JP2011137646A - Electronic cooler - Google Patents

Electronic cooler Download PDF

Info

Publication number
JP2011137646A
JP2011137646A JP2009295988A JP2009295988A JP2011137646A JP 2011137646 A JP2011137646 A JP 2011137646A JP 2009295988 A JP2009295988 A JP 2009295988A JP 2009295988 A JP2009295988 A JP 2009295988A JP 2011137646 A JP2011137646 A JP 2011137646A
Authority
JP
Japan
Prior art keywords
gas
lower opening
outer tube
sample gas
drain discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009295988A
Other languages
Japanese (ja)
Other versions
JP5634061B2 (en
Inventor
Tomoyuki Yoshimura
友志 吉村
Hajime Takeuchi
肇 竹内
Tamotsu Iwai
保 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SODA KOGYO KK
Horiba Ltd
Original Assignee
SODA KOGYO KK
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SODA KOGYO KK, Horiba Ltd filed Critical SODA KOGYO KK
Priority to JP2009295988A priority Critical patent/JP5634061B2/en
Publication of JP2011137646A publication Critical patent/JP2011137646A/en
Application granted granted Critical
Publication of JP5634061B2 publication Critical patent/JP5634061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase a response speed of analysis by making it hard to allow the gas, which is produced by the reevaporation of a flocculation liquid such as dewing water or the like, to flow in an inner pipe and shortening the replacement time of sample gas in an outer pipe. <P>SOLUTION: An electronic cooler includes the outer pipe 3 arranged in up and down directions in contact with a heat exchanger 2 and having a gas lead-in part 5 and a drain discharge part 6 provided to the upper and lower parts, respectively, the inner pipe 4 which is inserted in the outer pipe 3 and has a gas lead-out part 7 provided to the upper part and which keeps the lower opening 4H positioned in the outer pipe 3 and the shield structure 12 provided under the lower opening 4H so as to cover at least part of the lower opening in the outer pipe 3 to interrupt the inflow of the gas from the drain discharge part 6 in the lower opening 4H. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えば排ガス等のサンプルガス中に含まれる水蒸気等を凝集させて除去する電子冷却器に関するものである。   The present invention relates to an electronic cooler that aggregates and removes water vapor or the like contained in a sample gas such as exhaust gas.

従来、排ガス分析装置などの大気汚染分析装置において、窒素酸化物(NO)や二酸化硫黄(SO)等を測定対象として、非分散赤外線式分析計(NDIR)や化学発光式分析計(CLD)等のガス分析計が用いられている。そして、これらの分析機器は、サンプルガス中の水分の干渉影響により測定誤差を生じてしまうことから、当該分析機器の前段に電子冷却器が接続される。 Conventionally, in air pollution analyzers such as exhaust gas analyzers, non-dispersive infrared analyzers (NDIR) and chemiluminescence analyzers (CLDs) with nitrogen oxides (NO x ), sulfur dioxide (SO 2 ), etc. as measurement targets ) Etc. are used. Since these analytical instruments cause measurement errors due to the interference of moisture in the sample gas, an electronic cooler is connected in front of the analytical instrument.

この電子冷却器は、サンプルガスを冷却して、当該試料ガス中の水蒸気を結露させることによって、サンプルガス中から水分を分離除去するものである。その基本構成としては、特許文献1及び特許文献2に示すように、例えばアルミニウム又は銅などの熱伝導性に優れた金属からなる熱交換部に上下方向に密着配設される外管と、当該外管内に挿入して設けられた内管とを備えている。そして、外管の上部には、サンプルガスを導入するためのガス導入部が設けられ、外管の下部には、サンプルガス中の水分が結露して生じたドレン水を排出するためのドレン排出部が設けられている。また、内管の上部には、水分が除去されたサンプルガスを分析機器に導くためのガス導出部が設けられており、内管の下部開口が外管の内部に配置されている。   This electronic cooler separates and removes moisture from the sample gas by cooling the sample gas and condensing water vapor in the sample gas. As its basic configuration, as shown in Patent Document 1 and Patent Document 2, for example, an outer tube that is closely and vertically disposed on a heat exchanging portion made of a metal having excellent thermal conductivity such as aluminum or copper, And an inner tube provided by being inserted into the outer tube. A gas introduction part for introducing a sample gas is provided in the upper part of the outer pipe, and a drain discharge for discharging drain water generated by condensation of moisture in the sample gas is provided in the lower part of the outer pipe. Is provided. A gas outlet for guiding the sample gas from which moisture has been removed to an analytical instrument is provided at the upper part of the inner pipe, and a lower opening of the inner pipe is disposed inside the outer pipe.

このような構成において、サンプルガスが、ガス導入部から外管内部に導入されて、この外管内を下降する。この下降時に、試料ガスは、熱交換部によって所定の熱交換を受けることによって冷却されると共に、水分が結露されることによって分離されて、除湿・乾燥したサンプルガスが内管の下部開口に流入して、内管内を上昇して、ガス導出部を経て分析機器に供給される。一方、分離された水分(結露水)は、ドレン排出部を経てドレンとして排出される。   In such a configuration, the sample gas is introduced into the outer tube from the gas introduction part and descends in the outer tube. At the time of this descent, the sample gas is cooled by receiving a predetermined heat exchange by the heat exchanging unit and separated by moisture condensation, and the dehumidified and dried sample gas flows into the lower opening of the inner tube. Then, the inside of the inner pipe is raised and supplied to the analytical instrument through the gas outlet. On the other hand, the separated water (condensation water) is discharged as drain through a drain discharge portion.

しかしながら、従来の電子冷却器では、一旦結露して生じた結露水が外気温度に近づいているドレン排出部において蒸発してしまい、又はドレン排出部に至るまでに蒸発してしまい、再びサンプルガスに含まれて内管内に流入してしまうという問題がある。その結果、ガス中の水分濃度が高くなり、例えば分析機器による水分の干渉影響による測定誤差を十分に低減することができないという問題が起こる。   However, in the conventional electronic cooler, the condensed water once formed by condensation evaporates at the drain discharge part approaching the outside air temperature, or evaporates until reaching the drain discharge part, and becomes a sample gas again. There is a problem of being included and flowing into the inner pipe. As a result, the moisture concentration in the gas becomes high, and there arises a problem that, for example, the measurement error due to the interference effect of moisture by the analytical instrument cannot be sufficiently reduced.

また、冷却効率の問題から熱交換部近傍に内管の下部開口が位置するように構成され、一方で、熱交換部と外気温度に近づいているドレン排出部との距離をある程度取る必要があることから、内管の下部開口からドレン排出部までの距離が長くなってしまい、外管内部の空間が大きくなってしまう。そうすると、外管内部のサンプルガスの置換時間が長くなってしまい、分析機器へのサンプルガスの供給が遅れ、応答速度が遅くなってしまうという問題がある。   In addition, due to the problem of cooling efficiency, the lower opening of the inner pipe is positioned in the vicinity of the heat exchanging portion, and on the other hand, it is necessary to take some distance between the heat exchanging portion and the drain discharge portion approaching the outside air temperature. For this reason, the distance from the lower opening of the inner tube to the drain discharge portion becomes longer, and the space inside the outer tube becomes larger. If it does so, the replacement time of the sample gas inside an outer tube will become long, supply of the sample gas to an analytical instrument will be delayed, and there exists a problem that a response speed will become slow.

特開2005−233890号公報JP 2005-233890 A 実開昭63−199049号公報Japanese Utility Model Publication No. 63-199049

そこで本発明は、上記問題点を一挙に解決するためになされたものであり、結露水などの凝集液の再蒸発により生じたガスが内管に流入しにくくすると共に、外管内部におけるサンプルガスの置換時間を短縮して分析の応答速度を速くすることをその主たる所期課題とするものである。   Therefore, the present invention has been made to solve the above problems all at once, making it difficult for gas generated by re-evaporation of the condensed liquid such as condensed water to flow into the inner pipe, and for the sample gas inside the outer pipe. The main goal is to shorten the replacement time and increase the response speed of analysis.

すなわち本発明に係る電子冷却器は、熱交換部に接触して上下方向に配設され、上部にサンプルガスを導入するためのガス導入部及び下部に結露したドレン水を排出するためのドレン排出部が設けられた外管と、前記外管に挿設され、上部にサンプルガスを導出するためのガス導出部が設けられるとともに、前記外管内部に下部開口が位置する内管と、前記外管内部において、前記下部開口の下方にその少なくとも一部を覆うように設けられ、前記ドレン排出部側からのガスが前記下部開口に流入することを遮る遮蔽構造とを備えることを特徴とする。   That is, the electronic cooler according to the present invention is arranged in the vertical direction in contact with the heat exchanging portion, and the drain for discharging the drain water condensed at the lower portion and the gas introducing portion for introducing the sample gas into the upper portion. An outer tube provided with a portion, a gas lead-out portion inserted into the outer tube, for leading a sample gas, and an inner tube having a lower opening inside the outer tube, and the outer tube In the inside of a pipe | tube, it is provided so that at least one part may be covered under the said lower opening, and the shielding structure which blocks | prevents that the gas from the said drain discharge part side flows in into the said lower opening is provided.

このようなものであれば、遮蔽構造が内管の下部開口の少なくとも一部を覆うことによって、ドレン排出部側からのガスが下部開口に流入しにくくしているので、ガス導出部から導出されるサンプルガスに含まれる水分等の測定干渉成分を可及的に低減することができる。また、外管内部に遮蔽構造を設けることによって、外管内部の空間を小さくすることができ、外管内部におけるサンプルガスの置換時間を短縮することができ、分析の応答速度を速くすることができる。   In such a case, the shielding structure covers at least a part of the lower opening of the inner tube, so that the gas from the drain discharge part side does not easily flow into the lower opening. Measurement interference components such as moisture contained in the sample gas can be reduced as much as possible. In addition, by providing a shielding structure inside the outer tube, the space inside the outer tube can be reduced, the sample gas replacement time inside the outer tube can be shortened, and the response speed of analysis can be increased. it can.

ドレン排出部側からのガスを一層下部開口に流入しにくくすると共に、外管内部に導入されたサンプルガスが遮蔽構造からドレン排出部側に流入しにくくするためには、前記遮蔽構造が、前記下部開口の下方に設けられてその下部開口の略全てを覆うとともに、結露したドレン水をドレン排出部に流す流路を外管内面との間で形成する遮蔽ブロックから構成されることが望ましい。   In order to make it difficult for the gas from the drain discharge part to flow into the lower opening and to make it difficult for the sample gas introduced into the outer tube to flow from the shield structure to the drain discharge part, the shielding structure includes It is desirable to be formed from a shielding block that is provided below the lower opening and covers substantially all of the lower opening and that forms a flow path for allowing condensed drain water to flow to the drain discharge portion between the inner surface of the outer tube.

仮に凝縮液が遮蔽構造上に滞留すると、当該凝集液中にサンプルガス中の測定対象成分が溶けてしまい、測定誤差を生じる可能性がある。この問題を解決するためには、前記遮蔽構造が、前記下部開口側に傾斜面を有し、当該傾斜面の下端が、結露したドレン水をドレン排出部に流す流路に繋がっていることが望ましい。   If the condensate stays on the shielding structure, the measurement target component in the sample gas is dissolved in the aggregate liquid, which may cause a measurement error. In order to solve this problem, the shielding structure has an inclined surface on the lower opening side, and the lower end of the inclined surface is connected to a flow path for flowing condensed drain water to the drain discharge portion. desirable.

このように構成した本発明によれば、結露水などの凝集液の再蒸発により生じたガスが内管に流入しにくくすると共に、外管内部におけるサンプルガスの置換時間を短縮して分析の応答速度を速くすることができる。   According to the present invention configured as described above, the gas generated by the re-evaporation of the condensed liquid such as condensed water is less likely to flow into the inner tube, and the sample gas replacement time in the outer tube is shortened to reduce the analysis response. Speed can be increased.

本発明の一実施形態に係る電子冷却器の構成を模式的に示す図である。It is a figure which shows typically the structure of the electronic cooler which concerns on one Embodiment of this invention. 同実施形態の遮蔽ブロック及び支持部材を主として示す拡大図である。It is an enlarged view which mainly shows the shielding block and support member of the embodiment. 同実施形態の遮蔽ブロック及び支持部材を示す斜視図である。It is a perspective view which shows the shielding block and support member of the embodiment. 遮蔽構造の変形例を示す図である。It is a figure which shows the modification of a shielding structure. 遮蔽構造の変形例を示す図である。It is a figure which shows the modification of a shielding structure.

以下に本発明に係る電子冷却器100の一実施形態について図面を参照して説明する。   Hereinafter, an embodiment of an electronic cooler 100 according to the present invention will be described with reference to the drawings.

本実施形態に係る電子冷却器100は、例えば自動車排ガス等のサンプルガス中に含まれる窒素酸化物(NO)や二酸化硫黄(SO)を測定する非分散赤外線式分析計(NDIR)や化学発光式分析計(CLD)等のガス分析計に当該サンプルガスを供給するライン上に設けられるものであり、サンプルガスを冷却して、当該サンプルガス中の測定干渉成分である水蒸気を結露させることによって、サンプルガス中から水分を分離除去するものである。 The electronic cooler 100 according to the present embodiment includes, for example, a non-dispersive infrared analyzer (NDIR) or chemical that measures nitrogen oxide (NO x ) and sulfur dioxide (SO 2 ) contained in a sample gas such as automobile exhaust gas. It is provided on a line for supplying the sample gas to a gas analyzer such as a luminescence analyzer (CLD), and the sample gas is cooled to condense water vapor as a measurement interference component in the sample gas. To separate and remove moisture from the sample gas.

具体的にこのものは、図1に示すように、例えばペルチェ素子からなるサーモモジュール1と、サーモモジュール1の吸熱面に密着して設けられ、例えばアルミニウム又は銅などの熱伝導性に優れた金属からなる熱交換部2と、熱交換部2に密着して上下方向に配設された外管3と、外管3内に挿入されて外管3と二重管構造を構成し、外管3内部に下部開口4Hが位置する内管4とを備えている。また、電子冷却器100は、外管3の上部に設けられ、当該外管3内部にサンプルガスを導入するためのガス導入部5と、外管3の下部に設けられ、外管3内部において凝縮(結露)された凝集液(結露水)を外部に排出するためのドレン排出部6と、内管4の上部に設けられ、サンプルガスを外部(ガス分析計)に導出するためのガス導出部7とを備えている。なお、サーモモジュール1の放熱面には放熱フィン8が密着して設けられており、さらに放熱フィン8におけるサーモモジュール1の反対側にはフィン8冷却用の冷却ファン9が設けられている。なお、ドレン排出部6には図示しない排出用吸引ポンプが接続されており、この排出用吸引ポンプによりドレン排出部6から例えば6cc/分の小容量でガス(結露水を含む)が吸引される。一方、ガス導出部7には図示しない導出用吸引ポンプが接続されており、この導出用吸引ポンプによりガス導出部7から例えば700cc/分の大容量でガスが吸引される。   Specifically, as shown in FIG. 1, this is provided in close contact with a thermomodule 1 made of, for example, a Peltier element, and a heat absorbing surface of the thermomodule 1, for example, a metal having excellent thermal conductivity such as aluminum or copper A heat exchanging portion 2 comprising: an outer tube 3 that is in close contact with the heat exchanging portion 2 and arranged in the vertical direction; and inserted into the outer tube 3 to form a double tube structure with the outer tube, 3 and an inner tube 4 in which a lower opening 4H is located. In addition, the electronic cooler 100 is provided in the upper part of the outer tube 3, provided in the outer tube 3, a gas introduction part 5 for introducing a sample gas, and provided in the lower part of the outer tube 3. A drain discharge unit 6 for discharging condensed (condensed) condensed liquid (condensed water) to the outside, and a gas derivation for supplying sample gas to the outside (gas analyzer) provided at the upper part of the inner tube 4 Part 7. The heat radiation fin 8 is provided in close contact with the heat radiation surface of the thermo module 1, and the cooling fan 9 for cooling the fin 8 is provided on the opposite side of the heat radiation fin 8 to the thermo module 1. A drain suction pump (not shown) is connected to the drain discharge portion 6, and gas (including condensed water) is sucked from the drain discharge portion 6 at a small capacity of 6 cc / minute, for example. . On the other hand, a derivation suction pump (not shown) is connected to the gas derivation unit 7, and gas is sucked from the gas derivation unit 7 at a large capacity, for example, 700 cc / min.

熱交換部2は、外管3の外側周面に沿って密着して配設されており、上下方向に沿って2つに分割されたブロック体(不図示)からなる。各ブロック体の分割面には、外管3が嵌るように断面概略半円状の凹溝が形成されている。   The heat exchange unit 2 is disposed in close contact along the outer peripheral surface of the outer tube 3, and is composed of a block body (not shown) divided into two along the vertical direction. A concave groove having a substantially semicircular cross section is formed on the dividing surface of each block body so that the outer tube 3 is fitted.

外管3と内管4との間には、螺旋状部材10が設けられており、外管3と内管4との間を流れるサンプルガスの流路表面積を大きくするように構成している。本実施形態の螺旋状部材10は、例えばステンレス鋼からなるスプリング部材であり、外管3及び内管4とは分離した部材であり、後述する遮蔽ブロック12及び支持部材13により着脱可能に構成されている。   A spiral member 10 is provided between the outer tube 3 and the inner tube 4 so as to increase the surface area of the sample gas flowing between the outer tube 3 and the inner tube 4. . The spiral member 10 of the present embodiment is a spring member made of, for example, stainless steel, is a member separated from the outer tube 3 and the inner tube 4, and is configured to be detachable by a shielding block 12 and a support member 13 described later. ing.

ガス導入部5及びガス導出部7は、分岐ブロック11に設けられており、当該分岐ブロック11には、外管3及び内管4が二重管構造となるように接続される。ガス導入部5及びガス導出部7にはサンプルガス配管(不図示)が接続される。一方、ドレン排出部6は、外管3の下端に接続されるドレンブロックより形成されている。このドレン排出部6にはドレン排出管(不図示)が接続される。   The gas introduction part 5 and the gas lead-out part 7 are provided in the branch block 11 and are connected to the branch block 11 so that the outer tube 3 and the inner tube 4 have a double tube structure. A sample gas pipe (not shown) is connected to the gas inlet 5 and the gas outlet 7. On the other hand, the drain discharge part 6 is formed of a drain block connected to the lower end of the outer tube 3. A drain discharge pipe (not shown) is connected to the drain discharge portion 6.

このように構成した電子冷却器100において、ガス導入部5から外管3内部に導入されたサンプルガスは、外管3及び内管4の間に形成された流路L1を通って下方に流れる。このとき、外管3及び内管4の間に配置された螺旋状部材10に沿って螺旋状に下方に流れる。この下降時において、サンプルガスは、外管3、内管4及び螺旋状部材10を介して熱交換部2から所定の熱交換を受けることによって例えば2℃〜5℃に冷却される。そして、この冷却によってサンプルガス中に含まれる水分が結露してサンプルガスから分離される。これによって除湿・乾燥されたサンプルガスは、内管4の下部開口4Hに流入して上昇し、ガス導出部7を経てガス分析計(不図示)に供給される。一方、結露により生じた結露水は、外管3の下方に流れてドレン排出部6を経て外部に排出される。   In the electronic cooler 100 configured as described above, the sample gas introduced into the outer tube 3 from the gas introduction unit 5 flows downward through the flow path L1 formed between the outer tube 3 and the inner tube 4. . At this time, it flows downward spirally along the spiral member 10 disposed between the outer tube 3 and the inner tube 4. At the time of the descent, the sample gas is cooled to, for example, 2 ° C. to 5 ° C. by receiving a predetermined heat exchange from the heat exchange unit 2 through the outer tube 3, the inner tube 4 and the spiral member 10. And by this cooling, the moisture contained in the sample gas is condensed and separated from the sample gas. Thus, the sample gas dehumidified and dried flows into the lower opening 4H of the inner tube 4 and rises, and is supplied to a gas analyzer (not shown) through the gas outlet 7. On the other hand, the dew condensation water generated by the dew condensation flows below the outer pipe 3 and is discharged to the outside through the drain discharge part 6.

しかして本実施形態の電子冷却器100は、図1及び図2に示すように、ドレン排出部6側からのガスが下部開口4Hに流入しにくくする遮蔽構造12を備えている。ここでドレン排出部6からのガスとしては、一旦結露した結露水が蒸発することによって生じる水蒸気及び当該水蒸気を含むサンプルガス等である。   Thus, as shown in FIGS. 1 and 2, the electronic cooler 100 of this embodiment includes a shielding structure 12 that makes it difficult for gas from the drain discharge portion 6 to flow into the lower opening 4H. Here, the gas from the drain discharge unit 6 includes water vapor generated by the evaporation of condensed water once condensed, and a sample gas containing the water vapor.

この遮蔽構造12は、外管3内部において内管4の下部開口4Hの下方に設けられている。そして、遮蔽構造12は、内管4の中心軸C方向、つまり下部開口4Hを下方向から見て、下部開口4Hの少なくとも一部を覆うように設けられている。   The shielding structure 12 is provided below the lower opening 4H of the inner tube 4 inside the outer tube 3. The shielding structure 12 is provided so as to cover at least a part of the lower opening 4H when the inner tube 4 is viewed in the direction of the central axis C, that is, when the lower opening 4H is viewed from below.

本実施形態の遮蔽構造12は、特に図2に示すように、下部開口4Hの下方に設けられてその下部開口4Hの略全てを覆うとともに、結露水をドレン排出部6に流す流路を外管3の内側周面との間で流路L2を形成する遮蔽ブロックから構成されている。この遮蔽ブロック12は、外管3の内径よりも小さく、内管4の外径と略同一又は大きい径を有する概略円柱状をなすものである(図3参照)。なお、遮蔽ブロック12の材質は、表面が疎水性及び耐腐食性を有するものであれば限定されないが、本実施形態ではフッ素樹脂を用いて形成されている。この遮蔽ブロック12は、下部開口4Hの下方に位置するように支持部材13によって支持されている。   As shown in FIG. 2 in particular, the shielding structure 12 of the present embodiment is provided below the lower opening 4H so as to cover substantially all of the lower opening 4H and to open a flow path for allowing condensed water to flow to the drain discharge portion 6. It is comprised from the shielding block which forms the flow path L2 between the inner peripheral surfaces of the pipe | tube 3. As shown in FIG. The shielding block 12 has a substantially cylindrical shape having a diameter smaller than the inner diameter of the outer tube 3 and substantially the same as or larger than the outer diameter of the inner tube 4 (see FIG. 3). The material of the shielding block 12 is not limited as long as the surface has hydrophobicity and corrosion resistance, but in this embodiment, it is formed using a fluororesin. The shielding block 12 is supported by a support member 13 so as to be positioned below the lower opening 4H.

この支持部材13は、図2及び図3に示すように、遮蔽ブロック12の下面に一端が接続された支持ロッド131と、当該支持ロッド131の他端に設けられ外管3の下部開口を閉塞して固定される固定板132とを備えている。固定板132には、外管3の下部に流れる結露水をドレン排出部6に流れるようにするための貫通孔132Hが設けられている。なお、固定板132は、ドレンブロック(ドレン排出部6)を外管3に接続する際に同時に固定される。   As shown in FIGS. 2 and 3, the support member 13 includes a support rod 131 having one end connected to the lower surface of the shielding block 12 and a lower opening of the outer tube 3 provided at the other end of the support rod 131. And a fixing plate 132 to be fixed. The fixing plate 132 is provided with a through hole 132H for allowing condensed water flowing in the lower portion of the outer tube 3 to flow into the drain discharge portion 6. The fixing plate 132 is fixed at the same time when the drain block (drain discharge portion 6) is connected to the outer tube 3.

この支持部材13によって外管3内部に支持された遮蔽ブロック12は、図2に示すように、その中心軸が内管4の中心軸Cと略一致するように、下部開口4Hから離間した位置に配置される。また、遮蔽ブロック12は、中心軸C方向から見て内管4の下部開口4Hの全部を覆うように配置される。このとき、遮蔽ブロック12の外側周面と外管3の内側周面との間に結露水をドレン排出部6に導く流路L2が形成される。この流路L2は、結露水を下部に流すことが可能であり、サンプルガスが下部に流れにくいサイズを有する。結露水を下部に流すことが可能であれば、可及的に流路L2の幅(遮蔽ブロック12の外側周面と外管3の内側周面と間隔)は狭い方が良い。この遮蔽ブロック12により外管3内部の空間が、流路L2を介在して、内管4の下部開口4Hを含む上部空間Saと、ドレン排出部6に連続する下部空間Sbとに分割される。この構成により、ドレン排出部6側からのガス(下部空間Sbのガス)が内管4の下部開口4Hに流入しにくくしている。また、外管3内部に導入されたサンプルガスを下部空間Sbに流入しにくくし、サンプルガスの置換が必要な空間を上部空間Saのみとすることによりサンプルガスの置換時間を短縮するようにしている。   As shown in FIG. 2, the shielding block 12 supported inside the outer tube 3 by the support member 13 is positioned away from the lower opening 4H so that its central axis substantially coincides with the central axis C of the inner tube 4. Placed in. Further, the shielding block 12 is disposed so as to cover the entire lower opening 4H of the inner tube 4 when viewed from the central axis C direction. At this time, a flow path L <b> 2 is formed between the outer peripheral surface of the shielding block 12 and the inner peripheral surface of the outer tube 3 to guide the condensed water to the drain discharge part 6. The flow path L2 has a size that allows dew condensation water to flow downward and prevents sample gas from flowing downward. If the dew condensation water can be flowed downward, the width of the flow path L2 (the distance between the outer peripheral surface of the shielding block 12 and the inner peripheral surface of the outer tube 3) should be as narrow as possible. The shielding block 12 divides the space inside the outer tube 3 into an upper space Sa including the lower opening 4H of the inner tube 4 and a lower space Sb continuous to the drain discharge part 6 via the flow path L2. . With this configuration, the gas from the drain discharge portion 6 (the gas in the lower space Sb) is less likely to flow into the lower opening 4H of the inner tube 4. In addition, the sample gas introduced into the outer tube 3 is less likely to flow into the lower space Sb, and only the upper space Sa is required to replace the sample gas, thereby shortening the sample gas replacement time. Yes.

また、遮蔽ブロック12の下部開口4H側には傾斜面12aが形成されている。本実施形態の遮蔽ブロック12は回転体形状をなすものであり、遮蔽ブロック12の下部開口4H側(上端部)が先端に行くに従って窄まる形状(尖った形状)し、これにより傾斜面12aが形成されている。この傾斜面12aにより、遮蔽ブロック12の下部開口4H側(上端部)に付着した結露水が傾斜面12aを伝って流れ易くしており、結露水が遮蔽ブロック12の上端部に滞留することにより、サンプルガス中の測定対象成分が結露水に溶けてしまうことを防止している。また、結露水が下方に向かって流れる傾斜面12aは流路L2に繋がっており、傾斜面12aを流れ落ちた結露水が流路L2に流れ込むことから、サンプルガスとの接触を小さくすることができる。このとき、流路L2が結露水で充填されることにより、ドレン排出部6側からのガスの逆戻りを一層防止することができる。さらに、ドレン排出部6には排出用吸引ポンプが接続されて例えば6cc/分でガスを吸引していることから、結露水が流路L2の入口や内部で詰まることを防止できる。なお、排出用吸引ポンプの吸引量(例えば6cc/分)は、導出用吸引ポンプの吸引量(例えば700cc/分)に比べて極めて小さいため、ガス導出部へのサンプルガスの流れに対する排出用吸引ポンプによる吸引影響を実質的に無視することができる。   In addition, an inclined surface 12 a is formed on the lower opening 4 </ b> H side of the shielding block 12. The shielding block 12 of the present embodiment has a rotating body shape, and the lower opening 4H side (upper end portion) of the shielding block 12 has a shape (pointed shape) that becomes narrower as it goes to the tip, whereby the inclined surface 12a is formed. Is formed. By this inclined surface 12a, the condensed water adhering to the lower opening 4H side (upper end portion) of the shielding block 12 is easy to flow along the inclined surface 12a, and the condensed water stays at the upper end portion of the shielding block 12. The component to be measured in the sample gas is prevented from being dissolved in the condensed water. Further, the inclined surface 12a through which the dew condensation water flows downward is connected to the flow path L2, and the dew condensation water that has flowed down the inclined surface 12a flows into the flow path L2, so that the contact with the sample gas can be reduced. . At this time, by filling the flow path L2 with dew condensation water, it is possible to further prevent the gas from returning from the drain discharge part 6 side. Furthermore, since a drain suction pump is connected to the drain discharge part 6 and sucks gas at, for example, 6 cc / min, it is possible to prevent the dew condensation water from being clogged at the entrance and inside of the flow path L2. In addition, since the suction amount (for example, 6 cc / min) of the discharge suction pump is extremely smaller than the suction amount (for example, 700 cc / minute) of the derivation suction pump, the evacuation suction for the flow of the sample gas to the gas derivation unit. The suction effect by the pump can be substantially ignored.

さらに、支持部材13により外管3内部に配置された遮蔽ブロック12は、外管3及び内管4の間に配置される螺旋状部材10を下方から押圧して固定するものである。つまり、螺旋状部材10と遮蔽ブロック12とが接触した状態で螺旋状部材10及び遮蔽ブロック12が固定される。これにより、螺旋状部材10表面で結露した結露水は螺旋状部材10を伝って下方に流れた結果、遮蔽ブロック12の傾斜面12aに接触することになり、結露水の分離を一層促進することができる。   Further, the shielding block 12 disposed inside the outer tube 3 by the support member 13 presses and fixes the helical member 10 disposed between the outer tube 3 and the inner tube 4 from below. That is, the spiral member 10 and the shielding block 12 are fixed in a state where the spiral member 10 and the shielding block 12 are in contact with each other. As a result, the condensed water condensed on the surface of the spiral member 10 flows downward along the spiral member 10, and as a result, comes into contact with the inclined surface 12a of the shielding block 12, thereby further promoting the separation of the condensed water. Can do.

<本実施形態の効果>
このように構成した本実施形態に係る電子冷却器100によれば、遮蔽ブロック12が内管4の下部開口4H全体を遮ることによって、ドレン排出部6側からのガスが下部開口4Hに流入しにくくしているので、ガス導出部7から導出されるサンプルガスに含まれる水分の測定干渉成分を可及的に低減することができる。
<Effect of this embodiment>
According to the electronic cooler 100 according to the present embodiment configured as described above, the shielding block 12 blocks the entire lower opening 4H of the inner tube 4 so that the gas from the drain discharge part 6 flows into the lower opening 4H. Therefore, the measurement interference component of moisture contained in the sample gas derived from the gas deriving unit 7 can be reduced as much as possible.

また、外管3内部に遮蔽ブロック12を設けることにより外管3内部の空間を小さくすることができるとともに、遮蔽ブロック12の外径を内管4の外径と略同一にして、サンプルガスが流れる空間を小さくしているので、外管3内部におけるサンプルガスの置換時間を短縮することができ、分析の応答速度を速くすることができる。   Further, by providing the shielding block 12 inside the outer tube 3, the space inside the outer tube 3 can be reduced, and the outer diameter of the shielding block 12 is made substantially the same as the outer diameter of the inner tube 4, so that the sample gas Since the flowing space is reduced, the time for replacing the sample gas in the outer tube 3 can be shortened, and the response speed of the analysis can be increased.

<その他の変形実施形態>
なお、本発明は前記実施形態に限られるものではない。
<Other modified embodiments>
The present invention is not limited to the above embodiment.

例えば、前記実施形態では、遮蔽構造として外管3とは分離した部材(遮蔽ブロック12)により構成しているが、その他、図4に示すように、外管3の内管4下部開口4Hより下方において、外管3内の空間を狭める狭窄部材14を設けることによって、下部開口4Hの一部を遮ると共に、外管3内部の空間を小さくするように構成しても良い。この狭窄部材14は、内管の中心軸Cと同軸上に流路L3が形成されており、当該流路L3の内径(断面積)は内管4の下部開口4Hの内径(断面積)よりも小さく構成されている。また、狭窄部材14の上面には、傾斜面14aが形成されている。この狭窄部材14によっても、結露水などの凝集液の再蒸発により生じたガスが内管4に流入しにくくし、外管3内部におけるサンプルガスの置換時間を短縮して分析の応答速度を速くすることができる。   For example, in the above embodiment, the shielding structure is constituted by a member (shielding block 12) separated from the outer tube 3, but as shown in FIG. 4, from the lower opening 4H of the inner tube 4 of the outer tube 3. A constriction member 14 for narrowing the space in the outer tube 3 may be provided below so as to block a part of the lower opening 4H and reduce the space inside the outer tube 3. The narrowing member 14 has a flow path L3 formed coaxially with the central axis C of the inner tube. The inner diameter (cross-sectional area) of the flow path L3 is larger than the inner diameter (cross-sectional area) of the lower opening 4H of the inner tube 4. Is also made smaller. An inclined surface 14 a is formed on the upper surface of the constricting member 14. This constricting member 14 also makes it difficult for the gas generated by re-evaporation of the condensed liquid such as condensed water to flow into the inner tube 4, shortens the time for replacing the sample gas in the outer tube 3, and increases the response speed of the analysis. can do.

また、図5に示すように、外管3において内管4下部開口4Hの下方において、1又は複数の貫通孔15Hが形成された仕切り部材15を設けることによって、下部開口4Hの下方の一部を遮るようにしても良い。この場合も、結露水などの凝集液の再蒸発により生じたガスが内管4に流入しにくくし、外管3内部におけるサンプルガスの置換時間を短縮して分析の応答速度を速くすることができる。   Further, as shown in FIG. 5, a part of the lower portion of the lower opening 4H is provided by providing a partition member 15 in which one or a plurality of through holes 15H are formed in the outer tube 3 below the lower opening 4H of the inner tube 4. May be blocked. In this case as well, the gas generated by re-evaporation of the condensed liquid such as condensed water can be prevented from flowing into the inner tube 4, the sample gas replacement time in the outer tube 3 can be shortened, and the analysis response speed can be increased. it can.

さらに、遮蔽構造としては、外管3に別部材を設けることの他、外管3の内径を内管4の下部開口4Hよりも下方において縮径して構成された構造としても良い。   Further, as the shielding structure, in addition to providing another member on the outer tube 3, the outer tube 3 may be configured such that the inner diameter of the outer tube 3 is reduced below the lower opening 4 </ b> H of the inner tube 4.

その上、前記実施形態の電子冷却器は単一流路を有するものであったが、複数の流路を有する冷却器であっても良い。   In addition, although the electronic cooler of the embodiment has a single flow path, it may be a cooler having a plurality of flow paths.

その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

100・・・電子冷却器
2 ・・・熱交換部
3 ・・・外管
4 ・・・内管
4H ・・・下部開口
5 ・・・ガス導入部
6 ・・・ドレン排出部
7 ・・・ガス導出部
12 ・・・遮蔽構造(遮蔽ブロック)
12a・・・傾斜面
L2 ・・・流路
DESCRIPTION OF SYMBOLS 100 ... Electronic cooler 2 ... Heat exchange part 3 ... Outer tube 4 ... Inner tube 4H ... Lower opening 5 ... Gas introduction part 6 ... Drain discharge part 7 ... Gas lead-out part 12 ... shielding structure (shielding block)
12a ... inclined surface L2 ... flow path

Claims (3)

熱交換部に接触して上下方向に配設され、上部にサンプルガスを導入するためのガス導入部及び下部に凝縮液を排出するためのドレン排出部が設けられた外管と、
前記外管に挿設され、上部にサンプルガスを導出するためのガス導出部が設けられるとともに、前記外管内部に下部開口が位置する内管と、
前記外管内部において、前記下部開口の下方にその少なくとも一部を覆うように設けられ、前記ドレン排出部側からのガスが前記下部開口に流入することを遮る遮蔽構造とを備える電子冷却器。
An outer pipe provided in a vertical direction in contact with the heat exchanging part, provided with a gas introducing part for introducing a sample gas at the upper part and a drain discharging part for discharging the condensate at the lower part;
An inner tube that is inserted into the outer tube and is provided with a gas deriving portion for deriving sample gas at the upper portion, and a lower opening is located inside the outer tube;
An electronic cooler comprising: a shielding structure provided inside the outer tube so as to cover at least a part of the lower opening and covering a gas from the drain discharge portion side from flowing into the lower opening.
前記遮蔽構造が、前記下部開口の下方に設けられてその下部開口の略全てを覆うとともに、凝縮液をドレン排出部に流す流路を外管内面との間で形成する遮蔽ブロックから構成される請求項1記載の電子冷却器。   The shielding structure is configured by a shielding block which is provided below the lower opening and covers substantially all of the lower opening, and forms a flow path for allowing the condensate to flow to the drain discharge portion between the inner surface of the outer tube. The electronic cooler according to claim 1. 前記遮蔽構造が、前記下部開口側に傾斜面を有し、当該傾斜面の下端が、凝縮液をドレン排出部に流す流路に繋がっている請求項1又は2記載の電子冷却器。   3. The electronic cooler according to claim 1, wherein the shielding structure has an inclined surface on the lower opening side, and a lower end of the inclined surface is connected to a flow path for flowing the condensate to the drain discharge portion.
JP2009295988A 2009-12-25 2009-12-25 Electronic cooler Active JP5634061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009295988A JP5634061B2 (en) 2009-12-25 2009-12-25 Electronic cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009295988A JP5634061B2 (en) 2009-12-25 2009-12-25 Electronic cooler

Publications (2)

Publication Number Publication Date
JP2011137646A true JP2011137646A (en) 2011-07-14
JP5634061B2 JP5634061B2 (en) 2014-12-03

Family

ID=44349214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009295988A Active JP5634061B2 (en) 2009-12-25 2009-12-25 Electronic cooler

Country Status (1)

Country Link
JP (1) JP5634061B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137219A (en) * 2011-12-28 2013-07-11 Horiba Ltd Exhaust gas analyzer and drain separator
US11703419B2 (en) 2016-11-09 2023-07-18 Avl Emission Test Systems Gmbh Condensate discharging system for an exhaust-gas measuring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199049U (en) * 1987-06-13 1988-12-21
JPH01228523A (en) * 1988-03-07 1989-09-12 Teru Kyushu Kk Dehumidifier
JPH07232027A (en) * 1994-01-27 1995-09-05 Siemens Elema Ab Device of reducing relative humidity of flowable gas
JP2005233890A (en) * 2004-02-23 2005-09-02 Horiba Ltd Electronic cooler and analyzer using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199049U (en) * 1987-06-13 1988-12-21
JPH01228523A (en) * 1988-03-07 1989-09-12 Teru Kyushu Kk Dehumidifier
JPH07232027A (en) * 1994-01-27 1995-09-05 Siemens Elema Ab Device of reducing relative humidity of flowable gas
JP2005233890A (en) * 2004-02-23 2005-09-02 Horiba Ltd Electronic cooler and analyzer using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137219A (en) * 2011-12-28 2013-07-11 Horiba Ltd Exhaust gas analyzer and drain separator
US11703419B2 (en) 2016-11-09 2023-07-18 Avl Emission Test Systems Gmbh Condensate discharging system for an exhaust-gas measuring device

Also Published As

Publication number Publication date
JP5634061B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
EP3011310B1 (en) System for analyzing mercury
ES2706488T3 (en) Condensed water collector
ATE485484T1 (en) FLOODED EVAPORATOR
US9851282B2 (en) Sample cooling device, and autosampler provided with the same
RU2664517C2 (en) Gas sampling probe and method for operating gas-sampling probe
JP5634061B2 (en) Electronic cooler
JP2014173985A (en) Sample cooling device
JP2023181437A (en) automatic analyzer
JP5012580B2 (en) Catalytic combustion analyzer and vaporizing member for catalytic combustion analyzer
JP3213883B2 (en) Condensate separation equipment
JP4465207B2 (en) Electronic cooler and analyzer using the same
CN202547998U (en) Dehydration device for gaseous molecular absorption spectrometer
CN102539337A (en) Total organic carbon measuring apparatus
KR20170022397A (en) Semi-volatile organic compounds collecting device and collecting method
JP3607138B2 (en) Dehumidifier for gas analysis
CA2468638A1 (en) Waste gas measuring device
KR100983111B1 (en) A distiller using multiple-stage column
JP3206240U (en) Analysis equipment
JP6402821B2 (en) Autosampler
JP2005181112A (en) Thermal analysis device
JP7151650B2 (en) gas analyzer
JP2016003879A (en) Condensation nucleus counter and condensation nucleus growing method
JP2017106794A (en) Optical measurement device
US20020121147A1 (en) Gas sample probe for a gas analyser
JP2019537719A (en) Condensate discharge system for exhaust measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140514

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141014

R150 Certificate of patent or registration of utility model

Ref document number: 5634061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250