JP5737954B2 - Method for producing vanadate composite oxide - Google Patents

Method for producing vanadate composite oxide Download PDF

Info

Publication number
JP5737954B2
JP5737954B2 JP2011001911A JP2011001911A JP5737954B2 JP 5737954 B2 JP5737954 B2 JP 5737954B2 JP 2011001911 A JP2011001911 A JP 2011001911A JP 2011001911 A JP2011001911 A JP 2011001911A JP 5737954 B2 JP5737954 B2 JP 5737954B2
Authority
JP
Japan
Prior art keywords
vanadate
oxide
composite oxide
hydroxide
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011001911A
Other languages
Japanese (ja)
Other versions
JP2012144382A (en
Inventor
修実 阿部
修実 阿部
嘉純 阪根
嘉純 阪根
千秋 御立
千秋 御立
智恵 山田
智恵 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokko Chemical Industry Co Ltd
Ibaraki University NUC
Original Assignee
Hokko Chemical Industry Co Ltd
Ibaraki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokko Chemical Industry Co Ltd, Ibaraki University NUC filed Critical Hokko Chemical Industry Co Ltd
Priority to JP2011001911A priority Critical patent/JP5737954B2/en
Publication of JP2012144382A publication Critical patent/JP2012144382A/en
Application granted granted Critical
Publication of JP5737954B2 publication Critical patent/JP5737954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、磁性材料、触媒材料、蛍光体材料、マシナブルセラミックスへの応用、リチウムイオン電池の電極材料、レーザーホスト材料、エレクトロルミネッセンス材料等として有用な、一般式RVO4もしくはRVO3(式中、Rは希土類元素から選ばれる少なくとも1種の元素で占められ、Vはバナジウム元素である。)で表される、バナデート系複合酸化物の製造方法に関する。 The present invention is a magnetic material, a catalyst material, a fluorescent material, application to machinable ceramics, electrode material of lithium ion batteries, laser host materials, useful as electroluminescent materials, the general formula RVO 4 or RVO 3 (wherein , R is occupied by at least one element selected from rare earth elements, and V is a vanadium element.).

従来のRVO4もしくはRVO3で表されるバナデート系複合酸化物の合成方法としては、LaVO4を例に取ると、以下の合成方法などが知られている:
La23とV25を混合し,空気中800℃で4時間熱処理して単斜晶LaVO4を得る方法(非特許文献1);
LaCl3水溶液とV25を希アンモニア水で溶解して調製したバナジン酸水溶液を混合し、アンモニア水でpH8〜9に調整して数日の間放置して熱処理なしに直接単斜晶LaVO4を得る方法(非特許文献2);
La(NO3)3水溶液とNH4VO3水溶液を混合し,アンモニア水でpH5〜9に調整して、オートクレーブを使い160℃で水熱処理することにより、熱処理なしに直接単斜晶LaVO4を得る方法(非特許文献3)。
As a conventional method for synthesizing a vanadate-based composite oxide represented by RVO 4 or RVO 3 , taking LaVO 4 as an example, the following synthesis methods are known:
A method of obtaining monoclinic LaVO 4 by mixing La 2 O 3 and V 2 O 5 and heat-treating in air at 800 ° C. for 4 hours (Non-patent Document 1);
An aqueous solution of LaCl 3 and a vanadate aqueous solution prepared by dissolving V 2 O 5 in dilute aqueous ammonia are mixed, adjusted to pH 8-9 with aqueous ammonia, and allowed to stand for several days and directly monoclinic LaVO without heat treatment 4 (Non-Patent Document 2);
La (NO 3 ) 3 aqueous solution and NH 4 VO 3 aqueous solution are mixed, adjusted to pH 5-9 with aqueous ammonia, and hydrothermally treated at 160 ° C. using an autoclave, so that monoclinic LaVO 4 is directly formed without heat treatment. Method to obtain (nonpatent literature 3).

また、本出願人らは、一般式ABO3[式中、Aは希土類元素から選ばれる少なくとも1種の元素で占められ、Bはマンガン、鉄、コバルトからなる群より選ばれる少なくとも1種の元素で占められる。]で表わされるペロブスカイト型複合酸化物について、Aサイトを占める元素の酸化物、水酸化物、酸化水酸化物および金属単体の少なくとも1種を含有する原料と、Bサイトを占める元素の酸化物、水酸化物、酸化水酸化物および金属単体の少なくとも1種を含有する原料とを、水系溶媒中で混合粉砕処理することにより上記ペロブスカイト型複合酸化物の前駆体を調製する工程と、その前駆体を熱処理する工程とを含む製造方法を先に提案している(特許文献1)。しかしながら、特許文献1に記載された製造方法が対象としているのは、希土類元素とマンガン、鉄、またはコバルトとのペロブスカイト型複合酸化物であって、バナデート系複合酸化物ではない。 Further, the applicants have the general formula ABO 3 [wherein A is occupied by at least one element selected from rare earth elements, and B is at least one element selected from the group consisting of manganese, iron, and cobalt. Occupied by. A perovskite-type composite oxide represented by the following formula: a raw material containing at least one of oxides, hydroxides, oxide hydroxides and simple metals occupying the A site; A step of preparing a precursor of the perovskite complex oxide by mixing and pulverizing a raw material containing at least one of a hydroxide, an oxide hydroxide and a simple metal in an aqueous solvent; Has previously proposed a manufacturing method including a step of heat-treating (Patent Document 1). However, the manufacturing method described in Patent Document 1 is a perovskite complex oxide of rare earth elements and manganese, iron, or cobalt, and not a vanadate complex oxide.

なお、合成中の前駆体物質に溶媒中で圧力と温度を加え、溶媒の大気圧での沸点以上まで昇温することにより、前駆体物質の相互作用を促進するための方法である「ソルボサーマル法」が知られている。水を溶媒とするソルボサーマル法の場合には、水熱合成法と言われる(非特許文献4)。   Note that “solvothermal” is a method for promoting the interaction of precursor materials by applying pressure and temperature in the solvent to the precursor material being synthesized and raising the temperature to the boiling point or higher of the solvent at atmospheric pressure. "The Law" is known. In the case of the solvothermal method using water as a solvent, it is said to be a hydrothermal synthesis method (Non-Patent Document 4).

特開2008−007394号公報JP 2008-007394 A

Bull. Chem. Soc. Jpn., 42, 3195 (1969)Bull. Chem. Soc. Jpn., 42, 3195 (1969) 日本化学会誌 NO.3, 455 (2002)The Chemical Society of Japan NO.3, 455 (2002) J. Cryst. Growth, 310(22), 4689 (2008)J. Cryst. Growth, 310 (22), 4689 (2008) 微粒子工学大系第II巻応用技術〔(株)フジ・テクノシステム2002年1月18日発行、32頁〕Part II Applied Technology of Fine Particle Engineering University (Fuji Techno System Co., Ltd., issued on January 18, 2002, page 32)

非特許文献1に記載されたような方法(各成分酸化物を混合して高温で熱処理する固相反応法)により得られる単斜晶の複合酸化物には、不純物相や未反応物が残存しやすいという問題がある。非特許文献2または3に記載されたような方法(各成分元素の塩の水溶液にpH調整用の沈殿剤を添加して成分金属の共沈物を得る共沈法)は、熱処理なしにLaVO4の結晶化物を得ているが、硝酸アンモニウム等の副生物や塩化物原料等の未反応物などを除去する工程が必要である。さらに、非特許文献3に記載されたような方法は、硝酸アンモニウム等の共沈副生成と共に水熱処理を行うため、耐食性のある高価な反応容器を具備したオートクレーブなどの装置が必要である。 In the monoclinic complex oxide obtained by the method described in Non-Patent Document 1 (solid-phase reaction method in which each component oxide is mixed and heat-treated at high temperature), an impurity phase and unreacted substances remain. There is a problem that it is easy to do. A method as described in Non-Patent Document 2 or 3 (a coprecipitation method in which a coprecipitate of a component metal is obtained by adding a precipitating agent for adjusting pH to an aqueous solution of a salt of each component element) can be applied without LaVO. Although a crystallized product of 4 is obtained, a step of removing by-products such as ammonium nitrate and unreacted materials such as chloride raw materials is necessary. Furthermore, since the method as described in Non-Patent Document 3 performs hydrothermal treatment together with coprecipitation by-product such as ammonium nitrate, an apparatus such as an autoclave equipped with an expensive reaction vessel having corrosion resistance is required.

本発明は、上記のような課題が解決された、未反応物や不純物を除去するための工程を必要とせず、さらに腐食性副生成物の発生や特殊な溶媒の使用がなく、撹拌も必要としない安価なオートクレーブの使用が可能であり、熱処理なしあるいは高温での熱処理工程なしに結晶化物を得ることができる、一般式RVO4またはRVO3で表されるバナデート系複合酸化物の製造方法を提供することを目的とする。 The present invention does not require a process for removing unreacted substances and impurities, which solves the problems as described above, and further eliminates the generation of corrosive by-products and the use of special solvents, and also requires stirring. A method for producing a vanadate-based composite oxide represented by the general formula RVO 4 or RVO 3 , capable of using a low-cost autoclave and obtaining a crystallized product without a heat treatment or a heat treatment step at a high temperature. The purpose is to provide.

本発明者らは、かかる問題点を解決すべく鋭意検討を進めた結果、一般式RVO4で表されるバナデート系複合酸化物について、Rサイトを占める元素の酸化物、水酸化物または酸化水酸化物のうちの少なくとも1種と、バナジウムの酸化物、水酸化物または酸化水酸化物のうちの少なくとも1種とを含む原料を用い、これらの原料を、水と相溶性のある有機溶媒と、その有機溶媒の種類に応じて粉砕処理過程で反応などにより発生する水の量を含めた制御された量の水とを含有する水系溶媒中で湿式混合粉砕処理することにより、RVO4の複合酸化物の前駆体である複合水酸化物または複合酸化水酸化物を調製し、上記水系溶媒中で湿式混合粉砕処理したスラリーをそのままソルボサーマル処理することにより、熱処理なしに結晶化物を得ること、あるいは高温での熱処理なしに結晶化物を得ることができることを見出し、本発明を完成させるに至った。 As a result of diligent investigation to solve such problems, the present inventors have found that the vanadate-based composite oxide represented by the general formula RVO 4 is an oxide, hydroxide or oxidized water of an element occupying an R site. Using raw materials containing at least one of oxides and at least one of vanadium oxides, hydroxides or oxide hydroxides, and using these raw materials with an organic solvent compatible with water The composite of RVO 4 is obtained by wet mixing and pulverizing in an aqueous solvent containing a controlled amount of water including the amount of water generated by reaction in the pulverizing process depending on the type of the organic solvent. A composite hydroxide or composite oxide hydroxide that is a precursor of oxide is prepared, and a slurry obtained by wet mixing and pulverizing in the above aqueous solvent is subjected to solvothermal treatment to obtain a crystallized product without heat treatment. In other words, the present inventors have found that a crystallized product can be obtained without heat treatment at a high temperature.

また所望に応じ、上記のようなソルボサーマル処理の代わりに、水系溶媒中で湿式混合粉砕処理したスラリーを常圧で加熱(還流)処理することにより、ソルボサーマル処理と同様な効果が得られることを見出し、本発明のさらなる態様を完成させるに至った。   If desired, the same effect as the solvothermal treatment can be obtained by heating (refluxing) the slurry that has been wet-mixed and pulverized in an aqueous solvent at normal pressure instead of the solvothermal treatment as described above. The present inventors have found a further aspect of the present invention.

一方、RVO3で表されるバナデート系複合酸化物については、Rサイトを占める元素の酸化物とバナジウムの酸化物とを含む原料を、実質的に水を含まない水と相溶性のある有機溶媒中で湿式混合粉砕処理することにより、上記バナデート系複合酸化物の前駆体を調製し、その後この湿式混合粉砕処理スラリーをソルボサーマル処理することにより、高温での熱処理なしに結晶化物を得ることができることを見出し、本発明を完成させるに至った。 On the other hand, for the vanadate-based composite oxide represented by RVO 3 , the raw material containing the oxide of the element occupying the R site and the oxide of vanadium is used as an organic solvent compatible with water that does not substantially contain water. By preparing a precursor of the vanadate composite oxide by wet mixing and pulverizing in the process, and then subjecting this wet mixed and pulverized slurry to a solvothermal process, a crystallized product can be obtained without heat treatment at a high temperature. The present inventors have found that the present invention can be accomplished and have completed the present invention.

本発明の製造方法は、Rサイトを占める元素がY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、YbまたはLuのうちの少なくとも1種の元素である希土類バナデート系複合酸化物、特にLaVO4もしくはLaVO3で表される希土類バナデート系複合酸化物など、工業的に有用な複合酸化物を対象とする場合に好適である。 In the production method of the present invention, the element occupying the R site is at least one element of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, or Lu. It is suitable for a case where an industrially useful complex oxide such as a rare earth vanadate complex oxide, particularly a rare earth vanadate complex oxide represented by LaVO 4 or LaVO 3 , is used.

本発明の製造方法(湿式混合粉砕処理工程、ソルボサーマル処理工程あるいは加熱(還流)処理工程、および任意で行われる熱処理工程)は、特殊な機材や高価な原料を用いることなく行うことができ、また副生成物としては水しか生成しないため特別な除去工程も不要である。したがって、各種用途における性能の劣化を招く不純物が混在しない高品質のバナデート系複合酸化物の結晶化物を、処理なしあるいは高温での熱処理工程なしに、安価で効率的に製造することができる。   The production method of the present invention (wet mixing and grinding treatment step, solvothermal treatment step or heating (reflux) treatment step, and optionally heat treatment step) can be performed without using special equipment or expensive raw materials, Further, since only water is produced as a by-product, no special removal step is required. Therefore, a high-quality vanadate-based complex oxide crystallized product that does not contain impurities that cause performance degradation in various applications can be produced inexpensively and efficiently without a treatment or a heat treatment step at a high temperature.

実施例1における真空乾燥後(熱処理なし)の結晶化したLaVO4複合酸化物単一相のX線回折図形(比較例1では、La(OH)3であるか、あるいはLaVO4以外の不純物相が含まれている。)X-ray diffraction pattern of crystallized LaVO 4 composite oxide single phase after vacuum drying (no heat treatment) in Example 1 (in Comparative Example 1, it is La (OH) 3 or an impurity phase other than LaVO 4 It is included.) 実施例1における熱処理後のLaVO4複合酸化物のX線回折図形(大気中、200〜1200℃、いずれもLaVO4単一相)X-ray diffraction pattern of LaVO 4 composite oxide after heat treatment in Example 1 (in air, 200 to 1200 ° C., both LaVO 4 single phase) 実施例2における真空乾燥後(熱処理なし)の結晶化したLaVO4複合酸化物単一相のX線回折図形X-ray diffraction pattern of crystallized LaVO 4 composite oxide single phase after vacuum drying (no heat treatment) in Example 2 実施例3における真空乾燥後(熱処理なし)の結晶化したLaVO4複合酸化物単一相のX線回折図形(比較例2では、La(OH)3X-ray diffraction pattern of crystallized LaVO 4 composite oxide after vacuum drying (no heat treatment) in Example 3 (La (OH) 3 in Comparative Example 2) 実施例3における熱処理後のLaVO4複合酸化物のX線回折図形(大気中、200〜600℃、いずれもLaVO4単一相)X-ray diffraction pattern of LaVO 4 composite oxide after heat treatment in Example 3 (in the atmosphere, 200 to 600 ° C., both LaVO 4 single phase) 実施例4における熱処理後のLaVO3複合酸化物X線回折図形(1%H2/N2中、800℃。比較例3として大気中とアルゴン中、800℃。)LaVO 3 complex oxide X-ray diffraction pattern after heat treatment in Example 4 (in 1% H 2 / N 2 , 800 ° C., as Comparative Example 3, in air and argon, 800 ° C.)

バナデート系複合酸化物
本発明の製造方法の対象となるバナデート系複合酸化物は、一般式RVO4もしくはRVO3(式中、Rは希土類元素から選ばれる少なくとも1種の元素で占められ、Vはバナジウム元素である。)で表される化合物である。
Vanadate-based complex oxide The vanadate-based complex oxide that is the object of the production method of the present invention has a general formula RVO 4 or RVO 3 (wherein R is occupied by at least one element selected from rare earth elements, and V is Vanadium element).

本発明の製造方法は、Rサイトを占める元素がY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、YbまたはLuのうちの少なくとも1種の元素である希土類バナデート系複合酸化物、特にLaVO4もしくはLaVO3(RサイトがLa)で表されるバナデート系複合酸化物などを対象とする場合に好適である。 In the production method of the present invention, the element occupying the R site is at least one element of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, or Lu. This is suitable for rare earth vanadate composite oxides, particularly vanadate composite oxides represented by LaVO 4 or LaVO 3 (R site is La).

原料
Rサイトを占める希土類元素[Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb、Lu]の原料成分としては、これら希土類元素の酸化物[R23、RO2]、水酸化物[R(OH)3、R(OH)4]、酸化水酸化物[RO(OH)、ROOH]が挙げられる。なお、上記化合物には、結晶水を含有するもの[R23・nH2O、RO2・nH2O、R(OH)3・nH2O、R(OH)4・nH2O、nは正の数]も含まれ、また、希土類水酸化物および希土類酸化水酸化物については、不定比な希土類酸化物の水和物[R23・XH2O、RO2・XH2O、Xは任意の正の数]も含まれる。これらの物質は結晶質、非晶質のどちらであっても構わない。上記のRサイトを占める希土類元素の原料成分は、いずれか1種を単独で用いても、2種以上を組合わせて用いてもよい。
As a raw material component of the rare earth element occupying the raw material R site [Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu], an oxide of these rare earth elements [R 2 O 3 , RO 2 ], hydroxide [R (OH) 3 , R (OH) 4 ], and oxide hydroxide [RO (OH), ROOH]. In addition, the above compounds include those containing crystal water [R 2 O 3 · nH 2 O, RO 2 · nH 2 O, R (OH) 3 · nH 2 O, R (OH) 4 · nH 2 O, n is a positive number], and for rare earth hydroxides and rare earth oxide hydroxides, non-stoichiometric rare earth oxide hydrates [R 2 O 3 .XH 2 O, RO 2 .XH 2 O and X are arbitrary positive numbers]. These substances may be crystalline or amorphous. Any one of the rare earth element occupying the R site may be used alone, or two or more may be used in combination.

V(バナジウム元素)の原料成分としては、バナジウムの酸化物[VO、V23、VO2、V25、V34、V37、V49]、水酸化物[V(OH)5、V(OH)4、V(OH)3、V(OH)2]、酸化水酸化物[VO(OH)、VO(OH)2、VO(OH)3、VO2(OH)]が挙げられる。なお、上記化合物には結晶水を含有したもの[V25・nH2O、VO2・nH2O、V23・nH2O、VO・nH2O、V34・nH2O、V(OH)5・nH2O、V(OH)4・nH2O、V(OH)3・nH2O、V(OH)2・nH2O、nは正の数]も含まれ、また、水酸化物、酸化水酸化物については不定比な酸化物の水和物[V25・XH2O、VO2・XH2O、V23・XH2O、V34・XH2O、Xは任意の正の数]も含まれる。これらの物質は結晶質、非晶質のどちらであっても構わない。上記のVサイトを占める元素の原料成分は、いずれか1種を単独で用いても、2種以上を組合わせて用いてもよい。 As a raw material component of V (vanadium element), vanadium oxide [VO, V 2 O 3 , VO 2 , V 2 O 5 , V 3 O 4 , V 3 O 7 , V 4 O 9 ], hydroxide [V (OH) 5 , V (OH) 4 , V (OH) 3 , V (OH) 2 ], oxide hydroxide [VO (OH), VO (OH) 2 , VO (OH) 3 , VO 2 (OH)]. The above compound contains water of crystallization [V 2 O 5 · nH 2 O, VO 2 · nH 2 O, V 2 O 3 · nH 2 O, VO · nH 2 O, V 3 O 4 · nH 2 O, V (OH) 5 · nH 2 O, V (OH) 4 · nH 2 O, V (OH) 3 · nH 2 O, V (OH) 2 · nH 2 O, n is a positive number] In addition, non-stoichiometric oxide hydrates [V 2 O 5 · XH 2 O, VO 2 · XH 2 O, V 2 O 3 · XH 2 O, V 3 O 4 .XH 2 O, where X is an arbitrary positive number] is also included. These substances may be crystalline or amorphous. As the raw material component of the element occupying the V site, any one kind may be used alone, or two or more kinds may be used in combination.

上記のような原料となる物質の粒径は、100μm以下が好ましく、50μm以下がより好ましく、10μm以下が更に好ましい。酸化物を原料として使用する場合は、湿式混合粉砕の過程で水和ないし水酸化物化が起こり粒径が小さくなるので、最初の粒径が大きくても問題はない。
また、原料の各成分の配合量は、Rサイトおよびバナジウム(V)の原料中の量比が、目的とする複合酸化物における量比と同じとなるようにすればよい。
The particle size of the material used as the raw material is preferably 100 μm or less, more preferably 50 μm or less, and still more preferably 10 μm or less. When an oxide is used as a raw material, hydration or hydroxide formation occurs in the process of wet mixed pulverization and the particle size becomes small, so there is no problem even if the initial particle size is large.
Moreover, the compounding quantity of each component of a raw material should just make the quantitative ratio in the raw material of R site and vanadium (V) the same as the quantitative ratio in the target complex oxide.

湿式混合粉砕処理
本発明における湿式混合粉砕処理は、水系溶媒中で、一般的には混合粉砕機を用いて行われる。
Wet mixed pulverization treatment The wet mixed pulverization treatment in the present invention is generally carried out in an aqueous solvent using a mixing pulverizer.

水系溶媒は、混合粉砕処理により水和前駆体(複合水酸化物ないし複合酸化水酸化物)を調製する際に、原料と共に粉砕容器内に入れられる溶媒(粉砕媒体)であり、水と相溶性のある有機溶媒に水を混合した溶媒をいう。   An aqueous solvent is a solvent (grinding medium) that is placed in a grinding container together with raw materials when preparing a hydrated precursor (composite hydroxide or composite oxide hydroxide) by a mixed grinding process, and is compatible with water. A solvent in which water is mixed with an organic solvent.

水と相溶性のある有機溶媒は、特に限定されるものではないが、アルコール類(メタノール、エタノール、プロパノール、ブタノール等)、エーテル類(ジエチルエーテル、テトラヒドロフラン等)、ケトン類(アセトン、メチルエチルケトン、ジエチルケトン等)などが挙げられる。これらの有機溶媒は、いずれか1種を単独で用いても、2種以上を組合わせて用いてもよい。   The organic solvent compatible with water is not particularly limited, but alcohols (methanol, ethanol, propanol, butanol, etc.), ethers (diethyl ether, tetrahydrofuran, etc.), ketones (acetone, methyl ethyl ketone, diethyl) Ketone) and the like. Any one of these organic solvents may be used alone, or two or more thereof may be used in combination.

上記水と相溶性のある有機溶媒は、原料および湿式混合粉砕の処理条件に応じて、適切な比誘電率を有するものを採用することが望ましい。有機溶媒の比誘電率が適度な範囲であれば、水系溶媒中の粉砕処理物の分散性が高まりすぎず、バナデート系複合酸化物の均一な水和前駆体が得られる。   As the organic solvent compatible with water, it is desirable to employ an organic solvent having an appropriate relative dielectric constant depending on the raw material and the processing conditions of wet mixing and pulverization. If the relative permittivity of the organic solvent is in an appropriate range, the dispersibility of the pulverized product in the aqueous solvent will not be too high, and a uniform hydrated precursor of the vanadate composite oxide can be obtained.

なお、水と相溶性のない有機溶媒(ベンゼン、トルエン、キシレン等)と水の混合液を粉砕媒液として使用すると、混合粉砕機の内部に原料粉末が付着してしまい、混合・粉砕の処理効率が大幅に低下するおそれがあるが、そのような水と相溶性のない有機溶媒も、水と相溶性のある有機溶媒と併用するのであれば、水系溶媒に配合することは可能である。   If a mixed liquid of water and organic solvent (benzene, toluene, xylene, etc.) that is not compatible with water is used as the grinding fluid, the raw material powder will adhere to the inside of the mixing and grinding machine, and the mixing and grinding process Although the efficiency may be significantly reduced, an organic solvent that is not compatible with water can be blended with an aqueous solvent if it is used in combination with an organic solvent that is compatible with water.

RVO4の製造方法において、湿式混合粉砕工程とソルボサーマル処理工程あるいは加熱工程により、熱処理なしにRVO4複合酸化物単一相を得るためには、上記有機溶媒の内、アルコール類以外の有機溶媒のみを混合した水系溶媒を使用し、かつ当該水系溶媒中の水の量を、RV(OH)8複合水酸化物を生成させるために必要な化学量論モル量の0.25倍モル量以上、1.0倍モル量以下に制限する必要がある。0.25倍モル量以下ではR(OH)3相のみが生成し、RVO4の生成は起こらない。また1.0倍モル量より多いと、RVO4以外にRVO4の水和物と思われる不純物相が混在してくる。 In the RVO 4 production method, in order to obtain an RVO 4 composite oxide single phase without heat treatment by a wet mixing and pulverization step and a solvothermal treatment step or a heating step, among the above organic solvents, organic solvents other than alcohols And an amount of water in the aqueous solvent is not less than 0.25 times the stoichiometric molar amount necessary to produce the RV (OH) 8 composite hydroxide. Therefore, it is necessary to limit the amount to 1.0 times or less. Below the 0.25 molar amount, only the R (OH) 3 phase is produced, and no RVO 4 is produced. On the other hand, when the molar amount is more than 1.0 times, an impurity phase that is considered to be a hydrate of RVO 4 is mixed in addition to RVO 4 .

ソルボサーマル処理工程あるいは加熱処理工程は、RV(OH)8複合水酸化物からRVO4への脱水を促進する効果があると考えられる。なお、上記加熱処理工程は代表的には還流により行われるが、これに限定されるものではない。例えばLa23の以下の水酸化反応は、自由エネルギー変化が−60kJ/mol以上のため、水酸化物が非常に安定であり、RVO4の水和物の生成を抑制するためには、水添加の量を制限(1.0倍モル量以下)する必要がある。しかしながら、湿式混合粉砕工程で未反応La23が残存しない程度以上(0.25倍モル量以上)には水を添加する必要がある。
La23 + 3H2O → 2La(OH)3
It is considered that the solvothermal treatment step or the heat treatment step has an effect of promoting dehydration from RV (OH) 8 composite hydroxide to RVO 4 . In addition, although the said heat processing process is typically performed by recirculation | reflux, it is not limited to this. For example, in the following hydroxylation reaction of La 2 O 3 , since the free energy change is −60 kJ / mol or more, the hydroxide is very stable, and in order to suppress the formation of RVO 4 hydrate, It is necessary to limit the amount of water added (1.0 times the molar amount or less). However, it is necessary to add water to such an extent that no unreacted La 2 O 3 remains in the wet mixing and pulverization step (0.25 molar amount or more).
La 2 O 3 + 3H 2 O → 2La (OH) 3

また、アルコール類を混合した水系溶媒(アルコール系水系溶媒)を使用する場合には、当該水系溶媒中の水の量を、RV(OH)8複合水酸化物を生成させるために必要な化学量論モル量(1.0倍モル量)より多くすることにより、RVO4を湿式混合粉砕工程とソルボサーマル処理工程により熱処理なしにLaVO4複合酸化物単一相を得ることができる。1.0倍モル量以下では、R(OH)3相のみが生成し、RVO4の生成は起こらない。 In addition, when using an aqueous solvent (alcohol aqueous solvent) mixed with alcohols, the amount of water in the aqueous solvent is the chemical amount necessary to produce RV (OH) 8 composite hydroxide. by increasing the pudding molar amount (1.0-fold molar amount), it is possible to obtain the LaVO 4 composite oxide single phase RVO 4 without the heat treatment by a wet mixing and grinding process and solvothermal process. Below 1.0 molar amount, only the R (OH) 3 phase is produced and no RVO 4 is produced.

アルコール系水系溶媒を使用する場合には、湿式混合粉砕工程でV25とアルコール系溶媒との間で以下のような反応が進行し、バナジウムオキシアルコキシドが生成すると考えられる(J. Phys. Chem., 64, 1756 (1960))。 In the case of using an alcohol-based aqueous solvent, it is considered that the following reaction proceeds between V 2 O 5 and the alcohol-based solvent in the wet mixing and pulverizing step, and vanadium oxyalkoxide is generated (J. Phys. Chem., 64, 1756 (1960)).

Figure 0005737954
このバナジウムオキシアルコキシドを、湿式混合粉砕工程で生成するR(OH)3と共に加水分解して、熱処理なしにRVO4複合酸化物単一相を得るためには、ソルボサーマル処理工程での加水分解を促進のために上記1.0倍モル量より多い水が必要であると考えている。
Figure 0005737954
In order to hydrolyze this vanadium oxyalkoxide together with R (OH) 3 produced in the wet mixing and pulverizing step to obtain an RVO 4 composite oxide single phase without heat treatment, hydrolysis in the solvothermal treatment step is performed. We believe that more water than the above 1.0-fold molar amount is required for promotion.

一方、湿式混合粉砕工程とソルボサーマル処理工程および低温の加熱処理工程により、RVO3複合酸化物の結晶化物を得るためには、実質的に水を含まない(水の量を0にした)水と相溶性のある有機溶媒中で湿式混合粉砕処理を行う必要がある。実質的に水を含まない(水の量を0にする)とは、原料として酸化物を使用し、水酸化物あるいは酸化水酸化物あるいは結晶水含有物あるいは水和物などを使用しないこと、および有機溶媒にあえて水を加えないことを言い、使用する酸化物原料が僅かに吸湿した水分、有機溶媒中に僅かに吸湿した水分は含まれていてもよいことを言う。また、水と相溶性のある有機溶媒に、次に述べるような湿式混合粉砕処理の過程で副生する水が事後的に加わることも排除されない。 On the other hand, in order to obtain a RVO 3 composite oxide crystallized product by a wet mixing and pulverization step, a solvothermal treatment step, and a low-temperature heat treatment step, water that does not substantially contain water (the amount of water is reduced to 0). It is necessary to carry out wet mixing and pulverization in an organic solvent compatible with. It is substantially free of water (the amount of water is reduced to 0) means that an oxide is used as a raw material and no hydroxide, oxide hydroxide, crystal water content or hydrate is used, It means that water is not added to the organic solvent, and that the oxide raw material to be used may contain moisture slightly absorbed, or moisture slightly absorbed in the organic solvent. In addition, it is not excluded that water generated as a by-product in the course of the wet mixing and pulverizing treatment described below is added to an organic solvent compatible with water.

原料として用いる物質に結晶水などの水が含まれている場合には、その水の量も勘案して、最初に水系溶媒に添加しておく水の量を調整する(所定の量から上記結晶水などの量を差し引いた量の水を最初に添加しておく)ことが必要である。一方、湿式混合粉砕処理の過程で原料と有機溶媒の反応[たとえば、原料として五酸化バナジウム(V25)を、有機溶媒としてアセトンあるいは2−プロパノールなどを用いた場合]によって副生する水の量については、上記のような勘案はしないものとする。 When water such as crystallization water is included in the material used as a raw material, the amount of water is also taken into account, and the amount of water initially added to the aqueous solvent is adjusted (from the predetermined amount to the above crystal It is necessary to first add an amount of water minus the amount of water etc.). On the other hand, water by-produced by the reaction of the raw material and the organic solvent in the course of the wet mixing and pulverizing treatment [for example, when vanadium pentoxide (V 2 O 5 ) is used as the raw material and acetone or 2-propanol is used as the organic solvent]. As for the amount of, the above considerations shall not be taken.

また、混合粉砕機は、原料に機械的に粉砕、摩砕の力が働くものであればよく、たとえば、粉砕容器内に原料と粉砕媒体(ロッド、シリンダー、ボール、ビーズ等)とを入れて撹拌することにより原料を粉砕する、転動ボールミル、振動ボールミル、撹拌ボールミル、遊星ボールミル等のボールミルが好適である。このようなボールミルを連続型にした粉砕機(たとえば、三井鉱山(株)製「SCミル」、(株)シンマルエンタープライゼス製「ダイノーミル」)や、直径1mm以下の非常に小さいボール(ビーズ)を使用できるボールミルなども推奨される。   The mixing pulverizer may be any material that can mechanically pulverize and grind the raw material. For example, the raw material and a pulverizing medium (rod, cylinder, ball, bead, etc.) are placed in a pulverization container. A ball mill such as a rolling ball mill, a vibration ball mill, a stirring ball mill, or a planetary ball mill that pulverizes the raw material by stirring is suitable. Crushers with such a ball mill as a continuous type (for example, “SC Mill” manufactured by Mitsui Mining Co., Ltd., “Dyno Mill” manufactured by Shinmaru Enterprises Co., Ltd.), and very small balls (beads) having a diameter of 1 mm or less. A ball mill that can be used is also recommended.

代表的な粉砕媒体であるボール(ビーズ)としては、直径0.1〜10mm程度の、ZrO2(ジルコニア)、Si34(窒化ケイ素)、SiC(炭化ケイ素)、WC(タングステンカーバイド)、ステンレスなどの素材からなるものを用いることができ、たとえば、東ソー(株)製のジルコニアボール「YTZ」(登録商標)が好適である。 As balls (beads) which are typical grinding media, ZrO 2 (zirconia), Si 3 N 4 (silicon nitride), SiC (silicon carbide), WC (tungsten carbide), having a diameter of about 0.1 to 10 mm, For example, a zirconia ball “YTZ” (registered trademark) manufactured by Tosoh Corporation is preferable.

湿式混合粉砕の処理条件は混合粉砕機の種類に応じて適切に調整すればよい。たとえば、遊星ボールミルを使用する場合には、容器容積100mL当たり、粉砕媒体であるボール(ビーズ)の充填量を15〜60mL、水系溶媒および原料の合計の充填量を10〜30mLとし、かつ水系溶媒と原料の混合物中の原料の濃度を2〜30体積%とすることが好ましい。また、遊星ボールミルの公転回転数は通常1〜10Hz、好ましくは4〜6Hzであり、混合粉砕の処理時間は1〜10時間が好ましい。   What is necessary is just to adjust the process conditions of wet-mixing grinding suitably according to the kind of mixing-grinding machine. For example, when a planetary ball mill is used, the filling amount of balls (beads) as a grinding medium is 15 to 60 mL, the total filling amount of the aqueous solvent and the raw material is 10 to 30 mL per 100 mL of the container volume, and the aqueous solvent It is preferable that the concentration of the raw material in the mixture of the raw material is 2 to 30% by volume. Further, the revolution speed of the planetary ball mill is usually 1 to 10 Hz, preferably 4 to 6 Hz, and the processing time for the mixing and grinding is preferably 1 to 10 hours.

ソルボサーマル処理あるいは加熱(還流)処理工程
本発明の複合酸化物の製造方法は、前述のような複合酸化物の前駆体である複合水酸化物または複合酸化水酸化物を調製する工程により得られた水系溶媒スラリー(RVO4の場合)あるいは実質的に水を含まない水と相溶性のある有機溶媒中での湿式混合粉砕処理により得られたスラリー(RVO3の場合)を、ソルボサーマル処理する工程あるいは加熱(還流)処理工程を含むものである。
Solvothermal treatment or heating (reflux) treatment step The method for producing a composite oxide of the present invention is obtained by a step of preparing a composite hydroxide or a composite oxide hydroxide which is a precursor of the composite oxide as described above. The aqueous solvent slurry (in the case of RVO 4 ) or the slurry (in the case of RVO 3 ) obtained by wet mixing and pulverization in an organic solvent compatible with water substantially free of water is subjected to solvothermal treatment. Process or heating (reflux) treatment process.

ソルボサーマル処理の溶媒としては、前記混合粉砕処理に使用される水系溶媒の条件をそのまま適用することができる。処理温度は、水系溶媒の大気圧での沸点以上、通常200℃以下、好ましくは150℃以下に保持し、反応させることが好適である。反応温度が低すぎると結晶性生成物を得ることができなくなることがある。一方反応温度が高すぎることは、ソルボサーマル処理容器が高価になり工業的でない。通常処理圧力は、処理温度における水系溶媒の蒸気圧である。適宜目的とする化合物の組成に適した温度条件と圧力条件を選択することが望ましい。処理時間は通常4時間から48時間であり、好ましくは8時間から24時間である。   As the solvent for the solvothermal treatment, the conditions of the aqueous solvent used for the mixing and grinding treatment can be applied as they are. The treatment temperature is suitably maintained at the boiling point or higher of the aqueous solvent at atmospheric pressure, usually 200 ° C. or lower, preferably 150 ° C. or lower, for reaction. If the reaction temperature is too low, a crystalline product may not be obtained. On the other hand, if the reaction temperature is too high, the solvothermal treatment container becomes expensive and not industrial. The normal processing pressure is the vapor pressure of the aqueous solvent at the processing temperature. It is desirable to appropriately select temperature conditions and pressure conditions suitable for the composition of the target compound. The treatment time is usually 4 to 48 hours, preferably 8 to 24 hours.

ソルボサーマル処理に供する反応容器であるが、バッチ式の混合粉砕機を使用した場合には、粉砕容器を密閉してそのまま使用し、加熱することも可能である。連続式の混合粉砕機を使用した場合には、スラリーをオートクレーブに移し、ソルボサーマル処理を行なうことができる。前記処理温度、処理圧力が得られれば特に限定されるものではない。   Although a reaction vessel used for solvothermal treatment, when a batch-type mixing and grinding machine is used, the grinding vessel can be sealed and used as it is, and heated. When a continuous mixing and grinding machine is used, the slurry can be transferred to an autoclave and subjected to solvothermal treatment. It will not specifically limit if the said processing temperature and processing pressure are obtained.

ソルボサーマル処理工程の代わりに常圧での加熱(還流)処理工程を行なう場合には、加熱(還流)温度を60℃以上、200℃以下、好ましくは150℃以下にすることが望ましい。加熱(還流)温度が低すぎると結晶性生成物を得ることができなくなることや、結晶性生成物を得るのに長時間の加熱(還流)が必要となり、工業的でない。例えば混合粉砕処理し、吸引ろ過後、120℃で通風乾燥した場合には、結晶化のために4日以上の通風乾燥を行なっても、結晶性は低い。また、例えばアセトン(沸点;56℃)溶媒中、常圧での加熱(還流)処理工程を行なう場合には、16時間の加熱(還流)後に結晶化は開始するが、その結晶性は低い。このような場合には、混合粉砕処理後の水系スラリーに高沸点の有機溶媒[例えばトルエン(沸点;110℃)]を添加して、常圧での加熱(還流)処理工程を行ない、処理温度を高くすることが好ましい。一方加熱(還流)温度が高すぎることは、加熱媒体などが高価になり工業的でない。   When performing a heating (refluxing) treatment step at normal pressure instead of the solvothermal treatment step, it is desirable that the heating (refluxing) temperature be 60 ° C. or more and 200 ° C. or less, preferably 150 ° C. or less. If the heating (reflux) temperature is too low, a crystalline product cannot be obtained, and heating (refluxing) for a long time is required to obtain a crystalline product, which is not industrial. For example, when the mixture is pulverized and vacuum-dried at 120 ° C. after suction filtration, the crystallinity is low even if it is ventilated for 4 days or more for crystallization. For example, when a heating (refluxing) treatment step at normal pressure in a solvent of acetone (boiling point: 56 ° C.) is performed, crystallization starts after heating (refluxing) for 16 hours, but the crystallinity is low. In such a case, an organic solvent having a high boiling point [for example, toluene (boiling point: 110 ° C.)] is added to the aqueous slurry after the mixing and pulverizing treatment, and a heating (refluxing) treatment step at normal pressure is performed. Is preferably increased. On the other hand, if the heating (refluxing) temperature is too high, the heating medium and the like are expensive and not industrial.

以上のような湿式混合粉砕処理の後、ソルボサーマル処理あるいは加熱(還流)処理した後の生成物を濾別して乾燥することにより、結晶化したRVO4複合酸化物の単一相、あるいは、低温の加熱処理でRVO3複合酸化物に結晶化する前駆体を回収することができる。 After the wet mixing and pulverizing treatment as described above, the product after the solvothermal treatment or heating (refluxing) treatment is filtered and dried, so that a single phase of the crystallized RVO 4 composite oxide or a low temperature The precursor that crystallizes into the RVO 3 composite oxide by heat treatment can be recovered.

濾別の方法は、一般的な加圧ろ過、吸引ろ過、遠心分離等の方法から適宜選択すればよい。また乾燥の方法も通常の通風乾燥、真空乾燥等のいずれの方法であってもよい。本発明の湿式混合粉砕処理では水系溶媒中で水以外の副生物(塩類等)が生成しないため、湿式混合粉砕処理後、ソルボサーマル処理あるいは加熱(還流)処理をした後のスラリーを蒸発乾固、スプレードライ等により乾燥することも可能である。乾燥温度は特に限定されないが50〜200℃が好ましい。   The filtration method may be appropriately selected from general methods such as pressure filtration, suction filtration, and centrifugal separation. The drying method may be any method such as normal ventilation drying and vacuum drying. In the wet mixed pulverization treatment of the present invention, no by-products other than water (salts, etc.) are generated in the aqueous solvent. Therefore, after the wet mixed pulverization treatment, the slurry after the solvothermal treatment or heating (reflux) treatment is evaporated to dryness. It is also possible to dry by spray drying or the like. Although drying temperature is not specifically limited, 50-200 degreeC is preferable.

熱処理
湿式混合粉砕処理後にソルボサーマル処理あるいは加熱(還流)処理することにより調製された結晶化したRVO4複合酸化物は熱処理しなくても結晶性が高く、熱処理を省略することができるが、大気中で熱処理することにより、結晶性の更なる向上あるいは結晶相の転移をさせることが可能である。熱処理を必要とするかどうかは、適宜所望により決めればよい。
The crystallized RVO 4 composite oxide prepared by solvothermal treatment or heat (reflux) treatment after the heat treatment wet mixing and pulverization treatment has high crystallinity without heat treatment, and the heat treatment can be omitted. It is possible to further improve the crystallinity or change the crystal phase by heat treatment in the medium. Whether or not heat treatment is required may be determined as desired.

低温の加熱処理でRVO3複合酸化物に結晶化する前駆体については、H2あるいはCOなどの還元性雰囲気での熱処理を必要とする。大気中あるいはアルゴン、窒素等の不活性ガス雰囲気の熱処理では、RVO3ではなく、RVO4への結晶化が起こるためである。 The precursor that crystallizes into the RVO 3 composite oxide by low-temperature heat treatment requires heat treatment in a reducing atmosphere such as H 2 or CO. This is because the heat treatment in the atmosphere or an inert gas atmosphere such as argon or nitrogen causes crystallization to RVO 4 instead of RVO 3 .

上記のように熱処理の条件(温度、雰囲気、時間等)は、目的とするバナデート系複合酸化物の態様(複合酸化物の組成、結晶化率、比表面積等)に応じて適宜調整する必要がある。熱処理の温度は、好ましくは200〜1000℃である。なお、バナデート系複合酸化物の結晶性はX線回折図形(所定のピークの有無)により確認することができる。   As described above, the heat treatment conditions (temperature, atmosphere, time, etc.) need to be adjusted as appropriate according to the desired aspect of the vanadate composite oxide (composite oxide composition, crystallization rate, specific surface area, etc.). is there. The temperature of the heat treatment is preferably 200 to 1000 ° C. Note that the crystallinity of the vanadate complex oxide can be confirmed by an X-ray diffraction pattern (presence or absence of a predetermined peak).

[実施例1]LaVO4ソルボサーマル処理
(株)栗本鐵工製遊星ボールミル(ステンレス製ポット,容積420mL)に、原料粉末La2310.3gとV255.7g,2mmφYTZ(R)ボール(東ソー(株))168mL,アセトン67mL,水2.3mL(化学量論モル量の0.5倍モル量に相当)あるいは4.5mL(化学量論モル量の1.0倍モル量に相当)(比較例1;水0mLあるいは6.8mL(化学量論モル量の1.5倍モル量に相当))を充填し、公転及び自転回転数6Hzで3時間の処理を行なった。混合粉砕容器を密閉して、120℃で16時間のソルボサーマル処理を行なった。(この時の密閉容器内の圧力は、水系溶媒の加熱による自己発生圧力である。)ソルボサーマル処理物を吸引ろ過後、85℃で12時間の真空乾燥を行ない、単斜晶系に結晶化したLaVO4単一相を得た。(比較例1;少量のLaVO4水和物が混在した、単斜晶系に結晶化したLaVO4を得た。)比表面積は、水2.3mL添加の時27m2/g、水4.5mL添加の時54m2/gであった。(比較例1;水0mLの時18m2/g、6.8mLの時52m2/gであった。)真空乾燥後のX線回折図形を比較例1と比較して図1に示す。[水0mL添加時のX線回折図形にLa(OH)3相が見られるのは、酸化物原料や有機溶媒中にわずかに含まれた水分およびV25とアセトンが一部反応(CH3COCH3+4V25→3CO2+3H2O+4V23)して生成した水がLa23を水酸化するためと考えている。]また水4.5mL添加の時の大気中各温度で1時間の熱処理をしたときのX線回折図形の加熱変化を図2に示す。いずれの加熱温度においても、単斜晶系のLaVO4単一相であった。
[Example 1] LaVO 4 solvothermal process
To Kurimoto Seiko planetary ball mill (stainless steel pot, volume 420 mL), raw powder La 2 O 3 10.3 g and V 2 O 5 5.7 g, 2 mmφYTZ (R) ball (Tosoh Corp.) 168 mL, Acetone 67 mL, water 2.3 mL (corresponding to 0.5 molar amount of stoichiometric mole) or 4.5 mL (corresponding to 1.0 molar amount of stoichiometric molar amount) (Comparative Example 1; water 0 mL) Alternatively, 6.8 mL (corresponding to 1.5 times the molar amount of the stoichiometric molar amount)) was filled, and the treatment for 3 hours was performed at the revolution and rotation speed of 6 Hz. The mixing and pulverizing vessel was sealed, and solvothermal treatment was performed at 120 ° C. for 16 hours. (The pressure in the sealed container at this time is a self-generated pressure due to heating of the aqueous solvent.) After suction-filtering the solvothermally treated product, vacuum drying is performed at 85 ° C. for 12 hours to crystallize into a monoclinic system. LaVO 4 single phase was obtained. (Comparative Example 1;. A small amount of LaVO 4 hydrate was mixed to obtain a LaVO 4 crystallized in the monoclinic system) specific surface area, when the water 2.3mL added 27m 2 / g, water 54. It was 54 m 2 / g when 5 mL was added. (Comparative Example 1;. Water 0mL was 52m 2 / g when 18m 2 /g,6.8mL when) as compared with Comparative Example 1 The X-ray diffraction pattern after vacuum drying shown in FIG. [La (OH) 3 phase is observed in the X-ray diffraction pattern when 0 mL of water is added, because water partially contained in the oxide raw material or organic solvent and V 2 O 5 and acetone partially react (CH 3 COCH 3 + 4V 2 O 5 → 3CO 2 + 3H 2 O + 4V 2 O 3 ) is considered to be due to the hydroxylation of La 2 O 3 . FIG. 2 shows the heating change of the X-ray diffraction pattern when heat treatment is performed for 1 hour at various temperatures in the atmosphere when 4.5 mL of water is added. At any heating temperature, it was a monoclinic LaVO 4 single phase.

[実施例2]LaVO4加熱(還流)処理
(株)栗本鐵工製遊星ボールミル(ステンレス製ポット,容積420mL)に、原料粉末La2310.3gとV255.7g,2mmφYTZ(R)ボール(東ソー(株))168mL,アセトン70mL,水4.5mL(化学量論モル量の1.0倍モル量に相当)を充填し、公転及び自転回転数6Hzで3時間の処理を行なった。混合粉砕処理スラリーを4径丸底フラスコに移し、トルエンを225mL加えて、110℃で加熱(還流)処理を16時間行ない、吸引ろ過後、85℃で12時間の真空乾燥を行なった。単斜晶系に結晶化した単一相のLaVO4が得られていた。真空乾燥後の比表面積は、48m2/gであった。大気中各温度で1時間の熱処理をしたときのX線回折図形を図3に示す。いずれの加熱温度においても、単斜晶系のLaVO4単一相であった。
[Example 2] LaVO 4 heating (reflux) treatment
To Kurimoto Seiko planetary ball mill (stainless steel pot, volume 420 mL), raw powder La 2 O 3 10.3 g and V 2 O 5 5.7 g, 2 mmφYTZ (R) ball (Tosoh Corp.) 168 mL, 70 mL of acetone and 4.5 mL of water (corresponding to 1.0 times the molar amount of the stoichiometric amount) were filled, and a revolution and a rotational speed of 6 Hz were performed for 3 hours. The mixed and pulverized slurry was transferred to a 4-diameter round bottom flask, 225 mL of toluene was added, heat (reflux) treatment was performed at 110 ° C. for 16 hours, suction filtration, and vacuum drying at 85 ° C. for 12 hours. Single-phase LaVO 4 crystallized in a monoclinic system was obtained. The specific surface area after vacuum drying was 48 m 2 / g. FIG. 3 shows X-ray diffraction patterns when heat treatment is performed for 1 hour at various temperatures in the atmosphere. At any heating temperature, it was a monoclinic LaVO 4 single phase.

[実施例3]LaVO4ソルボサーマル処理
(株)栗本鐵工製遊星ボールミル(ステンレス製ポット,容積420mL)に、原料粉末La2310.3gとV255.7g,2mmφYTZ(R)ボール(東ソー(株))168mL,2−プロパノール67mL,水6.8mL(化学量論モル量の1.5倍モル量に相当)(比較例2;0mL、2.3mL(化学量論モル量の0.5倍モル量に相当)あるいは4.5mL(化学量論モル量の1.0倍モル量に相当))を充填し、公転及び自転回転数6Hzで3時間の処理を行なった。混合粉砕容器を密閉して、120℃で16時間のソルボサーマル処理を行なった。(この時の密閉容器内の圧力は、水系溶媒の加熱による自己発生圧力である。)ソルボサーマル処理物を吸引ろ過後、85℃で12時間の真空乾燥を行ない、単斜晶系に結晶化したLaVO4の単一相を得た(図4)。比表面積は71m2/gであった。(比較例2;いずれも非晶質に近い水酸化ランタン[La(OH)3]結晶相。水0mL添加時のX線回折図形にLa(OH)3相が見られるのは、酸化物原料や有機溶媒中にわずかに含まれた水分およびV252−プロパノールが一部反応〔V 2 5 +6(CH 3 ) 2 CHOH→2((CH 3 ) 2 CH) 3 VO 4 +3H 2 O)〕して生成した水がLa23を水酸化するためと考えている。)
また大気中各温度で1時間熱処理したときのX線回折図形の加熱変化を図5に示す。いずれも単斜晶系に結晶化したLaVO4の単一相であり、600℃で1時間加熱したときの比表面積は47m2/gであった。
[Example 3] LaVO 4 solvothermal process
To a planetary ball mill manufactured by Kurimoto Seiko Co., Ltd. (stainless steel pot, capacity 420 mL), 10.3 g of raw material powder La 2 O 3 and 5.7 g of V 2 O 5 , 2 mmφYTZ® ball (Tosoh Corp.) 168 mL, 2-propanol 67 mL, water 6.8 mL (corresponding to 1.5 times the molar amount of stoichiometric amount) (Comparative Example 2; 0 mL, 2.3 mL (corresponding to 0.5 times the molar amount of stoichiometric amount) ) Or 4.5 mL (corresponding to 1.0 times the stoichiometric molar amount)), and subjected to revolution and rotational speed of 6 Hz for 3 hours. The mixing and pulverizing vessel was sealed, and solvothermal treatment was performed at 120 ° C. for 16 hours. (The pressure in the sealed container at this time is a self-generated pressure due to heating of the aqueous solvent.) After suction-filtering the solvothermally treated product, vacuum drying is performed at 85 ° C. for 12 hours to crystallize into a monoclinic system. A single phase of LaVO 4 was obtained (FIG. 4). The specific surface area was 71 m 2 / g. (Comparative Example 2; both are amorphous lanthanum hydroxide [La (OH) 3 ] crystalline phase. The La (OH) 3 phase is observed in the X-ray diffraction pattern when 0 mL of water is added. Moisture slightly contained in organic solvent and V 2 O 5 and 2-propanol partially react [V 2 O 5 +6 (CH 3 ) 2 CHOH → 2 ((CH 3 ) 2 CH) 3 VO 4 + 3H It is thought that the water generated by 2 O)] hydroxylates La 2 O 3 . )
FIG. 5 shows changes in the X-ray diffraction pattern when heat-treated at various temperatures in the atmosphere for 1 hour. Each was a single phase of LaVO 4 crystallized in a monoclinic system and had a specific surface area of 47 m 2 / g when heated at 600 ° C. for 1 hour.

[実施例4]LaVO3ソルボサーマル処理
(株)栗本鐵工所製遊星ボールミル(ステンレス製ポット,容積420mL)に原料粉末La2310.3gとV255.7g,2mmφYTZ(R)ボール(東ソー(株))168mL,アセトン74mLを充填し、公転及び自転回転数6Hzで3時間の処理を行なった。混合粉砕容器を密閉して、120℃で16時間のソルボサーマル処理を行なった。処理物を吸引ろ過後、85℃で12時間の真空乾燥を行ない、LaVO3の複合酸化物の前駆体を得た。
[Example 4] LaVO 3 solvothermal process
Kurimoto Yokosho planetary ball mill (stainless steel pot, capacity 420 mL), raw material powder La 2 O 3 10.3 g and V 2 O 5 5.7 g, 2 mmφYTZ (R) ball (Tosoh Corporation) 168 mL, Acetone 74 mL was charged, and the revolution and rotation speed were 6 Hz, and the treatment was performed for 3 hours. The mixing and pulverizing vessel was sealed, and solvothermal treatment was performed at 120 ° C. for 16 hours. The treated product was subjected to suction filtration, and then vacuum dried at 85 ° C. for 12 hours to obtain a LaVO 3 composite oxide precursor.

LaVO3の複合酸化物の前駆体を1%H2/N2雰囲気中、800℃で1時間加熱した時のX線回折図形を図6(比較例3として空気中とアルゴン中で800℃で1時間加熱した時のX線回折図形を示す。)に示す。LaVO3複合酸化物の正方晶系の単一相であった。また比表面積は7.0m2/gであった。 FIG. 6 shows the X-ray diffraction pattern of the LaVO 3 composite oxide precursor heated at 800 ° C. for 1 hour in a 1% H 2 / N 2 atmosphere at 800 ° C. in air and argon as Comparative Example 3. X-ray diffraction pattern when heated for 1 hour is shown.) It was a tetragonal single phase of LaVO 3 composite oxide. The specific surface area was 7.0 m 2 / g.

Claims (7)

一般式RVO4(式中、Rは希土類元素から選ばれる少なくとも1種の元素で占められ、Vはバナジウム元素である。)で表されるバナデート系複合酸化物の製造方法であって、
Rサイトを占める元素の酸化物、水酸化物または酸化水酸化物のうちの少なくとも1種と、バナジウムの酸化物、水酸化物または酸化水酸化物のうちの少なくとも1種とを含有する原料を、RV(OH)8複合水酸化物を生成させるために必要な化学量論モル量の0.25倍モル量以上、1.0倍モル量以下の水とアルコール類以外の水と相溶性のある有機溶媒とを含む非アルコール系水系溶媒中で湿式混合粉砕処理することにより、上記バナデート系複合酸化物の前駆体を調製する工程、およびこの水系溶媒スラリーをソルボサーマル処理する工程を含むことにより、直接上記バナデート系複合酸化物の結晶化物を得ることを特徴とする、バナデート系複合酸化物の製造方法。
A method for producing a vanadate-based composite oxide represented by a general formula RVO 4 (wherein R is occupied by at least one element selected from rare earth elements and V is a vanadium element),
A raw material containing at least one of an oxide, hydroxide or oxide hydroxide of an element occupying an R site, and at least one of vanadium oxide, hydroxide or oxide hydroxide , Which is compatible with water other than alcohol and 0.25 to 1.0 mole amount of the stoichiometric mole amount required to produce RV (OH) 8 composite hydroxide. By including a step of preparing the precursor of the vanadate-based composite oxide by wet mixing and pulverizing in a non-alcohol-based aqueous solvent containing an organic solvent, and a step of solvothermally treating the aqueous solvent slurry. A method for producing a vanadate composite oxide, which directly obtains a crystallized product of the vanadate composite oxide.
一般式RVO4(式中、Rは希土類元素から選ばれる少なくとも1種の元素で占められ、Vはバナジウム元素である。)で表されるバナデート系複合酸化物の製造方法であって、
Rサイトを占める元素の酸化物、水酸化物または酸化水酸化物のうちの少なくとも1種と、バナジウムの酸化物、水酸化物または酸化水酸化物のうちの少なくとも1種とを含有する原料を、RV(OH)8複合水酸化物を生成させるために必要な化学量論モル量の0.25倍モル量以上、1.0倍モル量以下の水とアルコール類以外の水と相溶性のある有機溶媒を含む非アルコール系水系溶媒中で湿式混合粉砕処理することにより、上記バナデート系複合酸化物の前駆体を調製する工程と、およびこの水系溶媒スラリーを常圧で加熱処理する工程を含むことにより、直接上記バナデート系複合酸化物の結晶化物を得ることを特徴とする、バナデート系複合酸化物の製造方法。
A method for producing a vanadate-based composite oxide represented by a general formula RVO 4 (wherein R is occupied by at least one element selected from rare earth elements and V is a vanadium element),
A raw material containing at least one of an oxide, hydroxide or oxide hydroxide of an element occupying an R site, and at least one of vanadium oxide, hydroxide or oxide hydroxide , Which is compatible with water other than alcohol and 0.25 to 1.0 mole amount of the stoichiometric mole amount required to produce RV (OH) 8 composite hydroxide. Including a step of preparing a precursor of the vanadate-based composite oxide by wet mixing and pulverizing in a non-alcohol-based aqueous solvent containing an organic solvent, and a step of heat-treating the aqueous solvent slurry at normal pressure Thus, a method for producing a vanadate-based composite oxide, wherein the crystallized product of the vanadate-based composite oxide is directly obtained.
一般式RVO4(式中、Rは希土類元素から選ばれる少なくとも1種の元素で占められ、Vはバナジウム元素である。)で表されるバナデート系複合酸化物の製造方法であって、
Rサイトを占める元素の酸化物、水酸化物または酸化水酸化物のうちの少なくとも1種と、バナジウムの酸化物、水酸化物または酸化水酸化物のうちの少なくとも1種とを含有する原料を、RV(OH)8複合水酸化物を生成させるために必要な化学量論モル量より多い水および水と相溶性のあるアルコール類を含むアルコール系水系溶媒中で湿式混合粉砕処理することにより、上記バナデート系複合酸化物の前駆体を調製する工程、およびこのアルコール系水系溶媒スラリーをソルボサーマル処理する工程を含むことにより、直接上記バナデート系複合酸化物の結晶化物を得ることを特徴とする、バナデート系複合酸化物の製造方法。
A method for producing a vanadate-based composite oxide represented by a general formula RVO 4 (wherein R is occupied by at least one element selected from rare earth elements and V is a vanadium element),
A raw material containing at least one of an oxide, hydroxide or oxide hydroxide of an element occupying an R site, and at least one of vanadium oxide, hydroxide or oxide hydroxide , by wet mixing and pulverizing treatment with alcoholic aqueous solvent containing stoichiometric molar amount greater than water and water-compatible with certain alcohols required to generate the RV (OH) 8 complex hydroxide, Including the step of preparing a precursor of the vanadate-based composite oxide, and the step of solvothermally treating the alcohol-based aqueous solvent slurry, to obtain a crystallized product of the vanadate-based composite oxide directly. A method for producing a vanadate composite oxide.
一般式RVO3(式中、Rは希土類元素から選ばれる少なくとも1種の元素で占められ、Vはバナジウム元素である。)で表されるバナデート系複合酸化物の製造方法であって、
Rサイトを占める元素の酸化物(結晶水含有物および水和物を除く。)とバナジウムの酸化物(結晶水含有物および水和物を除く。)からなる原料を、実質的に水を含まない水と相溶性のある有機溶媒中で湿式混合粉砕処理することにより、上記バナデート系複合酸化物の前駆体を調製する工程、およびこの湿式混合粉砕処理スラリーをソルボサーマル処理する工程を含むことを特徴とする、バナデート系複合酸化物の製造方法。
A method for producing a vanadate-based composite oxide represented by a general formula RVO 3 (wherein R is occupied by at least one element selected from rare earth elements and V is a vanadium element),
A raw material consisting of oxides of elements occupying R sites (excluding crystallization water-containing substances and hydrates) and vanadium oxides (excluding crystallization water-containing substances and hydrates) , substantially containing water Including a step of preparing a precursor of the vanadate-based composite oxide by wet mixing and pulverizing in an organic solvent compatible with water, and a step of solvothermally processing the wet mixed pulverizing slurry. A method for producing a vanadate-based composite oxide, which is characterized.
請求項1〜4のいずれかに記載の処理工程により得られたバナデート系複合酸化物の未結晶化物あるいは結晶化物を、熱処理する工程を含むことを特徴とする、請求項1〜4のいずれかに記載のバナデート系複合酸化物の製造方法。   Any one of Claims 1-4 including the process of heat-processing the non-crystallized thing or crystallized thing of the vanadate type complex oxide obtained by the processing process in any one of Claims 1-4. The manufacturing method of vanadate type complex oxide as described in 2. 前記Rサイトを占める元素がY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、YbまたはLuのうちの少なくとも1種の元素である、請求項1〜5のいずれかに記載のバナデート系複合酸化物の製造方法。   The element occupying the R site is at least one element of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, or Lu. The manufacturing method of the vanadate type complex oxide in any one of. 前記バナデート系複合酸化物が、LaVO4もしくはLaVO3で表されるものである、請求項1〜5のいずれかに記載のバナデート系複合酸化物の製造方法。 Manufacturing method of the vanadate-based composite oxide is represented by LaVO 4 or LaVO 3, vanadate-based composite oxide according to claim 1.
JP2011001911A 2011-01-07 2011-01-07 Method for producing vanadate composite oxide Active JP5737954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011001911A JP5737954B2 (en) 2011-01-07 2011-01-07 Method for producing vanadate composite oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011001911A JP5737954B2 (en) 2011-01-07 2011-01-07 Method for producing vanadate composite oxide

Publications (2)

Publication Number Publication Date
JP2012144382A JP2012144382A (en) 2012-08-02
JP5737954B2 true JP5737954B2 (en) 2015-06-17

Family

ID=46788373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011001911A Active JP5737954B2 (en) 2011-01-07 2011-01-07 Method for producing vanadate composite oxide

Country Status (1)

Country Link
JP (1) JP5737954B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105084418B (en) * 2015-07-29 2017-03-22 渤海大学 Preparation method of nanometer lanthanum vanadate hollow microspheres
CN109665561B (en) * 2019-02-01 2021-01-12 渤海大学 REVO4Preparation method of self-sacrifice template
CN115536067B (en) * 2022-11-03 2023-10-03 南昌大学 Self-assembled vanadium-based strong hydrophobic material, preparation method thereof, coating and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558708A (en) * 1991-09-03 1993-03-09 Fujitsu Ltd Oxide superconductor
JP3666555B2 (en) * 1998-10-23 2005-06-29 株式会社豊田中央研究所 The method of producing the mixed composition and the composite oxide powder of a hydroxide
GB0217794D0 (en) * 2002-08-01 2002-09-11 Univ St Andrews Fuel cell electrodes
JP4088684B2 (en) * 2003-03-11 2008-05-21 独立行政法人産業技術総合研究所 Process for producing lanthanum perovskite compounds
JP5110868B2 (en) * 2005-12-16 2012-12-26 北興化学工業株式会社 Method for producing perovskite complex oxide precursor and method for producing perovskite complex oxide
JP5002208B2 (en) * 2006-07-26 2012-08-15 三菱化学株式会社 Method for producing metal oxide nanocrystals
JP4363467B2 (en) * 2007-07-05 2009-11-11 ソニー株式会社 Phosphor, fluorescent lamp using the same, and display device and illumination device using the fluorescent lamp
JP5611693B2 (en) * 2009-07-28 2014-10-22 国立大学法人茨城大学 Method for producing vanadate composite oxide
JP5462639B2 (en) * 2010-01-08 2014-04-02 国立大学法人茨城大学 Method for producing composite oxide powder

Also Published As

Publication number Publication date
JP2012144382A (en) 2012-08-02

Similar Documents

Publication Publication Date Title
TWI450864B (en) Method for preparing cerium carbonate, method for cerium oxide prepared and crystalline cerium oxide
JP5836472B2 (en) Crystalline cerium oxide and method for producing the same
US8637153B2 (en) Method for preparing cerium carbonate and cerium oxide
JP5110868B2 (en) Method for producing perovskite complex oxide precursor and method for producing perovskite complex oxide
CN104528799A (en) Preparation method of ultrafine magnesium-based rare earth hexaaluminate powder
CN108339562B (en) Preparation method of iron ion doped carbon nitride nanotube and obtained product
JP5737954B2 (en) Method for producing vanadate composite oxide
WO2009125681A2 (en) Manufacturing method for barium titanate
JP5611693B2 (en) Method for producing vanadate composite oxide
Cheng et al. Sol-gel synthesis and photoluminescence characterization of La 2 Ti 2 O 7: Eu 3+ nanocrystals
CN103796956B (en) The manufacture method of barium titanium oxalate and the manufacture method of barium titanate
KR100955802B1 (en) Process for preparing fine barium titanate based composite oxide
JP5907482B2 (en) Method for producing ceria-based composite oxide
Ng et al. Properties of praseodymium-doped bismuth potassium titanate (Bi0. 5K0. 5TiO3) synthesised using the soft combustion technique
JP6330184B2 (en) Method for producing lithium manganese composite oxide
Luo et al. Low-temperature synthesis and characterization of (Zn, Ni) TiO3 ceramics by a modified sol–gel route
JP4638766B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP5147573B2 (en) Method for producing perovskite complex oxide
JP5462639B2 (en) Method for producing composite oxide powder
JP6941315B2 (en) Method for producing perovskite-type composite oxide
WO2020170918A1 (en) Titanium oxide production method
WO2020170917A1 (en) Titanium oxide
Xianxue et al. Nanostructured yttrium aluminum garnet powders synthesized by co-precipitation method using tetraethylenepentamine
Zhou et al. Preparation of barium hafnate fine powders by oxalate method
Wang et al. Synthesis and characterization of 10 mol% Dy2O3-doped ceria nanopowders via homogeneous precipitation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150421

R150 Certificate of patent or registration of utility model

Ref document number: 5737954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250