JP2011138823A - Bulk superconductor - Google Patents

Bulk superconductor Download PDF

Info

Publication number
JP2011138823A
JP2011138823A JP2009296257A JP2009296257A JP2011138823A JP 2011138823 A JP2011138823 A JP 2011138823A JP 2009296257 A JP2009296257 A JP 2009296257A JP 2009296257 A JP2009296257 A JP 2009296257A JP 2011138823 A JP2011138823 A JP 2011138823A
Authority
JP
Japan
Prior art keywords
superconducting bulk
alloy
bulk body
superconducting
belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009296257A
Other languages
Japanese (ja)
Other versions
JP5443155B2 (en
Inventor
Hironori Seki
宏範 関
Masahito Murakami
雅人 村上
Chiaki Nakayama
千秋 中山
Tadakatsu Maruyama
忠克 丸山
Takashi Kurita
孝 栗田
Yotaro Jinpo
陽太郎 神宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AWAJI MATERIA CO Ltd
Shibaura Institute of Technology
Original Assignee
AWAJI MATERIA CO Ltd
Shibaura Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AWAJI MATERIA CO Ltd, Shibaura Institute of Technology filed Critical AWAJI MATERIA CO Ltd
Priority to JP2009296257A priority Critical patent/JP5443155B2/en
Publication of JP2011138823A publication Critical patent/JP2011138823A/en
Application granted granted Critical
Publication of JP5443155B2 publication Critical patent/JP5443155B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that the conventional method for reinforcing a ring made of a metal such as stainless steel, by fitting the ring over a superconducting bulk body requires very high degree of dimensional accuracy, so that it cannot be employed readily. <P>SOLUTION: In a bulk superconductor including a short cylindrical superconducting bulk body and a surrounding belt of a shape memory alloy which surrounds and pressurizes the circumferential surface of the superconducting bulk body, the surrounding belt pressurizes the superconducting bulk body by recovering the shape, after surrounding the superconducting bulk body. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電磁力や急激な昇温や冷却に伴う熱ひずみといった外力や内部応力の影響を低減し、高い捕捉磁場を維持し得るバルク超電導体に関する。   The present invention relates to a bulk superconductor capable of maintaining the high trapping magnetic field by reducing the influence of external force and internal stress such as electromagnetic force and thermal strain accompanying rapid temperature rise and cooling.

常電導材料にくらべて臨界電流密度が高く、大電流を損失無く流すことが可能であるため超電導材料は、マグネットやエレクトロニクス応用において画期的特性を示すものとして注目を集めており、近年、核融合装置、MRI、磁気浮上列車、発電機、エネルギー貯蔵装置、脳磁計、磁気分離型水浄化装置などへの応用研究が盛んに行われている   Superconducting materials are attracting attention as exhibiting groundbreaking properties in magnet and electronics applications because they have a higher critical current density than normal materials and can pass large currents without loss. Application research to fusion devices, MRI, magnetic levitation trains, generators, energy storage devices, magnetoencephalographs, magnetic separation type water purification devices, etc. are actively conducted

超電導バルク体に磁場を捕捉させるには、超電導バルク体を液体窒素などで冷却する前に磁場を加え、さらに、磁場を加えたまま冷却をする(磁場中冷却)。そして、超電導バルク体が十分冷えた後に、外部の磁場を取り除く。この結果、超電導バルク体に磁場が捕捉される。この冷却や昇温に伴いクラックが生じる場合がある。   In order to capture the magnetic field in the superconducting bulk body, a magnetic field is applied before the superconducting bulk body is cooled with liquid nitrogen or the like, and further, the superconducting bulk body is cooled with the magnetic field applied (cooling in the magnetic field). Then, after the superconducting bulk body has cooled sufficiently, the external magnetic field is removed. As a result, a magnetic field is trapped in the superconducting bulk body. Cracks may occur with this cooling and temperature rise.

さらに、超電導状態で磁場が加えられると超電導バルク体には大電流が流れることになるが、ここで問題が生じてしまう。図10を用いてこの問題について説明する。短筒状の超電導バルク体(1001)に磁場を捕捉させる場合、超電導バルク体に磁場(1002)を加える必要がある。加えられる磁場により、超電導バルク体には大電流(1003)が流れる。その結果、電磁力(ローレンツ力)が外周方向に働く場合がある(1004)。この引張応力によりクラック(1005)が生じたり、さらには、超電導バルク体が破壊されてしまったりする。   Furthermore, when a magnetic field is applied in the superconducting state, a large current flows through the superconducting bulk body, but this causes a problem. This problem will be described with reference to FIG. When a short cylindrical superconducting bulk body (1001) captures a magnetic field, it is necessary to apply a magnetic field (1002) to the superconducting bulk body. Due to the applied magnetic field, a large current (1003) flows in the superconducting bulk body. As a result, electromagnetic force (Lorentz force) may work in the outer circumferential direction (1004). This tensile stress may cause cracks (1005) or the superconducting bulk material may be destroyed.

セラミック材料の引張強度は、圧縮強度の約15分の1である。このため、外力または内部応力による超電導バルク体の破壊を防ぐには、超電導バルク体に作用する引張応力を緩和することが重要である。引張応力を緩和するためには、材料に対して圧縮応力を周囲から負荷する必要がある。そこで、ステンレスの円環を超電導バルク体に嵌めこむ技術が提案されている(特許文献1)。   The tensile strength of the ceramic material is about 1/15 of the compressive strength. For this reason, in order to prevent destruction of the superconducting bulk body due to external force or internal stress, it is important to relax the tensile stress acting on the superconducting bulk body. In order to relieve the tensile stress, it is necessary to apply a compressive stress to the material from the surroundings. Therefore, a technique for fitting a stainless steel ring into a superconducting bulk body has been proposed (Patent Document 1).

特開平11−335120号公報JP 11-335120 A

特許文献1に記載の発明は、ステンレス鋼の熱膨張とその材料強度を利用するもので、超電導バルク体を加熱したステンレス円環に嵌めこみ、冷却することでステンレス円環の熱収縮により超電導バルク体に圧縮応力を負荷するものである。   The invention described in Patent Document 1 utilizes the thermal expansion of stainless steel and its material strength. The superconducting bulk is formed by fitting the superconducting bulk body into a heated stainless steel ring and cooling it to cause thermal contraction of the stainless steel ring. It applies compressive stress to the body.

しかしながら、ステンレス鋼をはじめとする通常の金属の熱収縮率は、約300℃程度の加熱であっても1%程度に過ぎないため、十分な装着や密着が得られず、十分な圧縮応力を負荷させることが困難である。また、これを実現するためには、極めて高い寸法精度が求められる。   However, the heat shrinkage rate of ordinary metals such as stainless steel is only about 1% even when heated to about 300 ° C, so that sufficient mounting and adhesion cannot be obtained, and sufficient compressive stress is applied. It is difficult to load. In order to realize this, extremely high dimensional accuracy is required.

そこで、上記課題を解決するために、以下のバルク超電導体を提供する。すなわち、第一の発明として、短筒状の超電導バルク体と、前記超電導バルク体の側周面を加圧囲繞する形状記憶合金の囲繞ベルトとからなるバルク超電導体であって、前記囲繞ベルトは、超電導バルク体を囲繞した後に、形状回復処理をすることで超電導バルク体を加圧するようにしたバルク超電導体を提供する。   In order to solve the above problems, the following bulk superconductor is provided. That is, as a first invention, a bulk superconductor comprising a short cylindrical superconducting bulk body and a shape memory alloy surrounding belt that pressurizes and surrounds a side peripheral surface of the superconducting bulk body, wherein the surrounding belt is Provided is a bulk superconductor in which a superconducting bulk body is pressurized by surrounding the superconducting bulk body and then performing a shape recovery process.

第二の発明として、前記超電導バルク体は、REBa2Cu3Oy(ここで、REはY、 Pr、 Nd、 Sm、 Eu、 Gd、 Dy、 Ho、 Er、 Tm、 Yb、 Luから選ばれる1種類または2種類以上の元素)相中に、RE2BaCuO5またはRE4Ba2Cu2O10を含む銅酸化物超電導体である第一の発明に記載のバルク超電導体を提供する。 As a second invention, the superconducting bulk material is REBa 2 Cu 3 O y (where RE is selected from Y, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu) A bulk superconductor according to the first invention, which is a copper oxide superconductor containing RE 2 BaCuO 5 or RE 4 Ba 2 Cu 2 O 10 in one or more elements) phase, is provided.

第三の発明として、前記超電導バルク体中に、Pt、Rh、 CeまたはAgを含有する第一の発明または第二の発明に記載のバルク超電導体を提供する。   As a third invention, there is provided the bulk superconductor according to the first invention or the second invention containing Pt, Rh, Ce or Ag in the superconducting bulk body.

第四の発明として、前記形状記憶合金は、Ag-Cd合金、Au-Cd合金、 Cu-Al-Ni合金、 Cu-Sn合金、 Cu-Zn合金、 Fe-Pt合金、 Mn-Cu合金、 Fe-Mn-Si合金、 Pt合金、 Co-Ni-Al合金、 Co-Ni-Ga合金、 Ni-Fe-Ga合金、 Ti-Pd合金またはNi-Ti合金からなる第一の発明から第三の発明のいずれか一に記載のバルク超電導体を提供する。   As a fourth invention, the shape memory alloy is an Ag-Cd alloy, Au-Cd alloy, Cu-Al-Ni alloy, Cu-Sn alloy, Cu-Zn alloy, Fe-Pt alloy, Mn-Cu alloy, Fe -Mn-Si alloy, Pt alloy, Co-Ni-Al alloy, Co-Ni-Ga alloy, Ni-Fe-Ga alloy, Ti-Pd alloy, or Ni-Ti alloy A bulk superconductor according to any one of the above is provided.

第五の発明として、前記超電導バルク体と前記囲繞ベルトとの隙間に金属を含浸させる第一の発明から第四の発明のいずれか一に記載のバルク超電導体を提供する。   As a fifth invention, there is provided the bulk superconductor according to any one of the first invention to the fourth invention, wherein a gap between the superconducting bulk body and the surrounding belt is impregnated with metal.

第六の発明として、前記超電導バルク体と前記囲繞ベルトとの隙間に樹脂を含浸させる第一の発明から第四の発明のいずれか一に記載のバルク超電導体を提供する。   As a sixth invention, there is provided the bulk superconductor according to any one of the first invention to the fourth invention in which a gap between the superconducting bulk body and the surrounding belt is impregnated with a resin.

第七の発明として、超電導バルク体と、前記超電導バルク体との間に隙間を空けて取り囲む鋳型とを準備し、前記鋳型と超電導バルク体との間の隙間に前記超電導バルク体よりも線膨脹係数の大きな金属を溶融させて鋳込み、該溶融金属を凝固させて前記超電導バルク体を加圧囲繞するようにしたバルク超電導体の製造方法を提供する。   As a seventh invention, a superconducting bulk body and a mold surrounding the superconducting bulk body with a gap between them are prepared, and the gap between the mold and the superconducting bulk body is more linearly expanded than the superconducting bulk body. There is provided a method for manufacturing a bulk superconductor in which a metal having a large coefficient is melted and cast, and the molten metal is solidified to pressurize and surround the superconducting bulk body.

本発明により、電磁力や急激な昇温や冷却に伴う熱ひずみといった外力や内部応力の影響を低減し、高い捕捉磁場を維持し得るバルク超電導体を、高い寸法精度を必要とせずに提供することができる。   The present invention provides a bulk superconductor capable of reducing the influence of external force and internal stress such as electromagnetic force and thermal strain accompanying rapid temperature rise and cooling, and maintaining a high trapping magnetic field without requiring high dimensional accuracy. be able to.

実施形態1に係るバルク超電導体を示す概念図。1 is a conceptual diagram showing a bulk superconductor according to Embodiment 1. FIG. 実施形態1に係るバルク超電導体の一例を示す概念図。1 is a conceptual diagram illustrating an example of a bulk superconductor according to Embodiment 1. FIG. 実施形態1に係るバルク超電導体の一例を示す概念図。1 is a conceptual diagram illustrating an example of a bulk superconductor according to Embodiment 1. FIG. 実施形態1に係るバルク超電導体の一例を示す概念図。1 is a conceptual diagram illustrating an example of a bulk superconductor according to Embodiment 1. FIG. 実施形態1に係るバルク超電導体の一例を示す概念図。1 is a conceptual diagram illustrating an example of a bulk superconductor according to Embodiment 1. FIG. 実施形態1に係る形状記憶合金の加熱による収縮挙動の具体例を示す図。The figure which shows the specific example of the shrinkage | contraction behavior by the heating of the shape memory alloy which concerns on Embodiment 1. FIG. 実施形態1に係るバルク超電導体の捕捉磁場の変化を示す図。The figure which shows the change of the capture magnetic field of the bulk superconductor which concerns on Embodiment 1. FIG. 実施形態1に係るバルク超電導体の捕捉磁場の変化を示す図。The figure which shows the change of the capture magnetic field of the bulk superconductor which concerns on Embodiment 1. FIG. 実施形態2に係る超電導体を示す概念図。FIG. 5 is a conceptual diagram showing a superconductor according to a second embodiment. 超電導バルク体に働く電磁力を説明するための概念図。The conceptual diagram for demonstrating the electromagnetic force which acts on a superconducting bulk body. 実施形態4に係る製造方法を説明するための概念図。The conceptual diagram for demonstrating the manufacturing method which concerns on Embodiment 4. FIG.

以下、本発明を実施するための形態について説明する。なお、本発明は、これらの実施形態に何ら限定されるべきものではなく、その要旨を逸脱しない範囲において、種々なる態様で実施し得る。   Hereinafter, modes for carrying out the present invention will be described. In addition, this invention should not be limited to these embodiments at all, and can be implemented in various modes without departing from the gist thereof.

実施形態1は、主に請求項1、2、3、4などに関する。実施形態2は、主に請求項5などに関する。実施形態3は、主に請求項6などに関する。実施形態4は、主に請求項7などに関する。
<実施形態1>
<実施形態1 概要>
The first embodiment mainly relates to claims 1, 2, 3, 4 and the like. The second embodiment mainly relates to claim 5 and the like. The third embodiment mainly relates to claim 6 and the like. The fourth embodiment mainly relates to claim 7 and the like.
<Embodiment 1>
<Overview of Embodiment 1>

本実施形態は、形状記憶合金の囲繞ベルト内に超電導バルク体を嵌めこみ、その後に形状回復処理をすることで超電導バルク体を加圧囲繞するようにしたバルク超電導体である。
<実施形態1 構成>
The present embodiment is a bulk superconductor in which a superconducting bulk body is fitted in a shape memory alloy surrounding belt, and then the shape of the superconducting bulk body is pressurized by performing a shape recovery process.
<Configuration of Embodiment 1>

本実施形態に係るバルク超電導体について、図1を用いて説明する。図1は、本実施形態に係るバルク超電導体を示す概念図である。バルク超電導体は、短筒状の超電導バルク体(0101)と、超電導バルク体の側周面を加圧囲繞する形状記憶合金からなる囲繞ベルト(0102)からなる。この囲繞ベルトは、超電導バルク体が嵌めこまれた後に、形状回復処理をすることで超電導バルク体を加圧するようにしたものである。なお、短筒状の超伝導バルク体として図において、短円筒状のものを示しているが、これに限られず四角や六角などの多角形あるいは楕円形などの断面形状を有する短筒状であってもよい。   The bulk superconductor according to this embodiment will be described with reference to FIG. FIG. 1 is a conceptual diagram showing a bulk superconductor according to this embodiment. The bulk superconductor includes a short cylindrical superconducting bulk body (0101) and an enveloping belt (0102) made of a shape memory alloy that pressurizes and surrounds the side peripheral surface of the superconducting bulk body. This go-belt is configured to pressurize the superconducting bulk body by performing a shape recovery process after the superconducting bulk body is fitted. The short cylindrical superconducting bulk material in the figure shows a short cylindrical shape, but the short cylindrical shape is not limited to this, and is a short cylindrical shape having a cross-sectional shape such as a polygon such as a square or a hexagon or an ellipse. May be.

「超電導バルク体」(0101)とは、酸化物超電導体の利用形態の一つであり、一塊(バルク状)の超電導体を意味する。具体的には、例えば、REBa2Cu3Oy(ここで、REはY、 Pr、 Nd、 Sm、 Eu、 Gd、 Dy、 Ho、 Er、 Tm、 Yb、 Luから選ばれる1種類または2種類以上の元素)相中に、RE2BaCuO5またはRE4Ba2Cu2O10を含む銅酸化物超電導体を挙げることができる。REは、希土類元素を意味する。 The “superconducting bulk body” (0101) is one of utilization forms of the oxide superconductor and means a lump (bulk) superconductor. Specifically, for example, REBa 2 Cu 3 O y (where RE is one or two selected from Y, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu) A copper oxide superconductor containing RE 2 BaCuO 5 or RE 4 Ba 2 Cu 2 O 10 in the above element) phase can be mentioned. RE means a rare earth element.

「囲繞ベルト」(0102)は、形状記憶合金からなり、短筒状の超電導バルク体の側周面を加圧囲繞する。   The “go belt” (0102) is made of a shape memory alloy, and pressurizes and surrounds the side peripheral surface of a short cylindrical superconducting bulk body.

「形状記憶合金」とは、形状記憶のための熱処理をしておくと、所定温度より低い温度で変形させても、所定温度以上に加熱することで変形前の元の形状に回復する合金である。例えば、Fe-Mn-Si系の形状記憶合金では2.5~4%程度の回復ひずみが認められている。   A “shape memory alloy” is an alloy that recovers to its original shape before deformation by heating it above a predetermined temperature even if it is deformed at a temperature lower than a predetermined temperature after heat treatment for shape memory. is there. For example, a recovery strain of about 2.5 to 4% is recognized in an Fe—Mn—Si based shape memory alloy.

形状記憶合金には、上述した形状記憶特性に加えて「超弾性」という特性をも有している。この超弾性特性とは、使用温度において通常の金属が塑性変形する領域まで変形(曲げ、引張り、圧縮)させても、除荷することで、元の形状に回復する特性を意味する。   The shape memory alloy has a characteristic of “super elasticity” in addition to the shape memory characteristics described above. This superelastic property means a property of recovering the original shape by unloading even if the metal is deformed (bent, pulled, or compressed) to a region where plastic deformation occurs at the operating temperature.

熱処理条件の違いによって形状記憶効果が現れる温度を変えることができ、常温で記憶を再生した状態にしたものを超弾性合金、常温では柔らかく曲げても元に戻らない状態のものを形状記憶合金とする場合もある。   The temperature at which the shape memory effect appears due to the difference in heat treatment conditions can be changed. Superelastic alloys are those that have been regenerated at room temperature. Shape memory alloys are those that do not return to their original shape even when softly bent at room temperature. There is also a case.

囲繞ベルトは、形状記憶特性や超弾性特性により、短筒状の超電導バルク体の側周面を加圧囲繞する。「加圧囲繞」とは、圧力を加えながら囲繞することを意味する。   The surrounding belt pressurizes and surrounds the side peripheral surface of the short cylindrical superconducting bulk body due to shape memory characteristics and superelastic characteristics. “Pressurized go” means to go while applying pressure.

図1に示した囲繞ベルトは、短筒状の超電導バルク体の高さ方向の長さと略同寸の高さに形成した環状体の形状記憶合金からなるものである。囲繞ベルトの態様は、図1の環状体に限らず、例えば、図2に示すような複数の環状体(0202、0203)で超電導バルク体(0201)に嵌めこんでもよい。またワイヤ状の形状記憶合金からなるものでもよい。   The go belt shown in FIG. 1 is made of an annular shape memory alloy formed to have a height substantially the same as the length in the height direction of a short cylindrical superconducting bulk body. The shape of the surrounding belt is not limited to the annular body shown in FIG. 1, and may be fitted into the superconducting bulk body (0201) with a plurality of annular bodies (0202, 0203) as shown in FIG. Further, it may be made of a wire shape memory alloy.

図3および図4はワイヤ状の形状記憶合金からなる囲繞ベルトを超電導バルク体に囲繞した図である。図3は、ワイヤ状の形状記憶合金を輪として(0302)、超電導バルク体(0301)に複数嵌めこんだものである。また、図4は、一本のワイヤ状の形状記憶合金をらせん状に形成し超電導バルク体に巻きつけたものである。囲繞ベルトは、超電導バルク体の大きさや捕捉させる磁場の強さなどに応じて選定することができる。   FIG. 3 and FIG. 4 are diagrams in which a surrounding belt made of a wire-shaped shape memory alloy is surrounded by a superconducting bulk body. FIG. 3 shows a wire-shaped shape memory alloy ring (0302) and a plurality of superconducting bulk bodies (0301) fitted therein. FIG. 4 shows a wire shape memory alloy formed in a spiral shape and wound around a superconducting bulk body. The go belt can be selected according to the size of the superconducting bulk body and the strength of the magnetic field to be captured.

形状記憶合金のベルトは、超電導バルク体を嵌めこまれた後に、形状回復処理をすることで超電導バルク体を加圧囲繞する。すなわち、形状記憶特性により加圧囲繞する場合であれば、予め形状記憶合金ベルトに超電導バルク体を嵌めこんだ後に、所定の温度以上に加熱し形状回復させることで、超電導バルク体の側周面に圧縮応力を負荷することができる。このとき、形状回復した際の囲繞ベルトの内径をどの程度超電導バルク体の外径よりも小さくするかは、負荷すべき圧縮応力や回復ひずみの大きさなどに応じたものにすればよい。超弾性特性を利用する場合にも同様である。   The shape memory alloy belt pressurizes and surrounds the superconducting bulk body by fitting the superconducting bulk body and then performing shape recovery treatment. That is, in the case of pressurized surroundings due to shape memory characteristics, after the superconducting bulk body is fitted in the shape memory alloy belt in advance, it is heated to a predetermined temperature or more to recover the shape, whereby the side peripheral surface of the superconducting bulk body Can be subjected to compressive stress. At this time, the extent to which the inner diameter of the surrounding belt when the shape is restored is smaller than the outer diameter of the superconducting bulk body may be determined in accordance with the compressive stress to be applied, the magnitude of the recovery strain, and the like. The same applies to the case of using superelastic characteristics.

また、図5に示すように、金属製の円環(0503)に、超電導バルク体(0501)を嵌めこんで、さらに、(形状記憶合金)囲繞ベルトに嵌めこんでもよい。金属製の円環を介して圧縮応力を負荷するもので、超電導バルク体に対する圧縮応力を、より均一に負荷し得る。なお、金属製の円環を嵌めこむことにより直接的に超電導バルク体への圧縮応力を負荷させるものではないので、焼きバメなどを行う必要はなく、例えば、超電導バルク体の周囲に所定の合金を鋳込むことにより、超電導バルク体を囲繞するようにしてもよい。   Further, as shown in FIG. 5, a superconducting bulk body (0501) may be fitted into a metal ring (0503), and further fitted into a (shape memory alloy) surrounding belt. The compressive stress is applied through a metal ring, and the compressive stress on the superconducting bulk body can be applied more uniformly. In addition, since it does not directly apply compressive stress to the superconducting bulk body by fitting a metal ring, there is no need to perform shrinkage, for example, a predetermined alloy around the superconducting bulk body. The superconducting bulk body may be surrounded by casting.

形状記憶合金は、種々存在するが、例えば、Ag-Cd合金、Au-Cd合金、 Cu-Al-Ni合金、 Cu-Sn合金、 Cu-Zn合金、 Fe-Pt合金、 Mn-Cu合金、 Fe-Mn-Si合金、 Pt合金、 Co-Ni-Al合金、 Co-Ni-Ga合金、 Ni-Fe-Ga合金、 Ti-Pd合金またはNi-Ti合金などが好ましい。   There are various shape memory alloys. For example, Ag-Cd alloy, Au-Cd alloy, Cu-Al-Ni alloy, Cu-Sn alloy, Cu-Zn alloy, Fe-Pt alloy, Mn-Cu alloy, Fe -Mn-Si alloy, Pt alloy, Co-Ni-Al alloy, Co-Ni-Ga alloy, Ni-Fe-Ga alloy, Ti-Pd alloy or Ni-Ti alloy are preferred.

形状記憶合金の加熱による収縮挙動の具体例を図6に示す。図6は、Fe- 0.13wt%C- 5.99 wt% Si- 28.35wt%Mn- 4.99wt% Crの組成を有する囲繞ベルトの加熱による収縮挙動を示したものである。この試験結果は、囲繞ベルト単体を加熱炉内で加熱した様子をレーザーで測定したものである。常温の状態から試験を開始し、加熱していく。450K以上まで一旦加熱した後、冷却する。試験開始時に内径が26.9mmであったものが、加熱により形状回復し26.3mmを下回る内径に至った。   A specific example of the shrinkage behavior of the shape memory alloy by heating is shown in FIG. FIG. 6 shows the shrinkage behavior of a go belt having a composition of Fe-0.13 wt% C-5.99 wt% Si- 28.35 wt% Mn-4.99 wt% Cr by heating. This test result is a measurement of a state in which a single go belt is heated in a heating furnace with a laser. The test is started from room temperature and heated. Once heated to 450K or higher, cool. Although the inner diameter was 26.9 mm at the start of the test, the shape recovered by heating and reached an inner diameter of less than 26.3 mm.

図7は、単結晶の超電導バルク体に囲繞ベルトを嵌めこんだバルク超電導体の捕捉磁場の変化を測定した結果を示すものである。図に向かって左側に示したものは、囲繞ベルトによる補強を行っていないものである。向かって右に示したものは、左と同じ超電導バルク体に囲繞ベルトを嵌めこんだものの測定結果である。最大捕捉磁場が高まり、捕捉領域が拡大していることが分かる。   FIG. 7 shows the result of measuring the change in the trapping magnetic field of a bulk superconductor in which a surrounding belt is fitted into a single-crystal superconducting bulk body. What is shown on the left side of the figure is one that is not reinforced by a go belt. What is shown on the right side is the measurement result of the case where the goose belt is fitted in the same superconducting bulk body as that on the left. It can be seen that the maximum trapping field is increased and the trapping area is expanded.

図8は、多結晶の超電導バルク体に囲繞ベルトを嵌めこんだバルク超電導体の捕捉磁場の変化を測定した結果を示すものである。図に向かって左側に示したものは、囲繞ベルトによる補強を行っていないものである。向かって右に示したものは、左と同じ超電導バルク体に囲繞ベルトを嵌めこんだものの測定結果である。最大捕捉磁場が高まり、捕捉領域が拡大していることが分かる。図7、図8に示したように、囲繞ベルトにより超電導バルク体の機械的強度を補強することにより、高い磁場を捕捉する上で効果的であることが明らかになった。   FIG. 8 shows the result of measuring the change in the trapping magnetic field of a bulk superconductor in which a surrounding belt is fitted into a polycrystalline superconducting bulk body. What is shown on the left side of the figure is one that is not reinforced by a go belt. What is shown on the right side is the measurement result of the case where the goose belt is fitted in the same superconducting bulk body as that on the left. It can be seen that the maximum trapping field is increased and the trapping area is expanded. As shown in FIG. 7 and FIG. 8, it has become clear that reinforcing the mechanical strength of the superconducting bulk body with the surrounding belt is effective in capturing a high magnetic field.

超電導バルク体そのものの機械特性を向上させるために、Pt、Rh、 CeまたはAgを超電導バルク体に含有させてもよい。これにより、囲繞ベルトで加圧囲繞することと相まって破損やクラックの防止効果が生じ得る。また、これらを含有することにより、熱電導率を高めることで熱的安定性を向上させる効果もある。   In order to improve the mechanical properties of the superconducting bulk body itself, Pt, Rh, Ce or Ag may be contained in the superconducting bulk body. As a result, the effect of preventing breakage and cracking can be produced in combination with the pressure surrounding with the surrounding belt. In addition, the inclusion of these also has the effect of improving thermal stability by increasing the thermal conductivity.

以下に、本実施形態に係るバルク超電導体の実施例を記載する。まずは、超電導バルク体と囲繞ベルトとからなるバルク超電導体に関するものである。
<実施例1>
Examples of the bulk superconductor according to this embodiment will be described below. First, the present invention relates to a bulk superconductor composed of a superconducting bulk body and a surrounding belt.
<Example 1>

CeO2を1wt%含み、YBa2Cu3Oy相中にY2BaCuO5が微細分散した超電導バルク体を直径22.8mm高さ10.0mmの寸法に加工した。Fe- 27.8wt%Mn- 5.97wt%Si- 4.93wt%Crの組成を有する囲繞ベルトに対して,6.5%の拡径処理を行った後, 650℃において1時間加熱して形状回復させたのち、再び5%の拡径処理を行った。超電導バルク体に囲繞ベルトを嵌めこむため、この囲繞ベルトを内径22.9mm、 外径27.5mm、 高さ10.3mmに加工した。超電導バルク体に囲繞ベルトを嵌めこみ、650℃にて1時間加熱した。こうして得られたバルク超電導体を5Tの磁場中で77Kに冷却し、外部磁場を取り除いた後計測を行った結果、試料表面で0.5Tの磁場を捕捉していた。一方、囲繞ベルトによる補強無しで同様の実験を行ったところ、5Tから4Tに減磁したときに超電導バルク体は破壊した。このことから、囲繞リングにより、超電導バルク体が補強され、大きな磁場を捕捉することのできるバルク超電導マグネットを作製することができた。
<実施例2>
A superconducting bulk body containing 1 wt% of CeO 2 and finely dispersed Y 2 BaCuO 5 in the YBa 2 Cu 3 O y phase was processed into a size of 22.8 mm in diameter and 10.0 mm in height. A go-belt with a composition of Fe-27.8wt% Mn-5.97wt% Si-4.93wt% Cr was subjected to 6.5% diameter expansion treatment and then heated at 650 ° C for 1 hour to restore the shape. After that, 5% diameter expansion treatment was performed again. In order to fit the go belt in the superconducting bulk material, the go belt was machined to an inner diameter of 22.9 mm, an outer diameter of 27.5 mm, and a height of 10.3 mm. A go belt was fitted into the superconducting bulk body and heated at 650 ° C. for 1 hour. The bulk superconductor thus obtained was cooled to 77K in a 5T magnetic field, and after removing the external magnetic field, measurement was performed. As a result, a 0.5T magnetic field was captured on the sample surface. On the other hand, when the same experiment was conducted without reinforcement by the go-belt, the superconducting bulk material was destroyed when demagnetized from 5T to 4T. From this, the superconducting bulk body was reinforced by the go ring, and a bulk superconducting magnet capable of capturing a large magnetic field could be produced.
<Example 2>

Ptを0.5wt%含み、YBa2Cu3Oy相中にY2BaCuO5が微細分散した超電導バルク体を直径59.2mm、高さ11.0mmの寸法に加工した。Fe- 20.0wt%Mn- 5.0wt%Si- 7.99wt%Cr- 5.1wt%Niの組成を有する囲繞ベルトに対して、7%の拡径処理を行った後、 650℃において1時間加熱して形状回復させた後、再び5%の拡径処理を行った。超電導バルク体に囲繞ベルトを嵌めこむため、この囲繞ベルトを内径59.3mm、 外径63.7mm、 高さ11.3mmに加工した。超電導バルク体に囲繞ベルトを嵌めこみ、650℃にて1時間加熱した。次に400℃の温度で100時間、酸素雰囲気中で熱処理を行った。こうして得られたバルク超電導体を10Tの磁場中で40Kに冷却し、外部磁場を取り除いた後計測を行った結果、試料表面で6.2Tの磁場を捕捉していた。一方、囲繞ベルトによる補強無しで同様の実験を行ったところ、10Tから7.2Tに減磁したときに超電導バルク体は破壊した。このことから、囲繞ベルトにより、超電導バルク体が補強され、大きな磁場を捕捉することのできるバルク超電導マグネットを作製することができた。
<実施例3>
A superconducting bulk body containing 0.5 wt% Pt and finely dispersed Y 2 BaCuO 5 in the YBa 2 Cu 3 O y phase was processed into dimensions of 59.2 mm in diameter and 11.0 mm in height. Fe-20.0wt% Mn-5.0wt% Si-7.99wt% Cr- 5.1wt% Ni was subjected to a 7% diameter expansion treatment on a go belt and then heated at 650 ° C for 1 hour. After restoring the shape, 5% diameter expansion treatment was performed again. In order to fit the go belt in the superconducting bulk body, the go belt was processed to an inner diameter of 59.3 mm, an outer diameter of 63.7 mm, and a height of 11.3 mm. A go belt was fitted into the superconducting bulk body and heated at 650 ° C. for 1 hour. Next, heat treatment was performed in an oxygen atmosphere at a temperature of 400 ° C. for 100 hours. The bulk superconductor thus obtained was cooled to 40K in a 10T magnetic field, and after removing the external magnetic field, measurement was performed. As a result, a 6.2T magnetic field was captured on the sample surface. On the other hand, when a similar experiment was conducted without reinforcement by a go-belt, the superconducting bulk body was destroyed when demagnetized from 10T to 7.2T. From this, the bulk superconducting magnet which can reinforce a superconducting bulk body with a go belt and can capture a large magnetic field could be produced.
<Example 3>

Ptを0.5wt%、Agを5wt%含み、DyBa2Cu3Oy相中にDy2BaCuO5およびBaCeO3が微細分散した超電導バルク体を直径59.2mm、高さ11.0mmの寸法に加工した。Fe- 27.8wt%Mn- 5.97wt%Si- 4.93wt%Crの組成を有するリング状の囲繞ベルトに対して、6.5%の拡径処理を行った後、650℃において1時間加熱して形状回復させた後、再び5%の拡径処理を行った。超電導バルク体に囲繞ベルトを嵌めこむため、この囲繞ベルトを内径59.3mm、 外径63.8mm、 高さ11.3mmに加工した。超電導バルク体に囲繞ベルトを嵌めこみ、650℃にて1時間加熱した。次に400℃の温度で100時間、酸素雰囲気中で熱処理を行った。こうして得られたバルク超電導体を10Tの磁場中で40Kに冷却し、外部磁場を取り除いた後計測を行った結果、試料表面で7.8Tの磁場を捕捉していた。一方、囲繞ベルトによる補強無しで同様の実験を行ったところ、10Tから8.4Tに減磁したときに超電導バルク体は破壊した。このことから、形状記憶リングにより超電導材料が補強され、大きな磁場を捕捉することのできるバルク超電導マグネットを作製することができた。
<実施例4>
A superconducting bulk body containing 0.5 wt% Pt and 5 wt% Ag and finely dispersing Dy 2 BaCuO 5 and BaCeO 3 in the DyBa 2 Cu 3 O y phase was processed into dimensions of 59.2 mm in diameter and 11.0 mm in height. Fe- 27.8 wt% Mn-5.97 wt% Si-4.93 wt% Cr ring-shaped goblet belt was subjected to 6.5% diameter expansion treatment and then heated at 650 ° C for 1 hour to recover the shape Then, 5% diameter expansion treatment was performed again. In order to fit the go belt in the superconducting bulk material, the go belt was processed to an inner diameter of 59.3 mm, an outer diameter of 63.8 mm, and a height of 11.3 mm. A go belt was fitted into the superconducting bulk body and heated at 650 ° C. for 1 hour. Next, heat treatment was performed in an oxygen atmosphere at a temperature of 400 ° C. for 100 hours. The bulk superconductor thus obtained was cooled to 40K in a 10T magnetic field, and after removing the external magnetic field, measurement was performed. As a result, a 7.8T magnetic field was captured on the sample surface. On the other hand, when the same experiment was conducted without reinforcement by the go-belt, the superconducting bulk material was destroyed when demagnetization was reduced from 10T to 8.4T. From this, the superconducting material was reinforced by the shape memory ring, and a bulk superconducting magnet capable of capturing a large magnetic field could be produced.
<Example 4>

YBa2Cu3Oy相中にY2BaCuO5およびBaCeO3が微細分散した直径39.5mm、高さ12.5mmを有する超電導バルク体の側周面に、加熱時に縮むように引張方向に7%加工された直径1.2mmを有するFe- 27.8wt%Mn- 5.97wt%Si- 4.93wt%Crの線材からなる囲繞ベルトを巻きつけた。その後、650℃で1時間加熱した。その後、400℃の温度で100時間、酸素雰囲気中で熱処理を行った。このバルク超電導体を10Tの磁場中で40Kに冷却し、外部磁場を取り除いた後計測を行った結果、試料表面で7.2Tの磁場を捕捉していた。一方、囲繞ベルトによる補強無しで同様の実験を行ったところ、10Tから6.5Tに減磁したときに超電導バルク体は破壊した。このことから、囲繞ベルトにより超電導バルク体が補強され、大きな磁場を捕捉することのできるバルク超電導マグネットを作製することができた。 YBa 2 Cu 3 O y phase in Y 2 BaCuO 5 and BaCeO 3 is finely dispersed diameter 39.5 mm, the side peripheral surface of the bulk superconductor having a height 12.5 mm, it is 7% processed into tensile direction as shrink upon heating A go belt made of a wire of Fe-27.8 wt% Mn-5.97 wt% Si-4.93 wt% Cr having a diameter of 1.2 mm was wound. Then, it heated at 650 degreeC for 1 hour. Thereafter, heat treatment was performed in an oxygen atmosphere at a temperature of 400 ° C. for 100 hours. The bulk superconductor was cooled to 40K in a 10T magnetic field, and after removing the external magnetic field, measurements were taken. As a result, a 7.2T magnetic field was captured on the sample surface. On the other hand, when the same experiment was conducted without reinforcement by the go-belt, the superconducting bulk body was destroyed when demagnetized from 10T to 6.5T. From this, the superconducting bulk body was reinforced by the go belt, and a bulk superconducting magnet capable of capturing a large magnetic field could be produced.

つづいて、金属製の円環を鋳込むことにより、超電導バルク体に嵌めこんだ後に、さらに、囲繞ベルトを嵌めこんだ場合の実施例を記載する。
<実施例5>
Subsequently, an embodiment will be described in which a goblet is further fitted after it is fitted into a superconducting bulk body by casting a metal ring.
<Example 5>

Ptを0.5wt%含み、DyBa2Cu3Oy相中にDy2BaCuO5およびBaCeO3が微細分散した超電導バルク体を直径39.0mm、高さ13.0mmの寸法に加工した。このバルク体に対してAl-13wt%Siの合金を鋳込んだ。この結果、超電導バルク体の周囲をこの合金が覆う直径42.8mm、高さ13.0mmの部材を得た。この部材に対して。Fe- 27.8wt%Mn- 5.97wt%Si- 4.93wt%Crの組成を有する囲繞ベルトに対して、6.5%の拡径処理を行った後、650℃において1時間加熱して形状回復させた後、再び5%の拡径処理を行った。超電導バルク体に囲繞ベルトを嵌めこむため、この囲繞ベルトを内径42.9mm、 外径47.5mm、 高さ13.0mmに加工した。囲繞ベルトに超電導バルク体を嵌めこみ、550℃にて1時間加熱した。超電導バルク体の周囲にAl-Si合金を配置しているため、この合金が変形を生じ、形状記憶合金との隙間を埋めることを確認した。次に400℃の温度で100時間、酸素雰囲気中で熱処理を行った。こうして得られたバルク超電導体を10Tの磁場中で40Kに冷却し、外部磁場を取り除いた後計測を行った結果、試料表面で8.0Tの磁場を捕捉していた。一方、囲繞ベルトによる補強無しで同様の実験を行ったところ、10Tから8.4Tに減磁したときに超電導バルク体は破壊した。このことから、囲繞ベルトにより、超電導材料が補強され、大きな磁場を捕捉することのできるバルク超電導マグネットを作製することができた。
<実施例6>
A superconducting bulk material containing 0.5 wt% Pt and finely dispersed Dy 2 BaCuO 5 and BaCeO 3 in the DyBa 2 Cu 3 O y phase was processed into a size of 39.0 mm in diameter and 13.0 mm in height. An Al-13wt% Si alloy was cast into this bulk body. As a result, a member having a diameter of 42.8 mm and a height of 13.0 mm covering the superconducting bulk body with this alloy was obtained. For this member. Fe- 27.8wt% Mn-5.97wt% Si-4.wt% Cr after a 6.5% diameter expansion treatment, after heating for 1 hour at 650 ° C to recover the shape The diameter was increased by 5% again. In order to fit the go belt in the superconducting bulk material, the go belt was machined to an inner diameter of 42.9 mm, an outer diameter of 47.5 mm, and a height of 13.0 mm. A superconducting bulk material was fitted on the Go belt and heated at 550 ° C. for 1 hour. Since an Al-Si alloy was placed around the superconducting bulk body, it was confirmed that this alloy deformed and filled the gap with the shape memory alloy. Next, heat treatment was performed in an oxygen atmosphere at a temperature of 400 ° C. for 100 hours. The bulk superconductor thus obtained was cooled to 40K in a 10T magnetic field, and after removing the external magnetic field, measurement was performed. As a result, an 8.0T magnetic field was captured on the sample surface. On the other hand, when the same experiment was conducted without reinforcement by the go-belt, the superconducting bulk material was destroyed when demagnetization was reduced from 10T to 8.4T. From this, the superconducting material was reinforced by the go belt, and a bulk superconducting magnet capable of capturing a large magnetic field could be produced.
<Example 6>

YBa2Cu3Oy相中にY2BaCuO5およびBaCeO3が微細分散した直径38.9mm、高さ12.5mmを有する超電導バルク体に対してAl-13wt%Siの合金を鋳込んだ。この結果、超電導バルク体の周囲をこの合金が覆う直径43.5mm、高さ12.5mmの部材を得た。次に加熱時に縮むように引張方向に5%加工された直径1.2mmを有するFe- 27.8wt%Mn- 5.97wt%Si- 4.93wt%Crの線材からなる囲繞ベルトを巻きつけた。その後、650℃で1時間加熱した。その後、400℃の温度で100時間、酸素雰囲気中で熱処理を行った。このバルク超電導体を10Tの磁場中で40Kに冷却し、外部磁場を取り除いた後計測を行った結果、試料表面で7.4Tの磁場を捕捉していた。一方、囲繞ベルトによる補強無しで同様の実験を行ったところ、10Tから5.5Tに減磁したときに超電導バルク体は破壊した。このことから、囲繞ベルトにより、超電導バルク体が補強され、大きな磁場を捕捉することのできるバルク超電導マグネットを作製することができた。 An Al-13 wt% Si alloy was cast into a superconducting bulk body having a diameter of 38.9 mm and a height of 12.5 mm in which Y 2 BaCuO 5 and BaCeO 3 were finely dispersed in the YBa 2 Cu 3 O y phase. As a result, a member having a diameter of 43.5 mm and a height of 12.5 mm covering the superconducting bulk body with this alloy was obtained. Next, a surrounding belt made of Fe-27.8 wt% Mn-5.97 wt% Si-4.93 wt% Cr wire having a diameter of 1.2 mm processed 5% in the tensile direction so as to shrink during heating was wound. Then, it heated at 650 degreeC for 1 hour. Thereafter, heat treatment was performed in an oxygen atmosphere at a temperature of 400 ° C. for 100 hours. The bulk superconductor was cooled to 40K in a 10T magnetic field, and after removing the external magnetic field, measurements were taken. As a result, a 7.4T magnetic field was captured on the sample surface. On the other hand, when the same experiment was conducted without reinforcement with a go belt, the superconducting bulk material was destroyed when demagnetized from 10T to 5.5T. From this, the bulk superconducting magnet which can reinforce a superconducting bulk body with a go belt and can capture a large magnetic field could be produced.

前記線材は、いわゆるトレーニング処理を施したものであってもよい。つまり、前記5%の加工の前にたとえば7%の加工を施して600℃に加熱したのち引張方向に5%加工されていてもよい。
<実施形態1 効果>
The wire may be subjected to a so-called training process. That is, before the 5% processing, for example, 7% processing may be performed, heated to 600 ° C., and then processed 5% in the tensile direction.
<Embodiment 1 effect>

本実施形態のバルク超電導体により、電磁力や急激な昇温や冷却に伴う熱ひずみといった外力や内部応力の影響を低減し、高い捕捉磁場を維持し得るバルク超電導体を、高い寸法精度を必要とせずに提供することができる。
<実施形態2>
<実施形態2 概要>
The bulk superconductor of this embodiment reduces the influence of external forces and internal stresses such as electromagnetic force, thermal strain caused by rapid temperature rise and cooling, and requires high dimensional accuracy for a bulk superconductor that can maintain a high trapping magnetic field. Can be provided without.
<Embodiment 2>
<Overview of Embodiment 2>

本実施形態は、超電導バルク体と囲繞ベルトとの隙間に金属を含浸させることにより、囲繞ベルトによる圧縮応力を均一に負荷するとともに、超電導バルク体そのものの機械特性を向上させることにより超電導バルク体の破壊を防止することが可能となる。
<実施形態2 構成>
In this embodiment, the gap between the superconducting bulk body and the surrounding belt is impregnated with metal to uniformly apply the compressive stress due to the surrounding belt, and the mechanical properties of the superconducting bulk body itself are improved to improve the superconducting bulk body. It becomes possible to prevent destruction.
<Configuration of Embodiment 2>

本実施形態のバルク超電導体は、実施形態1を基本とし、超電導バルク体と囲繞ベルトとの隙間に金属を含浸させることを特徴とする。基本的構成については、実施形態1において説明済みであるので、本実施形態の特徴的な構成以外については、説明を省略する。   The bulk superconductor of this embodiment is based on Embodiment 1, and is characterized by impregnating a metal in the gap between the superconducting bulk body and the surrounding belt. Since the basic configuration has been described in the first embodiment, the description other than the characteristic configuration of the present embodiment is omitted.

図9は、本実施形態のバルク超電導体の概念図である。超電導バルク体(0901)と囲繞ベルト(0902)との隙間に金属を含浸させ、当該隙間を埋めるとともに超電導バルク体に生じているクラックにも浸透して、これを埋めることができる。   FIG. 9 is a conceptual diagram of the bulk superconductor of this embodiment. The gap between the superconducting bulk body (0901) and the surrounding belt (0902) can be impregnated with metal to fill the gap and to penetrate into the cracks generated in the superconducting bulk body.

超電導バルク体と囲繞ベルトとの隙間に金属を含浸させるためには、例えば、アルミ合金、鉄合金、銅合金などの低融点合金を当該隙間に鋳込むことによって実現することができる。低融点合金には、例えば、Bi-Pb-Sn-Cd-In合金、Bi-Pb-Sn-Cd-合金、Bi-Sn-In合金、Bi-Sn-Cd合金、Bi-Pb-Sn合金、Al-Si合金などが挙げられる。溶融温度は、例えば、42.34wt%Bi- 22.86wt%Pb- 11.0wt%Sn- 8.46wt%Cd- 15.34wt%Inの低融点合金であれば47.0℃である。   In order to impregnate the gap between the superconducting bulk body and the surrounding belt with a metal, for example, a low melting point alloy such as an aluminum alloy, an iron alloy, or a copper alloy can be cast into the gap. Low melting point alloys include, for example, Bi-Pb-Sn-Cd-In alloy, Bi-Pb-Sn-Cd-alloy, Bi-Sn-In alloy, Bi-Sn-Cd alloy, Bi-Pb-Sn alloy, Examples include Al-Si alloys. The melting temperature is, for example, 47.0 ° C. for a low melting point alloy of 42.34 wt% Bi-22.86 wt% Pb-11.0 wt% Sn-8.46 wt% Cd-15.34 wt% In.

溶融した合金は、超電導バルク体と囲繞ベルトとの隙間を埋めることにより、囲繞ベルトによる圧縮応力を超電導バルク体に対して、より均一に負荷することが可能となる。さらに、隙間を埋めるだけにとどまらず、超電導バルク体そのものに生じている微小クラックや気孔を通じてバルク体内部に円滑に浸透し、それらの微小クラックや気孔を埋めることになる。そして、このように内部の微小クラックや気孔が低融点合金で埋められた超電導バルク体では、その微小クラックや気孔の部位に応力集中が起きるのが緩和され、これらを起点とした破壊を防止し、高い捕捉磁場を維持することが可能となる。   The molten alloy fills the gap between the superconducting bulk body and the surrounding belt, so that the compressive stress due to the surrounding belt can be more uniformly applied to the superconducting bulk body. Furthermore, it not only fills the gap, but also smoothly penetrates into the bulk body through the microcracks and pores generated in the superconducting bulk body itself, and fills the microcracks and pores. In a superconducting bulk body in which the internal microcracks and pores are filled with a low melting point alloy in this way, stress concentration at the microcracks and pores is mitigated, and destruction starting from these is prevented. It is possible to maintain a high trapping magnetic field.

また、特に酸化物超電導バルク体は湿気や炭酸ガスの多い腐食性雰囲気に長時間曝されると、腐食によって材料劣化を生じたり反応相が生じたりして新たな割れが生じてこれが進展するおそれがあるが、低融点合金の含浸により耐食性を向上させる効果も得られる。
<実施例>
In particular, if the oxide superconducting bulk material is exposed to a corrosive atmosphere containing a lot of moisture and carbon dioxide gas for a long time, the material may deteriorate due to corrosion or a reaction phase may be generated, which may cause new cracks to develop. However, the effect of improving the corrosion resistance can be obtained by impregnation with the low melting point alloy.
<Example>

CeO2を0.5wt%含み、YBa2Cu3Oy相中にY2BaCuO5およびBaCeO3が微細分散した超電導バルク体を直径39.0mm、高さ13.0mmの寸法に加工した。この超電導バルク体に対して、加熱する場合、縮径する方向に7%加工された内径39.1mm、 外径43.7mm、 高さ13.0mmを有するNi-45wt%Tiの組成を有する囲繞ベルトに対して超電導バルク体を嵌めこみ、650℃にて1時間加熱した。次に400℃の温度で100時間、酸素雰囲気中で熱処理を行った。その後、この部材に対して、融点47.0℃を有する42.34wt%Bi- 22.86wt%Pb- 11.0wt%Sn- 8.46wt%Cd- 15.34wt%Inの低融点合金を90℃に加熱して鋳込んだ。この結果、超電導バルク体と囲繞ベルトとの隙間にこの低融点合金が入り込むことを確認した。このバルク超電導体を10Tの磁場中で40Kに冷却し、外部磁場を取り除いた後計測を行った結果、試料表面で7.6Tの磁場を捕捉していた。一方、囲繞ベルトによる補強無しで同様の実験を行ったところ、10Tから7.2Tに減磁したときに超電導バルク体は破壊した。このことから、囲繞ベルトにより、超電導バルク体が補強され、大きな磁場を捕捉することのできるバルク超電導マグネットを作製することができた。
<実施形態2 効果>
A superconducting bulk body containing 0.5 wt% CeO 2 and finely dispersed Y 2 BaCuO 5 and BaCeO 3 in the YBa 2 Cu 3 O y phase was processed into dimensions of 39.0 mm in diameter and 13.0 mm in height. When this superconducting bulk material is heated, it is against a go-belt with a composition of Ni-45wt% Ti having an inner diameter of 39.1mm, an outer diameter of 43.7mm, and a height of 13.0mm that is 7% processed in the direction of diameter reduction. The superconducting bulk material was fitted and heated at 650 ° C. for 1 hour. Next, heat treatment was performed in an oxygen atmosphere at a temperature of 400 ° C. for 100 hours. Thereafter, a low melting point alloy of 42.34 wt% Bi-22.86 wt% Pb-11.0 wt% Sn-8.46 wt% Cd-15.34 wt% In having a melting point of 47.0 ° C. is heated to 90 ° C. and cast into this member. It is. As a result, it was confirmed that the low-melting-point alloy entered the gap between the superconducting bulk body and the surrounding belt. The bulk superconductor was cooled to 40K in a magnetic field of 10T, and after removing the external magnetic field, measurements were taken. As a result, a magnetic field of 7.6T was captured on the sample surface. On the other hand, when a similar experiment was conducted without reinforcement by a go-belt, the superconducting bulk body was destroyed when demagnetized from 10T to 7.2T. From this, the bulk superconducting magnet which can reinforce a superconducting bulk body with a go belt and can capture a large magnetic field could be produced.
<Embodiment 2 Effect>

本実施形態のバルク超電導体により、より均一な圧縮応力が超電導バルク体に負荷されるとともに、超電導バルク体そのものの機械的強度を向上させることが可能となる。
<実施形態3>
<実施形態3 概要>
With the bulk superconductor of the present embodiment, a more uniform compressive stress is applied to the superconducting bulk body, and the mechanical strength of the superconducting bulk body itself can be improved.
<Embodiment 3>
<Overview of Embodiment 3>

本実施形態は、超電導バルク体と囲繞ベルトとの隙間に樹脂を含浸させることにより、囲繞ベルトによる圧縮応力を均一に負荷するとともに、超電導バルク体そのものの機械特性を向上させることにより超電導バルク体の破壊を防止することが可能となる。
<実施形態3 構成>
In this embodiment, the gap between the superconducting bulk body and the surrounding belt is impregnated with resin to uniformly apply the compressive stress due to the surrounding belt, and the mechanical properties of the superconducting bulk body itself are improved. It becomes possible to prevent destruction.
<Configuration of Embodiment 3>

本実施形態のバルク超電導体は、実施形態1を基本とし、超電導バルク体と囲繞ベルトとの隙間に樹脂を含浸させることを特徴とする。基本的構成については、実施形態1において説明済みであるので、本実施形態の特徴的な構成以外については、説明を省略する。   The bulk superconductor of this embodiment is based on Embodiment 1, and is characterized by impregnating a resin in the gap between the superconducting bulk body and the surrounding belt. Since the basic configuration has been described in the first embodiment, the description other than the characteristic configuration of the present embodiment is omitted.

樹脂の含浸は、例えば、熱硬化性樹脂であるエポキシ樹脂を100℃程度に加熱して溶かした中に囲繞ベルトを嵌めこんだ超電導バルク体を浸すことなどにより実現することが可能である。   The impregnation of the resin can be realized, for example, by immersing a superconducting bulk body in which the surrounding belt is fitted in an epoxy resin, which is a thermosetting resin, heated to about 100 ° C. and melted.

樹脂を含浸させることにより、超電導バルク体と囲繞ベルトとの隙間を埋めることができ、囲繞ベルトによる圧縮応力を超電導バルク体により均一に負荷することが可能となる。さらに、隙間を埋めるだけにとどまらず、超電導バルク体そのものに生じている微小クラックや気孔を通じてバルク体内部に円滑に浸透し、それらの微小クラックや気孔を埋めることになる。そして、このように内部の微小クラックや気孔が低融点金属で埋められた超電導バルク体では、その微小クラックや気孔の部位に応力集中が起きるのが緩和され、これらを起点とした破壊を防止し、さらに耐食性を向上させ、高い捕捉磁場を維持することが可能となる。
<実施形態3 効果>
By impregnating the resin, the gap between the superconducting bulk body and the surrounding belt can be filled, and the compressive stress due to the surrounding belt can be uniformly applied to the superconducting bulk body. Furthermore, it not only fills the gap, but also smoothly penetrates into the bulk body through the microcracks and pores generated in the superconducting bulk body itself, and fills the microcracks and pores. In the superconducting bulk body in which the internal microcracks and pores are filled with a low melting point metal as described above, the stress concentration is mitigated at the microcracks and pores, and the breakage starting from these is prevented. Further, it is possible to further improve the corrosion resistance and maintain a high trapping magnetic field.
<Effect of Embodiment 3>

本実施形態のバルク超電導体により、より均一な圧縮応力が超電導バルク体に負荷されるとともに、超電導バルク体そのものの機械的強度を向上させることが可能となる。
<実施形態4>
<実施形態4 概要>
With the bulk superconductor of the present embodiment, a more uniform compressive stress is applied to the superconducting bulk body, and the mechanical strength of the superconducting bulk body itself can be improved.
<Embodiment 4>
<Outline of Embodiment 4>

本実施形態は、超伝導バルク体よりも線膨張係数の大きな金属を溶融させて鋳込むことにより超伝導バルク体を加圧囲繞するようにしたバルク超電導体の製造方法である。
<実施形態4 構成>
The present embodiment is a method for manufacturing a bulk superconductor in which a metal having a larger linear expansion coefficient than that of the superconducting bulk body is melted and cast to surround the superconducting bulk body under pressure.
<Configuration of Embodiment 4>

本実施形態に係るバルク超電導体の製造方法を、図11を用いて説明する。まず、超電導バルク体(1101)と、前記超電導バルク体との間に隙間を空けて取り囲む鋳型(1102)とを準備し、前記鋳型と超電導バルク体との間の隙間に前記超電導バルク体よりも線膨脹係数の大きな金属(1103)を溶融させて鋳込む。そして、該溶融金属を凝固させて前記超伝導バルク体を加圧囲繞するようにしたバルク超電導体を製造する。なお、超伝導バルク体は実施形態1などで説明したものと同様である。   A method for manufacturing a bulk superconductor according to this embodiment will be described with reference to FIG. First, a superconducting bulk body (1101) and a mold (1102) surrounding the superconducting bulk body with a gap between them are prepared, and the gap between the mold and the superconducting bulk body is more than the superconducting bulk body. A metal (1103) having a large linear expansion coefficient is melted and cast. Then, the molten metal is solidified to produce a bulk superconductor in which the superconducting bulk body is pressurized and surrounded. The superconducting bulk material is the same as that described in the first embodiment.

線膨張係数とは、温度の上昇に対応して長さが変化する割合を示すものであり、この熱膨張係数が超伝導バルク体のそれよりも大きな金属を鋳込みに用いる。例えば、実施形態2などに説明したアルミ合金、鉄合金、銅合金などを用いることができる。   The linear expansion coefficient indicates a rate at which the length changes in response to an increase in temperature. A metal having a thermal expansion coefficient larger than that of the superconducting bulk body is used for casting. For example, the aluminum alloy, the iron alloy, the copper alloy, or the like described in the second embodiment can be used.

この溶融金属が凝固に伴い収縮し、超伝導バルク体に対して圧縮応力を負荷することになる。このように金属の鋳込みを施すことにより、超伝導バルク体に対して表面から均一な圧縮応力を負荷し、割れ防止をすることが可能となる。また、実施形態2において説明したように、超電導バルク体そのものに生じている微小クラックや気孔を通じてバルク体内部に円滑に浸透し、それらの微小クラックや気孔を埋めることにより、機械的強度を向上させることも可能となる。
<実施形態4 効果>
This molten metal shrinks as it solidifies, and a compressive stress is applied to the superconducting bulk material. By casting the metal in this way, it is possible to apply a uniform compressive stress from the surface to the superconducting bulk body and prevent cracking. Further, as described in Embodiment 2, the mechanical strength is improved by smoothly penetrating the inside of the bulk body through the microcracks and pores generated in the superconducting bulk body itself, and filling those microcracks and pores. It is also possible.
<Embodiment 4 effect>

本実施形態により、電磁力や急激な昇温や冷却に伴う熱ひずみといった外力や内部応力の影響を低減し、高い捕捉磁場を維持し得るバルク超電導体を製造することが可能となる。   According to the present embodiment, it is possible to manufacture a bulk superconductor capable of reducing the influence of external force and internal stress such as electromagnetic force, thermal strain accompanying rapid temperature rise and cooling, and maintaining a high trapping magnetic field.

Claims (7)

短筒状の超電導バルク体と、
前記超電導バルク体の側周面を加圧囲繞する形状記憶合金の囲繞ベルトと、
からなるバルク超電導体であって、
前記囲繞ベルトは、
超電導バルク体を囲繞した後に、形状回復処理をすることで超電導バルク体を加圧するようにしたバルク超電導体。
A short cylindrical superconducting bulk body;
A shape memory alloy go belt that pressurizes and surrounds the side surface of the superconducting bulk body;
A bulk superconductor comprising:
The go belt is
A bulk superconductor that pressurizes the superconducting bulk body by enclosing the superconducting bulk body and then performing shape recovery treatment.
前記超電導バルク体は、REBa2Cu3Oy(ここで,REはY, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Luから選ばれる1種類または2種類以上の元素)相中に,RE2BaCuO5またはRE4Ba2Cu2O10を含む銅酸化物超電導体である請求項1に記載のバルク超電導体。 The superconducting bulk is REBa 2 Cu 3 O y (where RE is one or more selected from Y, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu) The bulk superconductor according to claim 1, which is a copper oxide superconductor containing RE 2 BaCuO 5 or RE 4 Ba 2 Cu 2 O 10 in the element) phase. 前記超電導バルク体中に、Pt, Rh, CeまたはAgを含有する請求項1または2に記載のバルク超電導体。   The bulk superconductor according to claim 1 or 2, wherein the superconducting bulk body contains Pt, Rh, Ce, or Ag. 前記形状記憶合金は、Ag-Cd合金, Au-Cd合金, Cu-Al-Ni合金, Cu-Sn合金, Cu-Zn合金, Fe-Pt合金, Mn-Cu合金, Fe-Mn-Si合金, Pt合金, Co-Ni-Al合金, Co-Ni-Ga合金, Ni-Fe-Ga合金, Ti-Pd合金またはNi-Ti合金からなる請求項1から3のいずれか一に記載のバルク超電導体。   The shape memory alloys are Ag-Cd alloy, Au-Cd alloy, Cu-Al-Ni alloy, Cu-Sn alloy, Cu-Zn alloy, Fe-Pt alloy, Mn-Cu alloy, Fe-Mn-Si alloy, The bulk superconductor according to any one of claims 1 to 3, comprising Pt alloy, Co-Ni-Al alloy, Co-Ni-Ga alloy, Ni-Fe-Ga alloy, Ti-Pd alloy or Ni-Ti alloy. . 前記超電導バルク体と前記囲繞ベルトとの隙間に金属を含浸させる請求項1から4のいずれか一に記載のバルク超電導体。   The bulk superconductor according to claim 1, wherein a metal is impregnated in a gap between the superconducting bulk body and the surrounding belt. 前記超電導バルク体と前記囲繞ベルトとの隙間に樹脂を含浸させる請求項1から4のいずれか一に記載のバルク超電導体。   The bulk superconductor according to claim 1, wherein a resin is impregnated in a gap between the superconducting bulk body and the surrounding belt. 超電導バルク体と、
前記超電導バルク体との間に隙間を空けて取り囲む鋳型と、
を準備し、
前記鋳型と超電導バルク体との間の隙間に前記超電導バルク体よりも線膨脹係数の大きな金属を溶融させて鋳込み、
該溶融金属を凝固させて前記超電導バルク体を加圧囲繞するようにした
バルク超電導体の製造方法。
A superconducting bulk body;
A mold surrounding the superconducting bulk body with a gap therebetween;
Prepare
In the gap between the mold and the superconducting bulk body, a metal having a larger linear expansion coefficient than the superconducting bulk body is melted and cast,
A method for producing a bulk superconductor, wherein the molten metal is solidified to pressurize and surround the superconducting bulk body.
JP2009296257A 2009-12-25 2009-12-25 Bulk superconductor Expired - Fee Related JP5443155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009296257A JP5443155B2 (en) 2009-12-25 2009-12-25 Bulk superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009296257A JP5443155B2 (en) 2009-12-25 2009-12-25 Bulk superconductor

Publications (2)

Publication Number Publication Date
JP2011138823A true JP2011138823A (en) 2011-07-14
JP5443155B2 JP5443155B2 (en) 2014-03-19

Family

ID=44349991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009296257A Expired - Fee Related JP5443155B2 (en) 2009-12-25 2009-12-25 Bulk superconductor

Country Status (1)

Country Link
JP (1) JP5443155B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133537A1 (en) * 2014-03-04 2015-09-11 新日鐵住金株式会社 Oxide superconductive bulk magnet
JP2015207665A (en) * 2014-04-21 2015-11-19 新日鐵住金株式会社 superconducting bulk magnet
JPWO2017057634A1 (en) * 2015-10-02 2018-08-09 新日鐵住金株式会社 Oxide superconducting bulk magnet
CN114892065A (en) * 2022-05-06 2022-08-12 上海海洋大学 High-strength seawater corrosion resistant magnetic shape memory alloy material and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208308A (en) * 1990-01-10 1991-09-11 Sumitomo Heavy Ind Ltd Manufacture of superconducting coil
JPH03208310A (en) * 1990-01-10 1991-09-11 Sumitomo Heavy Ind Ltd Current lead
JPH05251752A (en) * 1991-06-28 1993-09-28 Hitachi Ltd Composite superconductor and superconductive magnetic floating device using it
JPH07124663A (en) * 1993-11-04 1995-05-16 Nippon Steel Corp Method for expanding cylinder made of superconducting material
JPH1137345A (en) * 1997-07-24 1999-02-12 Awaji Sangyo Kk Pipe connection method of high strength and connecting device
JPH11335120A (en) * 1998-05-26 1999-12-07 Nippon Steel Corp Bulk superconducting material, magnet and their production
JP2005079158A (en) * 2003-08-28 2005-03-24 Aisin Seiki Co Ltd Superconductive magnetic field generator and film sputtering device using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208308A (en) * 1990-01-10 1991-09-11 Sumitomo Heavy Ind Ltd Manufacture of superconducting coil
JPH03208310A (en) * 1990-01-10 1991-09-11 Sumitomo Heavy Ind Ltd Current lead
JPH05251752A (en) * 1991-06-28 1993-09-28 Hitachi Ltd Composite superconductor and superconductive magnetic floating device using it
JPH07124663A (en) * 1993-11-04 1995-05-16 Nippon Steel Corp Method for expanding cylinder made of superconducting material
JPH1137345A (en) * 1997-07-24 1999-02-12 Awaji Sangyo Kk Pipe connection method of high strength and connecting device
JPH11335120A (en) * 1998-05-26 1999-12-07 Nippon Steel Corp Bulk superconducting material, magnet and their production
JP2005079158A (en) * 2003-08-28 2005-03-24 Aisin Seiki Co Ltd Superconductive magnetic field generator and film sputtering device using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133537A1 (en) * 2014-03-04 2015-09-11 新日鐵住金株式会社 Oxide superconductive bulk magnet
JPWO2015133537A1 (en) * 2014-03-04 2017-04-06 新日鐵住金株式会社 Oxide superconducting bulk magnet
JP2015207665A (en) * 2014-04-21 2015-11-19 新日鐵住金株式会社 superconducting bulk magnet
JPWO2017057634A1 (en) * 2015-10-02 2018-08-09 新日鐵住金株式会社 Oxide superconducting bulk magnet
US10748691B2 (en) 2015-10-02 2020-08-18 Nippon Steel Corporation Oxide superconducting bulk magnet
CN114892065A (en) * 2022-05-06 2022-08-12 上海海洋大学 High-strength seawater corrosion resistant magnetic shape memory alloy material and preparation method and application thereof

Also Published As

Publication number Publication date
JP5443155B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
Srisukhumbowornchai et al. Influence of ordering on the magnetostriction of Fe–27.5 at.% Ga alloys
JP4012311B2 (en) Bulk superconducting member and magnet, and method of manufacturing the same
JP5443155B2 (en) Bulk superconductor
US8420558B2 (en) Superconducting connection between MgB2 superconducting wires via a compressed element made from HTS powder
WO1997020960A1 (en) Magnetostrictive material and process for preparing the same
JP2004047441A (en) Manufacturing method for superconducting wire material using mgb2 hollow filament as base material
WO2008018896A2 (en) Enhanced heat transfer from an hts element in a cryogenic bath
JP6005386B2 (en) Superconducting coil device and manufacturing method thereof
JP3389094B2 (en) Superconducting magnetic field generator
JP5112132B2 (en) Ferromagnetic shape memory alloy and method for producing sintered ferromagnetic shape memory alloy
US3953922A (en) Method of eliminating the training effect in superconducting coils by post-wind preload
US6365553B1 (en) Oxide superconductor having excellent crack-resistant property and process of producing same
EP1011153B1 (en) Oxide superconductor and process for producing same
Schmidt et al. A cure against ‘training’of superconducting magnets
US11551832B2 (en) Superconductor wire based on MgB2 core with AI based sheath and method of its production
JP4113941B2 (en) Functional composite material using shape memory alloy and method for producing the same
WO2020083840A1 (en) Reinforced bulk high temperature superconductors and method for their manufacture
JP3133329B2 (en) Oxide superconductor current lead
JP2016131236A (en) Superconducting bulk magnet member and superconducting bulk magnet, and method of manufacturing them
JP6493547B2 (en) Oxide superconducting bulk magnet
KR102548029B1 (en) Superconducting stabilizer, superconducting wire and superconducting coil
JP5069948B2 (en) Nb or Nb-based alloy sheet for producing superconducting wire and precursor for producing superconducting wire
Seki et al. Reinforcement of bulk Y-Ba-Cu-O superconductors by using Fe-Mn-Si-Ni shape memory alloy rings
JP4076075B2 (en) Heat treatment method for giant magnetostrictive material
Xu et al. Fabrication of TiNi/CFRP smart composite using cold drawn TiNi wires

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131219

R150 Certificate of patent or registration of utility model

Ref document number: 5443155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees