JP5112132B2 - Ferromagnetic shape memory alloy and method for producing sintered ferromagnetic shape memory alloy - Google Patents

Ferromagnetic shape memory alloy and method for producing sintered ferromagnetic shape memory alloy Download PDF

Info

Publication number
JP5112132B2
JP5112132B2 JP2008080485A JP2008080485A JP5112132B2 JP 5112132 B2 JP5112132 B2 JP 5112132B2 JP 2008080485 A JP2008080485 A JP 2008080485A JP 2008080485 A JP2008080485 A JP 2008080485A JP 5112132 B2 JP5112132 B2 JP 5112132B2
Authority
JP
Japan
Prior art keywords
phase
shape memory
memory alloy
ferromagnetic shape
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008080485A
Other languages
Japanese (ja)
Other versions
JP2009235454A (en
Inventor
伸 田島
宏之 川浦
亮介 貝沼
清仁 石田
航 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Toyota Central R&D Labs Inc
Original Assignee
Tohoku University NUC
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Toyota Central R&D Labs Inc filed Critical Tohoku University NUC
Priority to JP2008080485A priority Critical patent/JP5112132B2/en
Publication of JP2009235454A publication Critical patent/JP2009235454A/en
Application granted granted Critical
Publication of JP5112132B2 publication Critical patent/JP5112132B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、磁場誘起逆変態して、磁性変化を伴って形状を回復する強磁性形状記憶合金に関するものである。   The present invention relates to a ferromagnetic shape memory alloy that undergoes magnetic field induced reverse transformation and recovers its shape with a magnetic change.

形状記憶合金はマルテンサイト変態の逆変態に伴う顕著な形状記憶効果を有し、アクチュエータ用材料等として有用である。形状記憶合金からなるアクチュエータは、通常、冷却によるマルテンサイト変態と加熱による逆変態により熱駆動される。形状記憶合金では、一般に冷却時の変態温度より加熱時の逆変態温度の方が高い。変態温度と逆変態温度との差を温度ヒステリシスという。温度ヒステリシスが小さい熱弾性型マルテンサイト変態では、通常約5%に及ぶ大きな形状回復歪が得られる。しかし熱駆動アクチュエータは冷却過程が熱放散により律速されるため、応答速度が遅いという問題がある。   Shape memory alloys have a significant shape memory effect associated with the reverse transformation of martensite transformation, and are useful as actuator materials and the like. An actuator made of a shape memory alloy is usually thermally driven by martensitic transformation by cooling and reverse transformation by heating. For shape memory alloys, the reverse transformation temperature during heating is generally higher than the transformation temperature during cooling. The difference between the transformation temperature and the reverse transformation temperature is called temperature hysteresis. In the thermoelastic martensitic transformation with small temperature hysteresis, a large shape recovery strain of about 5% is usually obtained. However, the heat-driven actuator has a problem that the response speed is slow because the cooling process is rate-controlled by heat dissipation.

そこで、磁場によりマルテンサイト変態を誘起したり、マルテンサイト相を双晶変形させたり、といった形状記憶効果をもつNi−Co−Al系合金、Ni−Mn−Ga系合金、などの強磁性形状記憶合金が注目されている。強磁性形状記憶合金は磁場誘起逆変態が可能であり、応答速度が高く、アクチュエータ用材料として有望である。   Therefore, ferromagnetic shape memory such as Ni—Co—Al alloy and Ni—Mn—Ga alloy having shape memory effects such as inducing martensitic transformation by magnetic field and twin deformation of martensite phase. Alloys are attracting attention. Ferromagnetic shape memory alloys are capable of magnetic field induced reverse transformation, have high response speed, and are promising as actuator materials.

たとえば、特許文献1には、Ni−Co−Al系合金であって、B2構造のβ相と、β相の粒界に存在するfcc構造のγ相と、からなる2相構造を有する強磁性形状記憶合金が開示されている。2相構造を有する強磁性形状記憶合金の製造は、所定の組成を有する合金を溶製して凝固させたインゴットに、1段階または2段階以上の熱処理を施して2相分離させることで得られる。β相の粒界にγ相が多く生成されると、延性に富むγ相がβ相の結晶粒界を補いβ相単独の場合に生じる破壊が阻止される反面、β相単独の場合に比べ形状記憶合金としての能力は低下する。そのため、熱処理によって生成されるγ相の量を調整する必要があるが、熱処理では、精密な組織制御は困難である。   For example, Patent Document 1 discloses a ferromagnetic material having a two-phase structure which is a Ni—Co—Al-based alloy and includes a β phase having a B2 structure and a γ phase having an fcc structure existing at a grain boundary of the β phase. Shape memory alloys are disclosed. The production of a ferromagnetic shape memory alloy having a two-phase structure is obtained by subjecting an ingot obtained by melting and solidifying an alloy having a predetermined composition to two-phase separation by subjecting the ingot to one step or two or more steps. . When a large amount of γ phase is generated at the grain boundary of the β phase, the γ phase, which is rich in ductility, supplements the grain boundary of the β phase and the destruction that occurs when the β phase alone is prevented, but compared with the case of the β phase alone. The ability as a shape memory alloy is reduced. Therefore, it is necessary to adjust the amount of γ phase generated by the heat treatment, but it is difficult to precisely control the structure by the heat treatment.

また、特許文献2には、ニッケル(Ni)と、マンガン(Mn)と、インジウム(In)、錫(Sn)およびアンチモン(Sb)からなる群から選ばれた少なくとも一種と、コバルト(Co)および/または鉄(Fe)と、からなる強磁性形状記憶合金が開示されている。特許文献2に開示の合金は、実用温度域(−40〜+200℃)において優れた形状記憶特性を示し、実用温度域で磁場誘起逆変態して磁性変化を伴って形状を回復する。このような合金は、磁場駆動素子および熱磁気駆動素子として使用される。
特開2004−277865号公報 国際公開第2007/001009号パンフレット
Patent Document 2 discloses at least one selected from the group consisting of nickel (Ni), manganese (Mn), indium (In), tin (Sn) and antimony (Sb), cobalt (Co) and A ferromagnetic shape memory alloy comprising / and iron (Fe) is disclosed. The alloy disclosed in Patent Document 2 exhibits excellent shape memory characteristics in a practical temperature range (−40 to + 200 ° C.), and recovers the shape with a magnetic change by magnetic field induced reverse transformation in the practical temperature range. Such alloys are used as magnetic field driving elements and thermomagnetic driving elements.
JP 2004-277865 A International Publication No. 2007/001009 Pamphlet

特許文献2では、強磁性形状記憶合金の製造方法として、溶解鋳造が挙げられている。ところが、この強磁性形状記憶合金は、典型的な金属間化合物である。そのため、通常の溶解鋳造により作製された強磁性形状記憶合金の多結晶体は単相組織をもち、金属間化合物特有の結晶粒界での脆さにより、外部から作用する力、場合によっては温度または磁場変化による変態により崩壊しやすいという問題がある。また、本来この強磁性形状記憶合金は平衡相であるため、単相からなる組織を、特許文献1に記載のような鋳造後の熱処理により2相に分離させることができない。   In patent document 2, melt casting is mentioned as a manufacturing method of a ferromagnetic shape memory alloy. However, this ferromagnetic shape memory alloy is a typical intermetallic compound. For this reason, the polycrystalline body of ferromagnetic shape memory alloy produced by ordinary melt casting has a single-phase structure, and due to the brittleness at the grain boundaries peculiar to intermetallic compounds, the force acting from the outside, sometimes the temperature Or there exists a problem that it is easy to collapse by the transformation by a magnetic field change. In addition, since this ferromagnetic shape memory alloy is essentially an equilibrium phase, a structure composed of a single phase cannot be separated into two phases by heat treatment after casting as described in Patent Document 1.

つまり、特許文献2に記載の強磁性形状記憶合金は、単結晶体で使用するのが望ましい。しかしながら、単結晶体は、製造プロセスが複雑であるため、多結晶体と比較して製造コストが高く、用途が限定される。そのため、多結晶体であっても高い機械的強度を有する強磁性形状記憶合金、およびその製造方法の開発が求められている。   That is, the ferromagnetic shape memory alloy described in Patent Document 2 is desirably used as a single crystal. However, since the manufacturing process of a single crystal is complicated, the manufacturing cost is higher than that of a polycrystal, and its application is limited. Therefore, development of a ferromagnetic shape memory alloy having a high mechanical strength even for a polycrystalline body and a method for producing the same is demanded.

本発明者等は、Niと、Mnと、In、SnおよびSbからなる群から選ばれた少なくとも一種と、Coおよび/またはFeと、不可避不純物と、からなる強磁性形状記憶合金において、非平衡相であるfcc構造をもつ相が高い靭性を有することを新たに見出した。そして、この強磁性形状記憶合金の組織を、マルテンサイト変態を示す相と、靭性に富む相と、からなる二相組織とすることで、多結晶体であっても高い機械的強度を示すことに想到した。   In the ferromagnetic shape memory alloy comprising at least one selected from the group consisting of Ni, Mn, In, Sn and Sb, Co and / or Fe, and inevitable impurities, the inventors It was newly found that a phase having an fcc structure as a phase has high toughness. And, the structure of this ferromagnetic shape memory alloy is a two-phase structure consisting of a phase exhibiting martensitic transformation and a phase rich in toughness, thereby exhibiting high mechanical strength even in a polycrystalline body. I came up with it.

すなわち、本発明は、高い機械的硬度を有する強磁性形状記憶合金、および、高い機械的硬度を有する強磁性形状記憶合金を容易に製造できる製造方法を提供することを目的とする。   That is, an object of the present invention is to provide a ferromagnetic shape memory alloy having a high mechanical hardness and a production method capable of easily producing a ferromagnetic shape memory alloy having a high mechanical hardness.

本発明の強磁性形状記憶合金は、ニッケル(Ni)と、マンガン(Mn)と、インジウム(In)、錫(Sn)およびアンチモン(Sb)からなる群から選ばれた少なくとも一種と、コバルト(Co)および/または鉄(Fe)と、からなる強磁性形状記憶合金であって、
マルテンサイト変態を示すbcc構造をもつ第一相と、該第一相を取り囲みfcc構造をもつ第二相と、からなる組織を有し、前記第一相は、該第一相全体を100原子%としたときに、Mnを25〜50原子%、In、SnおよびSbからなる群から選ばれた少なくとも一種を合計で5〜18原子%、ならびに、Coおよび/またはFeを0.1〜15原子%、含み残部がNiおよび不可避不純物からなる組成をもつことを特徴とする。
The ferromagnetic shape memory alloy of the present invention comprises at least one selected from the group consisting of nickel (Ni), manganese (Mn), indium (In), tin (Sn), and antimony (Sb), cobalt (Co ) And / or iron (Fe), and a ferromagnetic shape memory alloy,
It has a structure consisting of a first phase having a bcc structure exhibiting martensitic transformation and a second phase surrounding the first phase and having an fcc structure, and the first phase has a total of 100 atoms. %, Mn is 25 to 50 atomic%, at least one selected from the group consisting of In, Sn and Sb is 5 to 18 atomic% in total, and Co and / or Fe is 0.1 to 15 It is characterized in that it has a composition comprising atomic% and the balance including Ni and inevitable impurities.

Niと、Mnと、In、SnおよびSbからなる群から選ばれた少なくとも一種と、Coおよび/またはFeと、からなる強磁性形状記憶合金は、既に述べたように、単相組織の多結晶体である場合には、脆性が高く結晶粒界から崩壊しやすい。そこで本発明では、マルテンサイト変態を示すbcc構造をもつ相(第一相)と、この相を取り囲みfcc構造をもつ相(第二相)と、からなる二相組織とする。第一相は単独では脆いが、靭性に富む高強度の第二相で取り囲まれることで破壊が抑制され、強磁性形状記憶合金の機械的強度が向上する。   The ferromagnetic shape memory alloy comprising Ni, Mn, at least one selected from the group consisting of In, Sn, and Sb, and Co and / or Fe is a polycrystalline single-phase structure as described above. In the case of the body, it is highly brittle and easily collapses from the grain boundary. Therefore, in the present invention, a two-phase structure including a phase (first phase) having a bcc structure exhibiting martensitic transformation and a phase (second phase) surrounding the phase and having an fcc structure is adopted. Although the first phase is fragile alone, it is surrounded by a high-strength second phase rich in toughness, so that fracture is suppressed and the mechanical strength of the ferromagnetic shape memory alloy is improved.

また、本発明の強磁性形状記憶合金焼結体の製造方法は、上記本発明の強磁性形状記憶合金を製造する方法のひとつである。本発明の強磁性形状記憶合金焼結体の製造方法は、全体を100原子%としたときに、マンガン(Mn)を25〜50原子%、インジウム(In)、錫(Sn)およびアンチモン(Sb)からなる群から選ばれた少なくとも一種を合計で5〜18原子%、ならびに、コバルト(Co)および/または鉄(Fe)を0.1〜15原子%、含み残部がニッケル(Ni)および不可避不純物からなりbcc構造をもつ強磁性形状記憶合金の合金粉末を製造する粉末製造工程と、
前記合金粉末を成形体に成形する成形工程と、
前記合金粉末の表層部を加熱して、該表層部をfcc構造とするとともに前記成形体を焼結体とする焼結工程と、
を含むことを特徴とする。
The method for producing a ferromagnetic shape memory alloy sintered body of the present invention is one of the methods for producing the ferromagnetic shape memory alloy of the present invention. The manufacturing method of the ferromagnetic shape memory alloy sintered body according to the present invention has a manganese (Mn) content of 25 to 50 atomic%, indium (In), tin (Sn), and antimony (Sb) when the whole is 100 atomic%. At least one selected from the group consisting of 5 to 18 atomic%, cobalt (Co) and / or iron (Fe) 0.1 to 15 atomic%, the balance being nickel (Ni) and inevitable A powder manufacturing process for manufacturing an alloy powder of a ferromagnetic shape memory alloy made of impurities and having a bcc structure;
A molding step of molding the alloy powder into a molded body;
A sintering step in which a surface layer portion of the alloy powder is heated so that the surface layer portion has an fcc structure and the compact is a sintered body;
It is characterized by including.

本発明の強磁性形状記憶合金は、焼結法を用いることにより容易に製造できる。   The ferromagnetic shape memory alloy of the present invention can be easily manufactured by using a sintering method.

以下に、本発明の強磁性形状記憶合金および強磁性形状記憶合金焼結体の製造方法を実施するための最良の形態を説明する。   The best mode for carrying out the manufacturing method of the ferromagnetic shape memory alloy and the ferromagnetic shape memory alloy sintered body of the present invention will be described below.

[強磁性形状記憶合金]
本発明の強磁性形状記憶合金は、主として、ニッケル(Ni)と、マンガン(Mn)と、インジウム(In)、錫(Sn)およびアンチモン(Sb)からなる群から選ばれた少なくとも一種と、コバルト(Co)および/または鉄(Fe)と、からなる強磁性形状記憶合金である。
[Ferromagnetic shape memory alloy]
The ferromagnetic shape memory alloy of the present invention mainly comprises at least one selected from the group consisting of nickel (Ni), manganese (Mn), indium (In), tin (Sn) and antimony (Sb), cobalt A ferromagnetic shape memory alloy comprising (Co) and / or iron (Fe).

本発明の強磁性形状記憶合金は、マルテンサイト変態を示すbcc構造をもつ第一相と、第一相を取り囲みfcc構造をもつ第二相と、からなる組織を有する。図1は、本発明の強磁性形状記憶合金の断面組織を模式的に示す説明図である。強磁性形状記憶合金Aにおいて、第一相1は、マルテンサイト変態を示すbcc構造をもつ相である。つまり、第一相は、マルテンサイト変態終了温度(Mf)が室温より低い場合はbcc構造をもつ母相であり、Mfが室温より高い場合はマルテンサイト相(以下「M相」と略記)である。第二相2は、第一相10を取り囲む。第二相は、上記組成の強磁性形状記憶合金において通常には生成されない非平衡相であって、fcc構造をもつ。以下に、第一相および第二相について詳説する。   The ferromagnetic shape memory alloy of the present invention has a structure composed of a first phase having a bcc structure exhibiting martensitic transformation and a second phase surrounding the first phase and having an fcc structure. FIG. 1 is an explanatory view schematically showing a cross-sectional structure of a ferromagnetic shape memory alloy of the present invention. In the ferromagnetic shape memory alloy A, the first phase 1 is a phase having a bcc structure showing martensitic transformation. That is, the first phase is a parent phase having a bcc structure when the martensite transformation end temperature (Mf) is lower than room temperature, and is a martensite phase (hereinafter abbreviated as “M phase”) when Mf is higher than room temperature. is there. The second phase 2 surrounds the first phase 10. The second phase is a non-equilibrium phase that is not normally generated in a ferromagnetic shape memory alloy having the above composition, and has an fcc structure. Hereinafter, the first phase and the second phase will be described in detail.

[第一相]
第一相は、第一相全体を100原子%としたときに、Mnを25〜50原子%、In、SnおよびSbからなる群から選ばれた少なくとも一種を合計で5〜18原子%、ならびに、Coおよび/またはFeを0.1〜15原子%、含み残部がNiおよび不可避不純物からなる組成をもつ。
[Phase 1]
The first phase has a total Mn content of 25 to 50 atom% and at least one selected from the group consisting of In, Sn and Sb in a total amount of 5 to 18 atom% when the entire first phase is 100 atom%, and Co and / or Fe is contained in an amount of 0.1 to 15 atomic%, and the balance is composed of Ni and inevitable impurities.

Mnは、bcc構造を有する強磁性母相の生成を促進する元素である。Mnの含有量を調節することにより、マルテンサイト変態の開始温度(Ms)および終了温度(Mf)、マルテンサイト逆変態の開始温度(As)および終了温度(Af)、ならびにキュリー温度(Tc)を変化させることができる。Mnの添加量を25原子%未満とすると、マルテンサイト変態が生じない。一方、50原子%超とすると、強磁性形状記憶合金は母相単相とならない。好ましいMnの含有量は28〜45原子%さらには36〜42原子%である。   Mn is an element that promotes the formation of a ferromagnetic matrix having a bcc structure. By adjusting the content of Mn, the start temperature (Ms) and end temperature (Mf) of the martensite transformation, the start temperature (As) and end temperature (Af) of the martensite reverse transformation, and the Curie temperature (Tc) Can be changed. When the amount of Mn added is less than 25 atomic%, martensitic transformation does not occur. On the other hand, if it exceeds 50 atomic%, the ferromagnetic shape memory alloy does not become a single phase of the parent phase. A preferable Mn content is 28 to 45 atomic%, and further 36 to 42 atomic%.

In、SnおよびSbは、磁気特性を向上させる元素である。これらの元素の含有量を調節することにより、MsおよびTcを変化させることができるとともに、基地組織も強化する。これらの元素の合計含有量を5原子%未満とすると、MsがTc以上になる。一方、18原子%超とすると、マルテンサイト変態が生じない。これらの元素の含有量は合計で7〜16原子%さらには9〜15原子%であるのが好ましく、Snを単独で用いる場合には10〜13原子%であるのが特に好ましい。   In, Sn, and Sb are elements that improve magnetic properties. By adjusting the content of these elements, Ms and Tc can be changed, and the base organization is strengthened. When the total content of these elements is less than 5 atomic%, Ms becomes Tc or more. On the other hand, if it exceeds 18 atomic%, martensitic transformation does not occur. The total content of these elements is preferably 7 to 16 atomic%, more preferably 9 to 15 atomic%, and particularly preferably 10 to 13 atomic% when Sn is used alone.

CoおよびFeは、Tcを上昇させる作用を有する。これらの元素の合計含有量が15原子%を超えると第一相の脆性が高まり、強磁性形状記憶合金の機械的強度が低下する恐れがある。これらの元素の含有量は、合計で0.5〜10原子%さらには4〜8原子%であるのが好ましく、Coを単独で用いる場合には6〜8原子%であるのが特に好ましい。   Co and Fe have an effect of increasing Tc. If the total content of these elements exceeds 15 atomic%, the brittleness of the first phase is increased and the mechanical strength of the ferromagnetic shape memory alloy may be lowered. The total content of these elements is preferably 0.5 to 10 atomic%, more preferably 4 to 8 atomic%, and particularly preferably 6 to 8 atomic% when Co is used alone.

Niは、形状記憶特性および磁気特性を向上させる元素である。Ni含有量が不足すると強磁性が消失し、過剰であると形状記憶効果が発現しない。優れた形状記憶特性および強磁性を得るために、Ni含有量は35原子%超であるのが好ましく、40原子%以上であるのがより好ましく、42原子%以上であるのが特に好ましい。   Ni is an element that improves shape memory characteristics and magnetic characteristics. When the Ni content is insufficient, the ferromagnetism disappears, and when it is excessive, the shape memory effect is not exhibited. In order to obtain excellent shape memory characteristics and ferromagnetism, the Ni content is preferably more than 35 atomic%, more preferably 40 atomic% or more, and particularly preferably 42 atomic% or more.

本発明の強磁性形状記憶合金において、第一相は、さらに、チタン(Ti)、パラジウム(Pd)、白金(Pt)、アルミニウム(Al)、ガリウム(Ga)、珪素(Si)、ゲルマニウム(Ge)、鉛(Pb)およびビスマス(Bi)からなる群から選ばれる少なくとも一種の金属を、合計で0.1〜15原子%含有してもよい。このとき、形状記憶特性および磁気特性の点から、Niの含有量は、40原子%以上であるのが好ましい。Ti、Pd、Pt、Al、Ga、Si、Ge、PbおよびBiからなる群から選ばれる少なくとも一種の金属は、形状記憶特性を向上させる。また、その含有量の調節により、MsおよびTcを変化させる。中でもTi、Al、Ga、SiおよびGeは、M相の長周期積層構造を安定化する作用を有する。また、Pd、Pt、PbおよびBiは、M相を構成する常磁性相、反強磁性相またはフェリ磁性相、特に、常磁性相または反強磁性相を安定化する作用を有する。これらの元素の合計含有量が15原子%を超えると第一相の脆性が高まり、強磁性形状記憶合金の機械的強度が低下する恐れがある。これらの元素の含有量は、合計で0.5〜8原子%であるのが好ましい。   In the ferromagnetic shape memory alloy of the present invention, the first phase further includes titanium (Ti), palladium (Pd), platinum (Pt), aluminum (Al), gallium (Ga), silicon (Si), germanium (Ge). ), At least one metal selected from the group consisting of lead (Pb) and bismuth (Bi) may be contained in a total amount of 0.1 to 15 atomic%. At this time, the Ni content is preferably 40 atomic% or more from the viewpoint of shape memory characteristics and magnetic characteristics. At least one metal selected from the group consisting of Ti, Pd, Pt, Al, Ga, Si, Ge, Pb, and Bi improves shape memory characteristics. Moreover, Ms and Tc are changed by adjusting the content. Among these, Ti, Al, Ga, Si, and Ge have an effect of stabilizing the M-phase long-period stacked structure. Pd, Pt, Pb and Bi have an action of stabilizing the paramagnetic phase, antiferromagnetic phase or ferrimagnetic phase constituting the M phase, particularly the paramagnetic phase or antiferromagnetic phase. If the total content of these elements exceeds 15 atomic%, the brittleness of the first phase is increased and the mechanical strength of the ferromagnetic shape memory alloy may be lowered. The total content of these elements is preferably 0.5 to 8 atomic%.

以上詳説した組成を有する第一相は、実用温度域(−40〜+200℃)より高いMfを有し、実用温度域でマルテンサイト相状態であるので、良好な形状記憶特性を安定的に示す。そして、第一相単相の場合の形状回復率[=100×(与歪み−残留歪み)/与歪み]は95%以上であり、実質的に100%である。また、第一相は、実用温度域より低いAfを有し、実用温度域で安定かつ良好な超弾性を示す。通常、与歪みが6〜8%でも、変形解放後の形状回復率は95%以上である。   The first phase having the composition detailed above has an Mf higher than the practical temperature range (−40 to + 200 ° C.) and is in the martensitic phase state in the practical temperature range, and thus stably exhibits good shape memory characteristics. . The shape recovery rate [= 100 × (strain−residual strain) / strain] in the case of the first phase single phase is 95% or more, and is substantially 100%. The first phase has an Af lower than the practical temperature range, and exhibits stable and good superelasticity in the practical temperature range. Usually, even when the strain is 6 to 8%, the shape recovery rate after the deformation is released is 95% or more.

第一相は、母相とM相との間および母相間で、それぞれ熱弾性型マルテンサイト変態および逆変態を行う。M相は、2M、6M、10M、14M、4O等の積層構造(積層構造を示す数字は細密面である<001>面の積層周期を表し、積層構造を示す記号Mは単斜晶を表し、記号Oは斜方晶を表す。)を有するが、温度ヒステリシスを小さくするために6M、10M、14M、4O等の長周期積層構造が好ましい。   The first phase performs thermoelastic martensitic transformation and reverse transformation between the parent phase and the M phase and between the parent phases, respectively. M phase is a laminated structure of 2M, 6M, 10M, 14M, 4O, etc. (the number indicating the laminated structure represents the <001> plane lamination period, which is a fine surface, and the symbol M indicating the laminated structure represents a monoclinic crystal. The symbol O represents orthorhombic crystal), but a long-period laminated structure such as 6M, 10M, 14M, 4O or the like is preferable in order to reduce temperature hysteresis.

[第二相]
第二相は、上記第一相を取り囲み、本発明の強磁性形状記憶合金の機械的強度を向上させる。
[Second phase]
The second phase surrounds the first phase and improves the mechanical strength of the ferromagnetic shape memory alloy of the present invention.

第二相は、Niと、Mnと、In、SnおよびSbからなる群から選ばれた少なくとも一種と、Coおよび/またはFeと、からなる強磁性形状記憶合金において通常には生成されない非平衡相であって、fcc構造をもつ。第二相の組成を規定するならば、第二相は、第二相全体を100原子%としたときに、Mnを34〜42原子%、In、SnおよびSbからなる群から選ばれた少なくとも一種を合計で7〜15原子%、ならびに、Coおよび/またはFeを4〜12原子%、含み残部がNiおよび不可避不純物からなる組成をもつのが好ましい。組成がこの範囲であれば、第二相はfcc構造をもち靭性に富む。   The second phase is a non-equilibrium phase that is not normally generated in a ferromagnetic shape memory alloy comprising Ni, Mn, at least one selected from the group consisting of In, Sn and Sb, and Co and / or Fe. And has an fcc structure. If the composition of the second phase is defined, the second phase is at least selected from the group consisting of 34 to 42 atomic%, In, Sn, and Sb when Mn is 100 atomic%. It is preferable to have a composition of 7 to 15 atom% in total, 4 to 12 atom% of Co and / or Fe, and the balance of Ni and inevitable impurities. If the composition is within this range, the second phase has an fcc structure and is rich in toughness.

第二相は、第一相に類似の組成を有する必要がある。本発明の強磁性形状記憶合金の高強度化のためには、第一相と第二相とが類似した結晶構造や熱膨張係数を有する必要があるためである。したがって、第二相において好ましいMnの含有量は36〜40原子%さらには37〜39原子%である。In、SnおよびSbの含有量は、合計で8〜12原子%さらには8〜10原子%であるのが好ましく、Snを単独で用いる場合には7〜10原子%であるのが特に好ましい。CoおよびFeの含有量は、合計で6〜11原子%さらには8〜10原子%であるのが好ましく、Coを単独で用いる場合には8〜10原子%であるのが特に好ましい。Ni含有量は38原子%以上、40原子%以上、さらには42原子%以上であるのが好ましい。   The second phase needs to have a composition similar to the first phase. This is because in order to increase the strength of the ferromagnetic shape memory alloy of the present invention, the first phase and the second phase must have similar crystal structures and thermal expansion coefficients. Therefore, the preferable Mn content in the second phase is 36 to 40 atomic%, further 37 to 39 atomic%. The total content of In, Sn and Sb is preferably 8 to 12 atomic%, more preferably 8 to 10 atomic%, and particularly preferably 7 to 10 atomic% when Sn is used alone. The total content of Co and Fe is preferably 6 to 11 atomic%, more preferably 8 to 10 atomic%, and particularly preferably 8 to 10 atomic% when Co is used alone. The Ni content is preferably 38 atomic% or more, 40 atomic% or more, and more preferably 42 atomic% or more.

第二相は、さらに、炭素(C)を含んでもよい。第二相は、黒鉛製の型内で焼結されることで炭素を含有することもある。炭素の含有量は、第二相全体を100原子%としたときに、5原子%以下さらには0.001〜3原子%であるのがよい。また、第二相は、さらに、Ti、Pd、Pt、Al、Ga、Si、Ge、PbおよびBiからなる群から選ばれる少なくとも一種の金属を含有してもよい。これらの元素の含有量は、第二相全体を100原子%としたときに、合計で0.01〜5原子%であるのが好ましい。   The second phase may further contain carbon (C). The second phase may contain carbon by being sintered in a graphite mold. The carbon content is preferably 5 atomic percent or less, and more preferably 0.001 to 3 atomic percent, assuming that the entire second phase is 100 atomic percent. The second phase may further contain at least one metal selected from the group consisting of Ti, Pd, Pt, Al, Ga, Si, Ge, Pb, and Bi. The content of these elements is preferably 0.01 to 5 atomic% in total when the entire second phase is 100 atomic%.

なお、前述の第一相および第二相の構造は、たとえば、X線回折(XRD)や電子線回折などにより決定される。また、組成は、エネルギー分散型蛍光X線分析(EDX)、X線光電子分光分析(XPS)、電子線マイクロアナライザ(EPMA)などにより分析すればよい。   Note that the structures of the first phase and the second phase described above are determined by, for example, X-ray diffraction (XRD) or electron diffraction. The composition may be analyzed by energy dispersive X-ray fluorescence analysis (EDX), X-ray photoelectron spectroscopy (XPS), electron beam microanalyzer (EPMA), or the like.

第二相は、第一相と異なり、マルテンサイト変態を示さない。また、磁気特性についても、第一相は、母相で強磁性、M相で常磁性、反強磁性またはフェリ磁性を示すが、第二相は、常に強磁性を示す。したがって、本発明の強磁性形状記憶合金の変態特性を最大限に発揮させるためには、合金全体に占める第二相の体積割合が少ない方が好ましい。したがって、第二相の体積割合は、第一相と第二相との合計を100体積%としたときに、
2〜30体積%さらには2〜20体積%であるのがよい。第二相の体積割合が2体積%未満では、温度や磁場の変化により自己崩壊することがあるため望ましくない。
Unlike the first phase, the second phase does not exhibit martensitic transformation. As for the magnetic characteristics, the first phase is ferromagnetic in the parent phase, paramagnetic, antiferromagnetic or ferrimagnetic in the M phase, but the second phase is always ferromagnetic. Therefore, in order to maximize the transformation characteristics of the ferromagnetic shape memory alloy of the present invention, it is preferable that the volume fraction of the second phase in the entire alloy is small. Therefore, when the volume ratio of the second phase is 100% by volume of the total of the first phase and the second phase,
It is good that it is 2-30 volume% further 2-20 volume%. If the volume fraction of the second phase is less than 2% by volume, it may be undesirably self-collapsed due to changes in temperature or magnetic field.

また、本発明の強磁性形状記憶合金は、本合金全体を100原子%としたときに、Mnを25〜50原子%、In、SnおよびSbからなる群から選ばれた少なくとも一種を合計で5〜18原子%、ならびに、Coおよび/またはFeを0.1〜15原子%、含み残部がNiおよび不可避不純物からなるのが好ましい。なお、本発明の強磁性形状記憶合金は二相組織を有するが、上記の組成の範囲は本合金の全体組成を示す。全体組成が上記の範囲であれば、第一相がマルテンサイト変態を示すのに好ましい組成、fcc構造をもつ第二相が形成されるのに好ましい組成、がともに維持される。Mnのさらに好ましい含有量は、40〜46原子%である。In、SnおよびSbからなる群から選ばれた少なくとも一種のさらに好ましい含有量は、8〜14原子%であり、Snを単独で用いる場合には9〜13原子%であるのが特に好ましい。Coおよび/またはFeのさらに好ましい含有量は、4〜10原子%であり、Coを単独で用いる場合には5〜9原子%であるのが特に好ましい。   The ferromagnetic shape memory alloy of the present invention has a total of at least one selected from the group consisting of 25 to 50 atomic% Mn, In, Sn and Sb when the total alloy is 100 atomic%. It is preferable that it is ˜18 atomic%, and Co and / or Fe is 0.1 to 15 atomic%, and the balance is made of Ni and inevitable impurities. In addition, although the ferromagnetic shape memory alloy of the present invention has a two-phase structure, the range of the above composition indicates the entire composition of the alloy. When the overall composition is in the above range, both the composition preferable for the first phase to exhibit martensitic transformation and the composition preferable for forming the second phase having the fcc structure are maintained. The more preferable content of Mn is 40 to 46 atomic%. The more preferable content of at least one selected from the group consisting of In, Sn and Sb is 8 to 14 atomic%, and when Sn is used alone, it is particularly preferably 9 to 13 atomic%. A more preferable content of Co and / or Fe is 4 to 10 atomic%, and when Co is used alone, it is particularly preferably 5 to 9 atomic%.

本発明の強磁性形状記憶合金では、第一相が第二相に取り囲まれた状態であっても、第一相が有する変態特性が発現する。以下に、本発明の強磁性形状記憶合金が有する変態特性(磁場誘起逆変態特性、熱弾性変態特性、応力誘起変態特性)および電気抵抗特性を説明する。   In the ferromagnetic shape memory alloy of the present invention, even when the first phase is surrounded by the second phase, the transformation characteristics of the first phase are exhibited. Hereinafter, the transformation characteristics (magnetic field induced reverse transformation characteristics, thermoelastic transformation characteristics, stress induced transformation characteristics) and electrical resistance characteristics of the ferromagnetic shape memory alloy of the present invention will be described.

(I)磁場誘起逆変態特性
第一相は、常磁性、反強磁性またはフェリ磁性を有するM相状態の強磁性形状記憶合金に磁場を印加すると、M相は強磁性母相にマルテンサイト逆変態し、磁場を除去するとマルテンサイト変態してM相に戻る。そのため、本発明の強磁性形状記憶合金は、二方向形状記憶効果が得られる。
(I) Magnetic-field-induced reverse transformation characteristics When a magnetic field is applied to a ferromagnetic shape memory alloy in the M-phase state in which the first phase is paramagnetic, antiferromagnetic, or ferrimagnetic, the M phase is martensite-reversed to the ferromagnetic matrix. When transformed and the magnetic field is removed, it transforms to martensite and returns to the M phase. Therefore, the ferromagnetic shape memory alloy of the present invention has a two-way shape memory effect.

第一相は、母相状態では磁場の磁気的エネルギー(ゼーマンエネルギー)を蓄えるが、M相状態では蓄えないので、母相とM相との間に大きな磁化の差がある。強磁性形状記憶合金に磁場を印加すると、ゼーマンエネルギーによりMs、Mf、AsおよびAfが大きく低下し、M相は安定な母相に逆変態する。限定的ではないが、実用温度域(−40〜+200℃)で本発明の強磁性形状記憶合金にマルテンサイト逆変態を起こさせるには、磁場の強さは0.5〜100kOe(398〜7958kA/m)であるのが好ましい。   The first phase stores magnetic energy (Zeeman energy) of the magnetic field in the parent phase state, but does not store in the M phase state, so there is a large magnetization difference between the parent phase and the M phase. When a magnetic field is applied to the ferromagnetic shape memory alloy, Ms, Mf, As, and Af are greatly reduced by Zeeman energy, and the M phase is transformed back into a stable matrix. Although not limited, in order to cause martensitic reverse transformation in the ferromagnetic shape memory alloy of the present invention in a practical temperature range (−40 to + 200 ° C.), the strength of the magnetic field is 0.5 to 100 kOe (398 to 7958 kA). / M).

(II)熱弾性変態特性
第一相は、熱弾性型マルテンサイト変態/逆変態を生じる。本発明の強磁性形状記憶合金の無磁場でのMsおよびAsは、通常、−200℃〜+100℃の範囲内である。また、TcとMsの差は40℃以上であり、広い温度領域で強磁性母相が存在する。Msは、上記の各元素の配合比により調整できる。本発明の強磁性形状記憶合金では、M相状態の第一相は常磁性、反強磁性またはフェリ磁性を有するが、反強磁性またはフェリ磁性の場合、常磁性の場合より変態エネルギーの変換効率が高い。
(II) Thermoelastic transformation characteristics The first phase causes thermoelastic martensitic transformation / reverse transformation. Ms and As in the magnetic field of the ferromagnetic shape memory alloy of the present invention are usually in the range of −200 ° C. to + 100 ° C. Further, the difference between Tc and Ms is 40 ° C. or more, and a ferromagnetic parent phase exists in a wide temperature range. Ms can be adjusted by the mixing ratio of each of the above elements. In the ferromagnetic shape memory alloy of the present invention, the first phase in the M phase state has paramagnetism, antiferromagnetism, or ferrimagnetism, but in the case of antiferromagnetism or ferrimagnetism, the transformation efficiency of transformation energy is higher than that in the case of paramagnetism. Is expensive.

(III)応力誘起変態特性
母相状態の第一相に応力をかけるとマルテンサイト変態が起こり、応力を除くとマルテンサイト逆変態が起こる。
(III) Stress-induced transformation characteristics When stress is applied to the first phase of the parent phase, martensitic transformation occurs, and when stress is removed, martensitic reverse transformation occurs.

(IV)電気抵抗特性
第一相の電気抵抗は、M相の方が母相より格段に大きい。無磁場で、母相の電気抵抗ρに対するM相の電気抵抗ρの比ρ/ρは、2以上である。したがって、本発明の強磁性形状記憶合金から、温度、磁場または応力により誘起されたマルテンサイト変態/逆変態により電気抵抗が変化する素子が得られる。特に(Mf−100℃)以上〜Mf未満の温度で磁場を印加し、除去すると、電気抵抗が可逆的に変化する巨大磁気抵抗効果が得られる。
(IV) Electrical resistance characteristics The electrical resistance of the first phase is much higher in the M phase than in the mother phase. In the absence of a magnetic field, the ratio [rho M / [rho P electrical resistance [rho M of M phase to the electric resistance [rho P of the matrix phase is 2 or more. Therefore, the ferromagnetic shape memory alloy of the present invention provides an element whose electrical resistance changes due to martensite transformation / reverse transformation induced by temperature, magnetic field or stress. In particular, when a magnetic field is applied and removed at a temperature of (Mf-100 ° C.) or more and less than Mf, a giant magnetoresistance effect is obtained in which the electrical resistance reversibly changes.

[用途]
本発明の強磁性形状記憶合金は、実用温度域(−40〜+200℃)で優れた形状記憶特性および磁性変化特性を有する。そのため、用途としては、実用温度域で高い応答速度およびエネルギー効率を有する磁場駆動素子、熱磁気駆動素子、発熱吸熱素子(特に磁気冷凍材)、応力−磁気特性、応力−抵抗特性および磁気−抵抗素子、等が挙げられる。
[Usage]
The ferromagnetic shape memory alloy of the present invention has excellent shape memory characteristics and magnetic change characteristics in a practical temperature range (−40 to + 200 ° C.). Therefore, applications include magnetic field drive elements, thermomagnetic drive elements, heat-generating heat-absorbing elements (especially magnetic refrigerating materials), stress-magnetic characteristics, stress-resistance characteristics, and magnetic-resistance having high response speed and energy efficiency in the practical temperature range. Element, etc.

磁場誘起マルテンサイト逆変態する第一相組織を含む本発明の強磁性形状記憶合金を用いると、応答速度が早く出力が大きな磁場駆動マイクロアクチュエータ、磁場駆動スイッチ等の磁場駆動素子が得られる。磁場駆動素子は本発明の強磁性形状記憶合金からなる駆動体(回動体、変形体、移動体等)を具備し、磁場の印加により駆動体に生じた形状変化および/または磁性変化を利用するが、必ずしもこれに限定されない。パルス磁場を印加すると、磁場駆動素子の応答速度は高まる。磁場駆動素子を高応答速度で連続的に作動させるには、Mf未満の温度で使用するのが好ましい。   When the ferromagnetic shape memory alloy of the present invention including the first phase structure that undergoes the reverse transformation of the magnetic field induced martensite is used, a magnetic field driving element such as a magnetic field driving microactuator and a magnetic field driving switch having a high response speed and a large output can be obtained. The magnetic field driving element includes a driving body (rotating body, deformable body, moving body, etc.) made of the ferromagnetic shape memory alloy of the present invention, and utilizes a shape change and / or a magnetic change generated in the driving body by applying a magnetic field. However, it is not necessarily limited to this. When a pulse magnetic field is applied, the response speed of the magnetic field driving element increases. In order to continuously operate the magnetic field driving element at a high response speed, it is preferable to use the magnetic field driving element at a temperature lower than Mf.

本発明の強磁性形状記憶合金を感温磁性体として利用すると、エネルギー効率の高い熱磁気駆動素子が得られる。熱磁気駆動素子はたとえば、本発明の強磁性形状記憶合金からなる駆動体(回動体、変形体、移動体等)、加熱手段(レーザー光照射装置、赤外線照射装置等)、および磁場印加手段(永久磁石等)を具備し、加熱により駆動体に生じる磁性変化を利用して動力を発生するが、必ずしもこれに限定されない。本発明の強磁性形状記憶合金を用いる熱磁気駆動素子の例として、感温磁性体が加熱された時に永久磁石に吸着し、冷却された時に磁石から離脱する原理を利用した電流スイッチおよび流体制御弁、感温磁性体の一部を加熱して強磁性とし、そこに永久磁石を作用させて感温磁性体を駆動する熱磁気モータ等が挙げられる。これらの熱磁気駆動素子の詳細は特開2002−129273号に記載されている。   When the ferromagnetic shape memory alloy of the present invention is used as a temperature-sensitive magnetic material, a thermomagnetic drive element with high energy efficiency can be obtained. The thermomagnetic drive element includes, for example, a driving body (rotating body, deformable body, moving body, etc.) made of the ferromagnetic shape memory alloy of the present invention, heating means (laser light irradiation apparatus, infrared irradiation apparatus, etc.), and magnetic field application means ( A permanent magnet or the like), and power is generated using a magnetic change generated in the driving body by heating, but is not necessarily limited thereto. As an example of a thermomagnetic drive element using the ferromagnetic shape memory alloy of the present invention, a current switch and a fluid control using the principle of adsorbing to a permanent magnet when the temperature-sensitive magnetic body is heated and releasing from the magnet when it is cooled Examples thereof include a thermomagnetic motor that drives a temperature-sensitive magnetic body by heating a part of a valve and a temperature-sensitive magnetic body to make it ferromagnetic and a permanent magnet is applied thereto. Details of these thermomagnetic drive elements are described in JP-A No. 2002-129273.

M相状態の第一相を有する強磁性形状記憶合金に磁場を印加すると、吸熱を伴うマルテンサイト逆変態が生じ、実用温度域(−40〜+200℃)で大きな磁気エントロピー変化が生じる。たとえば21℃で0〜90kOe(0〜7162kA/m)の磁場変化に対する磁気エントロピー変化は約20J/kgKである。このような大きな磁気吸熱効果により、冷凍能力が高い磁気冷凍材が得られる。この磁気冷凍材を用いて、たとえば、磁気冷凍材を充填した作業室、磁気冷凍室の近傍に配置された磁場印加用永久磁石、磁気冷凍材と熱交換される冷媒、冷媒を循環させる配管を具備した磁気冷凍システム、などが得られる。   When a magnetic field is applied to a ferromagnetic shape memory alloy having a first phase in the M phase, a martensitic reverse transformation accompanied by endotherm occurs, and a large magnetic entropy change occurs in a practical temperature range (−40 to + 200 ° C.). For example, the magnetic entropy change for a magnetic field change of 0 to 90 kOe (0 to 7162 kA / m) at 21 ° C. is about 20 J / kgK. Due to such a large magnetic endothermic effect, a magnetic refrigeration material having a high refrigeration capacity is obtained. Using this magnetic refrigerating material, for example, a working chamber filled with the magnetic refrigerating material, a magnetic field applying permanent magnet disposed in the vicinity of the magnetic freezing chamber, a refrigerant that exchanges heat with the magnetic refrigerating material, and a pipe for circulating the refrigerant An equipped magnetic refrigeration system can be obtained.

本発明の強磁性形状記憶合金を用いて、マルテンサイト変態に伴う発熱を利用した発熱素子、またはマルテンサイト逆変態に伴う吸熱を利用した吸熱素子が得られる。発熱吸熱素子は、たとえば自動温度制御用の素子として利用できる。発熱吸熱素子の構成自体は特に制限されず、本発明の強磁性形状記憶合金からなる発熱体および/または吸熱体を具備すればよい。   By using the ferromagnetic shape memory alloy of the present invention, a heat generating element using heat generated by martensitic transformation or a heat absorbing element using heat absorbed by martensitic reverse transformation can be obtained. The exothermic endothermic element can be used as an element for automatic temperature control, for example. The configuration of the exothermic heat-absorbing element is not particularly limited, and the exothermic body and / or the endothermic body made of the ferromagnetic shape memory alloy of the present invention may be provided.

Af温度超で応力誘起マルテンサイト変態/逆変態することができる本発明の強磁性形状記憶合金は、変態/逆変態に伴う磁性変化を利用して、応力−磁気素子に用いることができる。応力−磁気素子として、たとえば応力の付与または除去により生じる磁性変化を検出する歪みセンサ(応力センサ)等が挙げられる。応力−磁気素子の構成自体は特に制限されず、たとえば本発明の強磁性形状記憶合金からなる検知体、および検知体に生じた磁性変化を検出する手段(たとえばピックアップコイル等の磁気センサ)を具備すればよい。   The ferromagnetic shape memory alloy of the present invention capable of undergoing stress-induced martensitic transformation / reverse transformation above Af temperature can be used for a stress-magnetic element by utilizing a magnetic change accompanying transformation / reverse transformation. Examples of the stress-magnetic element include a strain sensor (stress sensor) that detects a magnetic change caused by applying or removing stress. The configuration of the stress-magnetic element is not particularly limited, and includes, for example, a detection body made of the ferromagnetic shape memory alloy of the present invention and means for detecting a magnetic change generated in the detection body (for example, a magnetic sensor such as a pickup coil). do it.

本発明の強磁性形状記憶合金を用いて、応力誘起マルテンサイト変態/逆変態に伴う電気抵抗変化を利用した歪みセンサ(応力センサ)等の応力−抵抗素子が得られる。応力−抵抗素子の構成自体は特に制限されず、たとえば強磁性形状記憶合金からなる検知体、および検知体に生じる電気抵抗変化を検出する手段(たとえば電流計)を具備すればよい。   By using the ferromagnetic shape memory alloy of the present invention, a stress-resistance element such as a strain sensor (stress sensor) using an electrical resistance change accompanying stress-induced martensitic transformation / reverse transformation is obtained. The configuration itself of the stress-resistance element is not particularly limited, and may include, for example, a detection body made of a ferromagnetic shape memory alloy and a means (for example, an ammeter) for detecting a change in electric resistance generated in the detection body.

磁気抵抗効果を有する本発明の強磁性形状記憶合金は、磁場検知用の磁気抵抗素子に用いることができる。磁気抵抗素子の構成自体は特に制限されず、たとえば、本発明の強磁性形状記憶合金からなる素子の2点に電極を付ければよい。本発明の強磁性形状記憶合金を用いた磁気抵抗素子は、たとえば磁気ヘッド等に用いることができる。   The ferromagnetic shape memory alloy of the present invention having a magnetoresistive effect can be used for a magnetoresistive element for detecting a magnetic field. The configuration itself of the magnetoresistive element is not particularly limited, and for example, electrodes may be attached to two points of the element made of the ferromagnetic shape memory alloy of the present invention. The magnetoresistive element using the ferromagnetic shape memory alloy of the present invention can be used for a magnetic head, for example.

本発明の強磁性形状記憶合金からなりMsが異なる複数の部材に、たとえばピックアップコイル等の磁気センサを取り付けると、温度変化に応じて磁性変化した強磁性形状記憶合金部材(Msが既知)を特定できるので、温度センサが得られる。   When a magnetic sensor such as a pickup coil is attached to a plurality of members made of the ferromagnetic shape memory alloy of the present invention and having different Ms, a ferromagnetic shape memory alloy member (Ms is known) that changes in magnetism in response to a temperature change is specified. As a result, a temperature sensor is obtained.

[強磁性形状記憶合金焼結体の製造方法]
以上説明した本発明の強磁性形状記憶合金は、焼結法により製造される焼結体であるのが望ましい。すなわち、本発明の強磁性形状記憶合金は、第一相からなる内部と第二相からなる表層部とをもつ粒子と、第二相からなり粒子間を結合する粒界結合部と、からなる焼結体であるのが好ましい。図2は、本発明の強磁性形状記憶合金が焼結体である場合の断面組織を模式的に示す説明図である。図2には、説明のため簡略化して、4つの真球粒子を焼結させた場合を示す。強磁性形状記憶合金焼結体A’において、粒子10は、第一相(図1の“1”に相当)からなる内部11と第二相(図1の“2”に相当)からなる表層部12とをもつ。つまり、第一相は、第二相に取り囲まれて存在する。さらに、隣接する粒子10の間は、第二相からなる粒界結合部20により結合され、焼結体A’が構成される。なお、粒子10と結合部20との間隙は、気孔30となる。以下に、強磁性形状記憶合金焼結体の製造方法について説明する。
[Method for producing sintered ferromagnetic shape memory alloy]
The ferromagnetic shape memory alloy of the present invention described above is preferably a sintered body produced by a sintering method. That is, the ferromagnetic shape memory alloy of the present invention comprises particles having an inner portion made of the first phase and a surface layer portion made of the second phase, and a grain boundary bonding portion made of the second phase and bonding between the particles. A sintered body is preferred. FIG. 2 is an explanatory view schematically showing a cross-sectional structure when the ferromagnetic shape memory alloy of the present invention is a sintered body. FIG. 2 shows a case where four true spherical particles are sintered for simplification for explanation. In the ferromagnetic shape memory alloy sintered body A ′, the particle 10 is composed of an inner layer 11 composed of a first phase (corresponding to “1” in FIG. 1) and a surface layer composed of a second phase (corresponding to “2” in FIG. 1). Part 12. That is, the first phase is surrounded by the second phase. Further, the adjacent particles 10 are bonded by the grain boundary bonding portion 20 made of the second phase, thereby forming a sintered body A ′. The gap between the particle 10 and the coupling portion 20 becomes a pore 30. Below, the manufacturing method of a ferromagnetic shape memory alloy sintered compact is demonstrated.

本発明の強磁性形状記憶合金焼結体の製造方法は、主として、粉末製造工程と、成形工程と、焼結工程と、を含む。   The method for producing a ferromagnetic shape memory alloy sintered body of the present invention mainly includes a powder production process, a forming process, and a sintering process.

粉末製造工程は、全体を100原子%としたときに、マンガン(Mn)を25〜50原子%、インジウム(In)、錫(Sn)およびアンチモン(Sb)からなる群から選ばれた少なくとも一種を合計で5〜18原子%、ならびに、コバルト(Co)および/または鉄(Fe)を0.1〜15原子%、含み残部がニッケル(Ni)および不可避不純物からなりbcc構造をもつ強磁性形状記憶合金の合金粉末を製造する工程である。なお、合金粉末の組成は、既に説明した本発明の強磁性形状記憶合金の全体組成とすればよいが、第一相の組成からなる合金粉末を調製しても所望の機械的強度をもつ強磁性形状記憶合金焼結体が得られる。   The powder manufacturing process comprises at least one selected from the group consisting of 25-50 atomic% manganese (Mn), indium (In), tin (Sn), and antimony (Sb) when the whole is 100 atomic%. Ferromagnetic shape memory having a bcc structure consisting of 5 to 18 atomic% in total, 0.1 to 15 atomic% of cobalt (Co) and / or iron (Fe), the balance being nickel (Ni) and inevitable impurities This is a process for producing an alloy powder of an alloy. The composition of the alloy powder may be the entire composition of the ferromagnetic shape memory alloy of the present invention already described, but the alloy powder having the desired mechanical strength can be obtained even if the alloy powder having the first phase composition is prepared. A magnetic shape memory alloy sintered body is obtained.

粉末製造工程は、従来から行われている通常の方法で行われれば特に限定はない。合金粉末は、上記の組成をもつ強磁性形状記憶合金の溶湯流に対して空気や窒素ガス、アルゴンガスなどの気体を衝突させて粉末化するガスアトマイズ法により製造されるのが望ましい。その他にも、上記の組成をもち固体状の強磁性形状記憶合金を機械的に粉砕する粉砕法、アトマイズ媒として水や油などの液体を用いたり遠心力を用いたりする各種アトマイズ法、などによる製造が可能である。合金粉末の粒子径としては、平均粒径が5〜300μmさらには10〜100μmであるのが望ましい。粒子径が小さい程緻密で高強度の焼結体が得られるが、平均粒径が5μm未満では、焼結条件によっては粒子のほとんどがfcc構造となるため、強磁性形状記憶合金焼結体に占める第二相の体積割合が多くなり、第一相がもつ形状記憶特性が十分に発揮されないことがある。平均粒径が300μmを超えると、焼結体としての強度が低下するため望ましくない。   A powder manufacturing process will not be specifically limited if it is performed by the normal method conventionally performed. The alloy powder is preferably manufactured by a gas atomization method in which a gas such as air, nitrogen gas, or argon gas is collided against a molten metal flow of a ferromagnetic shape memory alloy having the above composition to powder. In addition, by a pulverization method that mechanically pulverizes a solid ferromagnetic shape memory alloy having the above composition, various atomization methods that use a liquid such as water or oil as an atomizing medium, or a centrifugal force, etc. Manufacturing is possible. As the particle diameter of the alloy powder, it is desirable that the average particle diameter is 5 to 300 μm, and further 10 to 100 μm. The smaller the particle diameter, the more dense and high-strength sintered body can be obtained. However, when the average particle diameter is less than 5 μm, most of the particles have an fcc structure depending on the sintering conditions. The volume ratio of the second phase is increased, and the shape memory characteristics of the first phase may not be sufficiently exhibited. When the average particle size exceeds 300 μm, the strength as a sintered body is lowered, which is not desirable.

また、粉末製造工程の後で得られた合金粉末を溶体化処理する溶体化処理工程を含むのが望ましい。溶体化処理は、粉末製造工程で得られた合金粉末を固溶化温度まで加熱し、組織を母相単相にさせた後、急冷する。固溶化温度は、700℃以上が望ましく、750〜1100℃さらには800〜1000℃がより望ましい。固溶化温度での保持時間は1分以上であればよい。急冷速度に特に限定はないが、急冷速度は50℃/秒以上が望ましい。なお、加熱後急冷することにより母相組織を有する合金粉末が得られるが、合金のMfが室温未満の場合、合金粉末の組織はほぼM相となる。   Moreover, it is desirable to include the solution treatment process which solution-treats the alloy powder obtained after the powder manufacturing process. In the solution treatment, the alloy powder obtained in the powder production process is heated to a solid solution temperature to make the structure a single phase of the matrix, and then rapidly cooled. The solid solution temperature is desirably 700 ° C. or higher, more desirably 750 to 1100 ° C., and further desirably 800 to 1000 ° C. The holding time at the solution temperature may be 1 minute or longer. The quenching rate is not particularly limited, but the quenching rate is preferably 50 ° C./second or more. In addition, although the alloy powder which has a parent phase structure | tissue is obtained by rapidly cooling after a heating, when Mf of an alloy is less than room temperature, the structure | tissue of an alloy powder becomes a substantially M phase.

また、溶体化処理工程後に時効処理を行ってもよい。時効処理により、合金粉末の基地が強化されるとともに、形状記憶特性が向上する。時効処理は、100℃以上の温度で行う。100℃未満では十分な時効効果が得られない。時効処理温度の上限に特に限定はないが、700℃未満が望ましい。時効処理時間は、時効処理温度および合金粉末の組成により異なるが、1分間以上であるのが望ましく、30分間以上であるのがより望ましい。時効処理時間の上限は、母相が析出しない限り特に制限されない。   Moreover, you may perform an aging treatment after the solution treatment process. The aging treatment strengthens the base of the alloy powder and improves the shape memory characteristics. The aging treatment is performed at a temperature of 100 ° C. or higher. If it is less than 100 ° C., sufficient aging effect cannot be obtained. The upper limit of the aging treatment temperature is not particularly limited, but is preferably less than 700 ° C. The aging treatment time varies depending on the aging treatment temperature and the composition of the alloy powder, but is preferably 1 minute or more, and more preferably 30 minutes or more. The upper limit of the aging treatment time is not particularly limited as long as the parent phase does not precipitate.

成形工程は、合金粉末を成形体に成形する工程である。成形工程では、所定の形状の成形型内に合金粉末を充填すればよい。充填された合金粉末は、合金粉末を加圧成形した後に焼結工程に供してもよいし、成形型内で加圧すると同時に焼結を行ってもよい。   The forming step is a step of forming the alloy powder into a formed body. In the molding step, the alloy powder may be filled in a mold having a predetermined shape. The filled alloy powder may be subjected to a sintering step after the alloy powder is pressure-molded, or may be sintered at the same time as being pressed in a mold.

焼結工程は、合金粉末の表層部を加熱して、表層部をfcc構造とするとともに成形体を焼結体とする工程である。焼結方法としては、合金粉末の表層が選択的に温度上昇する方法を用いるのが望ましい。焼結方法としては、成形体に通電することにより合金粉末の間隙に生じる放電現象を利用して焼結を行う通電焼結法が特に望ましい。成形体に直流パルス電流を通電すると、合金粉末の間隙に放電が生じる。この放電現象により、合金粉末の表層部に、非平衡相である第二相が形成され易い。   The sintering step is a step in which the surface layer portion of the alloy powder is heated so that the surface layer portion has an fcc structure and the formed body is a sintered body. As the sintering method, it is desirable to use a method in which the temperature of the surface layer of the alloy powder is selectively increased. As the sintering method, an electric current sintering method in which sintering is performed by utilizing a discharge phenomenon generated in the gap between the alloy powders by energizing the compact is particularly desirable. When a direct current pulse current is passed through the compact, discharge occurs in the gap between the alloy powders. Due to this discharge phenomenon, a second phase which is a non-equilibrium phase is easily formed in the surface layer portion of the alloy powder.

焼結工程が、放電プラズマ焼結(Spark Plasma Sintering:SPS)法により成形体を焼結する工程であると、合金粉末にfcc構造の表層部が容易に形成される。SPS法では、成形体を圧縮した状態で、成形体に直流のON−OFFパルス電流を印加する。ON時に合金粉末の間隙に高温の放電プラズマが発生するため、合金粉末の表面は活性化され、合金粉末の表層部に非平衡相である第二相が容易に形成される。互いに隣接する合金粉末には、表層部で結合が生じるため、成形された形状で固まる。   When the sintering step is a step of sintering the formed body by a spark plasma sintering (SPS) method, a surface layer portion having an fcc structure is easily formed in the alloy powder. In the SPS method, a DC ON-OFF pulse current is applied to the molded body in a compressed state. Since a high-temperature discharge plasma is generated in the gap between the alloy powders when ON, the surface of the alloy powder is activated, and a second phase that is a non-equilibrium phase is easily formed on the surface layer portion of the alloy powder. Since the alloy powders adjacent to each other are bonded at the surface layer portion, they are hardened in a molded shape.

焼結工程における焼結条件を調整することにより、第二相の割合を容易に調整することができる。焼結温度としては、700〜1000℃が望ましく、さらに望ましくは800〜950℃である。焼結温度が700℃未満では第二相が形成されにくく、得られる焼結体の機械的強度が十分に発揮されない場合がある。焼結温度が高いほど緻密な焼結体が得られるが、焼結温度が1000℃を超えると、マルテンサイト変態を示す第一相の体積割合が減少するため、望ましくない。また、上記範囲の焼結温度で1〜60分さらには10〜20分保持するとよい。   By adjusting the sintering conditions in the sintering step, the ratio of the second phase can be easily adjusted. As a sintering temperature, 700-1000 degreeC is desirable, More preferably, it is 800-950 degreeC. If the sintering temperature is less than 700 ° C., the second phase is difficult to form, and the mechanical strength of the obtained sintered body may not be sufficiently exhibited. As the sintering temperature is higher, a dense sintered body is obtained. However, if the sintering temperature exceeds 1000 ° C., the volume ratio of the first phase exhibiting martensitic transformation decreases, which is not desirable. Moreover, it is good to hold | maintain at the sintering temperature of the said range for 1 to 60 minutes further 10 to 20 minutes.

以上、本発明の強磁性形状記憶合金および強磁性形状記憶合金焼結体の製造方法の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   As mentioned above, although embodiment of the manufacturing method of the ferromagnetic shape memory alloy and ferromagnetic shape memory alloy sintered compact of this invention was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.

以下に、本発明の強磁性形状記憶合金および強磁性形状記憶合金焼結体の製造方法の実施例を挙げて、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to examples of the method for producing a ferromagnetic shape memory alloy and a ferromagnetic shape memory alloy sintered body according to the present invention.

[合金粉末の製造]
Ni43CoMn39Sn11合金(重量組成で43.2%Ni−38.8%Mn−6.9%Co−11.0%Sn)を、アルゴンガスを用いたガスアトマイズ法により平均粒径が50μm程度の粉末状とした。得られた合金粉末の光学顕微鏡写真を図3に示す。次に、得られた粉末を溶体化処理した。溶体化処理は、真空中800℃または900℃で24時間行い、溶体化処理温度の異なる2種類の合金粉末を得た。800℃での溶体化処理後の合金粉末の光学顕微鏡写真を図4に示す。溶体化処理を行うことで、bcc構造をもつ単相組織となった。これらの合金粉末を、粒度25〜63μmに篩い分けた。
[Production of alloy powder]
The average particle size of Ni 43 Co 7 Mn 39 Sn 11 alloy (43.2% Ni-38.8% Mn-6.9% Co-11.0% Sn by weight composition) by gas atomization method using argon gas Was in a powder form of about 50 μm. An optical micrograph of the obtained alloy powder is shown in FIG. Next, the obtained powder was subjected to a solution treatment. The solution treatment was performed in vacuum at 800 ° C. or 900 ° C. for 24 hours to obtain two types of alloy powders having different solution treatment temperatures. An optical micrograph of the alloy powder after solution treatment at 800 ° C. is shown in FIG. By performing the solution treatment, a single-phase structure having a bcc structure was obtained. These alloy powders were sieved to a particle size of 25 to 63 μm.

[合金粉末の磁性変化特性]
溶体化処理前の合金粉末P、800℃で溶体化処理した合金粉末Pおよび900℃で溶体化処理した合金粉末Pについて、熱磁化曲線を測定した。熱磁化曲線の測定は、500Oe(40kA/m)の磁場中で、−268〜+120℃の間で冷却/加熱(昇温/降温速度;2℃/分)し、SQUID(超伝導量子干渉素子)を用いて測定した。各粉末の熱磁化曲線の測定結果を図5に示す。なお、図5のグラフにおいて、横軸は温度(単位はK)、縦軸は磁化の強さである。溶体化処理前の合金粉末Pでは、マルテンサイト変態による磁化の変化はあるものの変化量は小さく、低温域でも強い磁化が残った。一方、溶体化処理した合金粉末PおよびPでは、磁化の変化量が大きかった。つまり、合金粉末PおよびPは、溶体化によりマルテンサイト変態を示す単相組織となった。さらに、溶体化処理温度が高い合金粉末Pでは、合金粉末Pに比べ、マルテンサイト変態による磁化の変化が急峻であった。つまり、溶体化処理の温度が高温である方が、十分に溶体化されることがわかった。
[Magnetic change characteristics of alloy powder]
For alloy powder P 9 was treated solution in the alloy powder P 8 and 900 ° C. treated solution at the solution treatment before the alloy powder P 0, 800 ℃, was measured thermal magnetization curve. The thermal magnetization curve was measured by cooling / heating (heating / cooling rate; 2 ° C./min) between −268 and + 120 ° C. in a magnetic field of 500 Oe (40 kA / m), and SQUID (superconducting quantum interference device). ). The measurement result of the thermal magnetization curve of each powder is shown in FIG. In the graph of FIG. 5, the horizontal axis represents temperature (unit: K), and the vertical axis represents magnetization intensity. In the alloy powder P 0 before the solution treatment, although there was a change in magnetization due to martensitic transformation, the amount of change was small, and strong magnetization remained even in a low temperature range. On the other hand, the alloy powder P 8 and P 9 was treated solution was greater variation in magnetization. That is, the alloy powder P 8 and P 9 became single-phase structure showing the martensitic transformation by the solution. Additionally, the solution treatment temperature is high alloy powder P 9, compared to the alloy powder P 8, change in magnetization by the martensitic transformation was steep. That is, it was found that the solution treatment was sufficiently performed when the temperature of the solution treatment was higher.

[強磁性形状記憶合金焼結体の作製]
合金粉末Pを用いて、強磁性形状記憶合金焼結体を作製した。焼結には、SPSシンテックス株式会社製の放電プラズマ焼結装置(型番;DR SINTER)を用いた。このSPS装置の基本構成を図6に示す。SPS装置90は、互いに対向し共に円柱形状で黒鉛製の上部パンチ91および下部パンチ92と、その対向部間の周囲に配置された円筒形(内径15mmφ)で黒鉛製の焼結ダイ93と、を備える。上部パンチ91、下部パンチ92、および焼結ダイ93によって区画形成される空間内(キャビティ94)に合金粉末Pが充填される。上部パンチ91と下部パンチ92の対向する端部と反対側のそれぞれ端部には、上部パンチ電極95および下部パンチ電極96の一端がそれぞれ設けられ、真空チャンバー97内に収容されている。真空チャンバー97の上下端部から上部パンチ電極95および下部パンチ電極96の他端がそれぞれ引き出されて、外部に突出している。上部パンチ電極95および下部パンチ電極96のそれぞれの他端には、図示しない加圧機構と焼結電源がそれぞれ接続されている。
[Preparation of sintered ferromagnetic shape memory alloy]
Using an alloy powder P 9, to produce a ferromagnetic shape memory alloy sintered body. For the sintering, a discharge plasma sintering apparatus (model number: DR SINTER) manufactured by SPS Shintex Co., Ltd. was used. The basic configuration of this SPS device is shown in FIG. The SPS device 90 has an upper punch 91 and a lower punch 92 made of graphite that are opposed to each other in a columnar shape, and a cylindrical (inner diameter 15 mmφ) sintered graphite die 93 that is disposed around the opposed portions, Is provided. Upper punch 91, the alloy powder P 9 is filled into the lower punch 92, and the sintering die 93 by the space defined form (cavity 94). One end of each of the upper punch electrode 95 and the lower punch electrode 96 is provided at each end of the upper punch 91 and the lower punch 92 opposite to the opposing ends, and is accommodated in the vacuum chamber 97. The other ends of the upper punch electrode 95 and the lower punch electrode 96 are drawn out from the upper and lower ends of the vacuum chamber 97 and project outside. A pressurizing mechanism and a sintering power source (not shown) are connected to the other ends of the upper punch electrode 95 and the lower punch electrode 96, respectively.

合金粉末Pを原料として、焼結条件の異なる3種類の焼結体を作製した。はじめに、下部パンチ92の端面がキャビティ94内に位置する状態で、所定量の合金粉末Pをキャビティ94内に充填した。次に、加圧機構を作動させて、充填された合金粉末Pを各パンチ91、92により50MPaで加圧し成形体を得た。加圧した状態のまま焼結電源を作動させて、成形体を焼結した。焼結は、約800℃まで10分で昇温させた後、2〜3分で所定の焼結温度まで昇温させ、焼結温度で5分または15分間保持して行った。なお、昇温前に真空チャンバー97内を約1Paまで排気することで、真空雰囲気で焼結を行った。 The alloy powder P 9 as a starting material, to prepare three different kinds of sintered bodies of sintering conditions. First, a predetermined amount of alloy powder P 9 was filled into the cavity 94 with the end face of the lower punch 92 positioned in the cavity 94. Then, by operating the pressing mechanism, to obtain a pressed green body at 50MPa by the punches 91 and 92 the alloy powder P 9 filled. The sintered compact was operated by operating the sintering power source in the pressurized state. Sintering was performed by raising the temperature to about 800 ° C. in 10 minutes, then raising the temperature to a predetermined sintering temperature in 2 to 3 minutes, and holding at the sintering temperature for 5 minutes or 15 minutes. In addition, sintering was performed in a vacuum atmosphere by exhausting the inside of the vacuum chamber 97 to about 1 Pa before raising the temperature.

上記の手順で、焼結体S80(焼結温度800℃で15分焼結)、焼結体S85(焼結温度850℃で15分焼結)、焼結体S90(焼結温度900℃で15分焼結)および焼結体S90’(焼結温度900℃で5分焼結)、の4種類の焼結体を作製した。なお、焼結温度は、焼結体の作製に用いた放電プラズマ焼結装置の設定温度である。温度は、黒鉛製の焼結ダイ93に外側からキャビティ94の壁面に向かって挿入された熱電対93tで測定される。 In the above procedure, sintered body S 80 (sintered at 800 ° C. for 15 minutes), sintered body S 85 (sintered at 850 ° C. for 15 minutes), sintered body S 90 (sintered temperature) Four types of sintered bodies were produced: sintered at 900 ° C. for 15 minutes) and sintered body S 90 ′ (sintered at 900 ° C. for 5 minutes). The sintering temperature is a set temperature of the discharge plasma sintering apparatus used for producing the sintered body. The temperature is measured by a thermocouple 93 t inserted into the graphite sintered die 93 from the outside toward the wall surface of the cavity 94.

焼結体S80、焼結体S85および焼結体S90について、光学顕微鏡観察および熱磁化曲線の測定を行った。光学顕微鏡観察は、それぞれの焼結体の断面を観察した。熱磁化曲線の測定は、20kOe(1600kA/m)および500Oe(40kA/m)の磁場中で、各焼結体を−268〜+120℃の間で冷却/加熱(昇温/降温速度;2℃/分)し、SQUIDを用いて測定した。結果を図7および図8(焼結体S80)、図9および図10(焼結体S85)、図11および図12(焼結体S90)にそれぞれ示す。なお、各図のグラフにおいて、横軸は温度(単位はK)、縦軸は磁化の強さである。 The sintered body S 80 , the sintered body S 85 and the sintered body S 90 were observed with an optical microscope and measured for a thermal magnetization curve. Optical microscope observation observed the cross section of each sintered compact. The thermal magnetization curve was measured by cooling / heating each sintered body between −268 to + 120 ° C. in a magnetic field of 20 kOe (1600 kA / m) and 500 Oe (40 kA / m) (temperature increase / temperature decrease rate; 2 ° C. / Min) and measured using SQUID. The results are shown in FIGS. 7 and 8 (sintered body S 80 ), FIGS. 9 and 10 (sintered body S 85 ), and FIGS. 11 and 12 (sintered body S 90 ), respectively. In each graph, the horizontal axis represents temperature (unit: K), and the vertical axis represents the strength of magnetization.

[強磁性形状記憶合金焼結体の組織および磁性変化特性]
それぞれの光学顕微鏡写真から、焼結温度が高いほど、気孔(黒い部分)の体積分率が減少して緻密になることがわかった。800℃で焼結された焼結体S80は、合金粉末が接触部分のみで連結した組織であった(図7)。また、850℃で焼結された焼結体S85および900℃で焼結された焼結体S90では、コントラストの明るい相(第一相)と、その周りを取り囲むコントラストの暗い相(第二相)と、からなる二相組織が明確に観察された(図9および図11)。第一相は合金粉末に由来する粒子の内部に位置し、第二相は粒子の表層部で隣接する粒子同士を結合させていた。この第二相は、EPMAによる測定結果から、fcc構造をもつことがわかった。また、第一相および第二相をEDXにより測定した。第一層の組成は、Ni44CoMn38Sn11、第二相の組成は、Ni44CoMn 38Snであった。
[Structure and magnetic change characteristics of ferromagnetic shape memory alloy sintered body]
From the respective optical micrographs, it was found that the higher the sintering temperature, the smaller the volume fraction of pores (black parts) and the more dense. The sintered body S 80 sintered at 800 ° C. had a structure in which the alloy powder was connected only at the contact portion (FIG. 7). In addition, in the sintered body S 85 sintered at 850 ° C. and the sintered body S 90 sintered at 900 ° C., a bright phase (first phase) and a dark phase (first phase) surrounding the same (first phase). A two-phase structure consisting of two phases) was clearly observed (FIGS. 9 and 11). The first phase is located inside the particles derived from the alloy powder, and the second phase binds adjacent particles at the surface layer of the particles. This second phase was found to have an fcc structure from the results of measurement by EPMA. The first phase and the second phase were measured by EDX. The composition of the first layer was Ni 44 Co 7 Mn 38 Sn 11 , and the composition of the second phase was Ni 44 Co 9 Mn 38 Sn 9 .

また、各焼結体の熱磁化曲線より、いずれの焼結体においてもマルテンサイト変態による大きな磁化の変化が確認された。ここで、焼結前の合金粉末Pの熱磁化曲線(図5)と、各焼結体の熱磁化曲線とを比較すると、低温における焼結体の磁化の強さが高かった。これは、非平衡相であるために合金粉末には存在しないfcc構造をもつ第二相が、焼結により生成されたためである。fcc構造をもつ第二相は、低温でも強磁性を示す。低温での強磁性は、全ての焼結体において表れたため、全ての焼結体で第二相が生成されたことがわかった。 Further, from the thermal magnetization curve of each sintered body, a large change in magnetization due to martensitic transformation was confirmed in any sintered body. Here, the thermal magnetization curve of before sintering alloy powder P 9 (FIG. 5) is compared with the thermal magnetization curve of each sintered body was higher intensity of magnetization of the sintered body at low temperatures. This is because a second phase having an fcc structure that does not exist in the alloy powder because it is a non-equilibrium phase is produced by sintering. The second phase having the fcc structure exhibits ferromagnetism even at a low temperature. Since ferromagnetism at low temperatures appeared in all the sintered bodies, it was found that the second phase was generated in all the sintered bodies.

なお、溶解鋳造によって作製した同様の合金組成を有する多結晶体は、温度変化させてマルテンサイト変態させるだけで自己崩壊した。一方、上記の焼結体では、熱磁化曲線の測定において温度を変化させても、測定中に焼結体が崩壊することはなかった。   Note that a polycrystalline body having the same alloy composition produced by melt casting was self-destructed only by changing the temperature to martensite transformation. On the other hand, in the above sintered body, even if the temperature was changed in the measurement of the thermal magnetization curve, the sintered body did not collapse during the measurement.

[機械的特性]
焼結体S80、焼結体S90’および焼結体S90について、破壊歪みの測定を行った。各焼結体を切り出して6mm×3mm×3mm程度の板状の試験片とし、万能試験機を用いて試験片をその長手方向に圧縮した。なお、圧縮は、室温でクロスヘッド速度0.1mm/分の条件で行い、試験片が破壊するまで圧縮した。試験片が破壊したときの歪みを表1に示す。
[Mechanical properties]
With respect to the sintered body S 80 , the sintered body S 90 ′, and the sintered body S 90 , fracture strain was measured. Each sintered body was cut out to obtain a plate-shaped test piece of about 6 mm × 3 mm × 3 mm, and the test piece was compressed in the longitudinal direction using a universal testing machine. The compression was performed at room temperature under the condition of a crosshead speed of 0.1 mm / min, and compressed until the specimen was broken. Table 1 shows the strain when the test piece was broken.

破壊歪みが1〜2%程度あれば形状記憶合金として使用可能であるため、これらの焼結体は、形状記憶合金として十分使用できることがわかった。また、5%以上の変形に耐えられるため、加工性もよいことがわかった。   Since it can be used as a shape memory alloy if the fracture strain is about 1 to 2%, it has been found that these sintered bodies can be sufficiently used as a shape memory alloy. Moreover, since it can endure a deformation | transformation of 5% or more, it turned out that workability is also good.

[形状記憶特性]
上記の試験片を用い、焼結体S80、焼結体S90’および焼結体S90について、形状記憶特性を評価した。はじめに、各試験片の長手方向の長さを測定した(表2の「初期」)。次に、圧縮試験機により試験片に2%程度の歪みまで圧縮応力をかけ、除荷後の試験片の長手方向の長さを測定した(表2の「圧縮後」)。圧縮した試験片を140℃で5分間加熱し、その後の試験片の長手方向の長さを測定した(表2の「加熱後」)。各測定値を表2に示す。また、圧縮後の歪み、加熱後の歪み、および、これらの値から算出される形状回復率を表3に示す。
[Shape memory characteristics]
Using the above test pieces, the shape memory characteristics of the sintered body S 80 , the sintered body S 90 ′, and the sintered body S 90 were evaluated. First, the length of each test piece in the longitudinal direction was measured (“Initial” in Table 2). Next, a compressive stress was applied to the test piece to a strain of about 2% with a compression tester, and the length in the longitudinal direction of the test piece after unloading was measured ("after compression" in Table 2). The compressed test piece was heated at 140 ° C. for 5 minutes, and then the length of the test piece in the longitudinal direction was measured (“after heating” in Table 2). Table 2 shows the measured values. Table 3 shows the strain after compression, the strain after heating, and the shape recovery rate calculated from these values.

試験片を変形させた後、加熱することで、形状が5割程度回復した。すなわち、これらの焼結体は、形状記憶特性を有することがわかった。   After deforming the test piece, the shape was recovered by heating by about 50%. That is, it was found that these sintered bodies have shape memory characteristics.

[電気抵抗特性]
電気抵抗測定装置を用い、温度変化に伴う焼結体S90の電気抵抗変化を四端子法により測定した。抵抗測定は、無磁場、あるいは40kOe(3200kA/m)、80kOe(6400kA/m)の磁場中で、各焼結体を−268〜+80℃の間で冷却/加熱(昇温/降温速度;2℃/分)して行った。結果を図13に示す。なお、図13のグラフにおいて、横軸は温度(単位はK)、縦軸は電気抵抗である。母相からM相への変態に伴い、電気抵抗が大幅に増加した。
[Electrical resistance characteristics]
Using an electrical resistance measuring device, the electrical resistance change of the sintered body S 90 accompanying the temperature change was measured by the four probe method. Resistance measurement was performed by cooling / heating each sintered body between −268 and + 80 ° C. in a magnetic field of 40 kOe (3200 kA / m) or 80 kOe (6400 kA / m) (heating / cooling rate; 2). (C / min). The results are shown in FIG. In the graph of FIG. 13, the horizontal axis represents temperature (unit: K), and the vertical axis represents electrical resistance. With the transformation from the mother phase to the M phase, the electrical resistance increased significantly.

[磁歪測定]
焼結体S90に2%の圧縮歪みを印加した後、温度310Kで磁場を印加し、三端子容量法により磁歪を測定した。結果を図14に示す。なお、図14において、横軸は外部磁場、縦軸は形状回復歪み量である。印加磁場の増加とともにマルテンサイト逆変態に伴う形状変化が起こり、80kOe(6400kA/m)印加時に約0.6%の形状回復率が得られた。すなわち、磁場による形状記憶効果が観察された。
[Magnetic strain measurement]
After applying a compressive strain of 2% to the sintered body S 90, a magnetic field is applied at a temperature 310K, it was measured magnetostriction by three-terminal capacitance method. The results are shown in FIG. In FIG. 14, the horizontal axis represents the external magnetic field, and the vertical axis represents the shape recovery strain amount. As the applied magnetic field increased, a shape change accompanied with the martensite reverse transformation occurred, and a shape recovery rate of about 0.6% was obtained when 80 kOe (6400 kA / m) was applied. That is, the shape memory effect by a magnetic field was observed.

本発明の強磁性形状記憶合金の断面組織を模式的に示す説明図である。It is explanatory drawing which shows typically the cross-sectional structure | tissue of the ferromagnetic shape memory alloy of this invention. 本発明の強磁性形状記憶合金が焼結体である場合の断面組織を模式的に示す説明図である。It is explanatory drawing which shows typically a cross-sectional structure | tissue in case the ferromagnetic shape memory alloy of this invention is a sintered compact. ガスアトマイズ法により得られたNi43CoMn39Sn11合金粉末の光学顕微鏡写真である。Is an optical micrograph of Ni 43 Co 7 Mn 39 Sn 11 alloy powder obtained by a gas atomizing method. ガスアトマイズ法により得られたNi43CoMn39Sn11合金粉末の溶体化処理後の光学顕微鏡写真である。Is an optical micrograph after solution treatment Ni 43 Co 7 Mn 39 Sn 11 alloy powder obtained by a gas atomizing method. 合金粉末P、PおよびPを磁場中で冷却/加熱したときの熱磁化曲線を示すグラフである。Is a graph showing the thermal magnetization curve when cooling / heating the alloy powder P 0, P 8 and P 9 in a magnetic field. 放電プラズマ焼結装置の軸方向断面を示す概略図である。It is the schematic which shows the axial cross section of a discharge plasma sintering apparatus. 焼結体S80を光学顕微鏡で観察した断面組織写真である。The sintered body S 80 is a cross-sectional structure photograph obtained by observing with an optical microscope. 焼結体S80を異なる強さの磁場中で冷却/加熱したときの熱磁化曲線を示すグラフである。Is a graph showing the thermal magnetization curve when cooling / heating the sintered body S 80 in a magnetic field of different strengths. 焼結体S85を光学顕微鏡で観察した断面組織写真である。The sintered body S 85 is a cross-sectional structure photograph obtained by observing with an optical microscope. 焼結体S85を異なる強さの磁場中で冷却/加熱したときの熱磁化曲線を示すグラフである。Is a graph showing the thermal magnetization curve when cooling / heating the sintered body S 85 in a magnetic field of different strengths. 焼結体S90を光学顕微鏡で観察した断面組織写真である。The sintered body S 90 is a cross-sectional structure photograph obtained by observing with an optical microscope. 焼結体S90を異なる強さの磁場中で冷却/加熱したときの熱磁化曲線を示すグラフである。Is a graph showing the thermal magnetization curve when cooling / heating the sintered body S 90 in a magnetic field of different strengths. 焼結体S90を異なる強さの磁場中で冷却/加熱したときの磁場−電気抵抗曲線を示すグラフである。Magnetic field upon cooling / heating the sintered body S 90 in a magnetic field of different strengths - is a graph showing the electrical resistance curve. 焼結体S90の形状回復歪み−磁場曲線を示すグラフである。Shape recovery strain of the sintered body S 90 - is a graph showing the magnetic field curve.

符号の説明Explanation of symbols

A:強磁性形状記憶合金 1:第一相 2:第二相
A’:強磁性形状記憶合金焼結体
10:粒子 11:内部 12:表層部
20:結合部
30:気孔
A: ferromagnetic shape memory alloy 1: first phase 2: second phase A ′: sintered ferromagnetic shape memory alloy 10: particles 11: inside 12: surface layer portion 20: coupling portion 30: pores

Claims (12)

ニッケル(Ni)と、マンガン(Mn)と、インジウム(In)、錫(Sn)およびアンチモン(Sb)からなる群から選ばれた少なくとも一種と、コバルト(Co)および/または鉄(Fe)と、からなる強磁性形状記憶合金であって、
マルテンサイト変態を示すbcc構造をもつ第一相と、該第一相を取り囲みfcc構造をもつ第二相と、からなる組織を有し、前記第一相は、該第一相全体を100原子%としたときに、Mnを25〜50原子%、In、SnおよびSbからなる群から選ばれた少なくとも一種を合計で5〜18原子%、ならびに、Coおよび/またはFeを0.1〜15原子%、含み残部がNiおよび不可避不純物からなる組成をもつことを特徴とする強磁性形状記憶合金。
At least one selected from the group consisting of nickel (Ni), manganese (Mn), indium (In), tin (Sn) and antimony (Sb), cobalt (Co) and / or iron (Fe), A ferromagnetic shape memory alloy comprising:
It has a structure consisting of a first phase having a bcc structure exhibiting martensitic transformation and a second phase surrounding the first phase and having an fcc structure, and the first phase has a total of 100 atoms. %, Mn is 25 to 50 atomic%, at least one selected from the group consisting of In, Sn and Sb is 5 to 18 atomic% in total, and Co and / or Fe is 0.1 to 15 A ferromagnetic shape memory alloy having a composition comprising atomic%, the balance including Ni and inevitable impurities.
前記第二相は、第二相全体を100原子%としたときに、Mnを34〜42原子%、In、SnおよびSbからなる群から選ばれた少なくとも一種を合計で7〜15原子%、ならびに、Coおよび/またはFeを4〜12原子%、含み残部がNiおよび不可避不純物からなる組成をもつ請求項1記載の強磁性形状記憶合金。   The second phase has a total Mn content of 34 to 42 atomic% and at least one selected from the group consisting of In, Sn and Sb when the entire second phase is 100 atomic%, 2. The ferromagnetic shape memory alloy according to claim 1, wherein the ferromagnetic shape memory alloy has a composition comprising Co and / or Fe in an amount of 4 to 12 atomic%, the balance being Ni and inevitable impurities. 前記第二相は、第二相全体を100原子%としたときに、さらに炭素(C)を5原子%以下含む請求項2記載の強磁性形状記憶合金。   3. The ferromagnetic shape memory alloy according to claim 2, wherein the second phase further contains 5 atomic% or less of carbon (C) when the entire second phase is 100 atomic%. 強磁性形状記憶合金全体を100原子%としたときに、Mnを25〜50原子%、In、SnおよびSbからなる群から選ばれた少なくとも一種を合計で5〜18原子%、ならびに、Coおよび/またはFeを0.1〜15原子%、含み残部がNiおよび不可避不純物からなる請求項1記載の強磁性形状記憶合金。   When the total ferromagnetic shape memory alloy is 100 atomic%, Mn is 25 to 50 atomic%, at least one selected from the group consisting of In, Sn and Sb is 5 to 18 atomic% in total, and Co and 2. The ferromagnetic shape memory alloy according to claim 1, wherein Fe is contained in an amount of 0.1 to 15 atomic% and the balance is made of Ni and inevitable impurities. 前記第一相からなる内部と前記第二相からなる表層部とをもつ粒子と、前記第二相からなり該粒子間を結合する粒界結合部と、からなる焼結体である請求項1記載の強磁性形状記憶合金。   2. A sintered body comprising particles having an inner portion made of the first phase and a surface layer portion made of the second phase, and a grain boundary bonding portion made of the second phase and bonding the particles. The ferromagnetic shape memory alloy as described. 前記焼結体は、放電プラズマ焼結により焼結されてなる請求項5記載の強磁性形状記憶合金。   The ferromagnetic shape memory alloy according to claim 5, wherein the sintered body is sintered by spark plasma sintering. 前記第一相は母相で強磁性、マルテンサイト相で常磁性、反強磁性またはフェリ磁性を示し、前記第二相は強磁性を示す請求項1記載の強磁性形状記憶合金。   The ferromagnetic shape memory alloy according to claim 1, wherein the first phase is ferromagnetic in the parent phase, paramagnetic, antiferromagnetic or ferrimagnetic in the martensite phase, and the second phase is ferromagnetic. 全体を100原子%としたときに、マンガン(Mn)を25〜50原子%、インジウム(In)、錫(Sn)およびアンチモン(Sb)からなる群から選ばれた少なくとも一種を合計で5〜18原子%、ならびに、コバルト(Co)および/または鉄(Fe)を0.1〜15原子%、含み残部がニッケル(Ni)および不可避不純物からなりbcc構造をもつ強磁性形状記憶合金の合金粉末を製造する粉末製造工程と、
前記合金粉末を成形体に成形する成形工程と、
前記合金粉末の表層部を加熱して、該表層部をfcc構造とするとともに前記成形体を焼結体とする焼結工程と、
を含むことを特徴とする強磁性形状記憶合金焼結体の製造方法。
When the total is 100 atomic%, manganese (Mn) is 25 to 50 atomic%, and at least one selected from the group consisting of indium (In), tin (Sn) and antimony (Sb) is 5 to 18 in total. And an alloy powder of a ferromagnetic shape memory alloy having a bcc structure comprising 0.1% to 15% by atom of cobalt (Co) and / or iron (Fe), the balance being nickel (Ni) and inevitable impurities. A powder manufacturing process to manufacture;
A molding step of molding the alloy powder into a molded body;
A sintering step in which a surface layer portion of the alloy powder is heated so that the surface layer portion has an fcc structure and the compact is a sintered body;
The manufacturing method of the ferromagnetic shape memory alloy sintered compact characterized by including this.
前記焼結工程は、前記成形体に通電することで前記合金粉末間に生じる放電現象により焼結を行う通電焼結法により焼結を行う工程である請求項8記載の強磁性形状記憶合金焼結体の製造方法。   The ferromagnetic shape memory alloy firing according to claim 8, wherein the sintering step is a step of sintering by an electric current sintering method in which sintering is performed by a discharge phenomenon generated between the alloy powders by energizing the compact. A method for producing a knot. 前記通電焼結法は、放電プラズマ焼結法である請求項9記載の強磁性形状記憶合金焼結体の製造方法。   The method of manufacturing a ferromagnetic shape memory alloy sintered body according to claim 9, wherein the electric current sintering method is a discharge plasma sintering method. 前記粉末製造工程の後で得られた合金粉末を溶体化処理する溶体化処理工程を含む請求項8記載の強磁性形状記憶合金焼結体の製造方法。   The manufacturing method of the ferromagnetic shape memory alloy sintered compact of Claim 8 including the solution treatment process of solution-treating the alloy powder obtained after the said powder manufacturing process. 請求項8記載の強磁性形状記憶合金焼結体の製造方法により作製された強磁性形状記憶合金焼結体。   A ferromagnetic shape memory alloy sintered body produced by the method for producing a ferromagnetic shape memory alloy sintered body according to claim 8.
JP2008080485A 2008-03-26 2008-03-26 Ferromagnetic shape memory alloy and method for producing sintered ferromagnetic shape memory alloy Expired - Fee Related JP5112132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008080485A JP5112132B2 (en) 2008-03-26 2008-03-26 Ferromagnetic shape memory alloy and method for producing sintered ferromagnetic shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008080485A JP5112132B2 (en) 2008-03-26 2008-03-26 Ferromagnetic shape memory alloy and method for producing sintered ferromagnetic shape memory alloy

Publications (2)

Publication Number Publication Date
JP2009235454A JP2009235454A (en) 2009-10-15
JP5112132B2 true JP5112132B2 (en) 2013-01-09

Family

ID=41249774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008080485A Expired - Fee Related JP5112132B2 (en) 2008-03-26 2008-03-26 Ferromagnetic shape memory alloy and method for producing sintered ferromagnetic shape memory alloy

Country Status (1)

Country Link
JP (1) JP5112132B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5737270B2 (en) * 2012-11-07 2015-06-17 株式会社デンソー Method for manufacturing magnetic refrigeration material
US9255343B2 (en) 2013-03-08 2016-02-09 Ut-Battelle, Llc Iron-based composition for magnetocaloric effect (MCE) applications and method of making a single crystal
CN105986322B (en) * 2015-03-03 2018-10-19 中国科学院物理研究所 A kind of magnetic phase transition material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317235A (en) * 2001-04-17 2002-10-31 Kiyohito Ishida Ferromagnetic shape memory alloy
JP3425935B2 (en) * 2000-08-14 2003-07-14 清仁 石田 Ferromagnetic shape memory alloy
JP3822573B2 (en) * 2003-03-18 2006-09-20 本田技研工業株式会社 Shape memory alloy and manufacturing method thereof
CA2559121A1 (en) * 2004-03-11 2005-09-22 Japan Science And Technology Agency Bulk solidified quenched material and process for producing the same
US8016952B2 (en) * 2005-06-27 2011-09-13 Japan Science And Technology Agency Ferromagnetic shape memory alloy and its use

Also Published As

Publication number Publication date
JP2009235454A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP4697981B2 (en) Ferromagnetic shape memory alloy and its use
US8092616B2 (en) Method for producing a giant magnetostrictive alloy
US11225703B2 (en) Magnetocaloric alloys useful for magnetic refrigeration applications
JP4240380B2 (en) Manufacturing method of magnetic material
Pasko et al. Spark plasma sintering of Mn–Al–C hard magnets
JP5265259B2 (en) Ferromagnetic shape memory alloy sintered body and method for producing the same
JP3822573B2 (en) Shape memory alloy and manufacturing method thereof
JP2012041631A (en) Working component for magnetic heat exchange and method for producing the working component for magnetic refrigeration
Yuan et al. Effect of directional solidification and porosity upon the superelasticity of Cu–Al–Ni shape-memory alloys
JP5809689B2 (en) Magnetic refrigeration material
JP5112132B2 (en) Ferromagnetic shape memory alloy and method for producing sintered ferromagnetic shape memory alloy
JP2011042852A (en) Fe-BASED FERROMAGNETIC SHAPE MEMORY ALLOY AND APPLICATION THEREOF
Sun et al. Multicaloric effect in Ni–Mn–Sn metamagnetic shape memory alloys by laser powder bed fusion
JP6055407B2 (en) Magnetic refrigeration material and magnetic refrigeration device
Casati et al. On the preparation and characterization of thin NiTi shape memory alloy wires for MEMS
Saito et al. Development of Synthesis Process of Magnetocaloric Material of La (Fe, Co, Si)^ sub 13^
SU et al. Effect of Sn substitution and heat treatment on microstructure and microhardness of Co38Ni34Al28–xSnx magnetic shape memory alloys
Kumar et al. Magnetic and magnetocaloric effect in melt spun La1− xRxFe13− yAlyCz (R= Pr and Nd) compounds
Ouyang et al. Rapid solidified ductile Cu-Al-Mn ribbon and its elastocaloric potential
Abhyankar et al. Microstructure and its correlation to magnetic properties in 2: 17 type (Sm, Gd)-Co-Fe-Cu-Zr alloys
Taheri Design, processing and characterization of mechanically alloyed galfenol & lightly rare-earth doped FeGa alloys as smart materials for actuators and transducers
Alvarado-Hernández et al. Sintering kinetics of Ni2FeSb powder alloys produced by mechanical milling
JP6171662B2 (en) Rare earth magnet, electric motor, and device including electric motor
JP6314380B2 (en) Rare earth magnet, electric motor, and device including electric motor
Saito et al. Magnetostriction of polycrystalline strong-textured Fe-17at% Ga alloy fabricated by combining rapid-solidification and sintering processes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110125

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees