JP2011140422A - Fine aggregate for mortar or concrete, and method for producing mortar or concrete using the same - Google Patents

Fine aggregate for mortar or concrete, and method for producing mortar or concrete using the same Download PDF

Info

Publication number
JP2011140422A
JP2011140422A JP2010002539A JP2010002539A JP2011140422A JP 2011140422 A JP2011140422 A JP 2011140422A JP 2010002539 A JP2010002539 A JP 2010002539A JP 2010002539 A JP2010002539 A JP 2010002539A JP 2011140422 A JP2011140422 A JP 2011140422A
Authority
JP
Japan
Prior art keywords
limestone
fine
concrete
fine particles
mortar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010002539A
Other languages
Japanese (ja)
Other versions
JP5483336B2 (en
Inventor
Katsuya Kono
克哉 河野
Shinichi Kurosawa
真一 黒澤
Ryoichi Takagi
亮一 高木
Minoru Yoshimoto
稔 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2010002539A priority Critical patent/JP5483336B2/en
Publication of JP2011140422A publication Critical patent/JP2011140422A/en
Application granted granted Critical
Publication of JP5483336B2 publication Critical patent/JP5483336B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To consider the problem in the well-known method by which fine aggregate is produced, in such a manner that, to the total content of fine particles included in limestone fine aggregate, the content of the prescribed fine particles in the above limestone reaches a prescribed value, additional fine particles including the limestone fine particles with a prescribed particle size or below are added, that a fixed effect can be obtained against bleeding, but, a new problem that drying shrinkage increases is generated, and to prevent the above problem jointly with the dissolution of the problem of the bleeding. <P>SOLUTION: In the fine aggregate for mortar or concrete, among all the fine particles passing through a particle size 0.075 mm sieve, the amount of the fine particles with limestone as the component is <1.0 mass%, also, the amount of one or more mineral fine particles not reacting with portland cement and comprising SiO<SB>2</SB>components, which are selected from andesite, basalt and sandstone is 3 to 12 mass%, and, except for the above fine particles, limestone is used as the main component. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、モルタル又はコンクリート用細骨材、及びこれを用いたモルタル、コンクリートの製造方法に関するものである。   The present invention relates to a fine aggregate for mortar or concrete, and a method for producing mortar and concrete using the same.

従来、モルタル及びコンクリートを製造する際に用いられる骨材のひとつとして、石灰石から製造する骨材、すなわちコンクリート用石灰石骨材が古くから広く用いられている。   Conventionally, as one of the aggregates used when manufacturing mortar and concrete, aggregates manufactured from limestone, that is, limestone aggregates for concrete, have been widely used for a long time.

コンクリート用石灰石骨材は、砕石、砕砂でありJIS A 5005の規定を満たす物理的性能を有する他、一般にアルカリ骨材反応が起こらない骨材とされており、高強度のコンクリートの製造にも対応し得るものである。   Limestone aggregate for concrete is crushed stone and crushed sand and has physical performance that meets the requirements of JIS A 5005. In addition, it is generally considered to be an aggregate that does not cause alkali aggregate reaction, and can be used to produce high-strength concrete. It is possible.

そして斯かるコンクリート用石灰石骨材のなかでもコンクリート石灰石細骨材は、一般に製造プラントにて湿式製造によって製造されている。コンクリート石灰石細骨材の湿式製造とは、一般に、石灰石を最大粒径5mm以下へと破砕した破砕物に凝集剤と水とを入れて、さらにチューブミル等により粉砕・造粒した後、粒径0.15mm以下の微粒分を含む分離濁水と粒径0.15mmを超える石灰石砂すなわち石灰石細骨材とに分離することによりコンクリート用石灰石細骨材を製造するというものである。   Among such limestone aggregates for concrete, concrete limestone fine aggregates are generally manufactured by wet manufacturing at a manufacturing plant. Wet production of concrete limestone fine aggregate generally means adding flocculating agent and water to crushed material obtained by crushing limestone to a maximum particle size of 5 mm or less, and further grinding and granulating with a tube mill or the like. The limestone fine aggregate for concrete is manufactured by separating into separated turbid water containing fine particles of 0.15 mm or less and limestone sand having a particle diameter of more than 0.15 mm, that is, limestone fine aggregate.

そして良質のモルタル、コンクリートを得るため、細骨材の製造方法に関しては上述の湿式製造方法に限らず種々の技術が提案され、その製造工程において、所要の粒度分布を得るための技術や、効率よく不純物を除去するための技術、さらにはより確実に洗浄された細骨材を得るための技術などが提案されている(例えば、特許文献1乃至3参照)。   In order to obtain good quality mortar and concrete, various techniques are proposed for the production method of fine aggregates, not limited to the above-described wet production method. In the production process, techniques for obtaining a required particle size distribution and efficiency are proposed. Techniques for removing impurities well, techniques for obtaining fine aggregates that have been more reliably cleaned, and the like have been proposed (see, for example, Patent Documents 1 to 3).

他方、ある条件下で製造されたコンクリートにおいて、打ち込み後のコンクリートが沈降し、材料分離を起こし、水が表面に浮いてくるブリーディングが発生することが知られている。   On the other hand, in concrete manufactured under certain conditions, it is known that the concrete after placing sinks, causes material separation, and bleeding occurs where water floats on the surface.

そして、このようなブリーディングに関しては、細骨材の一部を冶金スラグ微粒子で置換するなどの手法を採ることが知られている(例えば、特許文献4参照)。   For such bleeding, it is known to adopt a technique such as replacing a part of fine aggregate with metallurgical slag fine particles (see, for example, Patent Document 4).

特開2000−290049号公報JP 2000-290049 A 特開2001−48612号公報JP 2001-48612 A 特開2002−128551号公報JP 2002-128551 A 特開2000−247712号公報JP 2000-247712 A 特開2009−234841号公報JP 2009-234841 A

更に、特に湿式製造された石灰石細骨材を使用する場合においては、石灰石細骨材は特許文献4に開示されているような、SiO2を主成分とする砕砂に比べて、ブリーディングの発生する可能性が高いことが知られていた。 Furthermore, in the case of using a limestone fine aggregate produced in a wet manner, the limestone fine aggregate generates bleeding as compared with the crushed sand mainly composed of SiO 2 as disclosed in Patent Document 4. It was known that the possibility was high.

また、石灰石細骨材に含まれている所定粒径以下の微粒分の量を測定する工程と、石灰石細骨材及び石灰石細骨材に含まれる微粒分の合計量に対する前記石灰石の所定微粒分が所定値となるように、所定粒径以下の石灰石微粒分を含む添加微粒分を添加して、細骨材を製造する方法が知られている(特許文献5)。しかし、本方法では、ブリーディングに対して、一定効果が得られるものの、乾燥収縮が大きくなるという問題が、あらたに浮上してくることを見出した。   Further, the step of measuring the amount of fine particles having a predetermined particle size or less contained in the limestone fine aggregate, and the predetermined fine particles of the limestone with respect to the total amount of fine particles contained in the limestone fine aggregate and the limestone fine aggregate There is known a method for producing a fine aggregate by adding an added fine particle containing a limestone fine particle having a predetermined particle size or less so that becomes a predetermined value (Patent Document 5). However, in this method, it was found that the problem that drying shrinkage increases although a certain effect can be obtained with respect to bleeding newly emerges.

そこで、乾燥収縮の防止も可能で、ブリーディングの問題も併せて解消することを新たな課題とした。   Therefore, it was possible to prevent drying shrinkage and to solve the bleeding problem as a new issue.

本発明は、このような課題を解決するために、粒径0.075mm篩を通過する粒分(以下、微粒分という)で、石灰石を成分とする微粒分の量が、1.0質量%未満であり、ポルトランドセメントと反応しない、SiO成分を含有する安山岩、玄武岩、砂岩の中から選ばれる一以上の鉱物質の微粒分の量が、3〜12質量%であり、且つ、粒径0.075mm篩を通過しない粒分(以下、粗粒分という)は、石灰石であることを特徴とするモルタル又はコンクリート用細骨材、を提供する。更に、微粒分の量が、3〜9質量%である前記の細骨材、を提供する。 In order to solve such a problem, the present invention has a particle size that passes through a sieve having a particle size of 0.075 mm (hereinafter referred to as a fine particle content), and the amount of the fine particle component of limestone is 1.0% by mass. The amount of fine particles of at least one mineral selected from andesite, basalt and sandstone containing SiO 2 component, which is less than and does not react with Portland cement, is 3 to 12% by mass, and the particle size The particle | grains (henceforth a coarse particle part) which do not pass a 0.075mm sieve provide the fine aggregate for mortar or concrete characterized by being limestone. Furthermore, the said fine aggregate whose quantity of a fine particle is 3-9 mass% is provided.

更にまた、細骨材を用いてなるモルタル又はコンクリートの製造方法であって、石灰石原石を粗砕し、更に粉砕した後、粒径0.075mm以下の石灰石微粒分の量を、水洗浄、篩処理、又は、水簸により、1.0質量%未満とした石灰石粒分とし、別に準備した、SiO成分を含有する安山岩、玄武岩、砂岩の中から選ばれる一以上の岩種の鉱物質粉末を、粒径0.075mm以下に調製して、前記石灰石粒分と混合して、微粒分量を3〜12質量%とした細骨材を用いてモルタル、コンクリートとすることを特徴とするモルタル又はコンクリートの製造方法、を提供する。 Furthermore, it is a method for producing mortar or concrete using fine aggregates, and after coarsely pulverizing and further pulverizing limestone, the amount of fine limestone particles having a particle size of 0.075 mm or less is washed with water, sieved Mineral powder of one or more rock types selected from andesite, basalt and sandstone containing SiO 2 component, prepared as limestone grains less than 1.0 mass% by treatment or water tank Is adjusted to a particle size of 0.075 mm or less, mixed with the limestone particles, and mortar or concrete using fine aggregate with a fine particle amount of 3-12% by mass or concrete A method for producing concrete is provided.

石灰石砕砂の製造は、以下の通りである。原石を露天採掘し、穿孔,爆砕,積込みを経て,立坑またはプラントまで運搬する。プラントへ搬入した原石は、ジョークラッシャーなどで1次粉砕し、150mm程度に粗砕される。その後、細割りジョークラッシャーやコーンクラッシャーなどで2次・3次の粉砕ならびに分級をおこない、コンクリート用砕石(粗骨材)としての粒度(20〜5mm)に調整される。粒度調整のふるいは、乾式プラントでは分級のみの目的で使用されるが、湿式プラントでは分級とともに水洗浄も兼ねる形で使用される。 The production of limestone crushed sand is as follows. The rough ore is mined and transported to a shaft or plant through drilling, blasting and loading. The raw stones brought into the plant are primarily crushed with a jaw crusher and crushed to about 150 mm. After that, secondary and tertiary crushing and classification are performed with a finely divided jaw crusher or cone crusher, and the particle size (20-5 mm) as a crushed stone (coarse aggregate) for concrete is adjusted. The particle size adjusting sieve is used only for the purpose of classification in a dry plant, but is used in a wet plant that also serves as a water washing as well as classification.

砕石を原料として、粒径5mm以下のコンクリート用砕砂(細骨材)を製造し、その際に用いられる製砂機は、一般的なロッドミルなどが使用できる。ロッドミルの運転方式には乾式と湿式があるが、乾式は生産性が低く微粉の発生量が多いため、より一般的な湿式方式が好ましい。 A crushed stone is used as a raw material to produce concrete crushed sand (fine aggregate) having a particle size of 5 mm or less, and the sand making machine used at that time can use a general rod mill or the like. There are dry and wet methods for operating the rod mill, but the dry method is preferable because the productivity is low and the amount of fine powder generated is large.

ついで、石灰石砕砂からの微粒分除去は、以下の通りおこなう。砕砂(細骨材)の微粒分の調整には、分級機と同じ機構であるスクリーンウォッシャー、ロッグウォッシャーなどを用いて、微粒分を水洗浄することができる。このような湿式洗浄方法に限らず、ふるい網などを用いて乾式ふるい分けによっても微粒分を除去することも好ましい。 Next, fine particle removal from the limestone crushed sand is performed as follows. For adjustment of fine particles of crushed sand (fine aggregate), the fine particles can be washed with water using a screen washer, a log washer, etc., which are the same mechanism as the classifier. It is also preferable to remove fine particles not only by such a wet cleaning method but also by dry sieving using a sieve net or the like.

更に、微粒分除去した石灰石砕砂に対する他岩種微粒分の添加は、以下の通りおこなう。石灰石以外の他岩種の微粒分は、本発明のために原石などを微粉砕することで作製できるほか、他岩種の砕石(粗骨材)・砕砂(細骨材)の製造で、ふるい分けや分級の工程で排出された微粉砕物を使用することができる。 Furthermore, the addition of fine particles of other rock species to the limestone crushed sand from which fine particles have been removed is performed as follows. For the purposes of the present invention, the fine particles of other rock types other than limestone can be produced by finely pulverizing the raw stones, etc. The finely pulverized product discharged in the classification process can be used.

石灰石微粒分を除去した石灰石砕砂に対して、これらの他岩種の微粒分を所定量添加し、混合機などによって均一に分散させることで得られる。なお、石灰石微粒分を除去した石灰石砕砂、他岩種の微粒分を別個に準備し、モルタルあるいはコンクリートを製造する際のミキサーにそれぞれを所定の分量で投入することも好ましい。 It is obtained by adding a predetermined amount of fine particles of these other rock types to the limestone crushed sand from which fine particles of limestone have been removed, and uniformly dispersing the mixture with a mixer or the like. In addition, it is also preferable to prepare separately the limestone crushed sand from which limestone fine particles have been removed and the fine particles of other rock types, and put them in a predetermined amount into a mixer for producing mortar or concrete.

発明者らは、多くの実験によって、石灰石細骨材を用いた硬化体の材齢7日までの乾燥収縮は、エーライト等の水和進行によることを見出した。エーライト等の急速な水和進行によって、その細孔組織が緻密化し、全体のボリュームが減少するからである。エーライト等の水和進行を遅延化するのが、乾燥収縮を抑制する方策となりうる。 The inventors have found through many experiments that the drying shrinkage of hardened bodies using limestone fine aggregates until the age of 7 days is due to the progress of hydration such as alite. This is because the rapid hydration of alite or the like causes the pore structure to become dense and the overall volume decreases. Delaying the progress of hydration of alite or the like can be a measure for suppressing drying shrinkage.

しかし、それには、セメントの初期水和のメカニズムを詳細かつ正確に把握する必要が生じた。0.075mm未満の石灰石微粒分の表面が、材齢7日ごろまでのカルシウムシリケートハイドレートの析出サイトを提供すること、また、石灰石微粉末自身の反応によって、エーライトの表面がカルシウムシリケートハイドレートに被覆されることが少なくなって、この遅延効果が減殺されることを見出した。そこで、エーライトの早期の水和を他の硬化体の特性を減ずることなく、適度に緩和するためには、エーライト等の表面に、カルシウムシリケートハイドレート層を形成させると効果的であることを見出した。 However, this required a detailed and accurate understanding of the mechanism of the initial hydration of the cement. The surface of fine limestone less than 0.075 mm provides calcium silicate hydrate precipitation sites up to about 7 days of age, and the reaction of the limestone fine powder itself causes the surface of alite to become calcium silicate hydrate. It has been found that this delay effect is diminished with less coating. Therefore, it is effective to form a calcium silicate hydrate layer on the surface of alite, etc., to moderately ease early hydration of alite without reducing the properties of other hardened bodies. I found.

カルシウムシリケートハイドレートは、析出サイトを提供する石灰石微粉末表面に集中する結果、エーライト等の表面には、析出が少なくなる。表面被覆されないエーライトは、水和反応が表面から大きく進行して、組織が緻密化するからである。 Calcium silicate hydrate concentrates on the surface of fine limestone powder that provides precipitation sites, and as a result, precipitation on the surface of alite or the like is reduced. This is because in the case of alite that is not surface-coated, the hydration reaction proceeds greatly from the surface and the tissue becomes dense.

ところが、0.075mm未満の石灰石微粒分を除去すると、乾燥収縮は、防ぐことができるが、微粒分を失って、保水効果を保てなくなった結果、ブリーディング率は、増大した。 However, when the limestone fine particles of less than 0.075 mm are removed, drying shrinkage can be prevented, but as a result of losing the fine particles and being unable to maintain the water retaining effect, the bleeding rate increased.

そこで、更に鋭意検討した結果、カルシウムシリケートの析出サイトを与えにくく、セメントとの反応性に乏しい岩種の微粒分を代替して、ブリーディング率の増大を抑制した。 As a result of further diligent investigations, the increase in the bleeding rate was suppressed by substituting fine particles of rock species that are difficult to provide calcium silicate precipitation sites and have poor reactivity with cement.

セメントとの反応性の乏しい岩種として、安山岩、玄武岩、砂岩が好ましい。これらは、表面がカルシウムシリケートハイドレートの析出の場となりにくく、むしろ水酸化カルシウムの析出サイトとなっており、ポーラスな遷移領域を形成する。 Andesite, basalt, and sandstone are preferred as rock types with low reactivity with cement. These surfaces are unlikely to precipitate calcium silicate hydrate, but rather serve as calcium hydroxide precipitation sites, forming a porous transition region.

微粒分は、3〜12質量%とすることが好ましい。微粒分が3質量%より少ないと、ブリーディングが増加して水の移動経路が内部欠陥となり、微粒分が12質量%より多いと、粘性が増加して流動性(フロー値)が低下しはじめることになる。安山岩とした実験例では、ブリーディング、乾燥収縮ともに良好な結果が得られた。また3〜9質量%とすると更に次理由で好ましい。微粒分が9質量%より多いと、ブリーディングの発生量は極めて少なくなり、モルタルやコンクリート打込み面の表面仕上げを必要とする場合のブリーディングまで抑制するからである。また、9質量%よりも多い微粒分は、流動性の低下や乾燥収縮の増加を次第に生じさせ、水酸化カルシウムを多く含むポーラスな遷移領域を形成する傾向にあり、初期の圧縮強度が次第に低下するおそれがあるからである。 The fine particle content is preferably 3 to 12% by mass. If the fine particle content is less than 3% by mass, bleeding increases and the water transfer path becomes an internal defect. If the fine particle content is more than 12% by mass, the viscosity increases and the fluidity (flow value) starts to decrease. become. In the example of andesite, good results were obtained for both bleeding and drying shrinkage. Moreover, when it is 3-9 mass%, it is more preferable for the following reason. This is because if the fine particle content is more than 9% by mass, the amount of bleeding is extremely reduced, and even the bleeding when the surface finish of the mortar or the concrete placing surface is required is suppressed. In addition, fine particles of more than 9% by mass tend to cause decrease in fluidity and increase in drying shrinkage, tend to form a porous transition region containing a large amount of calcium hydroxide, and the initial compressive strength gradually decreases. It is because there is a possibility of doing.

他方、粗粒分を安山岩とした実験例では、微粒分を、安山岩、石灰石のいずれとしても、ブリーディングでは、好結果の得られた実験例でも、乾燥収縮が大きく、満足すべき結果は得られなかった。これは、粗粒分の場合、微粒分とは異なって比表面積が大きいため、セメントとの反応性が低く、そのほとんどは収縮変形に対する物理的な拘束物として機能することになる。その際に安山岩は、石灰石よりも弾性係数が低いため、収縮を拘束・低減する効果が小さくなる。これに対して、石灰石を粗粒分として用いた場合には、その高い弾性係数のために収縮変形を拘束し、収縮を低減する効果を十分に発揮できることになる。 On the other hand, in the experimental example in which the coarse fraction was andesite, the fine fraction was either andesite or limestone, and in bleeding, the dry shrinkage was large and satisfactory results were obtained even in the experimental example with good results. There wasn't. This is because, in the case of coarse particles, the specific surface area is large, unlike the fine particles, so that the reactivity with cement is low, and most of them function as physical restraints against shrinkage deformation. At that time, andesite has a lower elastic modulus than limestone, so the effect of restraining and reducing shrinkage is reduced. On the other hand, when limestone is used as the coarse particles, the effect of restraining shrinkage deformation and reducing shrinkage can be sufficiently exhibited due to its high elastic modulus.

上記細骨材を採用すると、乾燥収縮の防止も可能で、寸法精度を向上させ、ブリーディング問題も同時に解決し、沈降ひび割れを回避したモルタル及びコンクリートを製造することが可能となる。 When the fine aggregate is employed, drying shrinkage can be prevented, dimensional accuracy can be improved, bleeding problems can be solved at the same time, and mortar and concrete that avoids settling cracks can be produced.

特に本発明に係るモルタル及びコンクリートの製造方法は、特に乾燥収縮の大きかった石灰石骨材の寸法精度の問題を解決して、ブリーディングを起こし易いとされていた湿式製造により製造された石灰石を主とする細骨材を使用して、ブリーディングの低減したモルタル、コンクリートを製造することができる。   In particular, the method for producing mortar and concrete according to the present invention solves the problem of dimensional accuracy of limestone aggregate, which has been particularly dry shrinkage, and mainly uses limestone produced by wet production, which was supposed to cause bleeding. By using the fine aggregate, mortar and concrete having reduced bleeding can be produced.

石灰石細骨材を使用するモルタル又はコンクリート材料に対して、本発明の細骨材を適用することで、乾燥収縮の小さくて寸法精度の高い、ブリーディングに起因する沈降ひび割れを有効に回避した、耐久性の高いモルタル及びコンクリートを容易に製造することが可能となる。   By applying the fine aggregates of the present invention to mortar or concrete materials that use limestone fine aggregates, durability that effectively avoids settling cracks due to bleeding with small drying shrinkage and high dimensional accuracy It becomes possible to easily produce mortar and concrete having high properties.

実験例に係る乾燥収縮ひずみの乾燥期間(日)変化を示す図である。It is a figure which shows the drying period (days) change of the drying shrinkage strain which concerns on an experiment example.

以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.

以下に本発明に係る実施例を示すが、本発明は斯かる実施例に何ら限定されるものではない。   Examples of the present invention are shown below, but the present invention is not limited to such examples.

石灰石原石は、石灰石鉱山にて露天採掘し、穿孔,爆砕,積込みを経て,立坑またはプラントまで運搬した。プラントへ搬入した原石は、ジョークラッシャーで、150mm程度に粗砕した。 その後、細割りジョークラッシャーで、さらに粉砕ならびに分級し、コンクリート用砕石(粗骨材)としての粒度(20〜5mm)に調整した。 The raw limestone was mined from the limestone mine, drilled, crushed and loaded, and transported to the shaft or plant. The raw stones brought into the plant were roughly crushed to about 150 mm with a jaw crusher. Then, it was further pulverized and classified with a finely divided jaw crusher, and adjusted to a particle size (20 to 5 mm) as crushed stone for concrete (coarse aggregate).

粒度調整のふるいは、湿式プラントでは分級とともに水洗浄も兼ねる形で使用した。砕石を原料として粒径5mm以下のコンクリート用砕砂(細骨材)を製造し、その際に用いられる製砂機は、ロッドミルを使用した。ロッドミルの運転方式には、生産性が高く微粉の発生量が少ない湿式を採用した。 The sieve for particle size adjustment was used in a wet plant that was classified and used for water washing as well. Concrete crushed sand (fine aggregate) having a particle size of 5 mm or less was produced using crushed stone as a raw material, and a sand mill used at that time used a rod mill. The rod mill operation method is wet, which is highly productive and generates a small amount of fine powder.

砕砂(細骨材)の微粒分の調整には、分級機と同じ機構であるスクリーンウォシャーを用いて、微粒分を水洗浄によって、石灰石砕砂から微粒分を除去した。 For the adjustment of the fine particles of the crushed sand (fine aggregate), the fine particles were removed from the limestone crushed sand by washing with water using a screen washer which is the same mechanism as the classifier.

ついで、石灰石以外の他岩種の微粒分は、他岩種の砕石(粗骨材)・砕砂(細骨材)の製造で、ふるい分けや分級の工程で排出された微粉砕物を使用して、石灰石微粒分を除去した石灰石砕砂に対して、これらの他岩種の微粒分を所定量添加し、混合機(ミキサー)で均一に分散して製造した。 Next, the fine particles of other rocks other than limestone are crushed stones (coarse aggregates) and crushed sand (fine aggregates) of other rocks. A predetermined amount of fine particles of these other rock types was added to the limestone crushed sand from which fine particles of limestone had been removed, and the mixture was uniformly dispersed with a mixer (mixer).

このように製造された本発明に係る砕砂は、モルタルもしくはコンクリート用の細骨材として用いることができるものである。モルタルの細骨材として用いた実験例は、水、セメント、細骨材および混和剤をモルタル用ミキサーに投入して3分間練り混ぜ、各種の評価試験に供したものである。 The crushed sand according to the present invention thus produced can be used as a fine aggregate for mortar or concrete. In the experimental example used as a fine aggregate of mortar, water, cement, fine aggregate and an admixture were put into a mixer for mortar and kneaded for 3 minutes and subjected to various evaluation tests.

ここで、使用材料は、
水(W):水道水
セメント(C):普通ポルトランドセメント(太平洋セメント社製、密度3.16g/cm3)
混和剤(SP):高性能減水剤レオポルドSP8SV(BASFポゾリス社製)を使用した。
細骨材(S)は、上記製造方法に拠った。
Here, the material used is
Water (W): Tap water cement (C): Ordinary Portland cement (manufactured by Taiheiyo Cement Co., Ltd., density 3.16 g / cm3)
Admixture (SP): High performance water reducing agent Leopold SP8SV (manufactured by BASF Pozzolith) was used.
The fine aggregate (S) was based on the above production method.

配合は、W/C=50.0%、空気量:5.0体積%、W=262Kg/m3、C=524Kg/m3、S=522l/m3、SP=C×1.1% とした。   The composition was W / C = 50.0%, air amount: 5.0% by volume, W = 262 Kg / m3, C = 524 Kg / m3, S = 522 l / m3, SP = C × 1.1%.

表1には、0.075mm以上の粗粒分を石灰石或いは安山岩とし、0.075mm全通の微粒分(微粒分)を安山岩或いは石灰石とした細骨材について、微粒分の質量を変化させて得られた細骨材の微粒分量(質量%)、密度(g/cm3)を示した。略号のLA09は、石灰石粗粉(L)、安山岩微粒分(A)で、微粒分(0.075mm全通分)約9%の構成であることを示している。 Table 1 shows the fine aggregate with fine particles of 0.075 mm or more as limestone or andesite and 0.075 mm of fine particles (fine particles) as andesite or limestone. The fine particle amount (mass%) and density (g / cm 3 ) of the obtained fine aggregate were shown. The abbreviation LA09 indicates that the composition is composed of limestone coarse powder (L) and andesite fine particles (A) and about 9% fine particles (all 0.075 mm).

表2には、上記実験試料につき、そのフロー値、ブリーディング率、乾燥収縮、圧縮強度を測定した結果を示した。 Table 2 shows the results of measuring the flow value, bleeding rate, drying shrinkage, and compressive strength of the experimental sample.

フロー値は、JISR5201に準拠した。空気量は、JISA1128、ブリーディング率は、土木学会規準JSCE−F522−1999、圧縮強度は、5φ×10cmの試験片をもちいたJISA1108、乾燥収縮は、JISA1129−2に準拠した。 The flow value conformed to JISR5201. The amount of air was in accordance with JISA1128, the bleeding rate was in accordance with JSCE-F522-1999, Japan Society of Civil Engineers, the compressive strength was in accordance with JISA1108 using a test piece of 5φ × 10 cm, and the drying shrinkage was in accordance with JISA1129-2.

評価基準を、
フロー値 ○:180mm以上、△:160〜180mm、×:160mm未満
ブリーディング率 ○:3%未満、×:3%以上
乾燥収縮 ○:800×10−6未満、△:800×10-6以上1000×10−6未満、×:1000×10−6以上とすると、表2の特性値の結果は、表3のように表現できる。
Evaluation criteria
Flow value ○: 180 mm or more, Δ: 160 to 180 mm, x: less than 160 mm bleeding rate ○: less than 3%, x: 3% or more dry shrinkage ○: less than 800 × 10 −6 , Δ: 800 × 10 −6 or more and 1000 When less than × 10 −6 and ×: 1000 × 10 −6 or more, the result of the characteristic values in Table 2 can be expressed as shown in Table 3.

0.075mm未満の石灰石微粒分を除いた実験例6は、乾燥収縮が、表中の実験例中最小である。しかし、ブリーディング率は、最大となった。 In Experimental Example 6 excluding the limestone fine particles less than 0.075 mm, the drying shrinkage is the smallest among the experimental examples in the table. However, the bleeding rate reached its maximum.

図1には、実験番号2、5、8、11に対応する試験片の乾燥収縮ひずみの乾燥期間(日)変化を示した。実験番号2のみ、満足すべき結果が得られた。 FIG. 1 shows the drying period (days) change of the drying shrinkage strain of the test pieces corresponding to the experiment numbers 2, 5, 8, and 11. Only experiment number 2 gave satisfactory results.

結果を総合して、微粒分を3〜12質量%の安山岩とした実験例1から3では、ブリーディング、乾燥収縮ともに良好な結果が得られた。他方、粗粒分を安山岩とした実験例では、微粒分を、安山岩、石灰石のいずれとしても、ブリーディングでは、好結果の得られた実験例でも、乾燥収縮が大きく、満足すべき結果は得られなかった。 By combining the results, in Experimental Examples 1 to 3 in which the fine fraction was 3 to 12% by mass of andesite, good results were obtained for both bleeding and drying shrinkage. On the other hand, in the experimental example in which the coarse fraction was andesite, the fine fraction was either andesite or limestone, and in bleeding, the dry shrinkage was large and satisfactory results were obtained even in the experimental example with good results. There wasn't.

特に本発明に係るモルタル及びコンクリートの製造方法は、特に乾燥収縮の大きかった石灰石骨材の寸法精度の問題を解決して、ブリーディングを起こし易いとされていた湿式製造により製造された石灰石を主とする細骨材を使用して、ブリーディングの低減したモルタル、コンクリートを製造することができる。ブリーディングに起因する沈降ひび割れを有効に回避した、耐久性の高いモルタル及びコンクリートを容易に製造することが可能となる。 In particular, the method for producing mortar and concrete according to the present invention solves the problem of dimensional accuracy of limestone aggregate, which has been particularly dry shrinkage, and mainly uses limestone produced by wet production, which was supposed to cause bleeding. By using the fine aggregate, mortar and concrete having reduced bleeding can be produced. It becomes possible to easily manufacture mortar and concrete having high durability that effectively avoids settling cracks due to bleeding.

Claims (3)

粒径0.075mm篩を通過する粒分(以下、微粒分という)で、石灰石を成分とする微粒分の量が、1.0質量%未満であり、ポルトランドセメントと反応しない、SiO成分を含有する安山岩、玄武岩、砂岩の中から選ばれる一以上の鉱物質の微粒分の量が、3〜12質量%であり、且つ、粒径0.075mm篩を通過しない粒分(以下、粗粒分という)は、石灰石であることを特徴とするモルタル又はコンクリート用細骨材。 Particle size of 0.075 mm particle size (hereinafter referred to as fine particle content), the amount of fine particle component containing limestone is less than 1.0% by mass and does not react with Portland cement, SiO 2 component The amount of fine particles of one or more minerals selected from andesite, basalt and sandstone is 3 to 12% by mass and does not pass through a sieve having a particle size of 0.075 mm (hereinafter referred to as coarse particles). Min) is a fine aggregate for mortar or concrete characterized by being limestone. 微粒分の量が、3〜9質量%である請求項1記載の細骨材。 The fine aggregate according to claim 1, wherein the amount of fine particles is 3 to 9% by mass. 細骨材を用いてなるモルタル又はコンクリートの製造方法であって、
石灰石原石を粗砕し、更に粉砕した後、粒径0.075mm以下の石灰石微粒分の量を、水洗浄、篩処理、又は、水簸により、1.0質量%未満とした石灰石粒分とし、
別に準備した、SiO成分を含有する安山岩、玄武岩、砂岩の中から選ばれる一以上の岩種の鉱物質粉末を、粒径0.075mm以下に調製して、前記石灰石粒分と混合して、微粒分量を3〜12質量%とした細骨材を用いてモルタル、コンクリートとすることを特徴とするモルタル又はコンクリートの製造方法。
A method for producing mortar or concrete using fine aggregate,
After roughly crushing the limestone ore and further crushing it, the amount of fine limestone particles with a particle size of 0.075 mm or less is made into limestone particles less than 1.0% by mass with water washing, sieving, or chickenpox. ,
Separately prepared mineral powder of one or more rock types selected from andesite, basalt and sandstone containing SiO 2 component is prepared to a particle size of 0.075 mm or less and mixed with the limestone particles. A method for producing mortar or concrete, characterized in that a fine aggregate having a fine particle content of 3 to 12% by mass is used as mortar or concrete.
JP2010002539A 2010-01-08 2010-01-08 Fine aggregate for mortar or concrete, and mortar and concrete manufacturing method using the same Active JP5483336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010002539A JP5483336B2 (en) 2010-01-08 2010-01-08 Fine aggregate for mortar or concrete, and mortar and concrete manufacturing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010002539A JP5483336B2 (en) 2010-01-08 2010-01-08 Fine aggregate for mortar or concrete, and mortar and concrete manufacturing method using the same

Publications (2)

Publication Number Publication Date
JP2011140422A true JP2011140422A (en) 2011-07-21
JP5483336B2 JP5483336B2 (en) 2014-05-07

Family

ID=44456566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010002539A Active JP5483336B2 (en) 2010-01-08 2010-01-08 Fine aggregate for mortar or concrete, and mortar and concrete manufacturing method using the same

Country Status (1)

Country Link
JP (1) JP5483336B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7082509B2 (en) 2018-03-29 2022-06-08 太平洋セメント株式会社 Portland cement

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256316A (en) * 2003-02-24 2004-09-16 Kamada Kogyo:Kk High-quality concrete
JP2009234840A (en) * 2008-03-26 2009-10-15 Sumitomo Osaka Cement Co Ltd Method for manufacturing mortar and concrete

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256316A (en) * 2003-02-24 2004-09-16 Kamada Kogyo:Kk High-quality concrete
JP2009234840A (en) * 2008-03-26 2009-10-15 Sumitomo Osaka Cement Co Ltd Method for manufacturing mortar and concrete

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013046379; 笠井芳夫: コンクリート総覧 , 19980610, P.195,214 *
JPN6013046380; 社団法人セメント協会: コンクリート専門委員会報告F-46「石灰石骨材コンクリートに関する研究」 , 1992, P.7,14 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7082509B2 (en) 2018-03-29 2022-06-08 太平洋セメント株式会社 Portland cement

Also Published As

Publication number Publication date
JP5483336B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
CN109516703B (en) Recovery of aggregate and powdery mineral material from demolition waste
EP2768788B1 (en) Particle packed cement-scm blends
JP5597467B2 (en) Manufacturing method of recycled concrete
KR101001221B1 (en) High early-strength concrete compound with low carbon, high early-strength concrete with low carbon using thereof, and the manufacturing method thereof
KR102028229B1 (en) Method for manufacturing of supplementary cementitious materials (scms)
CN112374843B (en) Method for preparing mine filling concrete by utilizing wet-grinding steel slag ore pulp
Cwirzen Properties of SCC with industrial by-products as aggregates
Ochkurov et al. Comparative evaluation of the saving of binder with fine ground slag
JP5483336B2 (en) Fine aggregate for mortar or concrete, and mortar and concrete manufacturing method using the same
JP2009234840A (en) Method for manufacturing mortar and concrete
JP2002121053A (en) Cement/concrete admixture and its production process
KR101322911B1 (en) Concrete compound using granulated slag-water cooled and manufacturing method thereof
JP2003192403A (en) Portland cement for concrete
JP2011006311A (en) Method of producing aggregate
KR102434664B1 (en) Recycling method of FeNi air cooled slag
JP5057909B2 (en) Cement composition
JP5484655B2 (en) Method for suppressing alkali-aggregate reaction in concrete or mortar
CN114195412B (en) Regenerated micro-powder cement and preparation method thereof
JP2011020883A (en) Autoclaved lightweight cellular concrete and method for producing the same
Naidu et al. Compressive strength and pull-out force of concrete incorporating quarry dust and mineral admixtures
KR101720212B1 (en) Dry mortar composition comprising blast furnace slag
EP4365146A1 (en) Blended cements, methods for their manufacture, and use of an admixture to increase performance of blended cements
JP2006083062A (en) Fine aggregate and its manufacturing method
JP2024517057A (en) Method for extracting aggregates from waste construction materials by crushing
JP2005219958A (en) Blast furnace slag fine aggregate, method of producing the same and fine aggregate for cement concrete or mortar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140212

R150 Certificate of patent or registration of utility model

Ref document number: 5483336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250