JP2011138983A - Integrated circuit - Google Patents

Integrated circuit Download PDF

Info

Publication number
JP2011138983A
JP2011138983A JP2009299160A JP2009299160A JP2011138983A JP 2011138983 A JP2011138983 A JP 2011138983A JP 2009299160 A JP2009299160 A JP 2009299160A JP 2009299160 A JP2009299160 A JP 2009299160A JP 2011138983 A JP2011138983 A JP 2011138983A
Authority
JP
Japan
Prior art keywords
layer
tantalum
integrated circuit
resistance
tantalum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009299160A
Other languages
Japanese (ja)
Inventor
Masayuki Iwamatsu
正幸 岩松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2009299160A priority Critical patent/JP2011138983A/en
Publication of JP2011138983A publication Critical patent/JP2011138983A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an integrated circuit which improves a sound quality compared with a conventional product, and incorporates a circuit for analog sound signal processing. <P>SOLUTION: In the integrated circuit 10, analog sound signals input from input terminals 12, 14 are voltage-divided by a resistor network 20 composed of resistance elements R1, R2 and input to a non-inverting input terminal of an operational amplifier 22. An output signal from the operational amplifier 22 is voltage-divided by a resistor network 24 composed of resistance elements R3, R4 and fed back to an inverting input terminal of the operational amplifier 22. Signals from both the ends of the resistance elements R3, R4 are output from output terminals 16, 18. Each of the resistance elements R1 to R4 composing respective resistor networks 20, 24 is composed of a two-layer lamination structure of a tantalum nitride layer 30 and a tantalum layer 28. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明はアナログ音声信号処理用の回路を内蔵する集積回路に関し、従来のものに比べて音質を向上させたものである。   The present invention relates to an integrated circuit incorporating a circuit for processing an analog audio signal, and has improved sound quality as compared with the conventional circuit.

集積回路に内蔵される抵抗素子は従来はポリシリコンで構成したものが一般的であった。抵抗素子をポリシリコンで構成した集積回路としては例えば下記特許文献1に記載されたものがあった。   Conventionally, a resistance element built in an integrated circuit is generally composed of polysilicon. As an integrated circuit in which the resistance element is made of polysilicon, for example, there is one described in Patent Document 1 below.

特開2000−022077JP2000-022077

抵抗素子をポリシリコンで構成したアナログ音声信号処理用の回路を内蔵する集積回路を使用して音声信号を電力増幅してヘッドフォンで再生して試聴評価したところ、音質に問題があることが分かった。   Using an integrated circuit with a built-in analog audio signal processing circuit with a resistive element made of polysilicon, the audio signal was amplified by power and played back with headphones, and it was found that there was a problem with sound quality. .

この発明は上述の点に鑑みてなされたもので、従来のものに比べて音質を向上させた集積回路を提供しようとするものである。   The present invention has been made in view of the above points, and an object of the present invention is to provide an integrated circuit having improved sound quality as compared with the conventional one.

この発明の集積回路はアナログ音声信号が流れる回路中に配置される抵抗素子を窒化タンタル層とタンタル層の二層積層構造で構成したものである。この発明の集積回路によれば、試聴評価の結果、抵抗素子を他の材料で構成した場合に比べて良好な音質評価が得られた。   In the integrated circuit of the present invention, a resistance element disposed in a circuit through which an analog audio signal flows is configured by a two-layer laminated structure of a tantalum nitride layer and a tantalum layer. According to the integrated circuit of the present invention, as a result of the trial listening evaluation, better sound quality evaluation was obtained as compared with the case where the resistive element was made of other materials.

この発明の集積回路は、前記抵抗素子を特に音質に与える影響が大きい回路部分に適用するのが効果的である。そのような回路部分としては例えばアナログ音声信号を分割(分圧)する抵抗回路網が挙げられる。すなわち分割回路を構成する抵抗回路網はその分割比(分圧比)によって回路のゲインが変動するので、分割比が温度や電圧によって変動しないことが重要である。この抵抗回路網としては例えば電力増幅回路の抵抗回路網が挙げられる。   The integrated circuit of the present invention is effective when applied to a circuit portion that has a great influence on the sound quality, particularly the resistance element. An example of such a circuit portion is a resistor network that divides (divides) an analog audio signal. That is, in the resistive network constituting the dividing circuit, the gain of the circuit varies depending on the dividing ratio (voltage dividing ratio), so it is important that the dividing ratio does not vary with temperature and voltage. An example of the resistor network is a resistor network of a power amplifier circuit.

この発明の集積回路は、全抵抗素子のうち音質に与える影響が大きい一部の抵抗素子のみ窒化タンタル層とタンタル層の二層積層構造で構成して他の抵抗素子を他の材料(例えばポリシリコン)で構成するほか、全抵抗素子を窒化タンタル層とタンタル層の二層積層構造で構成することができる。全抵抗素子を窒化タンタル層とタンタル層の二層積層構造で構成すれば、他の材料で構成する抵抗層を別途不要とすることができるので、製造工程を簡素化することができる。   In the integrated circuit of the present invention, only a part of all the resistance elements having a large influence on the sound quality is constituted by a two-layer laminated structure of a tantalum nitride layer and a tantalum layer, and the other resistance elements are made of other materials (for example, poly In addition, the total resistance element can be composed of a two-layer laminated structure of a tantalum nitride layer and a tantalum layer. If the entire resistance element is formed of a two-layer laminated structure of a tantalum nitride layer and a tantalum layer, a resistance layer made of another material can be dispensed with separately, so that the manufacturing process can be simplified.

図2の集積回路10における抵抗素子R1〜R4が構成された部分の積層構造の一例を示す断面図である。It is sectional drawing which shows an example of the laminated structure of the part in which resistance element R1-R4 in the integrated circuit 10 of FIG. 2 was comprised. この発明の実施の形態に係る集積回路の回路図である。1 is a circuit diagram of an integrated circuit according to an embodiment of the present invention. 試聴評価試験を行った集積回路のブロック図である。It is a block diagram of the integrated circuit which performed the audition evaluation test.

図2はこの発明の実施の形態に係る集積回路の回路図を示す。集積回路10は入力端子12,14から入力されるアナログ音声信号を電圧・電力増幅して出力端子16,18から出力する回路として構成されている。すなわち入力端子12,14から入力されたアナログ音声信号は、抵抗素子R1,R2で構成される抵抗回路網20で分圧されてオペアンプ22の非反転入力端に入力される。入力信号の電圧をxとすると、オペアンプ22の非反転入力端に入力される信号の電圧はx・R2/(R1+R2)となる。オペアンプ22の出力信号は抵抗素子R3,R4で構成される抵抗回路網24で分圧されてオペアンプ22の反転入力端に帰還される。これによりオペアンプ22の電圧利得は(R3+R4)/R4となる。直列接続された抵抗素子R3,R4の両端の信号が出力端子16,18から出力される。端子14,18は同電位である。   FIG. 2 shows a circuit diagram of an integrated circuit according to the embodiment of the present invention. The integrated circuit 10 is configured as a circuit that amplifies an analog audio signal input from the input terminals 12 and 14 by voltage / power amplification and outputs it from the output terminals 16 and 18. That is, the analog audio signal input from the input terminals 12 and 14 is divided by the resistor network 20 including the resistor elements R1 and R2 and input to the non-inverting input terminal of the operational amplifier 22. If the voltage of the input signal is x, the voltage of the signal input to the non-inverting input terminal of the operational amplifier 22 is x · R2 / (R1 + R2). The output signal of the operational amplifier 22 is divided by a resistance network 24 composed of resistance elements R3 and R4 and fed back to the inverting input terminal of the operational amplifier 22. As a result, the voltage gain of the operational amplifier 22 becomes (R3 + R4) / R4. Signals at both ends of the resistance elements R3 and R4 connected in series are output from the output terminals 16 and 18. Terminals 14 and 18 are at the same potential.

抵抗回路網20,24を構成する抵抗素子R1〜R4は窒化タンタル層とタンタル層を積層した二層積層構造でそれぞれ構成されている。集積回路10における抵抗素子R1〜R4が構成された部分の積層構造の一例を図1に示す。ウェハ(図示せず)の表面に適宜の下層25が形成され、その上に絶縁層26が積層されている。絶縁層26の上には、タンタル層28と窒化タンタル層30を順次積層した抵抗層31が形成されている。抵抗層31の上には絶縁層32が積層されている。絶縁層32にはヴィアホール32a,32bが形成されている。絶縁層32の上には配線を構成する金属層(導電層)34が積層されている。金属層34はエッチングで左右の領域34a,34bに分断されている。左右の金属層34a,34bはヴィアホール32a,32b内にも堆積し、抵抗層31とそれぞれ電気的に接続される。これにより、抵抗層31のうちヴィアホール32a,32bの間にある部分が抵抗素子R1〜R4のうちの1つを構成し、左右の金属層34a,34bが該抵抗素子の両端に接続された導線(配線)を構成する。集積回路10にはこのような積層構造による抵抗素子R1〜R4がそれぞれ形成されている。金属層34の上には絶縁および保護層36が積層されている。   The resistive elements R1 to R4 constituting the resistive networks 20 and 24 are each configured by a two-layer laminated structure in which a tantalum nitride layer and a tantalum layer are laminated. An example of a laminated structure of a portion where the resistance elements R1 to R4 in the integrated circuit 10 are configured is shown in FIG. An appropriate lower layer 25 is formed on the surface of a wafer (not shown), and an insulating layer 26 is laminated thereon. On the insulating layer 26, a resistance layer 31 is formed in which a tantalum layer 28 and a tantalum nitride layer 30 are sequentially stacked. An insulating layer 32 is laminated on the resistance layer 31. Via holes 32 a and 32 b are formed in the insulating layer 32. On the insulating layer 32, a metal layer (conductive layer) 34 constituting a wiring is laminated. The metal layer 34 is divided into left and right regions 34a and 34b by etching. The left and right metal layers 34a and 34b are also deposited in the via holes 32a and 32b, and are electrically connected to the resistance layer 31, respectively. Thus, the portion of the resistance layer 31 between the via holes 32a and 32b constitutes one of the resistance elements R1 to R4, and the left and right metal layers 34a and 34b are connected to both ends of the resistance element. A conducting wire (wiring) is formed. Resistive elements R1 to R4 having such a laminated structure are formed in the integrated circuit 10, respectively. An insulating and protective layer 36 is laminated on the metal layer 34.

抵抗層31は例えばスパッタ法で成膜することができる。その工程の一例を説明する。スパッタ装置の真空チャンバー内に、抵抗層31を形成する直前の工程まで終了したウェハとタンタル(Ta)ターゲットが配置されているものとする。始めに真空チャンバー内にアルゴン(Ar)ガスを導入しながらタンタルターゲットを所定時間スパッタして所定膜厚のタンタル層28を形成する。引き続き同真空チャンバー内にアルゴンガスと窒素(N)ガスを所定の分圧比で導入してタンタルターゲットを所定時間スパッタして所定膜厚の窒化タンタル層(TaN、xの値は0.03≦x≦0.25、望ましくは0.05≦x≦0.20。一例としてx=0.16を狙う場合を以下の実施例に示す)30を形成する。このようにしてタンタル層28と窒化タンタル層30を順次積層した抵抗層31が形成される。窒化タンタル層30はスパッタ時の窒素ガスの量(アルゴンガスに対する分圧比)を調整することにより、抵抗温度係数TCR(温度による抵抗値の変動を示す係数)、および抵抗電圧係数VCR(電圧による抵抗値の変動を示す係数)が小さくなるように作製する。 The resistance layer 31 can be formed by sputtering, for example. An example of the process will be described. It is assumed that the wafer and the tantalum (Ta) target that have been completed up to the step immediately before the formation of the resistance layer 31 are arranged in the vacuum chamber of the sputtering apparatus. First, a tantalum target is sputtered for a predetermined time while introducing an argon (Ar) gas into the vacuum chamber to form a tantalum layer 28 having a predetermined thickness. Subsequently, argon gas and nitrogen (N 2 ) gas are introduced into the vacuum chamber at a predetermined partial pressure ratio, and a tantalum target is sputtered for a predetermined time, and a tantalum nitride layer (TaN x , x has a value of 0.03). ≦ x ≦ 0.25, preferably 0.05 ≦ x ≦ 0.20. As an example, a case where x = 0.16 is aimed is shown in the following embodiment) 30 is formed. In this way, the resistance layer 31 in which the tantalum layer 28 and the tantalum nitride layer 30 are sequentially stacked is formed. The tantalum nitride layer 30 is adjusted by adjusting the amount of nitrogen gas during sputtering (partial pressure ratio with respect to argon gas), so that the resistance temperature coefficient TCR (coefficient indicating the variation in resistance value with temperature) and the resistance voltage coefficient VCR (resistance due to voltage) It is produced so that the coefficient indicating the fluctuation of the value becomes small.

《実施例》
上記工程により、始めにタンタル層28を成膜し、次いで窒化タンタル層30を成膜して抵抗層31を作製した。そのときの成膜条件は次のとおりであった。

〈タンタル層28の成膜条件〉
・アルゴンガス流量:75sccm
・ガス圧:5mTorr
・投入電力:3.0kW
・基板温度:350℃
・スパッタ時間:1.5秒

〈窒化タンタル層30の成膜条件〉
・ガス流量:アルゴンガス=63sccm、窒素ガス=12sccm
・全ガス圧:5mTorr
・窒素ガスの分圧比:16%(窒素ガス分圧=0.8mTorr)
・投入電力:3.0kW
・基板温度:350℃
・スパッタ時間:1.5秒
"Example"
By the above process, the tantalum layer 28 was first formed, and then the tantalum nitride layer 30 was formed to produce the resistance layer 31. The film formation conditions at that time were as follows.

<Deposition conditions for tantalum layer 28>
・ Argon gas flow: 75sccm
・ Gas pressure: 5mTorr
・ Input power: 3.0kW
-Substrate temperature: 350 ° C
・ Sputtering time: 1.5 seconds

<Deposition conditions for tantalum nitride layer 30>
・ Gas flow rate: Argon gas = 63sccm, Nitrogen gas = 12sccm
・ Total gas pressure: 5mTorr
・ Partial pressure ratio of nitrogen gas: 16% (nitrogen gas partial pressure = 0.8 mTorr)
・ Input power: 3.0kW
-Substrate temperature: 350 ° C
・ Sputtering time: 1.5 seconds

上記成膜条件により成膜したところ、タンタル層28は25nm、窒化タンタル層30は25nmの膜厚にそれぞれ形成された。窒化タンタル層30はアモルファス状態のTaNであり、膜中への窒素の分散状態はほぼ均一であった。またタンタル層28と窒化タンタル層30で構成される抵抗層31全体の面抵抗は69Ω/□(タンタル層28と窒化タンタル層30の面抵抗比=1:1)であった。抵抗層31により作製した抵抗素子は長さが50μmで幅が1μmのもの(タイプA)と、長さが50μmで幅が5μmのもの(タイプB)と、長さが300μmで幅が1μmのもの(タイプC)であった。タイプA,B,Cについてそれぞれ2個ずつサンプル(サンプル1,2、合計6サンプル)を作った。始めにタイプA,Bの4個のサンプルについて抵抗温度係数TCRを測定した。測定はウェハの中央部で行った。測定結果は次のとおりであった。

〈抵抗温度係数TCR(ppm/℃)〉
タイプA タイプB
サンプル1 16.0 1.6
サンプル2 3.0 3.8
When the film was formed under the above film formation conditions, the tantalum layer 28 was formed to a thickness of 25 nm, and the tantalum nitride layer 30 was formed to a thickness of 25 nm. The tantalum nitride layer 30 was TaN x in an amorphous state, and the dispersion state of nitrogen in the film was almost uniform. Further, the sheet resistance of the entire resistance layer 31 composed of the tantalum layer 28 and the tantalum nitride layer 30 was 69Ω / □ (the sheet resistance ratio of the tantalum layer 28 and the tantalum nitride layer 30 = 1: 1). The resistance element made of the resistance layer 31 has a length of 50 μm and a width of 1 μm (type A), a length of 50 μm and a width of 5 μm (type B), a length of 300 μm and a width of 1 μm. Thing (type C). Two samples (types 1 and 2, total 6 samples) were made for each of types A, B, and C. First, the resistance temperature coefficient TCR was measured for four types A and B samples. The measurement was performed at the center of the wafer. The measurement results were as follows.

<Resistance temperature coefficient TCR (ppm / ℃)>
Type A Type B
Sample 1 16.0 1.6
Sample 2 3.0 3.8

次にタイプCの2個のサンプルについて抵抗電圧係数VCRを測定した。測定はウェハ中央部で電圧を±5Vの範囲で変動させて行った。測定結果は次のとおりであった。

〈抵抗電圧係数VCR(ppm/V)〉
タイプC
サンプル1 −1.3
サンプル2 −2.1
Next, the resistance voltage coefficient VCR was measured for two samples of type C. The measurement was performed by changing the voltage within a range of ± 5 V at the center of the wafer. The measurement results were as follows.

<Resistance voltage coefficient VCR (ppm / V)>
Type C
Sample 1-1.3
Sample 2-2.1

ポリシリコン抵抗の場合、抵抗温度係数TCRは150ppm/℃程度、抵抗電圧係数VCRは200ppm/V程度であるから、上記作製した抵抗層31によれば、抵抗温度係数、抵抗電圧係数のいずれも小さい値に収まっていることが分かる。なお、窒化タンタル層30を成膜後に、あるいは窒化タンタル層30の上にインターレイヤー酸化膜を形成後にランプアニールにより加熱処理(600℃〜950℃)を行ってもよい。このようにするとTaN膜の表面は若干酸化されるが結晶性は向上し、より安定した膜質が得られる。すなわち、表面が酸化され、さらに、膜中の窒素の再拡散により膜質がより均一化したTaN(xは0.10〜0.25)単層膜が得られる。 In the case of a polysilicon resistor, the resistance temperature coefficient TCR is about 150 ppm / ° C. and the resistance voltage coefficient VCR is about 200 ppm / V. Therefore, according to the manufactured resistance layer 31, both the resistance temperature coefficient and the resistance voltage coefficient are small. You can see that it is within the value. Note that heat treatment (600 ° C. to 950 ° C.) may be performed by lamp annealing after forming the tantalum nitride layer 30 or after forming an interlayer oxide film on the tantalum nitride layer 30. In this way, the surface of the TaN x film is slightly oxidized, but the crystallinity is improved and a more stable film quality can be obtained. In other words, a TaN x (x is 0.10 to 0.25) single layer film having a surface oxidized and a more uniform film quality due to re-diffusion of nitrogen in the film can be obtained.

《試聴評価試験》
本出願人会社製の集積回路であるYDA158について、内蔵するヘッドフォンアンプの帰還抵抗網を様々な材料で作製して、音楽信号を入力し出力信号をヘッドフォンで再生して比較試聴した。この集積回路のブロック図を図3に示す。集積回路40(YDA158)は携帯電話機に搭載されるもので、音楽信号をヘッドフォンアンプ42で電力増幅してヘッドフォンジャック38に差し込まれたヘッドフォン(図示せず)で再生し、着信音をD級アンプ52で増幅してスピーカ50で鳴らす機能を有するものである。ヘッドフォンアンプ42は左右各チャンネルのオペアンプ44,46を具えている。オペアンプ44,46には各チャンネル2個ずつ合計4個の抵抗素子R11,R12,R13,R14で構成される抵抗回路網(帰還抵抗網)48が接続される。この帰還抵抗網48の抵抗素子R11〜R14を次の各材料で作製してそれぞれ試聴評価を行った。

〈抵抗素子R11〜R14の材料〉
・ポリシリコン一層(実際の製品で使用されている材料)
・タンタル一層
・窒化タンタル一層
・窒化タンタル/タンタル二層(“/”はその前側に表記した材料が上層を構成し、その後側に表記した材料が下層を構成することを意味する。以下同じ)
・窒化タンタル/チタン(Ti)二層(厚み比が1:1)
・窒化タンタル/チタン二層(厚み比が1:3)
《Evaluation Test for Audition》
For YDA158, which is an integrated circuit manufactured by the applicant company, a feedback resistor network of a built-in headphone amplifier was made of various materials, a music signal was input, and an output signal was reproduced by headphones to make a comparative audition. A block diagram of this integrated circuit is shown in FIG. An integrated circuit 40 (YDA158) is mounted on a mobile phone, and a music signal is amplified by a headphone amplifier 42 and reproduced by a headphone (not shown) inserted into a headphone jack 38, and a ringtone is a class D amplifier. A function of amplifying at 52 and sounding at the speaker 50 is provided. The headphone amplifier 42 includes operational amplifiers 44 and 46 for the left and right channels. The operational amplifiers 44 and 46 are connected to a resistor network (feedback resistor network) 48 including a total of four resistor elements R11, R12, R13, and R14 for each of two channels. The resistance elements R11 to R14 of the feedback resistor network 48 were made of the following materials and evaluated for listening.

<Material of resistance elements R11 to R14>
-Polysilicon layer (material used in actual products)
-Tantalum layer-Tantalum nitride layer-Tantalum nitride / tantalum bilayer ("/" means that the material indicated on the front side constitutes the upper layer, and the material indicated on the rear side constitutes the lower layer. The same applies hereinafter)
・ Tantalum nitride / titanium (Ti) bilayer (thickness ratio is 1: 1)
・ Tantalum nitride / titanium bilayer (thickness ratio 1: 3)

試聴評価は5名の半導体技術者がそれぞれヘッドフォンで同一音楽ソースを試聴して行った。評価は点数評価ではなく、絶対的な印象評価で優劣を評価した。評価結果は次のとおりであった。

〈試聴評価結果〉
・ポリシリコン一層:音場感が狭くステレオ感に乏しい。音楽のハーモニーが少ない。
・タンタル一層:低音に軽快感が無くもたつく。高域が少し金属的で耳につき良い印象ではない。
・窒化タンタル一層:低音がクリアで響きがきれい。
・窒化タンタル/タンタル二層:ピアノに潤いや豊かさがあり音楽が心地よい。
・窒化タンタル/チタン二層(厚み比が1:1):ピアノの音に潤いが少ない。音が金属的に感じる。
・窒化タンタル/チタン二層(厚み比が1:3):低音高音のバランスが良く、音質は明るいが薄っぺらい。
The trial evaluation was conducted by five semiconductor engineers listening to the same music source using headphones. Evaluation was based on absolute impression evaluation rather than score evaluation. The evaluation results were as follows.

<Results of audition evaluation>
-Polysilicon layer: The sound field is narrow and the stereo effect is poor. There is little music harmony.
・ Tantalum layer: The sound is light and quiet. The highs are a bit metallic and not a good impression.
・ Tantalum nitride layer: The bass is clear and the sound is beautiful.
-Tantalum nitride / tantalum double layer: The piano is moist and rich and the music is comfortable.
-Tantalum nitride / titanium bilayer (thickness ratio is 1: 1): The piano sound is less moist. The sound feels metallic.
-Tantalum nitride / titanium bilayer (thickness ratio 1: 3): good balance of bass and treble, bright sound but thin.

以上の試聴評価によれば、窒化タンタル一層および窒化タンタル/タンタル二層において良好な音質評価が得られた。   According to the above audition evaluation, good sound quality evaluation was obtained in the tantalum nitride single layer and the tantalum nitride / tantalum bilayer.

なお前記試聴評価試験では集積回路の全抵抗素子のうち音質に大きな影響を及ぼすオペアンプ44,46の帰還抵抗網48の抵抗素子のみ窒化タンタル/タンタル二層で構成したが、全抵抗素子を窒化タンタル/タンタル二層で構成することもできる。そのようにすれば回路部分に応じて抵抗素子の材料を使い分ける場合に比べて製造工程を簡素化することができる。例えば図3の集積回路40について言えば、ヘッドフォンアンプ42の抵抗回路網(帰還抵抗網)48と、着信音をスピーカ50で鳴らすためのD級アンプ52の抵抗回路網(帰還抵抗網)54を構成する抵抗素子R15,R16並びに抵抗回路網(帰還抵抗網)56を構成する抵抗素子R17,R18を、窒化タンタル/タンタル二層膜で同時に作製することができる。また前記実施の形態ではタンタル層を下層、窒化タンタル層を上層として積層したが、これとは逆に窒化タンタル層を下層、タンタル層を上層として積層することもできる。   In the trial evaluation test, only the resistance elements of the feedback resistor network 48 of the operational amplifiers 44 and 46 that have a great influence on the sound quality among all the resistance elements of the integrated circuit are composed of tantalum nitride / tantalum two layers. / Tantalum bilayer can also be used. By doing so, the manufacturing process can be simplified as compared with the case where the material of the resistance element is properly used according to the circuit portion. For example, the integrated circuit 40 of FIG. 3 includes a resistor network (feedback resistor network) 48 of a headphone amplifier 42 and a resistor circuit network (feedback resistor network) 54 of a class D amplifier 52 for ringing a ring tone. The resistor elements R15 and R16 constituting the resistor and the resistor elements R17 and R18 constituting the resistor network (feedback resistor network) 56 can be simultaneously made of a tantalum nitride / tantalum bilayer film. In the above embodiment, the tantalum layer is laminated as the lower layer and the tantalum nitride layer as the upper layer, but conversely, the tantalum nitride layer can be laminated as the lower layer and the tantalum layer as the upper layer.

10,40…集積回路、12,14…入力端子、16,18…出力端子、20,24,48,54,56…抵抗回路網、22,44,46…オペアンプ、25…下層、26…絶縁層、28…タンタル層、30…窒化タンタル層、31…抵抗層、32…絶縁層、32a,32b…ヴィアホール、34…金属層、34a,34b…金属層の左右の領域、36…絶縁および保護層、38…ヘッドフォンジャック、42…ヘッドフォンアンプ、50…スピーカ、52…D級アンプ、R1,R2,R3,R4,R11,R12,R13,R14,R15,R16,R17,R18…抵抗素子   DESCRIPTION OF SYMBOLS 10,40 ... Integrated circuit, 12, 14 ... Input terminal, 16, 18 ... Output terminal, 20, 24, 48, 54, 56 ... Resistor network, 22, 44, 46 ... Operational amplifier, 25 ... Lower layer, 26 ... Insulation Layers 28, tantalum layer, 30 ... tantalum nitride layer, 31 ... resistance layer, 32 ... insulating layer, 32a, 32b ... via hole, 34 ... metal layer, 34a, 34b ... left and right regions of metal layer, 36 ... insulation and Protective layer, 38 ... headphone jack, 42 ... headphone amplifier, 50 ... speaker, 52 ... class D amplifier, R1, R2, R3, R4, R11, R12, R13, R14, R15, R16, R17, R18 ... resistance elements

Claims (4)

アナログ音声信号が流れる回路中に配置される抵抗素子を窒化タンタル層とタンタル層の二層積層構造で構成してなる集積回路。   An integrated circuit in which a resistance element arranged in a circuit through which an analog audio signal flows has a two-layer structure of a tantalum nitride layer and a tantalum layer. 前記抵抗素子が、前記アナログ音声信号を分割する抵抗回路網を構成する抵抗素子である請求項1記載の集積回路。   The integrated circuit according to claim 1, wherein the resistance element is a resistance element constituting a resistance network that divides the analog audio signal. 前記抵抗回路網が、電力増幅回路の抵抗回路網である請求項2記載の集積回路。   The integrated circuit according to claim 2, wherein the resistor network is a resistor network of a power amplifier circuit. すべての抵抗素子を窒化タンタル層とタンタル層の二層積層構造で構成してなる請求項1から3のいずれか一つに記載の集積回路。   4. The integrated circuit according to claim 1, wherein all of the resistance elements are configured by a two-layer laminated structure of a tantalum nitride layer and a tantalum layer.
JP2009299160A 2009-12-29 2009-12-29 Integrated circuit Pending JP2011138983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009299160A JP2011138983A (en) 2009-12-29 2009-12-29 Integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009299160A JP2011138983A (en) 2009-12-29 2009-12-29 Integrated circuit

Publications (1)

Publication Number Publication Date
JP2011138983A true JP2011138983A (en) 2011-07-14

Family

ID=44350099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009299160A Pending JP2011138983A (en) 2009-12-29 2009-12-29 Integrated circuit

Country Status (1)

Country Link
JP (1) JP2011138983A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5633649B2 (en) * 2011-06-29 2014-12-03 ヤマハ株式会社 TaN resistor for audio LSI and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5633649B2 (en) * 2011-06-29 2014-12-03 ヤマハ株式会社 TaN resistor for audio LSI and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN107615651B (en) System and method for improved audio perception
Moore et al. Perceived naturalness of spectrally distorted speech and music
US7103393B2 (en) Sound output system and method of a mobile communication terminal
US8249265B2 (en) Method and apparatus for achieving active noise reduction
Self The Design of Active Crossovers
Dibble Hearing loss & music
JP2011138983A (en) Integrated circuit
US10581390B2 (en) On-chip resistor divider compensation with a 2VRMS input
JP3896967B2 (en) Piezoelectric speaker
US9948257B1 (en) Phantom-powered inline preamplifier with variable impedance loading and adjustable interface
JP5041308B1 (en) Loudness correction means and sound quality adjustment means
JP2011139385A (en) Integrated circuit
US9210508B1 (en) Active phantom-powered ribbon microphone with switchable proximity effect response filtering for voice and music applications
CN102237165A (en) Manufacturing method of 50 ohms TaN film resistor combined with MMIC technology
JP2000270392A (en) Sound quality adjustment device
JP2011138991A (en) High-sound-quality resistance film and method of manufacturing the same
US7894615B1 (en) Attenuator device for amplified musical instruments
JP2011138993A (en) Method for manufacturing semiconductor device with thin-film resistor
JP2011138992A (en) High sound-quality resistance film and method for manufacturing the same
JP2011139386A (en) Method and circuit for adjustment of sound quality
CN108024185B (en) Electronic device and specific frequency band compensation gain method
JP2011138990A (en) High sound-quality resistance film and method for manufacturing the same
US10715901B2 (en) Improving canalphone performance using linear impedance tuning
KR20080048466A (en) Thin film resistor and method of making the same
TW201816778A (en) Electronic device and gain compensation method for specific frequency band using difference between windowed filters