JP2011140483A - Tag peptide - Google Patents

Tag peptide Download PDF

Info

Publication number
JP2011140483A
JP2011140483A JP2010259424A JP2010259424A JP2011140483A JP 2011140483 A JP2011140483 A JP 2011140483A JP 2010259424 A JP2010259424 A JP 2010259424A JP 2010259424 A JP2010259424 A JP 2010259424A JP 2011140483 A JP2011140483 A JP 2011140483A
Authority
JP
Japan
Prior art keywords
bnc
peptide
antibody
amino acid
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010259424A
Other languages
Japanese (ja)
Other versions
JP5810514B2 (en
Inventor
Takao Matsuba
隆雄 松葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2010259424A priority Critical patent/JP5810514B2/en
Priority to PCT/JP2010/071846 priority patent/WO2011071021A1/en
Publication of JP2011140483A publication Critical patent/JP2011140483A/en
Application granted granted Critical
Publication of JP5810514B2 publication Critical patent/JP5810514B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/58Atrial natriuretic factor complex; Atriopeptin; Atrial natriuretic peptide [ANP]; Cardionatrin; Cardiodilatin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/40Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/575Hormones
    • G01N2333/58Atrial natriuretic factor complex; Atriopeptin; Atrial natriuretic peptide [ANP]; Brain natriuretic peptide [BNP, proBNP]; Cardionatrin; Cardiodilatin

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tag peptide which has improved specificity and reactivity than before and can be used as an immunoassay reagent, and a method of purifying and detecting proteins using the peptide. <P>SOLUTION: Using an oligopeptide formed from 7 amino acids on the C-terminal side of a B-type natriuretic peptide (BNP) as the tag peptide, proteins are purified and detected by means of a substance which recognizes the tag peptide and the proteins to which the tag peptide has been added. The oligopeptide can be a peptide in which one or more from among the first through third amino acids on the N-terminal side are substituted with acidic amino acids or a peptide in which one or more from among the first through third amino acids on the N-terminal side are deleted. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、タンパク質を高感度に検出するためのタグペプチド、およびそれを用いたタンパク質の精製・検出方法に関する。   The present invention relates to a tag peptide for detecting a protein with high sensitivity, and a protein purification / detection method using the tag peptide.

遺伝子工学的に発現させたタンパク質の精製・検出や、担体への固定化を簡便に行なうための技術として、前記タンパク質を発現させる際に、タグペプチドとよばれる、前記ペプチドを認識する物質(例えば抗体など)と特異的に結合可能なペプチドを、前記タンパク質に付加した状態で発現後、前記ペプチドを認識する物質を用いて精製・検出・固定化を行なう方法が知られている。   As a technique for easily purifying and detecting genetically expressed protein and immobilizing it on a carrier, a substance that recognizes the peptide, called a tag peptide (for example, when the protein is expressed) There is known a method in which a peptide capable of specifically binding to an antibody or the like is expressed in a state of being added to the protein and then purified, detected, and immobilized using a substance that recognizes the peptide.

従来から知られているタグペプチドの例として、配列番号1に記載のアミノ酸配列からなるFLAGタグ(特許文献1および2)、配列番号2に記載のアミノ酸配列からなるMycタグ(非特許文献1)、配列番号3に記載のアミノ酸配列からなるHisタグ(特許文献3および4)、配列番号4に記載のアミノ酸配列からなるEタグ、配列番号5に記載のアミノ酸配列からなるHAタグ、配列番号6に記載のアミノ酸配列からなるT7タグ、配列番号7に記載のアミノ酸配列からなるPkタグ、配列番号8に記載のアミノ酸配列からなるHSVタグ、配列番号9に記載のアミノ酸配列からなるVSV−Gタグ、などの正常細胞内には本来存在しない、ウイルス、ファージ、癌遺伝子由来のタンパク質の部分領域や、同じアミノ酸配列の繰り返しからなる、10アミノ酸程度のペプチドがあげられる。前記例示した9種類のタグペプチドの中で、FLAGタグ(配列番号1)は高性能なタグとして知られている。しかしながら、近年の実験の高感度化に伴い、特異性および反応性がさらに向上したタグペプチドが要求されている。   Examples of conventionally known tag peptides include a FLAG tag consisting of the amino acid sequence set forth in SEQ ID NO: 1 (Patent Documents 1 and 2) and a Myc tag consisting of the amino acid sequence set forth in SEQ ID NO: 2 (Non-Patent Document 1). A His tag consisting of the amino acid sequence set forth in SEQ ID NO: 3 (Patent Documents 3 and 4), an E tag consisting of the amino acid sequence set forth in SEQ ID NO: 4, an HA tag consisting of the amino acid sequence set forth in SEQ ID NO: 5, SEQ ID NO: 6 A T7 tag consisting of the amino acid sequence described in SEQ ID NO: 7, a Pk tag consisting of the amino acid sequence described in SEQ ID NO: 7, an HSV tag consisting of the amino acid sequence described in SEQ ID NO: 8, and a VSV-G tag consisting of the amino acid sequence described in SEQ ID NO: 9. Such as partial regions of proteins derived from viruses, phages, and oncogenes that do not originally exist in normal cells, Made from the teeth, the peptide can be given about 10 amino acids. Of the nine types of tag peptides exemplified above, the FLAG tag (SEQ ID NO: 1) is known as a high-performance tag. However, with the recent increase in sensitivity of experiments, tag peptides with further improved specificity and reactivity are required.

米国特許4703004号公報US Pat. No. 4,703,004 特許2665359号公報Japanese Patent No. 2665359 特開昭63−251095号公報JP-A 63-251095 米国特許5310663号公報US Pat. No. 5,310,663 特開2009−024030号公報JP 2009-024030 A

Evan et al.、Mol.Cel.Biol.、5(12)、3610−3616(1985)Evan et al. Mol. Cel. Biol. 5 (12), 3610-3616 (1985)

新規のタグペプチドを検討する際、タグペプチドの原理から考えると、一見いかなるアミノ酸配列からなるペプチドでも、その配列を特異的に認識する物質(抗体など)があれば、タグペプチドとして使用できると思われる。しかしながら、現実的にタグペプチドとして産業上で使用することを考えた場合、タグペプチドの配列を決定することは容易ではない。その理由として、タグペプチドを付加したタンパク質を特異的に精製・検出するには、前記タグペプチドのアミノ酸配列が通常の実験系で使用されるタンパク質のアミノ酸配列の中に含まれないことはもちろん、それに類似するアミノ酸配列も存在しないことが必要なためである。相同配列・類似配列の有無を確認するには、BLASTといったデータベースを用いた相同性検索により可能である。しかしながら、タグペプチドを認識する物質(例えば、抗体など)が、前記タグペプチドのアミノ酸配列と類似した配列からなるペプチドに対してどの程度の交差反応性があるかを推測するのは困難であり、また前記データベースに未登録のタンパク質に対する交差反応性については予測がさらに困難である。   Considering the principle of tag peptides when investigating new tag peptides, it seems that any peptide consisting of any amino acid sequence can be used as a tag peptide if there is a substance (such as an antibody) that specifically recognizes the sequence. It is. However, it is not easy to determine the sequence of the tag peptide when considering practical use as a tag peptide in the industry. The reason is that, in order to specifically purify and detect the protein with the tag peptide added, the amino acid sequence of the tag peptide is not included in the amino acid sequence of the protein used in a normal experimental system. This is because it is necessary that no similar amino acid sequence exists. The presence or absence of homologous / similar sequences can be confirmed by homology search using a database such as BLAST. However, it is difficult to estimate how much a substance that recognizes the tag peptide (such as an antibody) has cross-reactivity with a peptide having a sequence similar to the amino acid sequence of the tag peptide, Further, it is more difficult to predict the cross-reactivity with proteins not registered in the database.

ならば、本来タンパク質には組み込まれないアミノ酸や低分子有機化合物をタグとして用いればよいのではないかと思われるが、実際には交差反応性の原因はアミノ酸の一次配列だけではなく、配列特異的ではない静電的相互作用、疎水的相互作用などの影響で起こることもある。つまり、天然に存在しないような物質をタグとして使用することは、かえって交差反応性の予測を困難にする可能性がある。また、前記アミノ酸や有機化合物をタグとする場合、タグを遺伝子工学的にタンパク質へ付加するのが困難という新たな問題が発生する。   In that case, amino acids and low molecular weight organic compounds that are not originally incorporated into proteins may be used as tags, but in reality, the cause of cross-reactivity is not only the primary sequence of amino acids but also sequence-specificity. It may be caused by influences such as electrostatic interaction and hydrophobic interaction. In other words, using a non-naturally occurring substance as a tag may make it difficult to predict cross-reactivity. Further, when the amino acid or organic compound is used as a tag, a new problem arises that it is difficult to add the tag to a protein by genetic engineering.

さらに、タグペプチドを免疫測定試薬用途に用いる場合、検体中に含まれる各種成分は検体間で異なるため、検体ごとにタグペプチドに対し異なる影響を与える可能性もある。つまり、たとえ産業上有効なタグペプチドが設計できても、前記タグペプチドがそのまま免疫測定試薬用途に用いることができるとは限らない。設計したタグペプチドを免疫測定試薬用途で使用可能かどうかを判断するには、非常に多数の検体を評価するしかないが、タグペプチドの有用性を確かめる目的で、非常に多数の検体を評価することは事実上極めて困難である。   Furthermore, when tag peptides are used for immunoassay reagents, the various components contained in the specimens differ between specimens, so that there is a possibility of different effects on the tag peptides from specimen to specimen. That is, even if an industrially effective tag peptide can be designed, the tag peptide cannot always be used for an immunoassay reagent. The only way to determine whether a designed tag peptide can be used in immunoassay reagent applications is to evaluate a very large number of samples, but to evaluate the usefulness of tag peptides, evaluate a very large number of samples. This is extremely difficult in practice.

そこで本発明の目的は、従来よりも特異性および反応性が向上し、かつ免疫測定試薬用途にも使用可能なタグペプチド、および前記タグペプチドを用いたタンパク質の精製・検出方法を提供することにある。   Accordingly, an object of the present invention is to provide a tag peptide that has improved specificity and reactivity as compared with the prior art and can be used for immunoassay reagents, and a protein purification / detection method using the tag peptide. is there.

前記課題を鑑み発明者が鋭意検討した結果、これまでに報告例がなく、かつ免疫測定試薬用途においても使用可能なタグペプチドを見出し、本発明を完成するに至った。   As a result of intensive studies by the inventors in view of the above problems, a tag peptide that has not been reported so far and can be used in immunoassay reagent applications has been found, and the present invention has been completed.

すなわち第一の発明は、配列番号10に記載のアミノ酸配列からなる、タンパク質を精製・検出するのに有用なオリゴペプチドである。   That is, the first invention is an oligopeptide consisting of the amino acid sequence set forth in SEQ ID NO: 10 and useful for purifying and detecting a protein.

また第二の発明は、配列番号10に記載のアミノ酸配列からなるオリゴペプチドのうち、1番目のシステインから3番目のバリンまでのアミノ酸のうちの一つ以上を酸性アミノ酸に置換した、タンパク質を精製・検出するのに有用なオリゴペプチドである。   In the second invention, a protein is purified by substituting one or more amino acids from the first cysteine to the third valine with an acidic amino acid from the oligopeptide consisting of the amino acid sequence set forth in SEQ ID NO: 10. • Oligopeptides useful for detection.

また第三の発明は、配列番号10に記載のアミノ酸配列からなるオリゴペプチドのうち、1番目のシステインから3番目のバリンまでのアミノ酸のうちの一つ以上を欠失させた、タンパク質を精製・検出するのに有用なオリゴペプチドである。   Further, the third invention is the purification of a protein in which one or more amino acids from the first cysteine to the third valine are deleted from the oligopeptide consisting of the amino acid sequence set forth in SEQ ID NO: 10. It is an oligopeptide useful for detection.

また第四の発明は、第一から第三の発明のいずれかに記載のオリゴペプチドを付加したタンパク質と、前記ペプチドを認識する物質とを用いた、タンパク質の精製・検出方法である。   The fourth invention is a protein purification / detection method using a protein to which the oligopeptide according to any one of the first to third inventions is added and a substance that recognizes the peptide.

また第五の発明は、前記タンパク質がC末端側に第一から第三の発明のいずれかに記載のオリゴペプチドを付加したタンパク質であり、前記ペプチドを認識する物質が前記ペプチドを認識する抗体である、第四の発明に記載の精製・検出方法である。   The fifth invention is a protein in which the oligopeptide according to any one of the first to third inventions is added to the C-terminal side, and the substance that recognizes the peptide is an antibody that recognizes the peptide. A purification / detection method according to the fourth invention.

また第六の発明は、前記タンパク質が、第一から第三の発明のいずれかに記載のオリゴペプチドを遺伝子工学的に付加することで得られたタンパク質である、第四または第五の発明に記載の精製・検出方法である。   The sixth invention is the fourth or fifth invention, wherein the protein is a protein obtained by genetically adding the oligopeptide according to any one of the first to third inventions. The purification / detection method described.

また第七の発明は、前記タンパク質が、第一から第三の発明のいずれかに記載のオリゴペプチドを化学的に付加することで得られたタンパク質である、第四または第五の発明に記載の精製・検出方法である。   The seventh invention is the protein according to the fourth or fifth invention, wherein the protein is a protein obtained by chemically adding the oligopeptide according to any one of the first to third inventions. This is a purification / detection method.

以降、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

タンパク質を精製・検出するのに有用なタグペプチドには、
(1)融合させるタンパク質に与える影響を少なくするためにアミノ酸の長さが短いこと、
(2)類似した配列が存在せず特異性が高いこと、
(3)ペプチドに対する親和性の高い物質が存在すること、
が要求される。そこで、前記要求を満たすペプチドを鋭意検討した結果、B型ナトリウム利尿ペプチド(BNP)のC末端側7アミノ酸(配列番号10、以下BNCと略する)がタグペプチドとして有用であることを見出した。
Tag peptides useful for purifying and detecting proteins include
(1) The length of the amino acid is short in order to reduce the influence on the protein to be fused,
(2) No similar sequence exists and high specificity,
(3) the presence of a substance with high affinity for the peptide,
Is required. Thus, as a result of intensive studies on peptides that satisfy the above requirements, it was found that 7 amino acids on the C-terminal side of B-type natriuretic peptide (BNP) (SEQ ID NO: 10, hereinafter abbreviated as BNC) are useful as tag peptides.

BNPは32アミノ酸からなる環状ペプチドである。健常人における血漿中BNP濃度は20pg/mL以下と極めて低いが、慢性および急性心不全患者では重症度に応じて著しく増加し、BNPの測定により心不全の病態の把握に重要な意義を持っていることから、近年極めて多くの検体が測定されている。通常BNPは、BNPのC末端を認識する抗体と環状部分を認識する抗体でBNPを挟み込むサンドイッチ法で測定されている。配列番号10に記載のアミノ酸配列からなるBNCは、
(1)アミノ酸の長さが短く、
(2)BNCと交差反応性を有する物質の存在が否定されており、
(3)親和性および特異性の高い物質が存在する、
ためタグペプチドとして有用である。
BNP is a cyclic peptide consisting of 32 amino acids. The plasma BNP concentration in healthy volunteers is very low at 20 pg / mL or less, but it increases markedly in chronic and acute heart failure patients depending on their severity, and it has important significance for understanding the pathophysiology of heart failure by measuring BNP Therefore, very many samples have been measured in recent years. Usually, BNP is measured by a sandwich method in which BNP is sandwiched between an antibody that recognizes the C-terminus of BNP and an antibody that recognizes a cyclic portion. BNC consisting of the amino acid sequence set forth in SEQ ID NO: 10 is
(1) The amino acid is short,
(2) The existence of a substance having cross-reactivity with BNC has been denied,
(3) A substance with high affinity and specificity exists.
Therefore, it is useful as a tag peptide.

これまでに報告されているタグペプチドは10アミノ酸程度の長さのものが多く、高性能なタグペプチドとして知られているFLAGタグ(配列番号1)は8アミノ酸である。一方、BNCは7アミノ酸であることから、付加するタンパク質への影響がより低減することが予想される。   Many tag peptides reported so far have a length of about 10 amino acids, and the FLAG tag (SEQ ID NO: 1) known as a high-performance tag peptide has 8 amino acids. On the other hand, since BNC is 7 amino acids, it is expected that the effect on the protein to be added is further reduced.

また、BNCに結合する抗体を使ったBNPの測定系は、すでに免疫測定試薬として上市(例えば、東ソー社製Eテスト「TOSOH」II(BNP))されている。つまり、これまでに非常に多数の検体が測定されているが、原因不明の交差反応などの問題は発生していない。このことは、BNCまたはそれと類似した配列を有するタンパク質およびペプチドは検体中には存在しないか、あるいは存在しても測定に影響を与える濃度ではないことを意味している。以上より、BNCは特異性の高いタグペプチドとして有用であることを示唆しており、免疫測定試薬用途で有効に使用できるのはもちろん、通常の実験においても特異性や反応性の高いタグペプチドとして利用可能である。   In addition, a BNP measurement system using an antibody that binds to BNC has already been marketed as an immunoassay reagent (for example, E test “TOSOH” II (BNP) manufactured by Tosoh Corporation). In other words, a very large number of specimens have been measured so far, but problems such as an unknown cross-reaction have not occurred. This means that proteins and peptides having BNC or similar sequences are not present in the sample, or the presence does not affect the measurement. The above suggests that BNC is useful as a highly specific tag peptide, and can be used effectively as an immunoassay reagent, as well as a highly specific and reactive tag peptide in normal experiments. Is available.

さらに、BNCに対する親和性および特異性の高い物質として、BNCを認識する抗体が存在する。前記抗体は、単にBNCのアミノ酸配列を認識しているのはなく、BNCがタンパク質のC末端側に存在することまでも認識する。C末端側にBNCのアミノ酸配列を有するタンパク質の存在確率は極めて低い。そのため、BNCはタグペプチドとして有用であり、C末端側にBNCを付加したタンパク質とBNCを認識する抗体とを用いることで、特異性が高く、高感度な検出が可能である。   Furthermore, antibodies that recognize BNC exist as substances having high affinity and specificity for BNC. The antibody does not simply recognize the amino acid sequence of BNC but also recognizes that BNC is present on the C-terminal side of the protein. The existence probability of a protein having the amino acid sequence of BNC on the C-terminal side is extremely low. Therefore, BNC is useful as a tag peptide. By using a protein having BNC added to the C-terminal side and an antibody that recognizes BNC, detection with high specificity and high sensitivity is possible.

BNCをタグペプチドとして用いる際、検体(血液)に含まれるBNPにより、C末端側にBNCを付加したタンパク質とBNCを認識する物質との結合性に影響を与えるおそれが考えられた。しかしながら、実際の測定系でBNP混入による影響を確認したところ、臨床検体でみられる濃度よりもはるかに高い100ng/mLのBNPが検体中に含まれていても、C末端側にBNCを付加したタンパク質とBNCを認識する物質との結合性に影響を及ぼさないことが確認されている(実施例9参照)。しかしながら測定系により、抗体や抗原の濃度、ブロッキング剤、緩衝液の条件などが異なるため、測定系を新たに構築した際は、大過剰のBNPを測定系に添加し、どの程度の濃度で影響がではじめるかを確認したほうがよい。   When BNC was used as a tag peptide, BNP contained in the specimen (blood) might affect the binding between the protein added with BNC on the C-terminal side and the substance that recognizes BNC. However, when the effect of BNP contamination was confirmed in an actual measurement system, BNC was added to the C-terminal side even when 100 ng / mL of BNP much higher than the concentration found in clinical specimens was contained in the specimen. It has been confirmed that it does not affect the binding between the protein and a substance that recognizes BNC (see Example 9). However, antibody and antigen concentrations, blocking agents, buffer conditions, etc. differ depending on the measurement system. Therefore, when a new measurement system is constructed, a large excess of BNP is added to the measurement system, and the effect at what concentration level. It's better to check if it starts with.

BNCをタグペプチドとして利用することで、BNCを付加したタンパク質をアフィニティー精製することができる。アフィニティー精製は、適切な担体に、BNCを認識する物質をBNCを付加したタンパク質との結合性を保持した状態で結合させたものを用いて精製すればよい。BNCを認識する物質としては、BNCを認識するモノクローナル抗体・ポリクローナル抗体・抗血清が例示できるが、ロット間差の考慮が不要なモノクローナル抗体が、安定的な精製ができる点で好ましい。BNCを認識する物質と結合したBNCを付加したタンパク質の溶出は、通常pHを変化させて溶出すればよいが、pH変化に対して不安定なタンパク質を精製する場合は大過剰のBNCを添加して溶出させてもよい。   By using BNC as a tag peptide, it is possible to affinity purify a protein to which BNC has been added. Affinity purification may be performed using a substance obtained by binding a substance that recognizes BNC to an appropriate carrier while maintaining the binding property to the protein to which BNC is added. Examples of substances that recognize BNC include monoclonal antibodies, polyclonal antibodies, and antisera that recognize BNC. Monoclonal antibodies that do not require consideration of differences between lots are preferable in terms of stable purification. Elution of proteins with added BNC bound to a substance that recognizes BNC is usually performed by changing the pH, but when purifying proteins that are unstable to pH changes, a large excess of BNC is added. May be eluted.

発現させるタンパク質にBNCを付加する方法として、遺伝子工学的方法で付加する方法があげられる。具体的には、発現させるタンパク質のN末端側またはC末端側にBNCをコードするポリヌクレオチドを付加すればよい。なお、発現させるタンパク質にBNCを付加する際、発現させるタンパク質のN末端側またはC末端側の直後にBNCを付加してもよいし、発現させるタンパク質との相互作用を避けるための任意のリンカーペプチドを介してBNCを付加してもよい。前記リンカーペプチドの一態様として、配列番号11に示すアミノ酸配列からなるフレキシブルなリンカーペプチドが例示できるが、前記配列に限定されるものではない。発現させるタンパク質にBNCを付加する別の方法として、化学的に付加する方法があげられる。前記方法の一態様として、発現させるタンパク質とSMCCなどの試薬とを反応させることで前記タンパク質にマレイミド基を導入後、BNCと反応させて、BNCを化学的に導入する方法があげられるが、発現させるタンパク質とBNCとの結合方法に特に限定はなく、例えば、ポリエチレングリコールやポリエチレンイミンなどの高分子を介して付加してもよいし、マレイミド基以外の官能基を介して化学的に付加してもよい。   Examples of a method for adding BNC to a protein to be expressed include a method for adding it by a genetic engineering method. Specifically, a polynucleotide encoding BNC may be added to the N-terminal side or C-terminal side of the protein to be expressed. When adding BNC to the protein to be expressed, BNC may be added immediately after the N-terminal side or C-terminal side of the protein to be expressed, or any linker peptide for avoiding interaction with the protein to be expressed BNC may be added via As an aspect of the linker peptide, a flexible linker peptide consisting of the amino acid sequence shown in SEQ ID NO: 11 can be exemplified, but the linker peptide is not limited to the sequence. Another method of adding BNC to the protein to be expressed is a method of adding it chemically. As one aspect of the above method, there is a method in which a BNC is chemically introduced by reacting with a protein to be expressed and a reagent such as SMCC to introduce a maleimide group into the protein and then reacting with BNC. There is no particular limitation on the method for binding the protein to be reacted with BNC. For example, the protein may be added via a polymer such as polyethylene glycol or polyethyleneimine, or chemically added via a functional group other than a maleimide group. Also good.

BNCは、前述したタンパク質の精製・検出目的のほかに、タンパク質の担体への固定化目的で使用することもできる。タンパク質を直接水不溶担体に固定化すると、立体構造の変化がおきやすく、活性が失われる場合が多い。そこで、BNCを認識する物質を水不溶性担体に固定化しておき、前記固定化担体にBNCを付加したタンパク質を固定化させる方法を採用することにより、立体構造の変化がおきにくい状態で担体に固定化することができる。   BNC can also be used for the purpose of immobilizing a protein on a carrier, in addition to the purpose of purifying and detecting the protein described above. When a protein is directly immobilized on a water-insoluble carrier, the three-dimensional structure is likely to change and the activity is often lost. Therefore, by immobilizing a substance that recognizes BNC on a water-insoluble carrier, and immobilizing the protein with BNC added to the immobilized carrier, it is immobilized on the carrier in a state in which the three-dimensional structure hardly changes. Can be

免疫測定試薬でしばしば問題になるのは、異好性抗動物抗体である。たとえば、ウサギ由来ポリクローナル抗体(抗原認識)と抗ウサギ抗体(水不溶性担体に固定化)とが反応系の中に含まれる場合、測定検体の中に抗ウサギ抗体が存在すると、検体中の抗ウサギ抗体により、本来想定している量のウサギ由来ポリクローナル抗体が水不溶性担体に捕捉されなくなり、正確な測定値が得られなくなってしまう。そこで、ウサギポリクローナル抗体にBNCを付加し、水不溶性担体に抗BNC抗体を固定化することで、異好性抗動物抗体の影響をなくした測定系が構築できる。   Often a problem with immunoassays is heterophilic anti-animal antibodies. For example, when a rabbit-derived polyclonal antibody (antigen recognition) and an anti-rabbit antibody (immobilized on a water-insoluble carrier) are included in the reaction system, if an anti-rabbit antibody is present in the measurement sample, the anti-rabbit in the sample The antibody does not capture the originally expected amount of the rabbit-derived polyclonal antibody on the water-insoluble carrier, and an accurate measurement value cannot be obtained. Therefore, by adding BNC to a rabbit polyclonal antibody and immobilizing the anti-BNC antibody on a water-insoluble carrier, a measurement system that eliminates the influence of heterophilic anti-animal antibodies can be constructed.

なお、BNCは配列番号10に記載の7アミノ酸からなるオリゴペプチドであるが、BNCを構成するアミノ酸のうちの一つ以上を他のアミノ酸に置換したオリゴペプチド(以下、改変BNC)も本発明のオリゴペプチドに含まれる。改変BNCは、BNCと比較し親和性(結合性能)および/または特異性が変化しているため、使用目的に応じ適切な改変BNCを選定し、タグペプチドとして使用すればよい。改変BNCの好ましい一態様として、BNCを構成するアミノ酸のうち1番目のシステインから3番目のバリンまでのアミノ酸のうちの一つ以上をアスパラギン酸またはグルタミン酸(すなわち酸性アミノ酸)に置換したオリゴペプチドがあげられる。さらに、BNCを構成する各アミノ酸のうち、親和性および/または特異性が変化した置換を組み合わせることで、より好ましい改変BNCが得られる。前記より好ましい改変BNCの一例として、1番目のシステインから3番目のバリンまでのアミノ酸を全てアスパラギン酸に置換したオリゴペプチド(DDDLRRH、配列番号21)があげられる。前述したように、BNCをタグペプチドとして利用することで、BNCを付加したタンパク質のアフィニティー精製が可能である。そのため、親和性(結合性能)および/または特異性の向上した改変BNCをタグペプチドと利用することで、BNCを付加したタンパク質のアフィニティー精製をより効率的に行なうことができる。   BNC is an oligopeptide consisting of 7 amino acids described in SEQ ID NO: 10, but an oligopeptide in which one or more of the amino acids constituting BNC are substituted with other amino acids (hereinafter referred to as modified BNC) is also of the present invention. Included in oligopeptides. Since the modified BNC has changed affinity (binding ability) and / or specificity compared to BNC, an appropriate modified BNC may be selected according to the purpose of use and used as a tag peptide. A preferred embodiment of the modified BNC is an oligopeptide in which one or more amino acids from the first cysteine to the third valine in the amino acids constituting the BNC are substituted with aspartic acid or glutamic acid (that is, acidic amino acid). It is done. Furthermore, a more preferable modified BNC can be obtained by combining substitutions with altered affinity and / or specificity among the amino acids constituting BNC. An example of the more preferred modified BNC is an oligopeptide (DDDLRRH, SEQ ID NO: 21) in which all amino acids from the first cysteine to the third valine are substituted with aspartic acid. As described above, affinity purification of BNC-added protein is possible by using BNC as a tag peptide. Therefore, affinity purification of a protein added with BNC can be performed more efficiently by using a modified BNC with improved affinity (binding performance) and / or specificity as a tag peptide.

一方、BNCを構成するアミノ酸のうち一部のアミノ酸を欠失させたオリゴペプチド(以下、欠失BNC)も本発明のオリゴペプチドに含まれる。具体的には、BNCを構成するアミノ酸のうち1番目のシステインから3番目のバリンまでのアミノ酸のうちの一つ以上を欠失させた欠失BNCであれば、BNCと比較して親和性(結合性能)は低下するものの、使用目的によってはタグペプチドとしての性能を十分に有している。   On the other hand, oligopeptides in which some of the amino acids constituting BNC are deleted (hereinafter, deleted BNC) are also included in the oligopeptide of the present invention. Specifically, in the case of a deleted BNC in which one or more of the amino acids from the first cysteine to the third valine among the amino acids constituting the BNC are deleted, the affinity ( Although the binding performance is reduced, depending on the purpose of use, it has sufficient performance as a tag peptide.

本発明は、長さが7アミノ酸と短く、これまでの実績から交差反応性を有する物質の存在が否定されており、親和性および特異性の高い物質(抗体)が存在する、配列番号10に記載のアミノ酸配列からなるB型ナトリウム利尿ペプチド(BNP)のC末端側7アミノ酸(BNC)、およびそれを用いたタンパク質の精製・検出方法である。精製・検出対象タンパク質のN末端側またはC末端側に遺伝子工学的にまたは化学的にBNCを付加させ、それとBNCを認識する物質とを結合させて精製・検出する方法により、従来知られているFLAGタグを用いた精製・検出方法と比較し、特異性や感度を向上させることができる。   In the present invention, the length is as short as 7 amino acids, the existence of a substance having cross-reactivity has been denied from the past results, and a substance (antibody) having high affinity and specificity is present in SEQ ID NO: 10. This is a C-terminal 7 amino acid (BNC) of B-type natriuretic peptide (BNP) comprising the described amino acid sequence, and a protein purification / detection method using the same. Conventionally known by the method of purifying and detecting by adding BNC to the N-terminal side or C-terminal side of the protein to be purified / detected genetically or chemically and binding it to a substance that recognizes BNC. Compared with the purification / detection method using the FLAG tag, the specificity and sensitivity can be improved.

なお前記BNCは、BNCを構成するアミノ酸のうち1番目のシステインから3番目のバリンまでのアミノ酸のうちの一つ以上を酸性アミノ酸に置換した改変BNCであってもよく、1番目のシステインから3番目のバリンまでのアミノ酸のうちの一つ以上を欠失させた欠失BNCであってもよい。特に1番目のシステインから3番目のバリンまでのアミノ酸のうちの一つ以上を酸性アミノ酸に置換した改変BNCは、結合性能(親和性)が向上しており、BNCと比較し、より高感度/高特異的な検出およびより効率的なアフィニティー精製が可能である。   The BNC may be a modified BNC obtained by substituting one or more amino acids from the first cysteine to the third valine among amino acids constituting the BNC with an acidic amino acid. It may be a deleted BNC in which one or more of the amino acids up to the valine are deleted. In particular, the modified BNC in which one or more amino acids from the first cysteine to the third valine are substituted with acidic amino acids has improved binding performance (affinity) and is more sensitive / sensitive than BNC. High specific detection and more efficient affinity purification are possible.

実施例2で得られた、各タグペプチドを付加したマルトース結合タンパク(MBP)のSDS−PAGE結果である。図中、MBP−BNCはMBPのC末端にBNPのC末端側ペプチド(BNC)を付加したMBPを示す。同様に、MBP−FLAGはFLAGタグを、MBP−MycはMycタグを、MBP−HisはHisタグをそれぞれMBPのC末端に付加したMBPを示す。It is an SDS-PAGE result of maltose binding protein (MBP) which added each tag peptide obtained in Example 2. FIG. In the figure, MBP-BNC indicates MBP in which the C-terminal peptide (BNC) of BNP is added to the C-terminus of MBP. Similarly, MBP-FLAG indicates a FLAG tag, MBP-Myc indicates a Myc tag, and MBP-His indicates MBP with a His tag added to the C-terminal of MBP. 実施例4の結果を示すものである。図上部の数値は各ウエルで電気泳動した各タグペプチドを付加したMBPのモル数を示し、右側は本ウエスタンブロッティングのアッセイフォーマットを示す。The result of Example 4 is shown. The numerical value in the upper part of the figure shows the number of moles of MBP to which each tag peptide electrophoresed in each well is added, and the right side shows the assay format of this Western blotting. 実施例5の結果を示すものである。縦軸はELISAで得られたシグナルを示し、横軸は各タグペプチドを付加したMBPの添加量(μg/mL)を示す。なお、図上部の数値は各ウェルで反応させた各タグペプチドを付加したMBPのモル数を示し、右側は本ELISAのアッセイフォーマットを示す。The result of Example 5 is shown. The vertical axis represents the signal obtained by ELISA, and the horizontal axis represents the added amount (μg / mL) of MBP added with each tag peptide. The numerical values at the top of the figure indicate the number of moles of MBP to which each tag peptide reacted in each well was added, and the right side shows the assay format of this ELISA. 実施例6の結果を示すものである。図右側は本ELISAのアッセイフォーマットを示す。The result of Example 6 is shown. The right side of the figure shows the assay format of this ELISA. 実施例7の結果を示すものである。図右側は本ELISAのアッセイフォーマットを示す。The result of Example 7 is shown. The right side of the figure shows the assay format of this ELISA. 実施例8の結果を示すものである。The result of Example 8 is shown. 実施例9で実施した、抗E2抗体へのBNC導入スキームを示すものである。9 shows a scheme for introducing BNC into an anti-E2 antibody carried out in Example 9. 実施例9の結果を示すものである。図右側には、本測定系のアッセイフォーマットを示す。The result of Example 9 is shown. The assay format of this measurement system is shown on the right side of the figure. H鎖C末端側に直接BNCが結合した遺伝子組み換え型抗エストラジオール抗体(RaMoAb−BNC)の検量線を示すものである。図左側は蛍光強度(FI)測定用ELISAのアッセイフォーマットを、図右側は抗体濃度測定用ELISAのアッセイフォーマットを、それぞれ示す。2 shows a calibration curve of a recombinant anti-estradiol antibody (RaMoAb-BNC) in which BNC is directly bound to the C-terminal side of the H chain. The left side of the figure shows the fluorescence intensity (FI) measurement ELISA assay format, and the right side of the figure shows the antibody concentration measurement ELISA assay format. 図9の検量線を用いた、結合性能評価の概要を示すものである。10 shows an outline of the binding performance evaluation using the calibration curve of FIG. 実施例13の結果のうち、BNCの1番目のシステインを他のアミノ酸に置換したオリゴペプチドをBNC認識抗体BC2−7で評価した結果である。It is the result of having evaluated the oligopeptide which substituted the 1st cysteine of BNC by the other amino acid among the results of Example 13 with BNC recognition antibody BC2-7. 実施例13の結果のうち、BNCの2番目のリジンを他のアミノ酸に置換したオリゴペプチドをBNC認識抗体BC2−7で評価した結果である。It is the result of having evaluated the oligopeptide which substituted the 2nd lysine of BNC by the other amino acid among the results of Example 13 by BNC recognition antibody BC2-7. 実施例13の結果のうち、BNCの3番目のバリンを他のアミノ酸に置換したオリゴペプチドをBNC認識抗体BC2−7で評価した結果である。It is the result of having evaluated the oligopeptide which substituted the 3rd valine of BNC by the other amino acid among the results of Example 13 by BNC recognition antibody BC2-7. 実施例13の結果のうち、BNCの4番目のロイシンを他のアミノ酸に置換したオリゴペプチドをBNC認識抗体BC2−7で評価した結果である。It is the result of having evaluated the oligopeptide which substituted the 4th leucine of BNC by the other amino acid among the results of Example 13 by BNC recognition antibody BC2-7. 実施例13の結果のうち、BNCの5番目のアルギニンを他のアミノ酸に置換したオリゴペプチドをBNC認識抗体BC2−7で評価した結果である。It is the result of having evaluated the oligopeptide which substituted the 5th arginine of BNC by the other amino acid among the results of Example 13 by BNC recognition antibody BC2-7. 実施例13の結果のうち、BNCの6番目のアルギニンを他のアミノ酸に置換したオリゴペプチドをBNC認識抗体BC2−7で評価した結果である。It is the result of having evaluated the oligopeptide which substituted the 6th arginine of BNC by the other amino acid among the results of Example 13 with the BNC recognition antibody BC2-7. 実施例13の結果のうち、BNCの7番目のヒスチジンを他のアミノ酸に置換したオリゴペプチドをBNC認識抗体BC2−7で評価した結果である。It is the result of having evaluated the oligopeptide which substituted the 7th histidine of BNC by the other amino acid among the results of Example 13 by BNC recognition antibody BC2-7. 実施例13の結果のうち、BNCの1番目のシステインを他のアミノ酸に置換したオリゴペプチドをBNC認識抗体BC23−11で評価した結果である。It is the result of having evaluated the oligopeptide which substituted the 1st cysteine of BNC by the other amino acid among the results of Example 13 with BNC recognition antibody BC23-11. 実施例13の結果のうち、BNCの2番目のリジンを他のアミノ酸に置換したオリゴペプチドをBNC認識抗体BC23−11で評価した結果である。It is the result of having evaluated the oligopeptide which substituted the 2nd lysine of BNC by the other amino acid among the results of Example 13 with BNC recognition antibody BC23-11. 実施例13の結果のうち、BNCの3番目のバリンを他のアミノ酸に置換したオリゴペプチドをBNC認識抗体BC23−11で評価した結果である。It is the result of having evaluated the oligopeptide which substituted the 3rd valine of BNC by the other amino acid among the results of Example 13 by BNC recognition antibody BC23-11. 実施例13の結果のうち、BNCの4番目のロイシンを他のアミノ酸に置換したオリゴペプチドをBNC認識抗体BC23−11で評価した結果である。It is the result of having evaluated the oligopeptide which substituted the 4th leucine of BNC by the other amino acid among the results of Example 13 by BNC recognition antibody BC23-11. 実施例13の結果のうち、BNCの5番目のアルギニンを他のアミノ酸に置換したオリゴペプチドをBNC認識抗体BC23−11で評価した結果である。It is the result of having evaluated the oligopeptide which substituted the 5th arginine of BNC by the other amino acid among the results of Example 13 by BNC recognition antibody BC23-11. 実施例13の結果のうち、BNCの6番目のアルギニンを他のアミノ酸に置換したオリゴペプチドをBNC認識抗体BC23−11で評価した結果である。It is the result of having evaluated the oligopeptide which substituted the 6th arginine of BNC by the other amino acid among the results of Example 13 by BNC recognition antibody BC23-11. 実施例13の結果のうち、BNCの7番目のヒスチジンを他のアミノ酸に置換したオリゴペプチドをBNC認識抗体BC23−11で評価した結果である。It is the result of having evaluated the oligopeptide which substituted the 7th histidine of BNC by the other amino acid among the results of Example 13 by BNC recognition antibody BC23-11. 実施例13の結果のうち、BNCの1番目のシステインを他のアミノ酸に置換したオリゴペプチドをBNC認識抗体BC30−73で評価した結果である。It is the result of having evaluated the oligopeptide which substituted the 1st cysteine of BNC by the other amino acid among the results of Example 13 by BNC recognition antibody BC30-73. 実施例13の結果のうち、BNCの2番目のリジンを他のアミノ酸に置換したオリゴペプチドをBNC認識抗体BC30−73で評価した結果である。It is the result of having evaluated the oligopeptide which substituted the 2nd lysine of BNC by the other amino acid among the results of Example 13 by BNC recognition antibody BC30-73. 実施例13の結果のうち、BNCの3番目のバリンを他のアミノ酸に置換したオリゴペプチドをBNC認識抗体BC30−73で評価した結果である。It is the result of having evaluated the oligopeptide which substituted the 3rd valine of BNC by the other amino acid among the results of Example 13 by BNC recognition antibody BC30-73. 実施例13の結果のうち、BNCの4番目のロイシンを他のアミノ酸に置換したオリゴペプチドをBNC認識抗体BC30−73で評価した結果である。It is the result of having evaluated the oligopeptide which substituted the 4th leucine of BNC by the other amino acid among the results of Example 13 with BNC recognition antibody BC30-73. 実施例13の結果のうち、BNCの5番目のアルギニンを他のアミノ酸に置換したオリゴペプチドをBNC認識抗体BC30−73で評価した結果である。It is the result of having evaluated the oligopeptide which substituted the 5th arginine of BNC by the other amino acid among the results of Example 13 by BNC recognition antibody BC30-73. 実施例13の結果のうち、BNCの6番目のアルギニンを他のアミノ酸に置換したオリゴペプチドをBNC認識抗体BC30−73で評価した結果である。It is the result of having evaluated the oligopeptide which substituted the 6th arginine of BNC by the other amino acid among the results of Example 13 by BNC recognition antibody BC30-73. 実施例13の結果のうち、BNCの7番目のヒスチジンを他のアミノ酸に置換したオリゴペプチドをBNC認識抗体BC30−73で評価した結果である。It is the result of having evaluated the oligopeptide which substituted the 7th histidine of BNC by the other amino acid among the results of Example 13 by BNC recognition antibody BC30-73. 実施例14の結果を示すものである。なお、BNC認識抗体はBC30−73を使用している。The result of Example 14 is shown. BC30-73 is used as the BNC recognition antibody. 実施例13の結果のうち、BNCの1番目のシステイン、2番目のリジンまたは3番目のバリンをそれぞれアスパラギン酸に置換したオリゴペプチドをBNC認識抗体BC30−73で評価した結果である。It is the result of having evaluated the oligopeptide which substituted the 1st cysteine of BNC, the 2nd lysine, or the 3rd valine with the aspartic acid among the results of Example 13 by BNC recognition antibody BC30-73. 実施例15の結果を示すものである。黒丸はBNC(配列番号10)、黒三角はN末端側1アミノ酸欠失体(配列番号25)、白丸はN末端側2アミノ酸欠失体(配列番号26)、白三角はN末端側3アミノ酸欠失体(配列番号27)の結果をそれぞれ示す。The result of Example 15 is shown. Black circle is BNC (SEQ ID NO: 10), black triangle is N-terminal side 1 amino acid deletion (SEQ ID NO: 25), white circle is N-terminal side 2 amino acid deletion (SEQ ID NO: 26), white triangle is N-terminal side 3 amino acids The results of the deletion product (SEQ ID NO: 27) are shown.

以下に本発明を更に詳細に説明するために実施例を示すが、これら実施例は本発明の一例を示すものであり、本発明は実施例に限定されるものではない。   Examples will be shown below to describe the present invention in more detail. However, these examples are only examples of the present invention, and the present invention is not limited to the examples.

実施例1 タグペプチドを付加したタンパク質を発現可能な形質転換体の調製
マルトース結合タンパク(MBP)のC末端側にタグペプチドを付加したタンパク質を発現可能な形質転換体を以下の方法で調製した。
(1)各タグペプチドをコードするオリゴヌクレオチド(相同鎖および相補鎖)をそれぞれ10μMとなるようにTEで希釈し、それらを混合後、95℃で5分間熱処理し、その後25℃まで徐々に冷却することで、アニーリングを行なった。なお、使用したオリゴヌクレオチドとして、FLAGタグ(配列番号1)の場合は配列番号12(相同鎖)および13(相補鎖)を、Mycタグ(配列番号2)の場合は配列番号14(相同鎖)および15(相補鎖)を、Hisタグ(配列番号3)の場合は配列番号16(相同鎖)および17(相補鎖)を、BNPのC末端側ペプチド(配列番号10、以降BNCと略する)の場合は配列番号18(相同鎖)および19(相補鎖)を、それぞれ用いた。
(2)(1)で得られた各タグペプチドをコードするオリゴヌクレオチド(二本鎖DNA)を、あらかじめBamHIとHindIIIで処理したpMAL−c4Xベクター(ニューイングランドレイブス社製)に挿入した。挿入方法は、制限酵素処理したpMAL−c4Xベクター67ngと(1)のオリゴヌクレオチド100ngに、DNAライゲーションキット(タカラバイオ社製)を4μL添加し、16℃で30分間ライゲーション反応を行なうことで挿入した。
(3)(2)で得られた、各タグペプチドをコードするオリゴヌクレオチドを挿入したpMAL−c4Xベクターで、定法に従い大腸菌(JM109株)を形質転換した。
Example 1 Preparation of transformant capable of expressing protein added with tag peptide A transformant capable of expressing a protein added with a tag peptide on the C-terminal side of maltose binding protein (MBP) was prepared by the following method.
(1) The oligonucleotides (homologous strand and complementary strand) encoding each tag peptide are diluted with TE so as to be 10 μM, mixed, heat-treated at 95 ° C. for 5 minutes, and then gradually cooled to 25 ° C. By doing so, annealing was performed. In the case of the FLAG tag (SEQ ID NO: 1), the oligonucleotides used were SEQ ID NO: 12 (homologous strand) and 13 (complementary strand), and in the case of the Myc tag (SEQ ID NO: 2), SEQ ID NO: 14 (homologous strand). And 15 (complementary chain), and in the case of the His tag (SEQ ID NO: 3), SEQ ID NO: 16 (homologous chain) and 17 (complementary chain) are the C-terminal peptides of BNP (SEQ ID NO: 10, hereinafter abbreviated as BNC). In this case, SEQ ID NOs: 18 (homologous strand) and 19 (complementary strand) were used, respectively.
(2) The oligonucleotide (double-stranded DNA) encoding each tag peptide obtained in (1) was inserted into a pMAL-c4X vector (manufactured by New England Raves) previously treated with BamHI and HindIII. The insertion method was performed by adding 4 μL of DNA ligation kit (Takara Bio Inc.) to 67 ng of pMAL-c4X vector treated with restriction enzyme and 100 ng of oligonucleotide (1) and performing a ligation reaction at 16 ° C. for 30 minutes. .
(3) Escherichia coli (JM109 strain) was transformed with the pMAL-c4X vector obtained by inserting the oligonucleotides encoding each tag peptide obtained in (2) according to a conventional method.

実施例2 タグペプチドを付加したタンパク質の調製
実施例1で得られた形質転換体を、50μg/mLのアンピシリンを含むLB培地で培養し、600nmの濁度が0.5になった時点で終濃度1mMになるようにIPTG(イソプロピル−β−チオガラクトピラノシド)を添加後、さらに37℃で4時間培養した。その後大腸菌を集菌し、アミロースカラムを使ったアフィニティークロマトグラフィーにより、発現した各タグペプチドを付加したマルトース結合タンパク(MBP)を精製した。精製した前記タンパクのSDS−PAGE結果を図1に示す。
Example 2 Preparation of protein added with tag peptide The transformant obtained in Example 1 was cultured in LB medium containing 50 μg / mL ampicillin, and when the turbidity at 600 nm reached 0.5, the transformant was terminated. After adding IPTG (isopropyl-β-thiogalactopyranoside) to a concentration of 1 mM, the cells were further cultured at 37 ° C. for 4 hours. Then, Escherichia coli was collected, and maltose binding protein (MBP) to which each expressed tag peptide was added was purified by affinity chromatography using an amylose column. The SDS-PAGE result of the purified protein is shown in FIG.

実施例3 BNPのC末端側ペプチド(BNC)認識抗体の単離
BNPのC末端側ペプチド(BNC)を認識する抗体を以下の方法で単離した。
(1)配列番号10のアミノ酸配列からなるBNC 20mgを、10mgのマレイミドで活性化した10mgのオボアルブミン(PIERCE社製)に、添付された説明書に従い結合させた。その後PBSで透析し、1mg/mLに調製した。
(2)(1)で調製したタンパク質とFCA(フロイント完全アジュバント)とを等量混合したエマルジョンを、100μL/匹でマウス腹腔内に注射した(1回目の免疫)。
(3)2回目以降は、FCAをFICA(フロイント不完全アジュバント)に変更したほかは、(2)と同様に毎週免疫を行ない、これを3回繰り返した。
(4)免疫後のマウスから脾臓B細胞を取り出し、ミエローマ細胞株とPEG法による細胞融合を行なった。
Example 3 Isolation of BNP C-Terminal Peptide (BNC) Recognizing Antibody An antibody recognizing the BNP C-terminal peptide (BNC) was isolated by the following method.
(1) 20 mg of BNC consisting of the amino acid sequence of SEQ ID NO: 10 was bound to 10 mg of ovalbumin (manufactured by PIERCE) activated with 10 mg of maleimide according to the attached instructions. Thereafter, it was dialyzed with PBS and adjusted to 1 mg / mL.
(2) The emulsion prepared by mixing equal amounts of the protein prepared in (1) and FCA (Freund's complete adjuvant) was injected intraperitoneally at 100 μL / mouse (first immunization).
(3) From the second time, except that FCA was changed to FICA (Freund's incomplete adjuvant), immunization was performed every week in the same manner as (2), and this was repeated three times.
(4) Splenic B cells were removed from the immunized mice and cell fusion was performed with the myeloma cell line by the PEG method.

前記操作により、BNCに特異的に反応する抗体を産生するハイブリドーマ6種(BC2−7、BC23−11、BC25−2、BC25−32、BC30−62、BC30−73)が得られた。   By the above operation, six hybridomas (BC2-7, BC23-11, BC25-2, BC25-32, BC30-62, BC30-73) producing antibodies that specifically react with BNC were obtained.

実施例4 各タグペプチドを用いた検出感度比較(その1)
ウエスタンブロッティング法により、各タグペプチドを用いた検出感度比較を行なった。
(1)実施例2で精製した各タグペプチドを付加したMBP(濃度;2400fmol、800fmol、240fmol、80fmol、24fmol、8fmol、2.4fmol、0.8fmol)をSDS−PAGEにかけた。なお、試料量が少ない場合における非特異的な吸着によるロスを防止するために、精製した各タグペプチドを付加したMBPは、ミエローマ細胞をPBSで破砕した上清で希釈したものを用いた。具体的には、マウスミエローマ細胞(SP2/0)の4×10個を1mLのPBSに懸濁し、超音波で破砕後、15000rpmで10分間遠心分離した上清を使用した。
(2)各タグペプチドを付加したMBPを定法に従いPVDF膜に転写後、下記に示すウエスタンブロッティングを行なった。
(2−1)転写後のPVDF膜を、5%スキムミルクを含むTBS中で、4℃で一晩放置することによりブロッキングした。
(2−2)一次抗体(抗FLAG抗体:SIGMA社製(M2)、抗Myc抗体:和光純薬社製(9E10)、抗His抗体:Roche社製(1922416)、BNC認識抗体:BC2−7/BC23−11/BC25−2/BC25−32/BC30−62/BC30−73(実施例3で単離した抗体))を0.5μg/mLとなるように、5%スキムミルクを含むTBSで希釈した。
(2−3)室温で2時間反応し、TBS−T(TBS−Tween20)でPVDF膜を4回洗浄後、TBS−Tで50000倍に希釈したHRP(西洋ワサビペルオキシダーゼ)標識された抗マウス抗体(GEヘルスケア社製、NA931)を添加し、室温で2時間反応した。
(2−4)PVDF膜をTBS−Tで4回洗浄し、ECL Plus(GEヘルスケア社製、RPN2132)で発色させた。
Example 4 Comparison of detection sensitivity using each tag peptide (part 1)
Detection sensitivity comparison using each tag peptide was performed by Western blotting.
(1) MBP (concentration: 2400 fmol, 800 fmol, 240 fmol, 80 fmol, 24 fmol, 8 fmol, 2.4 fmol, 0.8 fmol) to which each tag peptide purified in Example 2 was added was subjected to SDS-PAGE. In order to prevent loss due to nonspecific adsorption when the sample amount is small, MBP to which each purified tag peptide was added was diluted with a supernatant obtained by crushing myeloma cells with PBS. Specifically, 4 × 10 7 mouse myeloma cells (SP2 / 0) were suspended in 1 mL of PBS, disrupted with ultrasound, and then centrifuged at 15000 rpm for 10 minutes.
(2) MBP to which each tag peptide was added was transferred to a PVDF membrane according to a conventional method, and then Western blotting shown below was performed.
(2-1) The PVDF membrane after transfer was blocked by standing overnight at 4 ° C. in TBS containing 5% skim milk.
(2-2) Primary antibody (anti-FLAG antibody: manufactured by SIGMA (M2), anti-Myc antibody: manufactured by Wako Pure Chemical Industries, Ltd. (9E10), anti-His antibody: manufactured by Roche (19224216), BNC recognition antibody: BC2-7 / BC23-11 / BC25-2 / BC25-32 / BC30-62 / BC30-73 (antibody isolated in Example 3)) diluted to 0.5 μg / mL with TBS containing 5% skim milk did.
(2-3) HRP (horseradish peroxidase) -labeled anti-mouse antibody that reacted at room temperature for 2 hours, washed the PVDF membrane 4 times with TBS-T (TBS-Tween20), and diluted 50000 times with TBS-T (GE Healthcare, NA931) was added and reacted at room temperature for 2 hours.
(2-4) The PVDF membrane was washed 4 times with TBS-T and developed with ECL Plus (GE Healthcare, RPN2132).

結果を図2に示す。一般的に使用されているタグペプチドの中では、FLAGタグが最も性能が高く(検出感度:24fmol)、以下、Mycタグ、Hisタグの順番になった。一方、配列番号10に記載のアミノ酸配列からなるBNCを認識する抗体を用いると、FLAGタグを用いた系と比較し、同等から10倍程度高感度に検出(検出感度:2.4から24fmol)することが判明した。   The results are shown in FIG. Among the tag peptides generally used, the FLAG tag has the highest performance (detection sensitivity: 24 fmol), and the order of the Myc tag and the His tag follows. On the other hand, when an antibody that recognizes BNC consisting of the amino acid sequence set forth in SEQ ID NO: 10 is used, detection is equivalent to about 10 times more sensitive than detection using a FLAG tag (detection sensitivity: 2.4 to 24 fmol). Turned out to be.

実施例5 各タグペプチドを用いた検出感度比較(その2)
ELISA法により、各タグペプチドを用いた検出感度比較を行なった。
(1)評価したい抗体(タグペプチド認識抗体)をELISAプレートに0.1μg/ウエルで固定化し、1%スキムミルクでブロッキングした。
(2)実施例2で精製した各タグペプチドを付加したMBPを添加し反応させた(濃度:24pmol/ウェル、2.4pmol/ウェル、240fmol/ウェル、24fmol/ウェル、2.4fmol/ウェル、0.24fmol/ウェル)。
(3)HRP標識された抗MBP抗体(ニューイングランドレイブス社製、E8038S)で、固相に捕捉された各タグペプチドを付加したMBPの量を測定した。
Example 5 Comparison of detection sensitivity using each tag peptide (part 2)
Comparison of detection sensitivity using each tag peptide was performed by ELISA.
(1) The antibody to be evaluated (tag peptide recognition antibody) was immobilized on an ELISA plate at 0.1 μg / well and blocked with 1% skim milk.
(2) MBP to which each tag peptide purified in Example 2 was added and reacted (concentration: 24 pmol / well, 2.4 pmol / well, 240 fmol / well, 24 fmol / well, 2.4 fmol / well, 0 .24 fmol / well).
(3) The amount of MBP added with each tag peptide captured on the solid phase was measured with an HRP-labeled anti-MBP antibody (manufactured by New England Raves, E8038S).

結果を図3に示す。配列番号10に記載のアミノ酸配列からなるBNCを認識する抗体(BC2−7/BC23−11/BC25−2/BC25−32/BC30−62/BC30−73)を固相に固定化したものは、FLAGタグ(Anti−FLAG)またHisタグ(Anti−His)を認識する抗体を固相に固定化したものと比較し、特に低濃度領域(240fmol/ウェル以下の領域)で、タグペプチドを付加したMBPの補足量が増大していることが判明した。なお、今回検討したBNC認識抗体のうち、BC30−73を固相に固定化したものは、FLAGタグを認識する抗体(Anti−FLAG)を固相に固定化したものと比較し、100倍以上の感度を有している。   The results are shown in FIG. An antibody (BC2-7 / BC23-11 / BC25-2 / BC25-32 / BC30-62 / BC30-73) that recognizes BNC having the amino acid sequence set forth in SEQ ID NO: 10 is immobilized on a solid phase. Compared with the antibody that recognizes FLAG tag (Anti-FLAG) or His tag (Anti-His) immobilized on a solid phase, a tag peptide was added particularly in a low concentration region (region of 240 fmol / well or less). It was found that the amount of MBP supplemented was increasing. Among the BNC-recognizing antibodies examined this time, those in which BC30-73 was immobilized on the solid phase were 100 times or more compared to those in which the antibody that recognizes the FLAG tag (Anti-FLAG) was immobilized on the solid phase. It has the sensitivity of.

実施例6 アフィニティー精製用タグとしての性能(pH変化による溶出)
BNPのC末端側ペプチド(BNC)認識抗体と結合した、BNCを付加したペプチドの、pH変化による溶出を確認した。
(1)実施例3で得られたBNC認識抗体のうちの5種(BC2−7/BC23−11/BC25−2/BC30−62/BC30−73)を、96ウエルプレートにそれぞれ0.1μg固定化した。
(2)1%スキムミルクを含むPBSで十分にブロッキングした後、N末端にビオチンを導入した配列番号20(9番目から15番目のアミノ酸が配列番号10に記載のアミノ酸に相当)に記載のアミノ酸配列からなるオリゴペプチドを1μg添加し、反応させた。
(3)1時間反応後、pHが異なる緩衝液(PBS、100mM グリシン−塩酸緩衝液(pH1.5)、100mM グリシン−塩酸緩衝液(pH2.5)、100mM グリシン−塩酸緩衝液(pH3.0)、100mM グリシン−塩酸緩衝液(pH3.5))で3回洗浄した。
(4)アルカリホスファターゼで標識されたストレプトアビジンを反応させ、洗浄後p−ニトロフェニルリン酸(PNPP)を反応させ酵素活性を測定した。
Example 6 Performance as tag for affinity purification (elution by pH change)
The elution of the peptide added with BNC bound to the C-terminal peptide (BNC) recognition antibody of BNP with pH change was confirmed.
(1) Immobilizing 5 μg of the BNC recognition antibodies obtained in Example 3 (BC2-7 / BC23-11 / BC25-2 / BC30-62 / BC30-73) to a 96-well plate, 0.1 μg each. Turned into.
(2) The amino acid sequence described in SEQ ID NO: 20 (the 9th to 15th amino acids correspond to the amino acid described in SEQ ID NO: 10) after sufficiently blocking with PBS containing 1% skim milk and then introducing biotin into the N-terminus 1 μg of the oligopeptide consisting of was added and reacted.
(3) After reaction for 1 hour, buffers having different pH (PBS, 100 mM glycine-hydrochloric acid buffer (pH 1.5), 100 mM glycine-hydrochloric acid buffer (pH 2.5), 100 mM glycine-hydrochloric acid buffer (pH 3.0) ) And 100 mM glycine-hydrochloric acid buffer (pH 3.5)).
(4) Streptavidin labeled with alkaline phosphatase was reacted, washed, and then reacted with p-nitrophenyl phosphate (PNPP) to measure enzyme activity.

結果を図4に示す。いずれのBNC認識抗体を用いた場合においても、pHの変化により配列番号20に記載のアミノ酸配列からなるオリゴペプチドを完全に解離できることがわかり、配列番号10に記載のアミノ酸配列からなるオリゴペプチド(BNC)がアフィニティー精製用のタグペプチドとして十分な性能を有していることが判明した。なお、今回検討したBNC認識抗体のうち、BC2−7は比較的温和な条件(pH3.5)で結合したペプチドを完全に解離できるため、アフィニティー精製用の抗体として優れていることがわかる。   The results are shown in FIG. It can be seen that any of the BNC-recognizing antibodies can completely dissociate the oligopeptide consisting of the amino acid sequence shown in SEQ ID NO: 20 by changing the pH, and the oligopeptide consisting of the amino acid sequence shown in SEQ ID NO: 10 (BNC ) Was found to have sufficient performance as a tag peptide for affinity purification. Of the BNC-recognizing antibodies examined this time, BC2-7 can be completely dissociated from the bound peptide under relatively mild conditions (pH 3.5), indicating that it is excellent as an antibody for affinity purification.

実施例7 アフィニティー精製用タグとしての性能(ペプチド添加による溶出)
BNPのC末端側ペプチド(BNC)認識抗体と結合した、BNCを付加したペプチドの、BNC添加による溶出を確認した。
(1)実施例3で得られたBNC認識抗体のうちの5種(BC2−7/BC23−11/BC25−2/BC30−62/BC30−73)を、96ウエルプレートにそれぞれ0.1μg固定化した。
(2)1%スキムミルクを含むPBSで十分にブロッキングした後、N末端にビオチンを導入した配列番号20に記載のアミノ酸配列からなるオリゴペプチドを1μg添加し、反応させた。
(3)1時間反応後、配列番号10に記載のアミノ酸配列からなるBNPのC末端側ペプチド(BNC)を含んだ溶液を100μL添加し(ペプチド濃度:1μg/mL、10μg/mL、100μg/mL)、反応させた。
(4)1時間反応後、十分に洗浄し、アルカリホスファターゼで標識されたストレプトアビジンを反応させた。
(5)洗浄後、PNPPを反応させ酵素活性を測定した。
Example 7 Performance as tag for affinity purification (elution by adding peptide)
The elution of BNP-added peptide bound to the BNP C-terminal peptide (BNC) recognition antibody was confirmed by the addition of BNC.
(1) Immobilizing 5 μg of the BNC recognition antibodies obtained in Example 3 (BC2-7 / BC23-11 / BC25-2 / BC30-62 / BC30-73) to a 96-well plate, 0.1 μg each. Turned into.
(2) After sufficiently blocking with PBS containing 1% skim milk, 1 μg of an oligopeptide consisting of the amino acid sequence shown in SEQ ID NO: 20 with biotin introduced into the N-terminus was added and reacted.
(3) After reaction for 1 hour, 100 μL of a solution containing BNP C-terminal peptide (BNC) consisting of the amino acid sequence shown in SEQ ID NO: 10 was added (peptide concentration: 1 μg / mL, 10 μg / mL, 100 μg / mL). ) And reacted.
(4) After the reaction for 1 hour, it was washed thoroughly and reacted with streptavidin labeled with alkaline phosphatase.
(5) After washing, PNPP was reacted to measure enzyme activity.

結果を図5に示す。いずれのBNC認識抗体を用いた場合においても、BNCの添加により、結合した配列番号20に記載のアミノ酸配列からなるオリゴペプチドと完全に解離できることが判明した。pHの変化を伴わずにタグペプチドを付加したタンパク質(ペプチド)の溶出が可能なことは、pHの変化に弱いタンパク質に対しても適用可能であることを意味するため、配列番号10に記載のアミノ酸配列からなるオリゴペプチド(BNC)がアフィニティー精製用のタグペプチドとして好ましい性能を有していることがわかる。   The results are shown in FIG. In any case of using any BNC-recognizing antibody, it was found that the addition of BNC can completely dissociate from the bound oligopeptide having the amino acid sequence shown in SEQ ID NO: 20. Since elution of a protein (peptide) to which a tag peptide is added without a change in pH means that it can be applied to a protein that is vulnerable to a change in pH, it is described in SEQ ID NO: 10. It can be seen that an oligopeptide (BNC) comprising an amino acid sequence has a preferable performance as a tag peptide for affinity purification.

実施例8 BNPのC末端側ペプチド(BNC)を付加したタンパク質の精製
配列番号10に記載のアミノ酸配列からなるBNPのC末端側ペプチド(BNC)をタグペプチドとして用い、タンパク質の精製を行なった。
(1)実施例1で得られたBNCを付加したMBPを発現する形質転換体(大腸菌)を、実施例2に記載の方法で培養後、超音波で破砕し、可溶性画分(ライセート)を得た。
(2)実施例3で得られたBNC認識抗体のうちの5種(BC2−7/BC23−11/BC25−2/BC30−62/BC30−73)を、NHSで活性化されたカラム(GEヘルスケア社製:NHS HP SpinTrap)に、商品添付の説明書に従い固定化することで、抗体固定化カラムを調製した。
(3)(2)の抗体固定化カラムに(1)の可溶性画分をロードすることで、BNCを付加したMBPを抗体固定化カラムに吸着させた。
(4)吸着したBNCを付加したMBPを100mM グリシン−塩酸緩衝液(pH2.5)で溶出した。なお、アミロースカラムを用いたアフィニティークロマトグラフィーによるBNCを付加したMBPの精製を比較例として行なった。
Example 8 Purification of Protein Added with BNP C-Terminal Peptide (BNC) The protein was purified using the BNP C-terminal peptide (BNC) consisting of the amino acid sequence shown in SEQ ID NO: 10 as a tag peptide.
(1) The transformant (E. coli) expressing MBP added with BNC obtained in Example 1 was cultured by the method described in Example 2 and then disrupted by ultrasonication to obtain a soluble fraction (lysate). Obtained.
(2) Five types (BC2-7 / BC23-11 / BC25-2 / BC30-62 / BC30-73) of the BNC-recognizing antibodies obtained in Example 3 were treated with NHS-activated columns (GE An antibody-immobilized column was prepared by immobilizing on NHS HP SpinTrap (produced by Healthcare) according to the instructions attached to the product.
(3) By loading the soluble fraction of (1) onto the antibody-immobilized column of (2), MBP added with BNC was adsorbed to the antibody-immobilized column.
(4) The adsorbed MBP was eluted with 100 mM glycine-hydrochloric acid buffer (pH 2.5). In addition, purification of MBP to which BNC was added by affinity chromatography using an amylose column was performed as a comparative example.

SDS−PAGEによる純度検定結果を図6に示す。左から2列目のレーンが可溶性画分(ライセート)、黒四角の位置にあるバンドがBNCを付加したMBPに相当するバンドである(その他のバンドは形質転換体由来のタンパク質に相当するバンド)。図6より、BNC認識抗体結合カラムを用いてBNCを付加したMBPを精製した場合におけるタンパク質の精製度が、アミロースカラムを用いた場合と同等であることがわかる。よって、配列番号10に記載のアミノ酸配列からなるオリゴペプチド(BNC)をタグペプチドとして用いることにより、タンパク質を夾雑物の混入なしに高純度に精製できることが判明した。   The purity test result by SDS-PAGE is shown in FIG. The second lane from the left is the soluble fraction (lysate), and the band at the black square is a band corresponding to MBP with BNC added (the other bands are bands corresponding to transformant-derived proteins). . From FIG. 6, it can be seen that the degree of protein purification when MBP added with BNC is purified using a BNC-recognizing antibody-binding column is equivalent to that when an amylose column is used. Therefore, it was found that by using an oligopeptide (BNC) having the amino acid sequence shown in SEQ ID NO: 10 as a tag peptide, the protein can be purified with high purity without contamination.

実施例9 B型ナトリウム利尿ペプチド(BNP)濃度の影響
配列番号10に記載のアミノ酸配列からなるBNPのC末端側ペプチド(BNC)を免疫測定用途に用いた場合、検体中に存在するBNPの濃度によっては、前記BNPによりBNCと抗体との結合が競合的に阻害されるおそれがあった。そこで、BNP濃度によるBNCとBNC認識抗体との結合性の影響を検討した。
(1)BNCを共有結合した抗エストラジオール抗体(以下抗E2抗体と略する)を作製した。
(2)(1)で作製した抗E2抗体とSulfo−SMCC(PIERCE社製、22322)とを説明書に従い反応後、大過剰のBNCと反応させることで、BNCと共有結合した抗E2抗体を作製した(図7)。
(3)3μgのBNC認識抗体(BC23−11)を固定化した磁性ビーズに、(1)で作製した抗E2抗体を一定量反応させた。
(4)以下に示す3つの成分のうち、(b)と(c)とをそれぞれ50μL加えた中に、(a)を50μL添加することで反応を開始した。三つの成分は、
(a)BNC標識抗体(5ng/50μL)、
(b)エストラジオール標識アルカリホスファターゼ(0.05mA/50μL)、
および
(c)種々の濃度のBNPである。
(5)37℃で10分間反応後、十分に洗浄し、固相に残ったALPの酵素活性を定法により測定した。
Example 9 Effect of B-type natriuretic peptide (BNP) concentration When the C-terminal peptide (BNC) of BNP consisting of the amino acid sequence of SEQ ID NO: 10 was used for immunoassay, the concentration of BNP present in the sample In some cases, the binding of BNC and antibody may be competitively inhibited by the BNP. Therefore, the influence of the binding between BNC and BNC-recognizing antibody due to the BNP concentration was examined.
(1) An anti-estradiol antibody (hereinafter abbreviated as anti-E2 antibody) covalently bound to BNC was prepared.
(2) After reacting the anti-E2 antibody prepared in (1) and Sulfo-SMCC (PIERCE, 22322) according to the instructions, the anti-E2 antibody covalently bound to BNC is reacted with a large excess of BNC. It produced (FIG. 7).
(3) A certain amount of the anti-E2 antibody prepared in (1) was reacted with magnetic beads on which 3 μg of BNC-recognizing antibody (BC23-11) was immobilized.
(4) Among the following three components, 50 μL of (b) and (c) was added, and the reaction was started by adding 50 μL of (a). The three ingredients are
(A) BNC-labeled antibody (5 ng / 50 μL),
(B) Estradiol labeled alkaline phosphatase (0.05 mA / 50 μL),
And (c) various concentrations of BNP.
(5) After reacting at 37 ° C. for 10 minutes, the plate was thoroughly washed, and the enzyme activity of ALP remaining on the solid phase was measured by a conventional method.

反応後に得られたシグナルを縦軸に、横軸にBNPの濃度をプロットしたものを図8に示す。なお、図8においてCal2からCal6とは、東ソー株式会社で販売している免疫測定試薬(Eテスト「TOSOH」II(BNP))の検量線で使用している標準品であり、それぞれ、15.2pg/mL(Cal2)、42.5pg/mL(Cal3)、153pg/mL(Cal4)、643pg/mL(Cal5)、2450pg/mL(Cal6)である。今回の測定条件では、市販試薬における高濃度標準品よりもさらに高い濃度である、100ng/mLのBNPが検体中に存在しても、BNCを付加したタンパク質とBNC認識抗体との結合性に影響を与えないことがわかる。   FIG. 8 shows a plot of the signal obtained after the reaction on the vertical axis and the concentration of BNP on the horizontal axis. In FIG. 8, Cal2 to Cal6 are standard products used in the calibration curve of the immunoassay reagent (E test “TOSOH” II (BNP)) sold by Tosoh Corporation. 2 pg / mL (Cal2), 42.5 pg / mL (Cal3), 153 pg / mL (Cal4), 643 pg / mL (Cal5), 2450 pg / mL (Cal6). Under the present measurement conditions, even if 100 ng / mL of BNP, which is a higher concentration than the high-concentration standard product in the commercially available reagent, is present in the sample, it affects the binding between the BNC-added protein and the BNC-recognizing antibody. It turns out not to give.

なお、臨床上ではBNPの濃度が非常に高いと判定された検体でも、BNP濃度が1000pg/mLをこえることはまずない(健常人は数pg/mL)。BNPの分子量は3464であることから、1000pg/mLをモル濃度に換算すると0.29pmol/mLとなる。反応に持ち込む検体(血清)は緩衝液で2倍希釈して150μL使用すると仮定すると、0.02175pmolのBNPが各ウェルに持ち込まれることになる。一方、ELISAプレート(NUNC社製、マキシソープ)に固定化できるBNC認識抗体量を見積もると、ELISAプレートの吸着容量は650ng/cmで、ウェルあたりの面積は2.7cm(カタログ記載値)であることから、前記抗体固定量は1775ng/ウェルとなる。前記抗体の分子量を1.5×10と仮定して固定化される抗体のモル数を計算すると、11.7pmolとなる。前記抗体には抗原結合サイトが2箇所あるため、反応に関与できる結合部位は23.4pmolとなる。つまり23.4pmolの抗原結合サイトがあるのに対し、BNP濃度は前述したように0.02175pmol(モル比で約1000倍)である。したがって、実際臨床上の検体において高濃度のBNPが存在してもほとんどの結合サイトは残っているため、測定系への影響はないと考えられる。 It should be noted that even in a specimen that is determined to have a very high BNP concentration clinically, the BNP concentration rarely exceeds 1000 pg / mL (healthy persons have a few pg / mL). Since the molecular weight of BNP is 3464, when 1000 pg / mL is converted into a molar concentration, it becomes 0.29 pmol / mL. Assuming that the specimen (serum) brought into the reaction is diluted 2-fold with a buffer and used at 150 μL, 0.02175 pmol of BNP will be brought into each well. On the other hand, when estimating the amount of BNC-recognizing antibody that can be immobilized on an ELISA plate (manufactured by NUNC, Maxisorp), the adsorption capacity of the ELISA plate is 650 ng / cm 2 and the area per well is 2.7 cm 2 (value shown in the catalog) Therefore, the amount of antibody immobilized is 1775 ng / well. When the number of moles of the immobilized antibody is calculated on the assumption that the molecular weight of the antibody is 1.5 × 10 5 , it is 11.7 pmol. Since the antibody has two antigen binding sites, the binding site that can participate in the reaction is 23.4 pmol. That is, while there are 23.4 pmol of antigen binding sites, the BNP concentration is 0.02175 pmol (about 1000 times in molar ratio) as described above. Therefore, even if a high concentration of BNP is present in clinical specimens, most of the binding sites remain, and it is considered that there is no influence on the measurement system.

実施例10 BNPのC末端側ペプチド(BNC)一置換体を結合させた抗体の調製
配列番号10に記載のアミノ酸配列からなるBNPのC末端側ペプチド(BNC)を構成するアミノ酸のうちの一つを他のアミノ酸に置換したオリゴペプチド(以下、一置換BNC)の結合性能を評価するため、一置換BNCを結合させた抗体を調製した。
(1)遺伝子工学的手法で、重鎖(H鎖)C末端側に直接BNCが結合した遺伝子組み換え型抗エストラジオール抗体(以下、RaMoAb)を発現可能なベクターを調製した。
(2)(1)で調製したベクターのうち、RaMoAbのH鎖C末端側に結合させたBNCをコードするオリゴヌクレオチドに対し、KOD−PLUS−Mutagenesis Kit(東洋紡績社製)を用いて変異導入することで、H鎖C末端側に直接一置換BNCが結合したRaMoAbを発現可能なベクターを調製した(置換位置および置換アミノ酸の一覧を表1に示す)。
Example 10 Preparation of antibody bound with BNP C-terminal peptide (BNC) monosubstitution One of the amino acids constituting the BNP C-terminal peptide (BNC) consisting of the amino acid sequence set forth in SEQ ID NO: 10 In order to evaluate the binding performance of oligopeptides substituted with other amino acids (hereinafter referred to as monosubstituted BNC), an antibody to which monosubstituted BNC was bound was prepared.
(1) A vector capable of expressing a recombinant anti-estradiol antibody (hereinafter, RaMoAb) in which BNC was directly bound to the heavy chain (H chain) C-terminal side was prepared by genetic engineering techniques.
(2) Among the vectors prepared in (1), mutations are introduced into the oligonucleotide encoding BNC bound to the H-chain C-terminal side of RaMoAb using KOD-PLUS-Mutageness Kit (Toyobo Co., Ltd.). Thus, a vector capable of expressing RaMoAb in which mono-substituted BNC was directly bound to the H chain C-terminal side was prepared (a list of substitution positions and substitution amino acids is shown in Table 1).

Figure 2011140483
(3)特許文献5の方法に基づき、(1)で調製したベクターを用いてH鎖C末端側に直接BNCが結合したRaMoAb(以下、RaMoAb−BNC)を、(2)で調製したベクターを用いてH鎖C末端側に直接一置換BNCが結合したRaMoAb(以下、RaMoAb−mBNC)を、それぞれ培養上清に発現させた。
Figure 2011140483
(3) Based on the method of Patent Document 5, using the vector prepared in (1), RaMoAb (hereinafter referred to as RaMoAb-BNC) in which BNC is directly bound to the H chain C-terminal side, and the vector prepared in (2) The RaMoAb (hereinafter, RaMoAb-mBNC) in which the monosubstituted BNC was directly bound to the H chain C-terminal side was expressed in the culture supernatant.

実施例11 RaMoAb−mBNCの定量
実施例10で培養上清中に発現したRaMoAb−mBNCの濃度は一定でないため,BNC一置換体の結合性能を正確に比較するには,RaMoAb−mBNCの濃度補正が必要である。そこで、ELISA法を用いて培養上清中のRaMoAb−mBNCの濃度を定量した。
(1)抗ウサギ抗体(ミリポア社製、AP132)をELISAプレートに0.1μg/ウエルで固定化し、1%スキムミルクでブロッキングした。
(2)実施例10で得られたRaMoAb−mBNCを含む培養上清を添加し反応させた。
(3)アルカリホスファターゼ(ALP)標識した抗ウサギ抗体(ミリポア社製、AP132A)で、固相に捕捉されたRaMoAb−mBNCの量を測定した。
(4)あらかじめ前記(1)から(3)に示すELISA法で種々の濃度のRaMoAb−BNCを測定したものを検量線とし、RaMoAb−mBNCの濃度を算出した。
Example 11 Quantification of RaMoAb-mBNC Since the concentration of RaMoAb-mBNC expressed in the culture supernatant in Example 10 is not constant, the concentration correction of RaMoAb-mBNC can be used to accurately compare the binding performance of BNC monosubstituents. is required. Therefore, the concentration of RaMoAb-mBNC in the culture supernatant was quantified using an ELISA method.
(1) Anti-rabbit antibody (Millipore, AP132) was immobilized on an ELISA plate at 0.1 μg / well and blocked with 1% skim milk.
(2) The culture supernatant containing RaMoAb-mBNC obtained in Example 10 was added and reacted.
(3) The amount of RaMoAb-mBNC captured on the solid phase was measured with an alkaline rabbit phosphatase (ALP) -labeled anti-rabbit antibody (Millipore, AP132A).
(4) RaMoAb-mBNC concentration was calculated using a calibration curve obtained by measuring RaMoAb-BNC at various concentrations by the ELISA method shown in (1) to (3) in advance.

実施例12 BNPのC末端側ペプチド(BNC)認識抗体の標識
実施例3で得られたBNC認識抗体のうち4種(BC2−7/BC23−11/BC30−62/BC30−73)について、アルカリホスファターゼキット(同仁化学社製、LK12)を用いて、キットに添付のプロトコールに従いALPを標識した。
Example 12 Labeling of BNP C-terminal peptide (BNC) -recognizing antibody Four types of BNC-recognizing antibodies (BC2-7 / BC23-11 / BC30-62 / BC30-73) obtained in Example 3 were alkaline. ALP was labeled using a phosphatase kit (manufactured by Dojindo, LK12) according to the protocol attached to the kit.

実施例13 BNPのC末端側ペプチド(BNC)一置換体の結合性能評価
まずRaMoAb−BNCの検量線を下記に示すELISA法を用いて作製した。
(1)エストラジオール標識BSA(シグマ社製:E5630)をELISAプレートに0.1μg/ウエルで固定化し、1%スキムミルクでブロッキングした。
(2)種々の濃度のRaMoAb−BNCを添加し反応させた。
(3)実施例12で調製したALP標識BNC認識抗体のうち、BC23−11にALPを標識したものを1000倍希釈し、固相に捕捉されたRaMoAb−BNCと反応させた。
Example 13 Evaluation of binding performance of C-terminal peptide (BNC) monosubstituted product of BNP First, a calibration curve of RaMoAb-BNC was prepared using the ELISA method shown below.
(1) Estradiol-labeled BSA (manufactured by Sigma: E5630) was immobilized on an ELISA plate at 0.1 μg / well and blocked with 1% skim milk.
(2) Various concentrations of RaMoAb-BNC were added and reacted.
(3) Of the ALP-labeled BNC recognition antibodies prepared in Example 12, BC23-11 labeled with ALP was diluted 1000 times and reacted with RaMoAb-BNC captured on the solid phase.

得られたRaMoAb−BNCの検量線を図9に示す。図9よりRaMoAb−BNCの濃度が高くなると、固相に結合するRaMoAb−BNCの量が増加するため、ALP標識BC23−11に由来する蛍光強度(FI)が増加していることがわかる。   A calibration curve of the obtained RaMoAb-BNC is shown in FIG. From FIG. 9, it can be seen that when the concentration of RaMoAb-BNC increases, the amount of RaMoAb-BNC bound to the solid phase increases, so that the fluorescence intensity (FI) derived from ALP-labeled BC23-11 increases.

このことから、まず、
(A)(1)から(3)の方法で種々の濃度のRaMoAb−BNCを添加したときのALP標識BNC認識抗体に由来する蛍光強度を測定し、
(B)RaMoAb−BNC濃度を横軸とし(A)で測定した蛍光強度を縦軸として、それぞれプロットすることでRaMoAb−BNCの検量線を作成する。
次に、
(C)実施例11に記載の方法で培養上清中のRaMoAb−mBNCの濃度を定量し、
(D)(1)から(3)の方法でRaMoAb−mBNCと結合したALP標識BNC認識抗体(前記抗体は(A)と同じ抗体)に由来する蛍光強度を測定し、
(E)(C)で定量した濃度を横軸とし(D)で測定した蛍光強度を縦軸としてプロットする。
その結果、(E)のプロット位置が(B)で作成した検量線より上方であれば結合性能が向上するアミノ酸置換であり、下方であれば結合性能が低下するアミノ酸置換であることがわかる(図10)。前記(A)から(E)に示す方法は、培養上清中のRaMoAb−mBNCの濃度が異なっていても,結合性能を評価することができる点で有用な方法である。
From this, first of all
(A) Measure the fluorescence intensity derived from the ALP-labeled BNC-recognizing antibody when various concentrations of RaMoAb-BNC are added by the method of (1) to (3),
(B) A RaMoAb-BNC calibration curve is created by plotting the RaMoAb-BNC concentration on the horizontal axis and the fluorescence intensity measured in (A) on the vertical axis.
next,
(C) Quantifying the concentration of RaMoAb-mBNC in the culture supernatant by the method described in Example 11,
(D) Measure the fluorescence intensity derived from the ALP-labeled BNC-recognizing antibody (the same antibody as (A)) bound to RaMoAb-mBNC by the method of (1) to (3),
(E) The concentration determined in (C) is plotted on the horizontal axis, and the fluorescence intensity measured in (D) is plotted on the vertical axis.
As a result, it is understood that the amino acid substitution improves the binding performance if the plot position of (E) is above the calibration curve created in (B), and the amino acid substitution reduces the binding performance if it is lower ( FIG. 10). The methods shown in (A) to (E) are useful in that the binding performance can be evaluated even when the concentration of RaMoAb-mBNC in the culture supernatant is different.

そこで、前記(A)から(E)に示す方法を用いて、RaMoAb−mBNCの結合性能を評価した。BNC認識抗体としてBC2−7を用いたときの結果を図11から図17に、BC23−11を用いたときの結果を図18から図24に、BC30−73を用いたときの結果を図25から31に、それぞれ示す。   Therefore, the binding performance of RaMoAb-mBNC was evaluated using the methods shown in (A) to (E). The results when BC2-7 is used as a BNC recognition antibody are shown in FIGS. 11 to 17, the results when BC23-11 is used are shown in FIGS. 18 to 24, and the results when BC30-73 is used are shown in FIG. To 31 respectively.

図11から図31に示す結果のうち、図18を例として結果を詳細に説明する。図18のうち、白丸で示したプロットはRaMoAb−BNC精製品の希釈系列を用いて得られた結果であり当該プロットを用いて作成した検量線が図18に示されている。また、黒丸で示したプロットは実施例10の方法で培養上清に発現させたRaMoAb−mBNCにおける結果である。なお、星印で示したプロットは対照実験として行なった実施例10の方法で培養上清に発現させたRaMoAb−BNCにおける結果である。前記星印で示したプロットが検量線と誤差範囲で重なっていることから、本実験に妥当性があることがわかる。図18の結果より、配列番号10に記載のアミノ酸配列からなるBNCのうち、1番目のシステイン(C)をグルタミン酸(E)に置換した場合は結合性能に変化はないものの、アスパラギン酸(D)に置換すると結合性能が若干低下し、それ以外のアミノ酸に置換すると結合性能がほぼ消失することがわかる。   Of the results shown in FIGS. 11 to 31, the results will be described in detail using FIG. 18 as an example. In FIG. 18, the plots indicated by white circles are the results obtained using a dilution series of RaMoAb-BNC purified product, and a calibration curve created using the plots is shown in FIG. 18. The plots indicated by black circles are the results for RaMoAb-mBNC expressed in the culture supernatant by the method of Example 10. In addition, the plot shown with an asterisk is the result in RaMoAb-BNC expressed in the culture supernatant by the method of Example 10 conducted as a control experiment. Since the plot indicated by the asterisk overlaps with the calibration curve in the error range, it can be seen that this experiment is valid. From the results shown in FIG. 18, when the first cysteine (C) in the BNC consisting of the amino acid sequence shown in SEQ ID NO: 10 is substituted with glutamic acid (E), the binding performance does not change, but aspartic acid (D) It can be seen that the binding performance is slightly reduced when the substitution is made, and the binding performance is almost lost when substitution is made with other amino acids.

図11から図31に示す結果を以下にまとめる。   The results shown in FIGS. 11 to 31 are summarized below.

(ア)1番目のシステイン(C)を置換した場合
BNC認識抗体としてBC2−7を用いた場合(図11)、グルタミン酸(E)またはアスパラギン酸(D)に置換すると結合性能が向上したものの、その他のアミノ酸に置換すると結合性能が低下した。BNC認識抗体としてBC23−11を用いた場合(図18)、グルタミン酸(E)に置換した場合は結合性能に変化はなかったものの、アスパラギン酸(D)に置換すると結合性能が若干低下し、その他のアミノ酸に置換すると結合性能がほぼ消失した。BNC認識抗体としてBC30−73を用いた場合(図25)、グルタミン酸(E)またはアスパラギン酸(D)に置換すると結合性能が若干向上したものの,その他のアミノ酸に置換すると結合性能が低下した。
(A) When the first cysteine (C) is substituted When BC2-7 is used as the BNC-recognizing antibody (FIG. 11), the binding performance is improved by substitution with glutamic acid (E) or aspartic acid (D). Substitution with other amino acids reduced the binding performance. When BC23-11 was used as a BNC-recognizing antibody (FIG. 18), there was no change in binding performance when substituted with glutamic acid (E), but binding performance decreased slightly when substituted with aspartic acid (D). When the amino acid was substituted, the binding performance was almost lost. When BC30-73 was used as the BNC-recognizing antibody (FIG. 25), the binding performance was slightly improved when substituted with glutamic acid (E) or aspartic acid (D), but the binding performance decreased when substituted with other amino acids.

(イ)2番目のリジン(K)を置換した場合
BNC認識抗体としてBC2−7を用いた場合(図12)、アルギニン(R)に置換した場合は結合性能に変化はなかったものの、その他のアミノ酸に置換することで結合性能が向上しており、特にアスパラギン酸(D)に置換すると効果的であった。BNC認識抗体としてBC23−11を用いた場合(図19)、アスパラギン酸(D)に置換した場合は結合性能が若干低下したものの、その他のアミノ酸については置換による結合性能への影響はなかった。BNC認識抗体としてBC30−73を用いた場合(図26)、アルギニン(R)に置換した場合は結合性能が低下したものの、その他のアミノ酸に置換することで結合性能が向上しており、特にアスパラギン酸(D)に置換すると効果的であった。
(A) When the second lysine (K) is substituted When BC2-7 is used as the BNC-recognizing antibody (FIG. 12), the substitution performance is unchanged when arginine (R) is substituted. By substituting with an amino acid, the binding performance was improved, and it was particularly effective when substituting with aspartic acid (D). When BC23-11 was used as a BNC-recognizing antibody (FIG. 19), the substitution performance was slightly lowered when substituted with aspartic acid (D), but the substitution performance of other amino acids was not affected. When BC30-73 was used as a BNC-recognizing antibody (FIG. 26), the binding performance was lowered when substituted with arginine (R), but the binding performance was improved by substitution with other amino acids, especially asparagine. Substitution with acid (D) was effective.

(ウ)3番目のバリン(V)を置換した場合
BNC認識抗体としてBC2−7を用いた場合(図13)、アスパラギン酸(D)、アラニン(A)、グルタミン酸(E)またはプロリン(P)に置換することで結合性能が向上した。BNC認識抗体としてBC23−11を用いた場合(図20)、結合性能が向上するアミノ酸置換と変化しないアミノ酸置換と低下するアミノ酸置換とが一様に存在するが、アスパラギン酸(D)、グルタミン酸(E)、プロリン(P)またはスレオニン(T)に置換すると結合性能が特に向上した。BNC認識抗体としてBC30−73を用いた場合(図27)も、結合性能が向上するアミノ酸置換と変化しないアミノ酸置換と低下するアミノ酸置換とが一様に存在するが、アラニン(A)、アスパラギン酸(D)またはグルタミン酸(E)に置換すると結合性能が特に向上した。
(C) When the third valine (V) is substituted When BC2-7 is used as the BNC-recognizing antibody (FIG. 13), aspartic acid (D), alanine (A), glutamic acid (E) or proline (P) The bonding performance was improved by substituting for. When BC23-11 is used as a BNC-recognizing antibody (FIG. 20), there are uniformly amino acid substitutions that improve binding performance, amino acid substitutions that do not change, and amino acid substitutions that decline, but aspartic acid (D), glutamic acid ( Substituting with E), proline (P) or threonine (T) particularly improved the binding performance. Even when BC30-73 is used as a BNC-recognizing antibody (FIG. 27), there are uniformly amino acid substitutions that improve binding performance, amino acid substitutions that do not change, and amino acid substitutions that decline, but alanine (A), aspartic acid Substitution with (D) or glutamic acid (E) particularly improved the binding performance.

(エ)4番目のロイシン(L)を置換した場合
BNC認識抗体としてBC2−7を用いた場合(図14)、フェニルアラニン(F)、プロリン(P)、アスパラギン酸(D)、グルタミン酸(E)またはイソロイシン(I)に置換した場合は結合性能に変化がなかったものの、その他のアミノ酸に置換すると結合性能は低下した。BNC認識抗体としてBC23−11を用いた場合(図21)、結合性能が向上するアミノ酸置換と変化しないアミノ酸置換と低下するアミノ酸置換とが一様に存在するが、プロリン(P)、アスパラギン酸(D)またはグルタミン酸(E)に置換すると結合性能が特に向上した。BNC認識抗体としてBC30−73を用いた場合(図28)、他のアミノ酸への置換により結合性能がほぼ消失した。
(D) When the 4th leucine (L) is substituted When BC2-7 is used as a BNC recognition antibody (FIG. 14), phenylalanine (F), proline (P), aspartic acid (D), glutamic acid (E) Alternatively, when the substitution was made with isoleucine (I), the binding performance was not changed, but when the substitution was made with other amino acids, the binding performance was lowered. When BC23-11 is used as a BNC-recognizing antibody (FIG. 21), there are uniformly amino acid substitutions that improve binding performance, amino acid substitutions that do not change, and amino acid substitutions that decline, but proline (P), aspartic acid ( Substitution with D) or glutamic acid (E) particularly improved the binding performance. When BC30-73 was used as the BNC-recognizing antibody (FIG. 28), the binding performance almost disappeared due to substitution with other amino acids.

(オ)5番目のアルギニン(R)を置換した場合
BNC認識抗体としてBC2−7を用いた場合(図15)、プロリン(P)に置換した場合は結合性能に変化がなかったものの、その他のアミノ酸に置換すると結合性能は低下した。BNC認識抗体としてBC23−11を用いた場合(図22)、他のアミノ酸への置換により結合性能が低下またはほぼ消失した。一方、BNC認識抗体としてBC30−73を用いた場合(図29)、プロリン(P)に置換した場合は結合性能に変化がなかったものの、その他のアミノ酸に置換すると結合性能は向上した。
(E) When the fifth arginine (R) is substituted When BC2-7 is used as a BNC-recognizing antibody (FIG. 15), the substitution performance is unchanged when it is substituted with proline (P). When substituted with an amino acid, the binding performance decreased. When BC23-11 was used as the BNC-recognizing antibody (FIG. 22), the binding performance decreased or almost disappeared due to substitution with other amino acids. On the other hand, when BC30-73 was used as the BNC-recognizing antibody (FIG. 29), there was no change in binding performance when substituted with proline (P), but binding performance was improved when substituted with other amino acids.

(カ)6番目のアルギニン(R)を置換した場合
BNC認識抗体としてBC2−7を用いた場合(図16)、BC23−11を用いた場合(図23)、BC30−73を用いた場合(図30)、いずれにおいても他のアミノ酸への置換により結合性能が低下またはほぼ消失した。
(F) When the 6th arginine (R) is substituted When BC2-7 is used as a BNC-recognizing antibody (FIG. 16), when BC23-11 is used (FIG. 23), when BC30-73 is used ( 30), in any case, the binding performance was reduced or almost disappeared by substitution with another amino acid.

(キ)7番目のヒスチジン(H)を置換した場合
BNC認識抗体としてBC2−7を用いた場合(図17)、BC23−11を用いた場合(図24)、BC30−73を用いた場合(図31)、いずれにおいても他のアミノ酸への置換により結合性能が消失した。
(G) When the 7th histidine (H) is substituted When BC2-7 is used as a BNC-recognizing antibody (FIG. 17), when BC23-11 is used (FIG. 24), when BC30-73 is used ( In any of the cases shown in FIG. 31), binding performance disappeared due to substitution with other amino acids.

前記(ア)から(キ)の結果をまとめると、使用したBNC認識抗体により一部傾向が異なるものの、配列番号10に記載のアミノ酸配列からなるBNCのうち1番目のシステイン(C)、2番目のリジン(K)または3番目のバリン(V)を、アスパラギン酸(D)またはグルタミン酸(E)(すなわち酸性アミノ酸)に置換することで、BNCと比較し結合性能が向上していることがわかる。一方、配列番号10に記載のアミノ酸配列からなるBNCのうち6番目のアルギニン(R)または7番目のヒスチジン(H)は他のアミノ酸に置換すると結合性能が低下または消失することから、前記場所のアミノ酸置換は好ましくないことがわかる。   When the results of (a) to (ki) are summarized, the first cysteine (C), the second of the BNC consisting of the amino acid sequence shown in SEQ ID NO: 10, although the tendency is partially different depending on the BNC recognition antibody used. By substituting aspartic acid (D) or glutamic acid (E) (that is, acidic amino acid) for lysine (K) or the third valine (V), the binding performance is improved compared to BNC. . On the other hand, the 6th arginine (R) or the 7th histidine (H) in the BNC consisting of the amino acid sequence set forth in SEQ ID NO: 10 is reduced or lost when substituted with another amino acid. It turns out that amino acid substitution is not preferred.

実施例14 BNPのC末端側ペプチド(BNC)多重置換体の結合性能評価
実施例13での検討により、配列番号10に記載のアミノ酸配列からなるBNCのうち1番目のシステイン(C)、2番目のリジン(K)または3番目のバリン(V)を、アスパラギン酸(D)またはグルタミン酸(E)(すなわち酸性アミノ酸)に置換することで、結合性能(親和性)が向上することが判明した。そこで、配列番号10に記載のアミノ酸配列からなるBNCのうち1番目のシステイン(C)から3番目のバリン(V)を、全てアスパラギン酸(D)に置換したオリゴペプチド(DDDLRRH、配列番号21)を作製し、実施例10、実施例11および実施例13と同様の方法で結合性能を評価した。なお、BNC認識抗体はBC30−73を使用している。
Example 14 Evaluation of Binding Performance of BNP C-Terminal Peptide (BNC) Multiple Substituent According to the examination in Example 13, the first cysteine (C) and second of BNC comprising the amino acid sequence set forth in SEQ ID NO: 10 It was found that the binding performance (affinity) was improved by substituting lysine (K) or the third valine (V) of the lysine with aspartic acid (D) or glutamic acid (E) (that is, acidic amino acid). Therefore, an oligopeptide (DDDLRRH, SEQ ID NO: 21) in which the first cysteine (C) to the third valine (V) in BNC consisting of the amino acid sequence shown in SEQ ID NO: 10 are all replaced with aspartic acid (D). And the bonding performance was evaluated in the same manner as in Example 10, Example 11, and Example 13. BC30-73 is used as the BNC recognition antibody.

結果を図32に示す。また、対照として、1番目のシステイン(C)のみをアスパラギン酸(D)に置換したオリゴペプチド(DKVLRRH、配列番号22)での評価結果(図25のDのプロット)、2番目のリジン(K)のみをアスパラギン酸(D)に置換したオリゴペプチド(CDVLRRH、配列番号23)での評価結果(図26のDのプロット)、3番目のバリン(V)のみをアスパラギン酸(D)に置換したオリゴペプチド(CKDLRRH、配列番号24)での評価結果(図27のDのプロット)、をまとめたものを図33に示す。検量線(種々の濃度のBNCでの結果)との比較から、結合性能の向上が一置換BNCでは最大3倍程度(配列番号23のとき)であったが、配列番号21に示す三置換BNCでは4倍程度まで向上することが判明した。したがって、特定の好ましいアミノ酸置換をBNCに複数導入することで、結合性能がより向上することがわかる。   The results are shown in FIG. In addition, as a control, evaluation results with an oligopeptide (DKVLRH, SEQ ID NO: 22) in which only the first cysteine (C) is replaced with aspartic acid (D) (D plot in FIG. 25), second lysine (K ) Only in the oligopeptide (CDVLRRH, SEQ ID NO: 23) substituted with aspartic acid (D) (plot of D in FIG. 26), only the third valine (V) was substituted with aspartic acid (D). FIG. 33 shows a summary of the evaluation results (Plot of D in FIG. 27) of the oligopeptide (CKDLRRH, SEQ ID NO: 24). Compared with the calibration curve (results with various concentrations of BNC), the binding performance was improved up to about 3 times with mono-substituted BNC (when SEQ ID NO: 23), but the tri-substituted BNC shown in SEQ ID NO: 21 Then, it turned out that it improves to about 4 times. Therefore, it can be seen that by introducing a plurality of specific preferred amino acid substitutions into BNC, the binding performance is further improved.

実施例15 BNPのC末端側ペプチド(BNC)欠失体の結合性能評価
配列番号10記載のアミノ酸配列からなるBNCのうち、N末端側から1アミノ酸ずつ欠失させたものを調製し、前記オリゴペプチドの結合性能を評価した。
(1)実施例1および実施例2の方法に従い,マルトース結合タンパク(MBP)のC末端側にBNCのC末端から一個ずつアミノ酸を欠失させたオリゴペプチドを結合させた融合タンパク質を作製した。実際にMBPのC末端に結合させたペプチド配列は,KVLRRH(配列番号25)、VLRRH(配列番号26)およびLRRH(配列番号27)である。
(2)下記に示すELISA法で前記オリゴペプチドに対する反応性を評価した.
(2−1)精製タンパク質を0.1μg/ウエルから2倍希釈系列で固定化し、1%スキムミルクでブロッキングした。
(2−2)実施例12で得られたALP標識されたBNC認識抗体(BC2−7、BC30−73、BC30−62、BC23−11)を1000倍希釈して反応させ,固相に残ったALPの酵素活性を定法により測定した。
Example 15 Evaluation of Binding Performance of BNP C-Terminal Peptide (BNC) Deletion Form Among BNCs consisting of the amino acid sequence set forth in SEQ ID NO: 10, one having each amino acid deleted from the N-terminal side was prepared, and the oligo Peptide binding performance was evaluated.
(1) According to the method of Example 1 and Example 2, a fusion protein was produced in which an oligopeptide in which one amino acid was deleted from the C terminus of BNC was bound to the C terminus of maltose binding protein (MBP). The peptide sequences actually bound to the C-terminus of MBP are KVLRRH (SEQ ID NO: 25), VLRRH (SEQ ID NO: 26) and LRRH (SEQ ID NO: 27).
(2) The reactivity with respect to the said oligopeptide was evaluated by ELISA method shown below.
(2-1) The purified protein was immobilized in a 2-fold dilution series from 0.1 μg / well and blocked with 1% skim milk.
(2-2) The ALP-labeled BNC-recognizing antibodies (BC2-7, BC30-73, BC30-62, BC23-11) obtained in Example 12 were reacted 1000-fold and remained on the solid phase. The enzyme activity of ALP was measured by a conventional method.

結果を図34に示す。使用したBNC認識抗体によって傾向は異なるものの、アミノ酸の欠失により、BNC全長(7アミノ酸、配列番号10)と比較して、結合性能は低下している。しかしながら、N末端側3アミノ酸欠失させても一定の結合性能は残存していることがわかる。そのため、タグペプチドとしての使用目的にもよるが、配列番号10に記載のアミノ酸配列からなるBNCのうち、少なくともC末端側4アミノ酸(配列番号27)を含んでいれば(すなわち1番目のシステインから3番目のバリンまでのアミノ酸のうちの一つ以上を欠失させたオリゴペプチドであれば)、タグペプチドとして使用可能といえる。   The results are shown in FIG. Although the tendency varies depending on the BNC-recognizing antibody used, the binding performance is reduced as a result of amino acid deletion compared to the full length of BNC (7 amino acids, SEQ ID NO: 10). However, it can be seen that certain binding performance remains even if the amino acid at the N-terminal side is deleted. Therefore, depending on the purpose of use as a tag peptide, the BNC consisting of the amino acid sequence set forth in SEQ ID NO: 10 contains at least 4 amino acids on the C-terminal side (SEQ ID NO: 27) (ie, from the first cysteine). Any oligopeptide that lacks one or more of the amino acids up to the third valine) can be used as a tag peptide.

配列番号10に記載のアミノ酸配列からなるBNPのC末端側ペプチドをタンパク質に付加することで、タンパク質の高純度な精製および高感度な検出を可能とする。これは免疫測定試薬用のタンパク質の固定化および検出において極めて有効な方法である。なお、配列番号10に記載のアミノ酸配列からなるBNPのC末端側ペプチドのうち、
(A)1番目のシステインから3番目のバリンまでのアミノ酸のうちの一つ以上を酸性アミノ酸に置換したオリゴペプチド、または
(B)1番目のシステインから3番目のバリンまでのアミノ酸のうちの一つ以上を欠失させたオリゴペプチド、
であっても、前記高純度な精製および高感度な検出が可能である。
By adding a BNP C-terminal peptide consisting of the amino acid sequence shown in SEQ ID NO: 10 to a protein, it is possible to purify the protein with high purity and detect it with high sensitivity. This is an extremely effective method for immobilizing and detecting proteins for immunoassay reagents. Among the BNP C-terminal peptides of the amino acid sequence shown in SEQ ID NO: 10,
(A) an oligopeptide in which one or more amino acids from the first cysteine to the third valine are substituted with acidic amino acids, or (B) one of the amino acids from the first cysteine to the third valine Oligopeptides with one or more deletions,
Even so, the high-purity purification and high-sensitivity detection are possible.

Claims (7)

配列番号10に記載のアミノ酸配列からなる、タンパク質を精製・検出するのに有用なオリゴペプチド。 An oligopeptide comprising the amino acid sequence set forth in SEQ ID NO: 10 and useful for purifying and detecting a protein. 配列番号10に記載のアミノ酸配列からなるオリゴペプチドのうち、1番目のシステインから3番目のバリンまでのアミノ酸のうちの一つ以上を酸性アミノ酸に置換した、タンパク質を精製・検出するのに有用なオリゴペプチド。 Of the oligopeptide consisting of the amino acid sequence shown in SEQ ID NO: 10, one or more amino acids from the first cysteine to the third valine are substituted with acidic amino acids, which is useful for purifying and detecting proteins. Oligopeptide. 配列番号10に記載のアミノ酸配列からなるオリゴペプチドのうち、1番目のシステインから3番目のバリンまでのアミノ酸のうちの一つ以上を欠失させた、タンパク質を精製・検出するのに有用なオリゴペプチド。 Oligopeptide useful for purifying and detecting proteins, wherein one or more amino acids from the first cysteine to the third valine are deleted from the oligopeptide consisting of the amino acid sequence set forth in SEQ ID NO: 10 peptide. 請求項1から3に記載のオリゴペプチドを付加したタンパク質と、前記ペプチドを認識する物質とを用いた、タンパク質の精製・検出方法。 A method for purifying and detecting a protein using the protein to which the oligopeptide according to claim 1 is added and a substance that recognizes the peptide. 前記タンパク質がC末端側に請求項1から3のいずれかに記載のオリゴペプチドを付加したタンパク質であり、前記ペプチドを認識する物質が前記ペプチドを認識する抗体である、請求項4に記載の精製・検出方法。 The purification according to claim 4, wherein the protein is a protein obtained by adding the oligopeptide according to any one of claims 1 to 3 to the C-terminal side, and the substance that recognizes the peptide is an antibody that recognizes the peptide. -Detection method. 前記タンパク質が、請求項1から3のいずれかに記載のオリゴペプチドを遺伝子工学的に付加することで得られたタンパク質である、請求項4または5に記載の精製・検出方法。 The purification / detection method according to claim 4 or 5, wherein the protein is a protein obtained by genetically adding the oligopeptide according to any one of claims 1 to 3. 前記タンパク質が、請求項1から3のいずれかに記載のオリゴペプチドを化学的に付加することで得られたタンパク質である、請求項4または5に記載の精製・検出方法。 The purification / detection method according to claim 4 or 5, wherein the protein is a protein obtained by chemically adding the oligopeptide according to any one of claims 1 to 3.
JP2010259424A 2009-12-07 2010-11-19 Tag peptide Active JP5810514B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010259424A JP5810514B2 (en) 2009-12-07 2010-11-19 Tag peptide
PCT/JP2010/071846 WO2011071021A1 (en) 2009-12-07 2010-12-06 Tag peptide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009277382 2009-12-07
JP2009277382 2009-12-07
JP2010259424A JP5810514B2 (en) 2009-12-07 2010-11-19 Tag peptide

Publications (2)

Publication Number Publication Date
JP2011140483A true JP2011140483A (en) 2011-07-21
JP5810514B2 JP5810514B2 (en) 2015-11-11

Family

ID=44145566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010259424A Active JP5810514B2 (en) 2009-12-07 2010-11-19 Tag peptide

Country Status (2)

Country Link
JP (1) JP5810514B2 (en)
WO (1) WO2011071021A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140331A (en) * 2010-12-28 2012-07-26 Tosoh Corp Tag peptide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184384A (en) * 1991-11-14 1993-07-27 Shionogi & Co Ltd Monoclonal antibody to recognize c end of hbnp
WO1997032900A1 (en) * 1996-03-04 1997-09-12 Scios Inc. ASSAY AND REAGENTS FOR QUANTIFYING hBNP
JP2009240300A (en) * 2008-03-14 2009-10-22 Tosoh Corp Method of producing genetically engineered antibody

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184384A (en) * 1991-11-14 1993-07-27 Shionogi & Co Ltd Monoclonal antibody to recognize c end of hbnp
WO1997032900A1 (en) * 1996-03-04 1997-09-12 Scios Inc. ASSAY AND REAGENTS FOR QUANTIFYING hBNP
JP2009240300A (en) * 2008-03-14 2009-10-22 Tosoh Corp Method of producing genetically engineered antibody

Also Published As

Publication number Publication date
JP5810514B2 (en) 2015-11-11
WO2011071021A1 (en) 2011-06-16

Similar Documents

Publication Publication Date Title
JP7022969B2 (en) Methods and Reagents for Diagnosing SARS-CoV-2 Infections
Bottino et al. Chagas disease-specific antigens: characterization of epitopes in CRA/FRA by synthetic peptide mapping and evaluation by ELISA-peptide assay
TR201806292T4 (en) IMMUNOLOGICAL TEST FOR DETERMINATION OF PROCALCITONIN
JP6889780B2 (en) Antibodies that recognize gene variants
EP2488872B1 (en) Methods for prrsv detection
EP3027652A1 (en) Anti-pla2r antibody and uses thereof
JP5252339B2 (en) Method for measuring PAD4 and anti-PAD4 antibody and method for detecting rheumatoid arthritis
EP3649145B1 (en) Improved rep protein for use in a diagnostic assay
Díaz-Perlas et al. High-affinity peptides developed against calprotectin and their application as synthetic ligands in diagnostic assays
JP5810514B2 (en) Tag peptide
EP2572197A1 (en) Method and composition for the diagnosis and monitoring of inflammatory diseases
JP7127422B2 (en) Method and detection reagent for detecting cancer
JP6122779B2 (en) Method for measuring anti-WT1 antibody
JP2012140331A (en) Tag peptide
JP5093087B2 (en) Method for enhancing immune response with polyethylene glycol and urea
Feng et al. A novel affinity ligand for polystyrene surface from a phage display random library and its application in anti-HIV-1 ELISA system
JP2011122957A (en) Method of detecting protein with high specificity and high sensitivity
WO2019167128A1 (en) Sandwich immunoassay
JP4961577B2 (en) Epitope polypeptide for diagnosing allergies
US20200181207A1 (en) Analytical and therapeutic methods and compositions, and uses thereof
WO2010123083A1 (en) Polypeptide derived from mouse hepatitis virus and/or polypeptide derived from sendai virus, test kit for infection by mouse hepatitis virus and/or sendai virus using the polypeptide, and method for detecting infection by mouse hepatitis virus and/or sendai virus
Lotufo et al. Recombinant foot-and-mouth disease virus (FMDV) non-structural protein 3A fused to enhanced green fluorescent protein (EGFP) as a candidate probe to identify FMDV-infected cattle in serosurveys
JP6099393B2 (en) Autotaxin isoform-specific antibody and detection method
JP6244644B2 (en) Pancreatic cancer detection method and detection kit
WO2023190560A1 (en) Method, composition, and kit for detecting human b-type natriuretic peptide, or precursor or degradation product of same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150831

R151 Written notification of patent or utility model registration

Ref document number: 5810514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151