JP2011140427A - Method for producing multiple oxide powder - Google Patents

Method for producing multiple oxide powder Download PDF

Info

Publication number
JP2011140427A
JP2011140427A JP2010002939A JP2010002939A JP2011140427A JP 2011140427 A JP2011140427 A JP 2011140427A JP 2010002939 A JP2010002939 A JP 2010002939A JP 2010002939 A JP2010002939 A JP 2010002939A JP 2011140427 A JP2011140427 A JP 2011140427A
Authority
JP
Japan
Prior art keywords
composite oxide
site
oxide
occupying
crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010002939A
Other languages
Japanese (ja)
Other versions
JP5462639B2 (en
Inventor
Osami Abe
修実 阿部
Yoshisumi Sakane
嘉純 阪根
Jun Aida
淳 会田
Chiaki Mitate
千秋 御立
Chie Yamada
智恵 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokko Chemical Industry Co Ltd
Ibaraki University NUC
Original Assignee
Hokko Chemical Industry Co Ltd
Ibaraki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokko Chemical Industry Co Ltd, Ibaraki University NUC filed Critical Hokko Chemical Industry Co Ltd
Priority to JP2010002939A priority Critical patent/JP5462639B2/en
Publication of JP2011140427A publication Critical patent/JP2011140427A/en
Application granted granted Critical
Publication of JP5462639B2 publication Critical patent/JP5462639B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively and efficiently produce a multiple oxide expressed by a general formula; A<SB>1-X</SB>B<SB>X</SB>MO<SB>3+δ</SB>(in the formula, A is occupied by at least one kind of an element selected from rare earth elements; B is occupied by at least one kind of an element from calcium, strontium and barium; and M is occupied by at least one kind of an element from manganese and vanadium; 0≤x≤1.0; -0.5≤δ≤0.5). <P>SOLUTION: The method for producing multiple oxide includes a process of obtaining a precursor of the multiple oxide or directly crystalline multiple oxide by mixing and pulverizing a raw material using at least one kind of oxide, hydroxide and oxyhydroxide of the element occupying A site, at least one kind of oxide, hydroxide of the element occupying B site and at least one kind of oxide, hydroxide and oxyhydroxide of the element occupying M site as components, under an organic compound vapor atmosphere. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、磁気材料、触媒材料、電極材料として有用なA1-xxMO3+δ型複合酸化物(式中、Aは希土類元素から選ばれる少なくとも1種の元素で占められ、Bはカルシウム、ストロンチウム、バリウムのうち少なくとも1種の元素で占められ、Mはマンガン、バナジウムのうち少なくとも1種の元素で占められ、0≦x≦1.0、−0.5≦δ≦0.5)の製造方法に関する。 The present invention relates to an A 1-x B x MO 3+ δ-type composite oxide useful as a magnetic material, a catalyst material, and an electrode material (wherein A is occupied by at least one element selected from rare earth elements, B Is occupied by at least one element of calcium, strontium and barium, M is occupied by at least one element of manganese and vanadium, and 0 ≦ x ≦ 1.0, −0.5 ≦ δ ≦ 0. It relates to the manufacturing method of 5).

従来ペロブスカイト型構造を有するA1-xxMO3+δ型複合酸化物(式中、Aは希土類元素から選ばれる少なくとも1種の元素で占められ、Bはカルシウム、ストロンチウム、バリウムのうち少なくとも1種の元素で占められ、Mはマンガン、バナジウムのうち少なくとも1種の元素で占められ、0≦x≦1.0、−0.5≦δ≦0.5)の製造方法としては、各サイトを占める元素の酸化物、炭酸塩等からなる原料を混合粉砕し、高温加熱により反応させる「固相法」が知られていた。しかし、長時間にわたる高温(1000℃以上)での加熱処理が必要とされる固相法では、ペロブスカイト型複合酸化物の比表面積が低下し、また、得られるペロブスカイト型複合酸化物にペロブスカイト相以外の不純物相や未反応物が多く残存するなどの問題があった。このような従来技術に対し、近年では、以下のような製造方法が提案されている。 Conventionally, A 1-x B x MO 3+ δ-type composite oxide having a perovskite structure (wherein A is occupied by at least one element selected from rare earth elements, and B is at least one of calcium, strontium, and barium) It is occupied by one element, M is occupied by at least one element of manganese and vanadium, and 0 ≦ x ≦ 1.0, −0.5 ≦ δ ≦ 0.5) There has been known a “solid phase method” in which raw materials composed of oxides and carbonates of elements occupying sites are mixed and pulverized and reacted by heating at high temperature. However, in the solid phase method that requires heat treatment at a high temperature (1000 ° C. or higher) for a long time, the specific surface area of the perovskite-type composite oxide is reduced, and the obtained perovskite-type composite oxide includes other than the perovskite phase. There was a problem that many impurity phases and unreacted substances remained. In contrast to such conventional techniques, in recent years, the following manufacturing methods have been proposed.

各成分の酸化物、水酸化物、酸化水酸化物および金属単体の少なくとも1種を水系溶媒中で湿式混合粉砕処理し、ろ過などにより固液を分離することにより、均一な複合酸化物前駆体を調製し、500℃〜1300℃で熱処理することにより結晶性ペロブスカイト構造化合物を得るメカノケミカル法(特許文献1,2);
La2(CO3)3・8H2Oと、MnO2あるいはV23と、融剤成分(炭酸リチウムと炭酸ナトリウムの融解混合物)を、均一に混合した後、二酸化炭素雰囲気中で約650℃で48時間加熱保持した後、濃塩酸により洗浄して、炭酸塩および未反応物を除去することによりペロブスカイト構造を有する結晶性LaMnO3あるいはLaVO3を得る溶融炭酸塩法(特許文献3);
La(NO3)3とNH4VO3の混合水溶液にクエン酸を加え、蒸発乾固、600℃で熱分解後、空気中で2時間熱処理して得られたLaVO4を更に還元雰囲気中で1160℃で12時間熱処理してペロブスカイト構造を有する結晶性LaVO3を得る複合クエン酸塩の熱分解法(非特許文献1)。
Uniform composite oxide precursor by wet mixing and pulverizing at least one of oxides, hydroxides, oxide hydroxides and simple metals of each component in an aqueous solvent and separating the solid and liquid by filtration or the like A mechanochemical method for obtaining a crystalline perovskite structure compound by heat treatment at 500 ° C. to 1300 ° C. (Patent Documents 1 and 2);
La 2 (CO 3 ) 3 · 8H 2 O, MnO 2 or V 2 O 3 and a flux component (a molten mixture of lithium carbonate and sodium carbonate) are uniformly mixed, and then about 650 in a carbon dioxide atmosphere. The molten carbonate method (Patent Document 3) in which crystalline LaMnO 3 or LaVO 3 having a perovskite structure is obtained by heating and holding at 0 ° C. for 48 hours and then washing with concentrated hydrochloric acid to remove carbonate and unreacted substances (Patent Document 3);
Add citric acid to a mixed aqueous solution of La (NO 3 ) 3 and NH 4 VO 3 , evaporate to dryness, pyrolyze at 600 ° C., and then heat-treat in air for 2 hours to further reduce LaVO 4 in a reducing atmosphere. A thermal decomposition method of a complex citrate obtained by heat treatment at 1160 ° C. for 12 hours to obtain crystalline LaVO 3 having a perovskite structure (Non-patent Document 1).

さらに前記のような方法以外にも、一般的な方法として共沈法、ゾル・ゲル法、アルコキシド法、水熱合成法などの、均一で不純物相を含まない高比表面積な複合酸化物を得る方法が挙げられる。しかしながら、これらいずれの方法においても、均一な粉末を合成するために高温の加熱処理が必要であったり、副生物などを除去する工程が必要であったり、原料が高価であったりするなど、製造コストからみて工業的に不利な面がある。   Further, in addition to the above methods, as a general method, a complex oxide having a high specific surface area that does not contain an impurity phase, such as a coprecipitation method, a sol-gel method, an alkoxide method, or a hydrothermal synthesis method, is obtained. A method is mentioned. However, in any of these methods, a high-temperature heat treatment is necessary to synthesize a uniform powder, a step of removing by-products, etc. is required, and raw materials are expensive. There is an industrial disadvantage in terms of cost.

特開2008−7394号公報JP 2008-7394 A 特開2009−209029号公報JP 2009-209029 A 特開2004−269327号公報JP 2004-269327 A

Inorg.Chem.,47(7),2634Inorg. Chem. 47 (7), 2634

本発明は、A1-xxMO3+δ複合酸化物の前駆体または直接結晶性A1-xxMO3+δ複合酸化物を得ることを特徴とする安価で効率的な製造方法を提供することを目的とする。 The present invention, efficient production at low cost, wherein the obtaining the A 1-x B x MO 3+ δ complex oxide precursor or directly crystalline A 1-x B x MO 3+ δ complex oxide It aims to provide a method.

本発明者らは、かかる問題点を解決すべく鋭意検討を進めた結果、Aサイトを占める元素の酸化物、水酸化物、酸化水酸化物のうちの少なくとも1種と、Bサイトを占める元素の酸化物、水酸化物のうちの少なくとも1種と、Mサイトを占める元素の酸化物、水酸化物、酸化水酸化物のうちの少なくとも1種とを成分とする原料を、有機化合物蒸気中で混合粉砕処理することにより、水と炭酸ガス以外の副生物を生成せずに、しかも固液を分離する工程を省略することが可能であることから、安価で効率的に、A1-xxMO3+δ型複合酸化物の前駆体あるいは直接結晶性複合酸化物が製造できることを見出し、本発明を完成させるに至った。 As a result of diligent studies to solve such problems, the present inventors have found that at least one of oxides, hydroxides and oxide hydroxides of elements occupying the A site and elements occupying the B site. A raw material containing at least one of oxides and hydroxides of the above and at least one of oxides, hydroxides and oxide hydroxides of elements occupying M sites in an organic compound vapor by mixing and pulverizing treatment in, without generating by-products other than water and carbon dioxide from it, yet it is possible to omit the step of separating the solid-liquid, efficiently at a low cost, a 1-x The inventors have found that a precursor of a B x MO 3+ δ-type composite oxide or a direct crystalline composite oxide can be produced, and the present invention has been completed.

本発明の製造方法は、Aサイトを占める元素がY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb、Luのうちの少なくとも1種の元素である複合酸化物を対象とする場合、特に、Aサイトを占める元素がLaであり、Bサイトを占める元素がストロンチウムであり、かつMサイトを占める元素がマンガン、バナジウムのうちの少なくとも1種である複合酸化物を対象とする場合に好適である。   In the production method of the present invention, the element occupying the A site is at least one element of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and Lu. When a composite oxide is targeted, in particular, a composite in which the element occupying the A site is La, the element occupying the B site is strontium, and the element occupying the M site is at least one of manganese and vanadium. This is suitable when an oxide is a target.

さらに、得られた前駆体あるいは結晶性複合酸化物は使用用途に応じた適切な温度で熱処理することが好ましい。   Furthermore, the obtained precursor or crystalline composite oxide is preferably heat-treated at an appropriate temperature according to the intended use.

本発明の製造方法に用いられる有機化合物蒸気雰囲気中での混合粉砕処理は、特殊な機材や高価な原料を必要とせずに行うことができ、また炭酸ガスと水以外の副生物は発生しないため副生物の除去工程が不要である。しかも固液を分離する工程を省略することも可能である。このような混合粉砕処理により得られる複合酸化物の前駆体あるいは結晶性複合酸化物は均一であり、比較的低温で1回熱処理あるいは熱処理することなく、各種用途における性能の劣化を招く不純物が混在しない高品質のA1-xxMO3+δ型複合酸化物を、安価で効率的に製造することができる。また得られる複合酸化物の前駆体あるいは結晶性複合酸化物は均一であり、高比表面積であるため、他の化合物への添加用としても好適に使用することができる。さらに同様な理由で得られる複合酸化物の前駆体あるいは結晶性複合酸化物に添加剤成分を好適に導入することができる。 The mixing and pulverization treatment in the organic compound vapor atmosphere used in the production method of the present invention can be performed without the need for special equipment and expensive raw materials, and no by-products other than carbon dioxide and water are not generated. A by-product removal step is not required. Moreover, it is possible to omit the step of separating the solid and liquid. The precursor or crystalline composite oxide of the composite oxide obtained by such a mixed pulverization process is uniform and contains impurities that cause performance deterioration in various applications without being heat-treated or heat-treated once at a relatively low temperature. A high quality A 1-x B x MO 3+ δ-type composite oxide can be produced efficiently at low cost. In addition, since the obtained composite oxide precursor or crystalline composite oxide is uniform and has a high specific surface area, it can be suitably used for addition to other compounds. Furthermore, an additive component can be suitably introduced into the composite oxide precursor or crystalline composite oxide obtained for the same reason.

実施例1で得られたLaMnO3+δの結晶性複合酸化物の加熱変化によるX線回折図形。2 is an X-ray diffraction pattern of the LaMnO 3+ δ crystalline composite oxide obtained in Example 1 due to heating changes. 実施例2で得られたLaMnO3+δの結晶性複合酸化物の加熱変化によるX線回折図形。FIG. 4 is an X-ray diffraction pattern of the LaMnO 3+ δ crystalline composite oxide obtained in Example 2 by heating. 実施例3で得られたSrMnO3の非晶質水和前駆体の加熱変化によるX線回折図形。The X-ray diffraction pattern by the heating change of the amorphous hydration precursor of SrMnO 3 obtained in Example 3. 実施例4で得られたLa0.5Sr0.5MnO3+δの結晶性複合酸化物の加熱変化によるX線回折図形。X-ray diffraction pattern by heating the change of the resulting La 0.5 Sr 0.5 MnO 3+ δ crystalline composite oxide in Example 4. 実施例5で得られたLaVO3の非晶質水和前駆体の加熱変化によるX線回折図形。X-ray diffraction pattern by heating changes the amorphous hydrated precursor LaVO 3 obtained in Example 5.

以下、本発明の製造方法に用いられる原料や、有機化合物蒸気雰囲気中での混合粉砕処理および熱処理の方法・条件等について詳細に説明する。   Hereinafter, the raw materials used in the production method of the present invention, the mixing pulverization treatment in an organic compound vapor atmosphere, the heat treatment methods and conditions, and the like will be described in detail.

1-x x MO 3+ δ型複合酸化物
本発明の対象となる複合酸化物は、一般式A1-xxMO3+δで表される。式中、Aは希土類元素から選ばれる少なくとも1種の元素で占められ、Bはカルシウム、ストロンチウム、バリウムのうちの少なくとも1種の元素で占められ、Mはマンガン、バナジウムのうちの少なくとも1種の元素で占められる。xは0≦x≦1.0を満たす数である。また、δは組成(Bサイトの添加量、Mの価数変化等)や熱処理の条件(温度、雰囲気等)により変化する酸素量過剰量ないし酸素欠損量を表し、一般的には−0.5≦δ≦0.5を満たす数である。
A 1-x B x MO 3+ δ Type Composite Oxide A composite oxide which is an object of the present invention is represented by the general formula A 1-x B x MO 3+ δ. In the formula, A is occupied by at least one element selected from rare earth elements, B is occupied by at least one element selected from calcium, strontium, and barium, and M is at least one element selected from manganese and vanadium. Occupied with elements. x is a number satisfying 0 ≦ x ≦ 1.0. Further, δ represents an excess amount of oxygen or an oxygen deficiency that varies depending on the composition (B site addition amount, M valence change, etc.) and heat treatment conditions (temperature, atmosphere, etc.). It is a number that satisfies 5 ≦ δ ≦ 0.5.

本発明の製造方法は、Aサイトを占める元素がY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb、Luのうちの少なくとも1種の元素であるもの、特に、Aサイトを占める元素がLaであり、Bサイトを占める元素がストロンチウムであり、かつMサイトを占める元素がマンガンおよび/またはバナジウムであるものなど、工業的に有用な複合酸化物を対象とする場合に好適である。   In the production method of the present invention, the element occupying the A site is at least one element of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and Lu. In particular, industrially useful composite oxides such as those in which the element occupying the A site is La, the element occupying the B site is strontium, and the element occupying the M site is manganese and / or vanadium. It is suitable for the target.

なお、A1-xxMO3+δ型複合酸化物のAサイト、BサイトおよびMサイトは、有機化合物蒸気雰囲気中での混合粉砕処理工程、熱処理前の前駆体および結晶性複合酸化物に、上述した元素以外の元素を添加、置換固溶することもできる。また本発明の製造方法の適用対象は「AサイトおよびBサイトに含まれる上述の元素」と「Mサイトに含まれる上述の元素」のモル比[(A+B)/M]が1であるA1-xxMO3+δ型複合酸化物のみに限定されるものではない。 The A site, B site, and M site of the A 1-x B x MO 3+ δ-type composite oxide are mixed and pulverized in an organic compound vapor atmosphere, a precursor before heat treatment, and a crystalline composite oxide. In addition, an element other than the elements described above can be added and substituted for solid solution. Further, the manufacturing method of the present invention is applied to A 1 in which the molar ratio [(A + B) / M] of “the above-mentioned element contained in the A site and B site” and “the above-mentioned element contained in the M site” is 1. It is not limited only to -x B x MO 3+ δ type complex oxide.

原料
Aサイトを占める希土類元素[Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb、Lu]の原料成分としては、これら希土類元素の酸化物[A23、AO2等]、水酸化物[A(OH)3、A(OH)4等]、酸化水酸化物[AO(OH)等]が挙げられる。なお、上記化合物には、結晶水を含有するもの[A23・nH2O、AO2・nH2O、A(OH)3・nH2O、A(OH)4・nH2O等、nは正の数]、不定比な酸化物の水和物[A23・XH2O、AO2・XH2O等、Xは任意の正の数]が存在するが、結晶水を含まないものおよび水和物でないものが望ましく、さらに、水酸化物、酸化水酸化物よりも酸化物が望ましいが、上記化合物は酸化物に限定されるものではない。これらの物質は結晶質、非晶質のどちらであっても構わない。上記のAサイトを占める希土類元素の原料成分は、いずれか1種を単独で用いても、2種以上を組合わせて用いてもよい。
As raw material components of rare earth elements occupying the raw material A site [Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu], oxides of these rare earth elements [A 2 O 3 , AO 2 etc.], hydroxides [A (OH) 3 , A (OH) 4 etc.], oxide hydroxides [AO (OH) etc.]. In addition, the above compounds include those containing crystal water [A 2 O 3 · nH 2 O, AO 2 · nH 2 O, A (OH) 3 · nH 2 O, A (OH) 4 · nH 2 O, etc. , N is a positive number], non-stoichiometric oxide hydrates [A 2 O 3 .XH 2 O, AO 2 .XH 2 O, etc., X is an arbitrary positive number] Those not containing hydrate and those not containing hydrates are desirable, and oxides are more desirable than hydroxides and oxide hydroxides, but the above compounds are not limited to oxides. These substances may be crystalline or amorphous. Any one of the rare earth element occupying the A site may be used alone, or two or more may be used in combination.

Bサイトを占める元素[カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)]の原料成分としては、これらの元素の酸化物[BO等]、水酸化物[B(OH)2等]が挙げられる。なお、上記化合物には結晶水を含有したもの[BO・nH2O、B(OH)2・nH2O等、nは正の数]、不定比な酸化物の水和物[BO・XH2O等、Xは任意の正の数]が存在するが、結晶水を含まないものおよび水和物でないものが望ましく、さらに、水酸化物、酸化水酸化物よりも酸化物が望ましいが、上記化合物は酸化物に限定されるものではない。これらの物質は結晶質、非晶質のどちらであっても構わない。上記のAサイトを占める希土類元素の原料成分は、いずれか1種を単独で用いても、2種以上を組合わせて用いてもよい。 As raw material components of elements occupying the B site [calcium (Ca), strontium (Sr), barium (Ba)], oxides of these elements [BO etc.], hydroxides [B (OH) 2 etc.] Can be mentioned. The above compound contains water of crystallization [BO.nH 2 O, B (OH) 2 .nH 2 O, etc., n is a positive number], non-stoichiometric oxide hydrate [BO · XH 2 O and the like, and X is an arbitrary positive number], but those not containing water of crystallization and those not hydrated are desirable, and oxides are more desirable than hydroxides and oxide hydroxides. The above compounds are not limited to oxides. These substances may be crystalline or amorphous. Any one of the rare earth element occupying the A site may be used alone, or two or more may be used in combination.

Mサイトを占める元素[マンガン(Mn)、バナジウム(V)]の原料成分としては、これらの元素の酸化物[M23、M34、MO2、M25等]、水酸化物[M(OH)3、M(OH)4、M(OH)5等]、酸化水酸化物[MO(OH)、MO2(OH)、MO(OH)2等]が挙げられる。なお、上記化合物には結晶水を含有したもの[M23・nH2O、M34・nH2O、MO2・nH2O、M(OH)3・nH2O、M(OH)4・nH2O、M(OH)5・nH2O等、nは正の数]、不定比な酸化物の水和物[M23・XH2O、M34・XH2O、MO2・XH2O、M25・XH2O等、Xは任意の正の数]が存在するが、結晶水を含まないものおよび水和物でないものが望ましく、さらに、水酸化物、酸化水酸化物よりも酸化物が望ましいが、上記化合物は酸化物に限定されるものではない。これらの物質は結晶質、非晶質のどちらであっても構わない。上記のMサイトを占める元素の原料成分は、いずれか1種を単独で用いても、2種以上を組合わせて用いてもよい。 As raw material components of elements occupying M sites [manganese (Mn), vanadium (V)], oxides of these elements [M 2 O 3 , M 3 O 4 , MO 2 , M 2 O 5 etc.], water Oxides [M (OH) 3 , M (OH) 4 , M (OH) 5 etc.], oxide hydroxides [MO (OH), MO 2 (OH), MO (OH) 2 etc.] can be mentioned. The above compound contains crystal water [M 2 O 3 · nH 2 O, M 3 O 4 · nH 2 O, MO 2 · nH 2 O, M (OH) 3 · nH 2 O, M ( OH) 4 · nH 2 O, M (OH) 5 · nH 2 O, etc., n is a positive number], non-stoichiometric oxide hydrate [M 2 O 3 · XH 2 O, M 3 O 4 · XH 2 O, MO 2 .XH 2 O, M 2 O 5 .XH 2 O, etc., where X is an arbitrary positive number], but those not containing water of crystallization and those not hydrated are desirable, An oxide is more preferable than a hydroxide or an oxide hydroxide, but the above compounds are not limited to oxides. These substances may be crystalline or amorphous. Any one of the raw material components of the element occupying the M site may be used alone, or two or more may be used in combination.

以上のような原料となる物質の粒径は、100μm以下が好ましく、50μm以下がより好ましく、10μm以下が更に好ましい。
また、原料の各成分の配合量は、Aサイト、BサイトおよびMサイトを占める各元素の原料中の量比が、目的とする複合酸化物における量比と同じとなるようにすればよい。
The particle size of the material used as the raw material is preferably 100 μm or less, more preferably 50 μm or less, and still more preferably 10 μm or less.
Moreover, the compounding quantity of each component of a raw material should just make the quantitative ratio in the raw material of each element which occupies A site, B site, and M site the same as the quantitative ratio in the target complex oxide.

有機化合物蒸気雰囲気中での混合粉砕処理工程
本発明における原料の混合粉砕処理は、有機化合物蒸気(気体)雰囲気中で、一般的には混合粉砕機を用いて行われる。本発明における有機化合物蒸気(気体)は、原料と共に粉砕容器内に入れられる。通常の場合には粉砕容器内の温度は粉砕媒体などの摩擦熱により、20℃(室温)〜80℃程度である。冷却装置を備えた混合粉砕機であれば、粉砕容器内の温度は20℃(室温)〜マイナス数十℃、加熱気体を導入できる混合粉砕機であれば、粉砕容器内の温度は100℃以上にすることも可能である。粉砕容器内で蒸気(気体)となり、原料との反応を促進する有機化合物であれば特に限定されることなく用いることができる。これらの温度範囲で蒸気(気体)化できる有機化合物には、炭化水素ガス、低沸点のケトン類やアルコール類などがあり、例えば以下のような有機化合物が挙げられる。
炭化水素ガス:メタンガス(沸点;−161.5℃)、エタンガス(沸点;−89.0℃)、
プロパンガス(沸点;−42.7℃)、ブタンガス(沸点;−0.5℃)など
ケトン類:アセトン(沸点;56.1℃)、メチルエチルメトン(沸点;79.6℃)、
ジエチルケトン(沸点;101.5℃)など
アルコール類:メタノール(沸点;64.5℃)、エタノール(沸点;78.3℃)、
1−プロパノール(沸点;97.2℃)、1−ブタノール(沸点;117.
7℃)など
アルデヒド類:ホルムアルデヒド(沸点;−19.3℃)、アセトアルデヒド(沸点;20
.2℃)など
Process of mixing and pulverizing in organic compound vapor atmosphere The mixing and pulverizing process of raw materials in the present invention is generally carried out in an organic compound vapor (gas) atmosphere using a mixing and pulverizing machine. The organic compound vapor (gas) in the present invention is put in a pulverization container together with raw materials. In a normal case, the temperature in the grinding container is about 20 ° C. (room temperature) to about 80 ° C. due to frictional heat of the grinding media and the like. If the mixing pulverizer is equipped with a cooling device, the temperature in the pulverization container is 20 ° C. (room temperature) to minus several tens of degrees C. If the mixing pulverizer is capable of introducing heated gas, the temperature in the pulverization container is 100 ° C. or higher. It is also possible to make it. Any organic compound that becomes vapor (gas) in the pulverization vessel and promotes the reaction with the raw material can be used without particular limitation. Examples of organic compounds that can be vaporized in these temperature ranges include hydrocarbon gases, low-boiling ketones and alcohols, and examples thereof include the following organic compounds.
Hydrocarbon gas: methane gas (boiling point: -161.5 ° C), ethane gas (boiling point: -89.0 ° C),
Propane gas (boiling point: −42.7 ° C.), butane gas (boiling point: −0.5 ° C.), etc. Ketones: acetone (boiling point: 56.1 ° C.), methyl ethyl methone (boiling point: 79.6 ° C.),
Diethyl ketone (boiling point: 101.5 ° C), etc. Alcohols: methanol (boiling point: 64.5 ° C), ethanol (boiling point: 78.3 ° C),
1-propanol (boiling point; 97.2 ° C.), 1-butanol (boiling point; 117.
Aldehydes: formaldehyde (boiling point; -19.3 ° C), acetaldehyde (boiling point; 20
.2 ℃)

これらの有機化合物は、いずれか1種類を単独で用いても、2種類以上を組合わせて用いてもよい。また、反応に無関係なN2、He、Arなどの不活性なガスで希釈して用いてもよい。容器内温度が有機化合物の沸点より低くても、容器内温度における有機化合物の飽和蒸気量が例えばMnO2とV25を原料に使用する場合を例にとると、以下に示すような還元反応に充分な量以上であれば問題はない。また粉砕容器内の有機化合物蒸気が飽和蒸気圧以下であっても粉砕容器内に供給される有機化合物蒸気量が、例えば以下に示すような原料の還元反応に充分な量以上であれば問題はない。さらに粉砕処理後の熱処理工程を不活性雰囲気あるいは還元雰囲気で行なう場合には、例えば原料のMnO2あるいはV25がMn23あるいはV23に完全に還元されていなくても構わない場合がある。この場合、粉砕容器内に供給される有機化合物の蒸気量は、以下に示す還元反応の理論量の1/2量程度であってもよい。すなわち混合粉砕処理物の所望する結晶性により適宜有機化合物蒸気の供給量を微調整してもよい。
有機化合物蒸気が例えばアセトンの場合:
CH3COCH3 + 16MnO2 → 3CO2 + 3H2O +8Mn23
CH3COCH3 + 4V25 → 3CO2 + 3H2O +4V23
有機化合物蒸気が例えばエタノールの場合:
CH3CH2OH + 12MnO2 → 2CO2 + 3H2O +6Mn23
CH3CH2OH + 3V25 → 2CO2 + 3H2O +3V23
Any one of these organic compounds may be used alone, or two or more thereof may be used in combination. Further, it may be used by diluting with an inert gas such as N 2 , He, or Ar which is not related to the reaction. Even when the container temperature is lower than the boiling point of the organic compound, the saturated vapor amount of the organic compound at the container temperature is, for example, the case where MnO 2 and V 2 O 5 are used as raw materials. There is no problem if the amount is sufficient for the reaction. Further, even if the organic compound vapor in the pulverization vessel is equal to or lower than the saturated vapor pressure, the amount of the organic compound vapor supplied into the pulverization vessel is, for example, more than an amount sufficient for the raw material reduction reaction as shown below. Absent. Further, when the heat treatment step after the pulverization is performed in an inert atmosphere or a reducing atmosphere, for example, the raw material MnO 2 or V 2 O 5 may not be completely reduced to Mn 2 O 3 or V 2 O 3. There may not be. In this case, the vapor amount of the organic compound supplied into the pulverization vessel may be about 1/2 of the theoretical amount of the reduction reaction shown below. That is, the supply amount of the organic compound vapor may be finely adjusted as appropriate depending on the desired crystallinity of the mixed pulverized product.
For example, when the organic compound vapor is acetone:
CH 3 COCH 3 + 16MnO 2 → 3CO 2 + 3H 2 O + 8Mn 2 O 3
CH 3 COCH 3 + 4V 2 O 5 → 3CO 2 + 3H 2 O + 4V 2 O 3
For example, when the organic compound vapor is ethanol:
CH 3 CH 2 OH + 12MnO 2 → 2CO 2 + 3H 2 O + 6Mn 2 O 3
CH 3 CH 2 OH + 3V 2 O 5 → 2CO 2 + 3H 2 O + 3V 2 O 3

反応に充分な量の有機化合物蒸気(気体)が粉砕容器内に供給されればよいが、沸点が通常の粉砕容器内の温度である20℃(室温)〜80℃程度以下である有機化合物が好適に使用できる。さらに粉砕容器内で有機化合物はすべて蒸気(気体)になることが望ましいが、少量であれば一部液体として残存していても構わない。   A sufficient amount of organic compound vapor (gas) for the reaction may be supplied into the pulverization vessel, but an organic compound having a boiling point of about 20 ° C. (room temperature) to about 80 ° C., which is the temperature in the normal pulverization vessel. It can be used suitably. Further, it is desirable that all organic compounds are vapor (gas) in the pulverization vessel, but a part of them may remain as a liquid as long as the amount is small.

また有機化合物蒸気はあらかじめ蒸気として調製して混合粉砕処理の開始前に粉砕容器内に供給しておいてもよいが、有機化合物を液体状態で粉砕容器内に投入しておいて、混合粉砕処理過程で生ずる発熱を利用して蒸気化しても構わない。さらに連続式の混合粉砕機においては、有機化合物蒸気を反応に無関係なN2、He、Arなどの不活性ガスなどのキャリアーガスと混合して供給してもよい。 The organic compound vapor may be prepared in advance as vapor and supplied into the pulverization container before the start of the mixing and pulverization process. However, the organic compound is put into the pulverization container in a liquid state and mixed and pulverized. You may vaporize using the heat_generation | fever which arises in a process. Further, in a continuous mixing and pulverizing machine, the organic compound vapor may be mixed with a carrier gas such as an inert gas such as N 2 , He, or Ar which is irrelevant to the reaction.

また、混合粉砕機は、原料に機械的に粉砕、摩砕の力が働くものであればよく、たとえば、粉砕容器内に原料と粉砕媒体(ロッド、シリンダー、ボール、ビーズ等)とを入れて撹拌することにより原料を粉砕する、転動ボールミル、振動ボールミル、撹拌ボールミル、遊星ボールミル等のボールミルが好適である。このようなボールミルを連続型にした粉砕機(たとえば、日本コークス工業(株)製「SCミル」、(株)シンマルエンタープライゼス製「ダイノーミル」、アイメックス(株)製「レディーミル」)や、直径1mm以下の非常に小さいボール(ビーズ)を使用できるボールミルなども推奨される。さらに粉砕媒体を使用しない気流循環式の連続粉砕機(たとえば、(株)栗本鐡工製「クロスジェットミル」)などの使用も可能である。   The mixing pulverizer may be any material that can mechanically pulverize and grind the raw material. For example, the raw material and a pulverizing medium (rod, cylinder, ball, bead, etc.) are placed in a pulverization container. A ball mill such as a rolling ball mill, a vibration ball mill, a stirring ball mill, or a planetary ball mill that pulverizes the raw material by stirring is suitable. Crushers with such a ball mill as a continuous type (for example, “SC Mill” manufactured by Nihon Coke Industries Co., Ltd., “Dino Mill” manufactured by Shinmaru Enterprises Co., Ltd., “Lady Mill” manufactured by Imex Co., Ltd.), A ball mill that can use very small balls (beads) having a diameter of 1 mm or less is also recommended. Furthermore, an air circulation type continuous pulverizer that does not use a pulverizing medium (for example, “Cross Jet Mill” manufactured by Kurimoto Seiko Co., Ltd.) can also be used.

代表的な粉砕媒体であるボール(ビーズ)としては、直径0.1〜10mm程度の、ZrO2(ジルコニア)、Si34(窒化ケイ素)、SiC(炭化ケイ素)、WC(タングステンカーバイド)、スチールなどの素材からなるものを用いることができ、たとえば、東ソー(株)製のジルコニアボール「YTZ」(登録商標)が好適である。 As balls (beads) which are typical grinding media, ZrO 2 (zirconia), Si 3 N 4 (silicon nitride), SiC (silicon carbide), WC (tungsten carbide), having a diameter of about 0.1 to 10 mm, A material made of a material such as steel can be used. For example, a zirconia ball “YTZ” (registered trademark) manufactured by Tosoh Corporation is preferable.

混合粉砕の処理条件は混合粉砕機の種類に応じて適切に調整すればよい。たとえば、遊星ボールミルを使用する場合には、容器容積100mL当たり、粉砕媒体であるボール(ビーズ)の充填量を15〜60mL、原料の充填量を1〜30mLとすることが好ましい。有機化合物蒸気の投入量については、前述の通りであり、有機化合物の種類によって適宜調整すればよい。また、遊星ボールミルの公転回転数は通常1〜10Hz、好ましくは4〜6Hzであり、混合粉砕の処理時間は1〜10時間が好ましい。   What is necessary is just to adjust the process conditions of mixing and grinding appropriately according to the kind of mixing and grinding machine. For example, when using a planetary ball mill, it is preferable that the filling amount of balls (beads) as a grinding medium is 15 to 60 mL and the filling amount of the raw material is 1 to 30 mL per 100 mL of the container volume. The input amount of the organic compound vapor is as described above, and may be appropriately adjusted depending on the type of the organic compound. Further, the revolution speed of the planetary ball mill is usually 1 to 10 Hz, preferably 4 to 6 Hz, and the processing time for the mixing and grinding is preferably 1 to 10 hours.

混合粉砕処理物の回収方法であるが、混合粉砕処理による生成物は、反応により副生した少量の水を含んでいるが、粉末状であるため、ろ過などによる固液分離操作を省略することができる。粉末状の混合粉砕処理物と粉砕媒体(粉砕ボールなど)を篩などにより分離するだけでよい。   This is a method for recovering the mixed pulverized product, but the product obtained by the mixed pulverization treatment contains a small amount of water produced as a by-product of the reaction. Can do. It is only necessary to separate the powdered mixed pulverized product and the pulverizing medium (such as pulverized balls) with a sieve or the like.

熱処理工程
上述のように混合粉砕処理物を回収することにより、A1-xxMO3+δ型複合酸化物の粉末状の前駆体あるい結晶性複合酸化物が得られる。
Heat treatment step By collecting the mixed and pulverized product as described above, a powdery precursor of A 1-x B x MO 3+ δ-type composite oxide or a crystalline composite oxide can be obtained.

得られた前駆体あるい結晶性複合酸化物の乾燥の方法は通常の通風乾燥、真空乾燥等のいずれの方法であってもよいが、真空あるいは不活性雰囲気での乾燥が好ましい。乾燥温度は特に限定されないが50〜300℃が好ましい。   The precursor or crystalline composite oxide obtained may be dried by any method such as ordinary ventilation drying or vacuum drying, but drying in a vacuum or an inert atmosphere is preferred. Although drying temperature is not specifically limited, 50-300 degreeC is preferable.

このようにして得られた前駆体あるいは結晶性複合酸化物を熱処理(仮焼)することにより、前駆体はA1-xxMO3+δ型複合酸化物に結晶化し、すでに結晶化しているA1-xxMO3+δ型複合酸化物は、結晶性(結晶化度)が向上する。 By heat-treating (pre-calcining) the precursor or crystalline composite oxide thus obtained, the precursor is crystallized into an A 1-x B x MO 3+ δ-type composite oxide, and has already been crystallized. The A 1-x B x MO 3+ δ-type composite oxide has improved crystallinity (crystallinity).

熱処理の条件(温度、時間等)は、目的とするA1-xxMO3+δ型複合酸化物の態様(結晶化度等)に応じて適宜調整することができる。たとえば熱処理の温度は、室温〜1300℃が好ましい。また、熱処理は大気中で行っても、アルゴンや窒素等の不活性ガス雰囲気下で行ってもよいが、目的とするA1-xxMO3+δ型複合酸化物の結晶系(結晶構造)により、適宜選択することが好ましい。 The heat treatment conditions (temperature, time, etc.) can be adjusted as appropriate according to the target A 1-x B x MO 3+ δ-type composite oxide (crystallinity, etc.). For example, the temperature of the heat treatment is preferably room temperature to 1300 ° C. The heat treatment may be performed in the air or in an inert gas atmosphere such as argon or nitrogen, but the target A 1-x B x MO 3+ δ-type complex oxide crystal system (crystal It is preferable to select appropriately depending on the structure.

1-xxMO3+δ型複合酸化物の結晶性(結晶系、結晶構造、結晶化度など)はX線回折図形により確認することができる。 The crystallinity (crystal system, crystal structure, crystallinity, etc.) of the A 1-x B x MO 3+ δ-type composite oxide can be confirmed by an X-ray diffraction pattern.

以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲は何らこれら実施例のみに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to these examples.

[実施例1]LaMnO3+δ
(株)栗本鐵工製遊星ボールミル(ステンレス製ポット、容積420mL)に、原料粉末La2310.1gと電解MnO25.4g、およびアセトン0.3mLを、2mmφYTZ(R)ボール(東ソー(株)製)168mLとともに充填し、容器内部の雰囲気をアルゴンガスで置換した後、公転及び自転回転数6Hzで3時間の処理を行なった。処理物を回収後、85℃で12時間の真空乾燥を行ない、LaMnO3+δの結晶性複合酸化物を得た。
Example 1 LaMnO 3+ δ
To a planetary ball mill (stainless steel pot, volume 420 mL) manufactured by Kurimoto Seiko Co., Ltd., 10.1 g of raw material powder La 2 O 3, 5.4 g of electrolytic MnO 2 and 0.3 mL of acetone were added to a 2 mmφYTZ (R) ball (Tosoh Corporation ). The product was filled with 168 mL, and the atmosphere inside the container was replaced with argon gas, and then subjected to a revolution and a rotation speed of 6 Hz for 3 hours. After the treated product was collected, vacuum drying was performed at 85 ° C. for 12 hours to obtain a LaMnO 3+ δ crystalline composite oxide.

上記LaMnO3+δの結晶性複合酸化物と、上記LaMnO3+δの結晶性複合酸化物を大気中で400℃〜1000℃で1時間の熱処理をしたもののX線回折図形を図1に示す。いずれも結晶性LaMnO3+δ複合酸化物のペロブスカイト構造の単一相であった。比表面積値は85℃乾燥品で5.5m2/g、400℃で3.8m2/g、600℃で3.6m2/g、800℃で2.5m2/g、1000℃で1.6m2/gであった。 FIG. 1 shows an X-ray diffraction pattern of the LaMnO 3 + δ crystalline composite oxide and the LaMnO 3 + δ crystalline composite oxide, which were heat-treated at 400 ° C. to 1000 ° C. for 1 hour in the air. . All were single phases of a perovskite structure of crystalline LaMnO 3+ δ composite oxide. The specific surface area value is 1 at 5.5m 2 / g, 400 ℃ at 3.8 m 2 / g, at 600 ℃ 3.6m 2 / g, at 800 ℃ 2.5m 2 / g, 1000 ℃ at 85 ° C. dry product 0.6 m 2 / g.

[実施例2]LaMnO3+δ
(株)栗本鐵工製遊星ボールミル(ステンレス製ポット、容積420mL)に、原料粉末La2310.1gと電解MnO25.4g、およびエタノール0.3mLを、2mmφYTZ(R)ボール(東ソー(株)製)168mLとともに充填し、容器内部の雰囲気をアルゴンガスで置換した後、公転及び自転回転数6Hzで3時間の処理を行なった。処理物を回収後、85℃で12時間の真空乾燥を行ない、LaMnO3+δの結晶性複合酸化物を得た。
[Example 2] LaMnO 3+ δ
To a planetary ball mill (stainless steel pot, volume 420 mL) manufactured by Kurimoto Seiko Co., Ltd., 10.1 g of raw material powder La 2 O 3, 5.4 g of electrolytic MnO 2 and 0.3 mL of ethanol were added to a 2 mmφYTZ (R) ball (Tosoh Corporation ). The product was filled with 168 mL, and the atmosphere inside the container was replaced with argon gas, and then subjected to a revolution and a rotation speed of 6 Hz for 3 hours. After the treated product was collected, vacuum drying was performed at 85 ° C. for 12 hours to obtain a LaMnO 3+ δ crystalline composite oxide.

上記LaMnO3+δの結晶性複合酸化物と、上記LaMnO3+δの結晶性複合酸化物を大気中で400℃〜1000℃で1時間の熱処理をしたもののX線回折図形を図2に示す。いずれも結晶性LaMnO3+δ複合酸化物のペロブスカイト構造の単一相であった。比表面積値は85℃乾燥品で5.8m2/g、400℃で5.3m2/g、600℃で4.1m2/g、800℃で3.1m2/g、1000℃で1.3m2/gであった。 FIG. 2 shows an X-ray diffraction pattern of the LaMnO 3+ δ crystalline composite oxide and the LaMnO 3+ δ crystalline composite oxide subjected to heat treatment at 400 ° C. to 1000 ° C. for 1 hour in the air. . All were single phases of a perovskite structure of crystalline LaMnO 3+ δ composite oxide. The specific surface area value is 1 at 3.1m 2 / g, 1000 ℃ at 4.1m 2 / g, 800 ℃ at 5.8m 2 / g, 400 ℃ at 5.3m 2 / g, 600 ℃ at 85 ° C. dry product It was 3 m 2 / g.

[実施例3]SrMnO3
栗本鐵工所製遊星ボールミル(ステンレス製ポット、容積420mL)に原料粉末Sr(OH)2・8H2Oを100℃で12時間真空乾燥して作製したSr(OH)2 9.6gと電解MnO26.8g、およびアセトン0.3mLを、2mmφYTZ(R)ボール(東ソー(株)製)168mLとともに充填し、容器内部の雰囲気をアルゴンガスで置換した後、公転及び自転回転数6Hzで3時間の処理を行なった。処理物を回収後、85℃で12時間の真空乾燥を行ない、SrMnO3複合酸化物の非晶質水和前駆体を得た。
Example 3 SrMnO 3
9.6 g of Sr (OH) 2 produced by vacuum drying the raw material powder Sr (OH) 2 .8H 2 O at 100 ° C. for 12 hours on a planetary ball mill (stainless steel pot, volume 420 mL) manufactured by Kurimoto Steel Works and electrolytic MnO 2 6.8 g and 0.3 mL of acetone were filled together with 168 mL of 2 mmφYTZ (R) balls (manufactured by Tosoh Corporation), and the atmosphere inside the container was replaced with argon gas, and then the revolution and rotation speed were 6 Hz for 3 hours. Was processed. After the treated product was collected, vacuum drying was performed at 85 ° C. for 12 hours to obtain an amorphous hydrated precursor of SrMnO 3 composite oxide.

上記SrMnO3の複合酸化物の非晶質水和前駆体と、上記SrMnO3の複合酸化物の非晶質水和前駆体を大気中で700℃〜1000℃で1時間の熱処理をしたもののX線回折図形を図3に示す。700℃以上の熱処理により、結晶性SrMnO3複合酸化物のペロブスカイト類似構造の単一相が得られた。比表面積値は85℃乾燥品で4.1m2/g、700℃で6.3m2/g、800℃で4.8m2/g、1000℃で3.8m2/gであった。 Xr of the amorphous hydration precursor of the SrMnO 3 composite oxide and the amorphous hydration precursor of the SrMnO 3 composite oxide subjected to heat treatment at 700 ° C. to 1000 ° C. for 1 hour in the atmosphere. A line diffraction pattern is shown in FIG. A single phase having a perovskite-like structure of crystalline SrMnO 3 composite oxide was obtained by heat treatment at 700 ° C. or higher. The specific surface area value was 3.8 m 2 / g at 4.8m 2 / g, 1000 ℃ at 6.3m 2 / g, 800 ℃ at 4.1m 2 / g, 700 ℃ at 85 ° C. dried product.

[実施例4]La0.5Sr0.5MnO3+δ
(株)栗本鐵工製遊星ボールミル(ステンレス製ポット、容積420mL)に、原料粉末La235.7gとSr(OH)2・8H2Oを100℃で12時間真空乾燥して作製したSr(OH)24.2gと電解MnO26.0g、およびアセトン1.0mLを、2mmφYTZ(R)ボール(東ソー(株)製)168mLとともに充填し、容器内部の雰囲気をアルゴンガスで置換した後、公転及び自転回転数6Hzで3時間の処理を行なった。処理物を回収後、85℃で12時間の真空乾燥を行ない、La0.5Sr0.5MnO3+δの結晶性複合酸化物を得た。
Example 4 La 0.5 Sr 0.5 MnO 3+ δ
It was produced by vacuum drying raw material powder La 2 O 3 5.7 g and Sr (OH) 2 .8H 2 O at 100 ° C. for 12 hours in a planetary ball mill (stainless steel pot, volume 420 mL) manufactured by Kurimoto Seiko Co., Ltd. 4.2 g of Sr (OH) 2, 6.0 g of electrolytic MnO 2 , and 1.0 mL of acetone were filled together with 168 mL of 2 mmφYTZ (R) balls (manufactured by Tosoh Corporation), and the atmosphere inside the container was replaced with argon gas. Then, the process for 3 hours was performed at revolution and rotation speed 6Hz. After recovering the treated product, vacuum drying was performed at 85 ° C. for 12 hours to obtain a crystalline composite oxide of La 0.5 Sr 0.5 MnO 3+ δ.

上記La0.5Sr0.5MnO3+δの結晶性複合酸化物と、上記La0.5Sr0.5MnO3+δの結晶性複合酸化物を大気中で400℃〜1000℃で1時間の熱処理をしたもののX線回折図形を図4に示す。いずれも結晶性La0.5Sr0.5MnO3+δ複合酸化物のペロブスカイト構造の単一相であった。比表面積値は85℃乾燥品で5.9m2/g、400℃で6.1m2/g、600℃で13.3m2/g、800℃で3.3m2/g、1000℃で1.4m2/gであった。 The La 0.5 Sr 0.5 MnO 3+ δ crystalline composite oxide and the La 0.5 Sr 0.5 MnO 3+ δ crystalline composite oxide were heat-treated at 400 ° C. to 1000 ° C. for 1 hour in the atmosphere. A line diffraction pattern is shown in FIG. All were single phases of a perovskite structure of crystalline La 0.5 Sr 0.5 MnO 3+ δ composite oxide. The specific surface area value is 1 at 3.3m 2 / g, 1000 ℃ at 13.3m 2 / g, 800 ℃ at 5.9m 2 / g, 400 ℃ at 6.1m 2 / g, 600 ℃ at 85 ° C. dry product It was 4 m 2 / g.

[実施例5]LaVO3
(株)栗本鐵工製遊星ボールミル(ステンレス製ポット、容積420mL)に、原料粉末La2310.3gとV255.7g、およびアセトン1.0mLを、2mmφYTZ(R)ボール(東ソー(株)製)168mLとともに充填し、容器内部の雰囲気をアルゴンガスで置換した後、公転及び自転回転数6Hzで3時間の処理を行なった。処理物を回収後、85℃で12時間の真空乾燥を行ない、LaVO3の非晶質水和前駆体を得た。
[Example 5] LaVO 3
To a planetary ball mill (stainless steel pot, volume 420 mL) manufactured by Kurimoto Seiko Co., Ltd., 10.3 g of raw material powder La 2 O 3, 5.7 g of V 2 O 5 , and 1.0 mL of acetone were added to a 2 mmφYTZ (R) ball ( After filling with 168 mL of Tosoh Corp. and substituting the atmosphere inside the container with argon gas, it was subjected to a revolution and a rotation speed of 6 Hz for 3 hours. After the treated product was recovered, vacuum drying was performed at 85 ° C. for 12 hours to obtain an amorphous hydrated precursor of LaVO 3 .

上記LaVO3の非晶質水和前駆体と、上記LaVO3の非晶質水和前駆体をアルゴン中で300℃〜1000℃で1時間の熱処理をしたもののX線回折図形を図5に示す。800℃以上の加熱によりの結晶性LaVO3複合酸化物のペロブスカイト構造の単一相であった。800℃で1時間熱処理した時の比表面積は6.4m2/gであった。 FIG. 5 shows an X-ray diffraction pattern of the LaVO 3 amorphous hydration precursor and the LaVO 3 amorphous hydration precursor subjected to heat treatment at 300 ° C. to 1000 ° C. for 1 hour in argon. . It was a single phase of a perovskite structure of crystalline LaVO 3 composite oxide by heating at 800 ° C. or higher. The specific surface area when heat-treated at 800 ° C. for 1 hour was 6.4 m 2 / g.

Claims (4)

一般式A1-xxMO3+δ(式中、Aは希土類元素から選ばれる少なくとも1種の元素で占められ、Bはカルシウム、ストロンチウム、バリウムのうちの少なくとも1種の元素で占められ、Mはマンガン、バナジウムのうちの少なくとも1種の元素で占められ、0≦x≦1.0、−0.5≦δ≦0.5)で表される複合酸化物の製造方法であって、
Aサイトを占める元素の酸化物、水酸化物、酸化水酸化物のうちの少なくとも1種と、Bサイトを占める元素の酸化物、水酸化物のうちの少なくとも1種と、Mサイトを占める元素の酸化物、水酸化物、酸化水酸化物のうちの少なくとも1種とを成分とする原料を、有機化合物蒸気雰囲気中で混合粉砕処理することにより、上記複合酸化物の前駆体または直接結晶性複合酸化物を得る工程を含むことを特徴とする、A1-xxMO3+δ型複合酸化物の製造方法。
General formula A 1-x B x MO 3+ δ (where A is occupied by at least one element selected from rare earth elements, and B is occupied by at least one element selected from calcium, strontium, and barium) , M is a method for producing a composite oxide which is occupied by at least one element of manganese and vanadium and is represented by 0 ≦ x ≦ 1.0 and −0.5 ≦ δ ≦ 0.5) ,
At least one of oxides, hydroxides and oxide hydroxides of elements occupying A site, at least one of oxides and hydroxides of elements occupying B site, and elements occupying M site The precursor of the composite oxide or the direct crystallinity is obtained by mixing and pulverizing a raw material containing at least one of oxides, hydroxides, and oxide hydroxides in an organic compound vapor atmosphere. A method for producing an A 1-x B x MO 3+ δ-type composite oxide, comprising a step of obtaining a composite oxide.
前記Aサイトを占める希土類元素がY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb、Luのうちの少なくとも1種の元素であることを特徴とする、請求項1に記載のA1-xxMO3+δ型複合酸化物の製造方法。 The rare earth element occupying the A site is at least one element of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and Lu. The method for producing an A 1-x B x MO 3+ δ-type composite oxide according to claim 1. 前記Aサイトを占める希土類元素がLaであり、Bサイトを占める元素がストロンチウムであり、かつMサイトを占める元素がマンガン、バナジウムのうちの少なくとも1種の元素であることを特徴とする、請求項1に記載のA1-xxMO3+δ型複合酸化物の製造方法。 The rare earth element occupying the A site is La, the element occupying the B site is strontium, and the element occupying the M site is at least one element of manganese and vanadium. A method for producing the A 1-x B x MO 3+ δ-type composite oxide according to 1 . 請求項1〜3のいずれかに記載の製造方法により得られた複合酸化物の前駆体または結晶性複合酸化物を熱処理する工程を含むことを特徴とする、結晶性A1-xxMO3+δ型複合酸化物の製造方法。 A crystalline A 1-x B x MO comprising a step of heat-treating a precursor of the composite oxide or the crystalline composite oxide obtained by the production method according to claim 1. Method for producing 3+ δ-type complex oxide.
JP2010002939A 2010-01-08 2010-01-08 Method for producing composite oxide powder Active JP5462639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010002939A JP5462639B2 (en) 2010-01-08 2010-01-08 Method for producing composite oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010002939A JP5462639B2 (en) 2010-01-08 2010-01-08 Method for producing composite oxide powder

Publications (2)

Publication Number Publication Date
JP2011140427A true JP2011140427A (en) 2011-07-21
JP5462639B2 JP5462639B2 (en) 2014-04-02

Family

ID=44456571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010002939A Active JP5462639B2 (en) 2010-01-08 2010-01-08 Method for producing composite oxide powder

Country Status (1)

Country Link
JP (1) JP5462639B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144382A (en) * 2011-01-07 2012-08-02 Ibaraki Univ Method for producing vanadate-based multiple oxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589881A (en) * 1991-09-30 1993-04-09 Ngk Insulators Ltd Manufacture of constituent member of solid electrolyte type fuel cell
JP2001064019A (en) * 1999-08-26 2001-03-13 Fuji Electric Co Ltd Mn PERVOSKITE-TYPE OXIDE
JP2008007394A (en) * 2005-12-16 2008-01-17 Hokko Chem Ind Co Ltd Method for producing precursor of perovskite type composite oxide and method for producing perovskite type composite oxide
JP2009209029A (en) * 2008-02-07 2009-09-17 Ibaraki Univ Method for producing perovskite compound oxide
JP2011046592A (en) * 2009-07-28 2011-03-10 Ibaraki Univ Method for producing vanadate-based compound oxide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589881A (en) * 1991-09-30 1993-04-09 Ngk Insulators Ltd Manufacture of constituent member of solid electrolyte type fuel cell
JP2001064019A (en) * 1999-08-26 2001-03-13 Fuji Electric Co Ltd Mn PERVOSKITE-TYPE OXIDE
JP2008007394A (en) * 2005-12-16 2008-01-17 Hokko Chem Ind Co Ltd Method for producing precursor of perovskite type composite oxide and method for producing perovskite type composite oxide
JP2009209029A (en) * 2008-02-07 2009-09-17 Ibaraki Univ Method for producing perovskite compound oxide
JP2011046592A (en) * 2009-07-28 2011-03-10 Ibaraki Univ Method for producing vanadate-based compound oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144382A (en) * 2011-01-07 2012-08-02 Ibaraki Univ Method for producing vanadate-based multiple oxide

Also Published As

Publication number Publication date
JP5462639B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
KR102611412B1 (en) Method for producing zirconium tungstate phosphate
TWI436948B (en) Preparation of Oxide
TWI450864B (en) Method for preparing cerium carbonate, method for cerium oxide prepared and crystalline cerium oxide
Haugen et al. Sintering of sub-micron K0. 5Na0. 5NbO3 powders fabricated by spray pyrolysis
CN113348148B (en) Method for producing lithium titanium phosphate
JPWO2009125681A1 (en) Method for producing barium titanate
JP2008007394A (en) Method for producing precursor of perovskite type composite oxide and method for producing perovskite type composite oxide
Cheng et al. Sol-gel synthesis and photoluminescence characterization of La 2 Ti 2 O 7: Eu 3+ nanocrystals
JP5611693B2 (en) Method for producing vanadate composite oxide
Bugrov et al. Soft chemistry synthesis and dielectric properties of A-site deficient perovskite-type compound La2/3TiO3− δ
JP5462639B2 (en) Method for producing composite oxide powder
Paraschiv et al. Synthesis of nanosized bismuth ferrite (BiFeO 3) by a combustion method starting from Fe (NO 3) 3· 9H 2 O-Bi (NO 3) 3· 9H 2 O-glycine or urea systems
JP5737954B2 (en) Method for producing vanadate composite oxide
JP2017071537A (en) Method for producing barium titanate powder
JP5907482B2 (en) Method for producing ceria-based composite oxide
JP4638766B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP2021109809A (en) Method for producing vanadium dioxide
WO2009051249A1 (en) Method for producing alkali titanate compound
Liu et al. Low‐Temperature Synthesis of Nanocrystalline Yttrium Aluminum Garnet Powder Using Triethanolamine
Kozawa et al. Scalable synthesis of Sr3Al2 (OH) 12 hydrogarnet by wet milling and its thermal decomposition behavior
TWI694979B (en) Method for manufacturing barium titanate powder
JP6330184B2 (en) Method for producing lithium manganese composite oxide
Luo et al. Low-temperature synthesis and characterization of (Zn, Ni) TiO3 ceramics by a modified sol–gel route
JP6660776B2 (en) Method for producing tantalum nitride (Ta3N5)
JP5147573B2 (en) Method for producing perovskite complex oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140117

R150 Certificate of patent or registration of utility model

Ref document number: 5462639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250