating the timing ratio and The change of the cycle in which the output signal changes twice (cycle of two pulses) is watched. The period of the two pulses changes according to the rotation speed of the main shaft 11, but the change based on the change in the rotation speed does not become abrupt. On the other hand, the change in the period of the two pulses accompanying the appearance of the abnormal pulse occurs as an abrupt change. Therefore, when the second threshold is provided for the rate at which the period (L) for two adjacent pulses changes, and the change in the period for the two pulses that has been watched exceeds this second threshold, If it is determined that there is an abnormality, the presence or absence of an abnormal pulse, which cannot be determined by the invention according to claim 3 described above, can be determined to further improve the reliability of the axial load measurement (invention according to claim 4). ).

尚、上述した請求項4に係る発明は、前述した請求項3に係る発明と共に実施しても良いが、単独で実施(請求項3に係る発明を省略)しても、異常パルスの有無の判定を行える。何れにしても、判定器が異常ありと判定した場合には、演算器から物理量に関する信号の出力を停止する(請求項5に係る発明の場合)か、演算器から物理量に関する信号の出力を継続しつつ、異常がある事を表す信号を出力するか(請求項6に係る発明)、演算器から物理量に関する信号の出力を停止すると共に、異常がある事を表す信号を出力する(請求項7に係る発明)。尚、前記第二の閾値としては、前記主軸11にアキシアル荷重が加わる可能性がある(被加工物を加工している)状態で、最もこの主軸11の回転速度が大きく変化する場合に、前記2パルス分の周期が変化する割合よりも少しだけ大きめの値として設定する。一般的な工作機械の主軸11に加わるアキシアル荷重を測定する場合で、例えば、前記割合が1.05以上になったり、0.95以下になった場合に、異常パルスありと判定できる。そして、前記第二の閾値として、この程度の値(1.05、0.95)を設定すれば、異常パルスの存在に基づく、前記アキシアル荷重の測定誤差を、例えば凡そ5%以下に抑えられる。この程度の誤差であれば、工作機械の運転に特に問題を生じる事はない。   The invention according to claim 4 described above may be implemented together with the invention according to claim 3 described above, but even if implemented alone (the invention according to claim 3 is omitted), the presence or absence of an abnormal pulse is detected. Judgment can be made. In any case, when the determiner determines that there is an abnormality, the output of the signal related to the physical quantity from the calculator is stopped (in the case of the invention according to claim 5), or the output of the signal related to the physical quantity is continued from the calculator. However, the signal indicating that there is an abnormality is output (invention according to claim 6), or the output of the signal relating to the physical quantity from the computing unit is stopped and the signal indicating that there is an abnormality is output (claim 7). Invention). As the second threshold value, in the state where an axial load may be applied to the main shaft 11 (a workpiece is being processed), when the rotational speed of the main shaft 11 changes most greatly, The value is set slightly larger than the rate at which the period of two pulses changes. When measuring the axial load applied to the main spindle 11 of a general machine tool, for example, when the ratio is 1.05 or more or 0.95 or less, it can be determined that there is an abnormal pulse. If this value (1.05, 0.95) is set as the second threshold, the measurement error of the axial load based on the presence of the abnormal pulse can be suppressed to about 5% or less, for example. . Such an error does not cause any particular problem in the operation of the machine tool.

以上の説明は、本発明をアキシアル荷重を測定する構造に適用した場合に就いて行ったが、本発明は、アキシアル荷重に限らず、ラジアル荷重を測定する構造に適用する事もできる。ラジアル荷重を測定する場合には、例えば前述した特許文献2の図7〜9に示した様に、円輪状のエンコーダの軸方向側面を被検出面とし、この被検出面に除肉部を形成すると共に、センサの検出部をこの被検出面に、軸方向に対向させる。
又、エンコーダの被検出面に設ける各被検出用特性変化組み合わせ部を構成する各特性変化部は、図示の例の様な凹溝に限らず、土手状(但しエッジ部分が尖った)の突条とする事もできる。
The above description has been made when the present invention is applied to a structure for measuring an axial load. However, the present invention is not limited to an axial load, but can be applied to a structure for measuring a radial load. When measuring the radial load, for example, as shown in FIGS. 7 to 9 of Patent Document 2 described above, the side surface in the axial direction of the annular encoder is used as a detected surface, and a thinned portion is formed on the detected surface. At the same time, the detection unit of the sensor is opposed to the detection surface in the axial direction.
Further, each characteristic changing portion constituting each detected characteristic changing combination portion provided on the detection surface of the encoder is not limited to the concave groove as in the illustrated example, but is a bank-like (however, the edge portion is sharp). It can also be an article.

1 外輪
2 ハブ
3 転動体
4、4a エンコーダ
5 カバー
6a、6b、6c センサ
7 透孔
8 柱部
9 第一の特性変化部
10 第二の特性変化部
11 主軸
12 ハウジング
13 多列転がり軸受ユニット
14 電動モータ
15a〜15d 転がり軸受
16 センサユニット
17 被検出用特性変化組み合わせ部
18a、18b 凹溝
19 永久磁石
20 ホルダ
DESCRIPTION OF SYMBOLS 1 Outer ring 2 Hub 3 Rolling body 4, 4a Encoder 5 Cover 6a, 6b, 6c Sensor 7 Through-hole 8 Column 9 First characteristic change part 10 Second characteristic change part 11 Main shaft 12 Housing 13 Multi-row rolling bearing unit 14 Electric motors 15a to 15d Rolling bearings 16 Sensor unit 17 Characteristic change combination for detection 18a, 18b Groove 19 Permanent magnet 20 Holder

特開2002−187048号公報JP 2002-187048 A 特開2006−317420号公報JP 2006-317420 A 特開2008−39155号公報JP 2008-39155 A 特開2008−64731号公報JP 2008-64731 A

Claims (7)

回転しないハウジングと、それぞれが予圧を付与された複数の転がり軸受により、このハウジングの内側に回転自在に支持された回転軸と、この回転軸の一部に支持固定された、この回転軸と同心の被検出面を有するエンコーダと、検出部をこの被検出面に対向させた状態で前記ハウジングに支持された1個のセンサと、このセンサの出力信号を処理する演算器とを備え、この演算器は、この出力信号の位相に関する情報に基づいて、前記回転軸に関する物理量を求める機能を有するものであり、
前記エンコーダの被検出面は、複数の被検出用特性変化組み合わせ部を、周方向に関して等間隔に、それぞれ前記物理量の測定方向に一致する前記被検出面の幅方向に形成しており、前記各被検出用特性変化組み合わせ部は、この幅方向に対する傾斜方向が互いに異なる1対の特性変化部を、前記エンコーダの周方向に離隔した状態で設けたものであり、
前記センサは、前記各被検出用特性変化組み合わせ部を構成する前記各特性変化部が前記検出部が対向する部分を通過する瞬間に出力信号を変化させるものであり、
前記演算器は、この出力信号が1回変化する周期と2回変化する周期との比であるタイミング比に基づいて前記物理量を求めるものである回転軸用物理量測定装置に於いて、
前記被検出面の幅方向に関する、前記センサの検出部が前記各被検出用特性変化組み合わせ部に対向する位置に関係なく、前記エンコーダの回転に伴って順次発生する前記タイミング比の大小が、隣り合うタイミング比同士の間で常に逆転する様に、前記各被検出用特性変化組み合わせ部を構成する前記1対ずつの特性変化部の周方向に関するピッチと、周方向に隣り合うこれら各被検出用特性変化組み合わせ部同士のピッチとを規制した事を特徴とする回転軸用物理量測定装置。
A non-rotating housing and a plurality of rolling bearings, each of which is preloaded, and a rotating shaft that is rotatably supported inside the housing, and a concentric with the rotating shaft that is supported and fixed to a part of the rotating shaft An encoder having a surface to be detected, one sensor supported by the housing in a state where the detection portion faces the surface to be detected, and an arithmetic unit for processing an output signal of the sensor. The device has a function of obtaining a physical quantity relating to the rotation axis based on information relating to the phase of the output signal,
The detected surface of the encoder is formed with a plurality of detected characteristic change combination portions at equal intervals in the circumferential direction, respectively in the width direction of the detected surface that matches the measurement direction of the physical quantity, The detected characteristic change combination unit is provided with a pair of characteristic change units having different inclination directions with respect to the width direction in a state of being separated in the circumferential direction of the encoder,
The sensor is configured to change an output signal at a moment when each of the characteristic changing units constituting the detected characteristic changing combination unit passes a portion where the detecting unit faces.
In the rotation axis physical quantity measuring apparatus, the computing unit obtains the physical quantity based on a timing ratio which is a ratio of a cycle in which the output signal changes once and a cycle in which the output signal changes twice.
Regardless of the position of the detection part of the sensor facing each detected characteristic change combination part in the width direction of the detected surface, the magnitude of the timing ratio that is sequentially generated as the encoder rotates is adjacent to each other. The pitches in the circumferential direction of the pair of characteristic change parts constituting each detected characteristic change combination part and the respective detection target adjacent to each other in the circumferential direction so as to always reverse between the matching timing ratios. A physical quantity measuring device for a rotating shaft, characterized by regulating the pitch between the characteristic change combination parts.
エンコーダの周方向に関して、各被検出用特性変化組み合わせ部を構成する1対の特性変化部が最も遠くなった部分のピッチが、隣り合う被検出用特性変化組み合わせ部が最も近付いた部分のピッチよりも小さい、請求項1に記載した回転軸用物理量測定装置。   With respect to the circumferential direction of the encoder, the pitch of the part where the pair of characteristic change parts constituting each detected characteristic change combination part is farthest is greater than the pitch of the part where the adjacent characteristic change combination part for detection is closest The physical quantity measuring device for a rotating shaft according to claim 1, which is also small. タイミング比に関して閾値を設定すると共に、エンコーダの回転に伴って順次取得するタイミング比をこの閾値と比較する比較器及びこの比較器の判定結果に基づいて異常の有無を判定する判定器を備え、この判定器は前記タイミング比が2回以上連続して前記閾値未満の場合、及び、2回以上連続して閾値以上の場合に異常ありと判定する、請求項1〜2のうちの何れか1項に記載した回転軸用物理量測定装置。   A threshold is set for the timing ratio, and a comparator for comparing the timing ratio acquired sequentially with the rotation of the encoder with the threshold and a determination unit for determining the presence or absence of abnormality based on the determination result of the comparator are provided. 3. The determination device according to claim 1, wherein the determination unit determines that there is an abnormality when the timing ratio is continuously less than the threshold value twice or more, and when the timing ratio is equal to or more than two times continuously. The physical quantity measuring device for rotating shafts described in 1. 出力信号が2回変化する周期が変化する割合に関して閾値を設定すると共に、この周期が変化する割合を求めてその求めた結果をこの閾値と比較する比較器及び判定器を備え、この判定器はこの割合がこの閾値を超えて大きい場合に異常ありと判定する、請求項1〜3のうちの何れか1項に記載した回転軸用物理量測定装置。   The threshold is set with respect to the rate at which the cycle in which the output signal changes twice, and the comparator includes a comparator and a determiner for determining the rate at which the cycle is changed and comparing the obtained result with the threshold. The physical quantity measuring device for a rotating shaft according to any one of claims 1 to 3, wherein when the ratio exceeds the threshold value and is large, it is determined that there is an abnormality. 判定器が異常ありと判定した場合に、演算器から物理量に関する信号の出力を停止する、請求項3〜4のうちの何れか1項に記載した回転軸用物理量測定装置。   The rotation-axis physical quantity measuring device according to any one of claims 3 to 4, wherein when the judging device judges that there is an abnormality, the output of a signal relating to the physical quantity from the computing device is stopped. 判定器が異常ありと判定した場合に、演算器から物理量に関する信号の出力を継続しつつ、異常がある事を表す信号を出力する、請求項3〜4のうちの何れか1項に記載した回転軸用物理量測定装置。   5. The method according to claim 3, wherein when the determiner determines that there is an abnormality, the signal indicating that there is an abnormality is output while continuing to output the signal relating to the physical quantity from the arithmetic unit. Physical quantity measuring device for rotating shaft. 判定器が異常ありと判定した場合に、演算器から物理量に関する信号の出力を停止すると共に、異常がある事を表す信号を出力する、請求項3〜4のうちの何れか1項に記載した回転軸用物理量測定装置。   5. The method according to claim 3, wherein when the determiner determines that there is an abnormality, the output of the signal relating to the physical quantity from the arithmetic unit is stopped and a signal indicating that there is an abnormality is output. Physical quantity measuring device for rotating shaft.
JP2010003207A 2010-01-08 2010-01-08 Physical quantity measuring device for rotating shaft Expired - Fee Related JP5407878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010003207A JP5407878B2 (en) 2010-01-08 2010-01-08 Physical quantity measuring device for rotating shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010003207A JP5407878B2 (en) 2010-01-08 2010-01-08 Physical quantity measuring device for rotating shaft

Publications (3)

Publication Number Publication Date
JP2011141240A true JP2011141240A (en) 2011-07-21
JP2011141240A5 JP2011141240A5 (en) 2013-01-24
JP5407878B2 JP5407878B2 (en) 2014-02-05

Family

ID=44457182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010003207A Expired - Fee Related JP5407878B2 (en) 2010-01-08 2010-01-08 Physical quantity measuring device for rotating shaft

Country Status (1)

Country Link
JP (1) JP5407878B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03296619A (en) * 1990-04-16 1991-12-27 Nikon Corp Rotary absolute encoder
JPH054307U (en) * 1991-06-17 1993-01-22 株式会社村田製作所 Magnetic sensor
JP2003302414A (en) * 2002-04-11 2003-10-24 Nsk Ltd Rotation sensor and bearing device equipped therewith
JP2007040954A (en) * 2004-11-18 2007-02-15 Nsk Ltd Displacement measuring device of rotary member and load measuring device
JP2007309711A (en) * 2006-05-17 2007-11-29 Nsk Ltd Apparatus for measuring load of roll bearing unit, its manufacturing method, and manufacturing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03296619A (en) * 1990-04-16 1991-12-27 Nikon Corp Rotary absolute encoder
JPH054307U (en) * 1991-06-17 1993-01-22 株式会社村田製作所 Magnetic sensor
JP2003302414A (en) * 2002-04-11 2003-10-24 Nsk Ltd Rotation sensor and bearing device equipped therewith
JP2007040954A (en) * 2004-11-18 2007-02-15 Nsk Ltd Displacement measuring device of rotary member and load measuring device
JP2007309711A (en) * 2006-05-17 2007-11-29 Nsk Ltd Apparatus for measuring load of roll bearing unit, its manufacturing method, and manufacturing apparatus

Also Published As

Publication number Publication date
JP5407878B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP6308922B2 (en) Rolling bearing abnormality diagnosis apparatus, wind power generation apparatus, and rolling bearing abnormality diagnosis method
US9933333B2 (en) Bearing diagnostic device for machine tool
US10286514B2 (en) Spindle condition detection device for machine tool
JP2007333195A (en) Ball screw device and monitoring device therefor
US9823145B2 (en) Bearing nut for measuring the rotational speed of a shaft connected to a turbomachine and associated measuring device
US20220364605A1 (en) Rolling bearing with monitoring device
JP5601091B2 (en) Spindle device for machine tool
JP4165260B2 (en) Rolling bearing unit with sensor
US6905393B2 (en) Method for simultaneous machining and measuring parameters of a surface being subjected to machining
JP5407878B2 (en) Physical quantity measuring device for rotating shaft
JP5359262B2 (en) Spindle device of machine tool and machine tool
JP6967495B2 (en) Bearing equipment
JP5541054B2 (en) Physical quantity measuring device for rotating members
JP5696417B2 (en) Physical quantity measuring device for rotating members
JP2006226809A (en) Load detector and load detection method
JP5552828B2 (en) Load measuring device for machine tools
JP2011075346A (en) Load measuring device for rotary shaft
JP2012067907A (en) Bearing device with load sensor, main spindle device of machine tool and machine tool
JP5509720B2 (en) Rolling bearing device
JP6191161B2 (en) Encoder
JP5742392B2 (en) Physical quantity measuring device for rotating machine, machine tool, and automobile
JP5446957B2 (en) Temperature measuring device for rotating shaft
JP5742265B2 (en) Physical quantity measuring device for rotating member, machine tool and vehicle
JP2005265768A (en) Device for detecting angle
US11525706B1 (en) Rotational speed and position sensor arrangement with two sensors and an axial face disc target

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R150 Certificate of patent or registration of utility model

Ref document number: 5407878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees