JP2011137370A - Retaining wall embankment structure - Google Patents

Retaining wall embankment structure Download PDF

Info

Publication number
JP2011137370A
JP2011137370A JP2011033389A JP2011033389A JP2011137370A JP 2011137370 A JP2011137370 A JP 2011137370A JP 2011033389 A JP2011033389 A JP 2011033389A JP 2011033389 A JP2011033389 A JP 2011033389A JP 2011137370 A JP2011137370 A JP 2011137370A
Authority
JP
Japan
Prior art keywords
embankment
retaining wall
belt
wall block
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011033389A
Other languages
Japanese (ja)
Other versions
JP5008771B2 (en
Inventor
Yoshihiro Yokota
善弘 横田
Hisashi Kawai
寿 河合
Koichi Yoshida
浩一 吉田
Hidefumi Maeda
英史 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Kosen Co Ltd
Original Assignee
Maeda Kosen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Kosen Co Ltd filed Critical Maeda Kosen Co Ltd
Priority to JP2011033389A priority Critical patent/JP5008771B2/en
Publication of JP2011137370A publication Critical patent/JP2011137370A/en
Application granted granted Critical
Publication of JP5008771B2 publication Critical patent/JP5008771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a retaining wall embankment structure, which is free from breakage or rupture due to rusting and excellent in earthquake resistance, can minimize deformation with time while enhancing the stability of an embankment body, and further can reduce the earth pressure acting on a retaining block to improve the stability of the retaining wall block. <P>SOLUTION: In the retaining wall embankment structure in which a side surface of a bank of earth is covered by building up a plurality of retaining wall blocks 30, the retaining block 30 having a connecting portion 31 on the back surface thereof, the connecting portion 31 having a plurality of connection holes on the back surface thereof in the height direction; a fiber-made mesh-like strip belt 40 connected to the connection hole; a constraining sheet 90 laid on the slope side of each embankment layer while enclosing an end portion of each embankment layer; and a sheet-like geogrid 70 laid and embedded in each embankment layer are used in combination. A deformation absorption layer is formed between the back surface of the retaining blocks 30 and the bank of earth, the side surface of the bank of earth is covered with a double wall structure composed of the retaining wall blocks 30 and the deformation absorption layer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は盛土工と擁壁工を繰り返し行い、盛土体の側面を複数の擁壁ブロックで覆った擁壁盛土構造体に関するものである。   The present invention relates to a retaining wall embankment structure in which embankment work and retaining wall work are repeated, and a side surface of the embankment body is covered with a plurality of retaining wall blocks.

盛土内に帯状の鋼製補強材(ストリップ)を敷設し、土とストリップの摩擦効果によって反力を得て、ストリップを接続した擁壁ブロックを支持するテールアルメ工法は、広く知られている。
ストリップは耐久性に優れ、摩擦力の大きいリブ付亜鉛メッキ平鋼が使用されていて、ボルトとナットにより擁壁ブロックの背面に一体に連結している。
また擁壁ブロックの背面にジオグリッドを直接接続しながら、ジオグリッドを盛土に埋設する盛土工も知られている。
A tail arme method is widely known in which a strip-shaped steel reinforcement (strip) is laid in the embankment, a reaction force is obtained by the friction effect between the soil and the strip, and the retaining wall block to which the strip is connected is supported.
The strip is made of galvanized flat steel with ribs, which has excellent durability and high frictional force, and is connected to the back of the retaining wall block by bolts and nuts.
In addition, embankment work is also known in which the geogrid is buried in the embankment while the geogrid is directly connected to the back of the retaining wall block.

特開2005−97842号公報JP 2005-97842 A

前記した盛土構造体にあっては次のような問題点がある。
(1)ストリップの素材が金属であるため、盛土中でストリップが錆により破損する問題がある。
さらに、ストリップと擁壁ブロックの連結手段として用いるボルトやナットも腐食する問題もあり、ストリップの連結部が破断する恐れがある。
(2)ストリップは擁壁ブロックの抜け出し防止が主機能であるため、盛土の安定性に対して不安がある。
特にストリップが盛土の変位を十分に拘束できないため、地震により盛土体の法面側が凹凸状に変形したり、盛土体が崩落を起し易い欠点がある。
(3)ストリップの埋設高さが、擁壁ブロックの埋設高さに限られてしまい、ストリップの埋設高さを自由に選択できない不都合がある。
(4)ジオグリッドを擁壁ブロックの背面に直接接続した盛土構造体にあっては、剛性の擁壁ブロックと柔軟性を有するジオグリッドの直接接続の形態となる。
そのため、その接続部に大きな応力が集中して破壊され易い問題がある。
加えて、金属製の接続具を用いてジオグリッドを擁壁ブロックの背面に接続しているため、接続具の腐食の問題が残る。
さらに、壁面ブロックとジオグリッドを直接接続した盛土構造体にあっては、剛な壁面ブロックが柔な背面補強盛土の自然圧密変形に追従できず、補強盛土と共に沈下したジオグリッドを介して壁面ブロックが盛土側に引っ張られる問題も指摘されている。
The above-described embankment structure has the following problems.
(1) Since the material of the strip is metal, there is a problem that the strip is damaged by rust in the embankment.
Furthermore, there is a problem that the bolts and nuts used as the connecting means between the strip and the retaining wall block also corrode, and the connecting portion of the strip may be broken.
(2) Since the main function of the strip is to prevent the retaining wall block from coming out, there is concern about the stability of the embankment.
In particular, since the strip cannot sufficiently restrain the displacement of the embankment, the slope side of the embankment body is deformed into an uneven shape due to an earthquake, and the embankment body is liable to collapse.
(3) The embedded height of the strip is limited to the embedded height of the retaining wall block, and there is an inconvenience that the embedded height of the strip cannot be freely selected.
(4) In the embankment structure in which the geogrid is directly connected to the back surface of the retaining wall block, the rigid retaining wall block and the flexible geogrid are directly connected.
Therefore, there is a problem that a large stress is concentrated on the connecting portion and is easily broken.
In addition, since the geogrid is connected to the back of the retaining wall block using a metal connector, the problem of corrosion of the connector remains.
Furthermore, in the embankment structure in which the wall block and the geogrid are directly connected, the rigid wall block cannot follow the natural consolidation deformation of the soft back reinforcement embankment, and the wall block passes through the geogrid that sinks with the reinforcement embankment. The problem that is pulled to the embankment side is pointed out.

本発明は以上の問題点を解決するために成されたもので、その目的とするところは、耐久性に優れた擁壁盛土構造体を提供することにある。
本発明の目的は、補強盛土と擁壁ブロックの安定性を大幅に改善できる擁壁盛土構造体を提供することにある。
本発明の目的は、耐震性に優れた擁壁盛土構造体を提供することにある。
本発明は上記した何れかひとつを提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a retaining wall embankment structure excellent in durability.
The objective of this invention is providing the retaining wall embankment structure which can improve the stability of a reinforcement embankment and a retaining wall block significantly.
An object of the present invention is to provide a retaining wall embankment structure excellent in earthquake resistance.
The present invention is to provide any one of the above.

上記した課題を達成するため、本願の第1発明は、盛土体の側面を複数の擁壁ブロックを積み上げて覆った擁壁盛土構造体であって、背面に一体成形により縦方向に沿って突出した接続部を有するとともに、該接続部の背面に高さ方向に沿って複数の接続孔を有する前記擁壁ブロックと、択一的に選択した前記複数の接続孔の何れかに挿通して任意の高さに接続する繊維製でメッシュ状の帯ベルトと、各盛土層の法面側に敷設しつつ各盛土層の端部を包囲する拘束シートと、各盛土層に敷設して埋設するシート状のジオグリッドとを併用し、前記拘束シートで盛土層の法面側を保持すると共に、シート状のジオグリッドを各盛土層に埋設して盛土体を構築し、盛土層から所定の距離を隔てて擁壁ブロックを配置し、前記擁壁ブロックの背面の任意の高さに繊維製の帯ベルトを接続し、擁壁ブロックに接続した前記帯ベルトを盛土体に埋設し、盛土体に埋設した繊維製の帯ベルトを介して各擁壁ブロックの変位を拘束し、擁壁ブロックの背面と盛土体との間に変形吸収層を形成し、前記擁壁ブロックおよび変形吸収層の二重壁構造体により盛土体の側面を被覆したことを特徴とする。   In order to achieve the above-described problem, the first invention of the present application is a retaining wall embankment structure in which a side surface of a embankment body is stacked and covered with a plurality of retaining wall blocks, and protrudes along the longitudinal direction by integral molding on the back surface. The retaining wall block having a plurality of connection holes along the height direction on the back surface of the connection part, and any one of the plurality of connection holes selected alternatively. A belt made of fiber that connects to the height of the embankment, a restraint sheet that surrounds the end of each embankment layer while laying on the slope side of each embankment layer, and a sheet that is laid and buried in each embankment layer In addition to holding the slope side of the embankment layer with the restraint sheet, construct the embankment body by embedding the sheet-like geogrid in each embankment layer, and set a predetermined distance from the embankment layer Place the retaining wall block apart, and the rear of the retaining wall block Connect the belt belt made of fiber to the desired height, bury the belt belt connected to the retaining wall block in the embankment body, and displace each retaining wall block via the fiber belt belt embedded in the embankment body The deformation absorbing layer is formed between the rear surface of the retaining wall block and the embankment body, and the side surface of the embankment body is covered with the double wall structure of the retaining wall block and the deformation absorbing layer.

本願の第2発明は、前記第1発明において、各盛土層の法面側に補助型枠ユニットを載置し、該補助型枠ユニットの内方に拘束シートを敷設して各盛土層の端部を包囲することを特徴とする。   According to a second invention of the present application, in the first invention, an auxiliary mold unit is placed on the slope side of each embankment layer, and a restraining sheet is laid inward of the auxiliary mold unit to end the embankment layer. It is characterized by surrounding the part.

本願の第3発明は、前記第1または第2発明においてにおいて、横方向に配列した複数の擁壁ブロックの背面の接続部と盛土体の間に跨って連続性を有する帯ベルトを波形に敷設し、擁壁ブロックの背面から延出した帯ベルトの波形部を盛土体に埋設したことを特徴とする。   According to a third invention of the present application, in the first or second invention, a belt belt having continuity is laid in a corrugated shape across a connecting portion on the back surface of a plurality of retaining wall blocks arranged in the transverse direction and the embankment body. The corrugated portion of the belt belt extending from the back surface of the retaining wall block is embedded in the embankment.

本願の第4発明は、前記第3発明において、前記帯ベルトの波形部の複数の折り返し箇所に跨って剛性の抵抗体を係止させ、帯ベルトの複数の折返部と一緒に抵抗体を盛土体に埋設したことを特徴とする。   According to a fourth invention of the present application, in the third invention, a rigid resistor is locked across a plurality of folded portions of the corrugated portion of the belt belt, and the resistor is embanked together with the plurality of folded portions of the belt belt. It is buried in the body.

また前記した本願の第1乃至4発明の何れかにおいて、盛土体の側面を鉛直に形成し、該盛土体の側面に沿って擁壁ブロックを鉛直に積み上げてもよい。
また前記した本願の第1乃至4発明の何れかにおいて、盛土体の側面を所定の勾配を付与して形成し、該盛土体の側面に沿って擁壁ブロックを傾斜させて積み上げしてもよい。
In any one of the first to fourth inventions of the present application described above, the side surface of the embankment body may be formed vertically, and the retaining wall blocks may be stacked vertically along the side surface of the embankment body.
In any one of the first to fourth inventions of the present application, the side surface of the embankment body may be formed with a predetermined gradient, and the retaining wall block may be inclined and stacked along the side surface of the embankment body. .

本発明は少なくとも次の一つの効果を得ることができる。
(1)擁壁ブロックの背面に接続する帯ベルトが繊維製であるから、錆びによる破損や破断の心配がなくなり、半永久的に擁壁ブロックを支持することが可能となる。
(2)拘束シートとジオグリッドを併用して盛土体を構築することで、盛土体の安定性が増し、耐震性にも優れ、経時的な変形を最小に抑制することができると共に、擁壁ブロックに作用する土圧を軽減できて擁壁ブロックの安定性も改善できる。
(3)擁壁ブロックの背面に接続する帯ベルトの接続位置を任意に選択できるので、ジオグリッドの敷設ピッチに関係なく任意の高さに帯ベルトを取り付けできる。
また擁壁ブロックに接続する帯ベルトの設置数を増すことで、擁壁ブロックの抜け出し防止効果をさらに高めることが可能である。
(4)ジオグリッドは擁壁ブロックに接続していない。
そのため、盛土体が自然圧密変形してもジオグリッドを介して擁壁ブロックが盛土側に引っ張られる問題を解消することができる。
(5)擁壁ブロックの垂直施工はもちろんのこと、これまで施工が困難とされてきた勾配を付けた擁壁工の施工も可能である。
(6)擁壁ブロックの背面と盛土層との間に変形吸収層を形成して二重壁構造体とした場合には、大地震等により盛土が変形しても、盛土体の変形を変形吸収層で吸収できるので、擁壁ブロックの飛び出しやずれを効果的に回避して、擁壁盛土構造体全体に高い安定性を確保できる。
The present invention can obtain at least one of the following effects.
(1) Since the belt belt connected to the back surface of the retaining wall block is made of fiber, there is no risk of damage or breakage due to rust, and the retaining wall block can be supported semi-permanently.
(2) By constructing the embankment body using the restraint sheet and geogrid in combination, the embankment body stability is increased, it is excellent in earthquake resistance, and deformation over time can be minimized, and the retaining wall The earth pressure acting on the block can be reduced and the stability of the retaining wall block can be improved.
(3) Since the connection position of the belt belt connected to the back surface of the retaining wall block can be arbitrarily selected, the belt belt can be attached to any height regardless of the laying pitch of the geogrid.
Further, by increasing the number of belt belts connected to the retaining wall block, it is possible to further enhance the effect of preventing the retaining wall block from coming out.
(4) The geogrid is not connected to the retaining wall block.
Therefore, even if the embankment body is naturally consolidated, the problem that the retaining wall block is pulled toward the embankment via the geogrid can be solved.
(5) In addition to vertical construction of retaining wall blocks, it is possible to construct retaining walls with a slope that has been difficult to construct.
(6) When a deformation absorption layer is formed between the back of the retaining wall block and the embankment layer to form a double wall structure, even if the embankment deforms due to a large earthquake, the deformation of the embankment body is deformed. Since it can be absorbed by the absorbent layer, the retaining wall block can be effectively prevented from popping out and shifting, and high stability can be secured throughout the retaining wall embankment structure.

参考例1に係る擁壁盛土構造体の縦断面図Longitudinal sectional view of retaining wall embankment structure according to Reference Example 1 単数の接続部を具備した擁壁ブロックの背面に帯ベルトを接続した斜視図The perspective view which connected the belt belt to the back of the retaining wall block which comprises a single connection part 複数の接続部を具備した他の擁壁ブロックの背面に帯ベルトを接続した斜視図The perspective view which connected the belt belt to the back of the other retaining wall block which comprised a plurality of connecting parts. 擁壁盛土構造体の施工方法の説明図Explanatory drawing of construction method of retaining wall embankment structure 擁壁ブロックの背面の接続部毎に単体の帯ベルトを接続した形態を示した平面図The top view which showed the form which connected the single belt belt for every connection part of the back of a retaining wall block 擁壁ブロックの背面の複数の接続部に連続した帯ベルトを接続した、他の帯ベルトの接続形態を示した平面図The top view which showed the connection form of the other belt belt which connected the continuous belt belt to the some connection part of the back of a retaining wall block 擁壁ブロックの背面に接続した複数の帯ベルトを波形に配置した、他の帯ベルトの接続形態を示した平面図The top view which showed the connection form of the other belt belt which has arranged the belt belt connected to the back of the retaining wall block in the waveform 擁壁ブロックの背面の複数の接続部に連続した帯ベルトを接続し、帯ベルトの複数の折り返し箇所に跨って抵抗体を係止させた形態を示した、他の帯ベルトの接続形態を示した平面図The connection form of other belt belts showing a form in which a continuous belt belt is connected to a plurality of connecting portions on the back surface of the retaining wall block and a resistor is locked across a plurality of folded portions of the belt belt is shown. Plan view 本発明の参考例2に係る擁壁盛土構造体の一部を破断し、盛土体側から見た斜視図The perspective view which fractured | ruptured a part of retaining wall embankment structure concerning the reference example 2 of this invention, and was seen from the embankment body side 参考例2に係る擁壁盛土構造体の一部を省略した縦断面図Longitudinal sectional view omitting a part of retaining wall embankment structure according to Reference Example 2 実施例に係る擁壁盛土構造体の一部を省略した縦断面図The longitudinal cross-sectional view which abbreviate | omitted some retaining wall embankment structures which concern on an Example 実施例に係る擁壁盛土構造体の部分拡大図Partial enlarged view of retaining wall embankment structure according to the embodiment 実施例に係る擁壁盛土構造体の一部を省略した縦断面図The longitudinal cross-sectional view which abbreviate | omitted some retaining wall embankment structures which concern on an Example

以下、図面を参照しながら本発明について説明する。
[参考例1]
Hereinafter, the present invention will be described with reference to the drawings.
[Reference Example 1]

(1)擁壁盛土構造体の概要
図1に参考例1に係る擁壁盛土構造体10の断面図を示す。
この擁壁盛土構造体10は、転圧を行いつつ完成高さまで複数回に分けて階層的に盛土層20a,20b,・・・を積み上げて構築した盛土体20と、盛土体20の側面(法面)に縦横方向に配置して盛土体20の側面(法面)を覆った複数の擁壁ブロック30と、各擁壁ブロック30の背面に接続しつつ、各盛土層20a,20b,・・・に埋設した単数、又は複数の帯ベルト40とにより構成されている。
以下に主要な資材について詳述する。
(1) Outline of Retaining Wall Embankment Structure FIG. 1 is a sectional view of a retaining wall embankment structure 10 according to Reference Example 1.
This retaining wall embankment structure 10 is divided into a plurality of times to the finished height while rolling, and the embankment body 20 is constructed by stacking the embankment layers 20a, 20b,... And the side surface of the embankment body 20 ( A plurality of retaining wall blocks 30 that are arranged in the vertical and horizontal directions on the slope and cover the side surface (slope) of the embankment body 20, and are connected to the back surface of each retaining wall block 30, and each embankment layer 20 a, 20 b,. It is comprised by the single or several belt belt 40 embed | buried under.
The main materials are described in detail below.

(2)擁壁ブロック
盛土体20の側面を覆う擁壁ブロック30の一例を図2,3に示す。
擁壁ブロック30はプレキャストコンクリート製のブロックで、全体形状が四角形を呈し、その背面には縦方向に沿って突出した接続部31が一体に形成されている。
図2は擁壁ブロック30の背面中央に接続部31を形成した断面T字形を呈する場合を示し、図3は擁壁ブロック30の背面に間隔を隔てて二つの接続部31,31を形成した断面Π字形を呈する場合を示す。
接続部31には高さ方向に沿って複数の接続孔32が貫通して形成されている。本例では接続部31の上中下の三箇所に接続孔32を形成した例を示すが、接続孔32の形成数は任意でよい。
これら複数の接続孔32は帯ベルト40を任意の高さに接続するための孔である。
尚、本例では擁壁ブロック30の正面から見た形状が四角形である場合について説明するが、擁壁ブロック30の正面から見た他の形状としては、例えば五角形、六角形等の多角形を採用することができる。
(2) Retaining wall block An example of the retaining wall block 30 which covers the side surface of the embankment 20 is shown in FIGS.
The retaining wall block 30 is a block made of precast concrete and has an overall shape of a quadrangle, and a connecting portion 31 protruding along the vertical direction is integrally formed on the back surface thereof.
FIG. 2 shows a case where a cross section T-shaped with a connection portion 31 formed at the center of the rear surface of the retaining wall block 30 is shown, and FIG. 3 shows that two connection portions 31, 31 are formed on the rear surface of the retaining wall block 30 with a space therebetween. The case where a cross-sectional square shape is exhibited is shown.
A plurality of connection holes 32 are formed through the connection portion 31 along the height direction. Although this example shows an example in which the connection holes 32 are formed at the upper, middle, and lower portions of the connection portion 31, the number of connection holes 32 may be arbitrary.
The plurality of connection holes 32 are holes for connecting the belt belt 40 to an arbitrary height.
In addition, although this example demonstrates the case where the shape seen from the front of the retaining wall block 30 is a rectangle, as other shapes seen from the front of the retaining wall block 30, polygons, such as a pentagon and a hexagon, are mentioned, for example. Can be adopted.

(3)帯ベルト
帯ベルト40はその一方を擁壁ブロック30に接続し、その他方を盛土体20中に埋設して設置して使用し、盛土体20との摩擦抵抗を利用して擁壁ブロック30の変位を拘束するために機能する。
従来のストリップが金属製であるのに対して、本発明では帯ベルト40が耐引張強度と耐腐食性に優れた可撓性を有する素材で形成したものを使用する。
(3) Belt Belt One of the belt belts 40 is connected to the retaining wall block 30 and the other side is embedded and used in the embankment body 20, and the retaining wall is utilized using frictional resistance with the embankment body 20. It functions to constrain the displacement of the block 30.
In contrast to the conventional strip made of metal, in the present invention, the belt 40 is formed of a flexible material having excellent tensile strength and corrosion resistance.

帯ベルト40の素材としては、例えば車のシートベルトに用いられる高強度繊維、或いは繊維性ベルトの表面を樹脂加工して耐衝撃性や耐候性を高めたものを使用できる。
また帯ベルト40の好ましい形態は、土砂と帯ベルト40とのインターロッキング効果をもって引き抜き抵抗が増すようにメッシュ状に構成した開口構造が望ましい。
帯ベルト40の他の形態としては、無孔構造のフラットなベルトや、ベルトの表面に凹凸を形成したものであってもよい。
As a material of the belt belt 40, for example, high-strength fibers used for car seat belts, or a material obtained by processing the surface of a fibrous belt with resin to improve impact resistance and weather resistance can be used.
Moreover, the preferable form of the belt belt 40 is desirably an opening structure configured in a mesh shape so that the pulling resistance is increased due to the interlocking effect between the earth and sand and the belt belt 40.
As other forms of the belt belt 40, a flat belt having a non-porous structure or an uneven surface formed on the surface of the belt may be used.

帯ベルト40を擁壁ブロック30の接続部31の接続孔32に挿通するに際しては、図2,3に示すように帯ベルト40に樹脂製の保護チューブ41を外装すると、帯ベルト40が擁壁ブロック30の接続孔32のエッジで切れるのを効果的に防止できる。
また擁壁ブロック30の支持力は、帯ベルト40の全長に比例する関係にあるから、帯ベルト40の全長は現場に応じて適宜選択するものとする。
When the belt belt 40 is inserted into the connection hole 32 of the connection portion 31 of the retaining wall block 30, as shown in FIGS. It is possible to effectively prevent cutting at the edge of the connection hole 32 of the block 30.
Further, since the supporting force of the retaining wall block 30 is proportional to the total length of the belt belt 40, the total length of the belt belt 40 is appropriately selected according to the site.

(4)擁壁盛土構造体の構築方法
つぎに擁壁盛土構造体10の構築方法について説明する。
(4) Construction method of retaining wall embankment structure Next, the construction method of retaining wall embankment structure 10 is demonstrated.

[基礎工]
図4に示すように、施工計画に基づきバックホウ等により掘削を行い、擁壁ブロック30の積み上げ予定位置に砕石層50を敷設した後、砕石層50の上に基礎コンクリート51を打設する。
[Foundation]
As shown in FIG. 4, excavation is performed with a backhoe or the like based on the construction plan, and the crushed stone layer 50 is laid at a position where the retaining wall block 30 is to be stacked, and then the foundation concrete 51 is placed on the crushed stone layer 50.

[擁壁ブロックの設置]
つぎに基礎コンクリート51上に、一段目の擁壁ブロック30を横一列に並設する。
本例では、擁壁ブロック30を所定の勾配を付与して積み上げる場合について説明するが、鉛直に積み上げてもよい。
[Installation of retaining wall block]
Next, the first-stage retaining wall blocks 30 are arranged side by side on the foundation concrete 51.
In this example, a case where the retaining wall blocks 30 are stacked with a predetermined gradient will be described, but they may be stacked vertically.

[帯ベルトの連結]
擁壁ブロック30の接続部31に形成された複数の接続孔32のうち、所定の高さの接続孔32に帯ベルト40を差し込んで連結する。
擁壁ブロック30の背面側に接続した帯ベルト40は擁壁ブロック30の背面側の地盤に弛みがないようにして敷設する。
[Band belt connection]
Among the plurality of connection holes 32 formed in the connection portion 31 of the retaining wall block 30, the belt belt 40 is inserted into and connected to the connection hole 32 having a predetermined height.
The belt belt 40 connected to the rear surface side of the retaining wall block 30 is laid so that the ground on the rear surface side of the retaining wall block 30 is not slack.

[盛土工]
帯ベルト40が隠れるまで擁壁ブロック30の背面側に土砂を撒き転圧して一層目の盛土層20aを構築する。
本例では最下位の接続孔32に連結した帯ベルト40の上に一層目の盛土層20aを構築して帯ベルト40を埋設すると共に、一層目の盛土層20aの上面に最上位の接続孔32に連結した帯ベルト40を敷設した場合について示すが、擁壁ブロック30に対する帯ベルト40の連結位置や帯ベルト40の設置数は、擁壁ブロック30の支持力を考慮して適宜選択するものとする。
要は、擁壁ブロック30の背面に連結した帯ベルト40が盛土層に埋設されていればよい。
[Filling work]
The first embankment layer 20a is constructed by rolling and rolling earth and sand on the back side of the retaining wall block 30 until the belt belt 40 is hidden.
In this example, the first embankment layer 20a is constructed on the belt belt 40 connected to the lowermost connection hole 32 to embed the belt belt 40, and the uppermost connection hole is formed on the upper surface of the first embankment layer 20a. 32, the belt belt 40 connected to the retaining wall block 30 is laid, but the connection position of the belt belt 40 with respect to the retaining wall block 30 and the number of belt belts 40 are appropriately selected in consideration of the supporting force of the retaining wall block 30. And
In short, the belt belt 40 connected to the back surface of the retaining wall block 30 may be embedded in the embankment layer.

また帯ベルト40の連結作業は、擁壁ブロック30の接続部31に形成された任意の接続孔32に帯ベルト40を挿入する簡単な作業を行うだけで済むので、特別な連結具を用いる必要がない。   Further, the belt belt 40 can be connected simply by inserting the belt belt 40 into an arbitrary connection hole 32 formed in the connection portion 31 of the retaining wall block 30. Therefore, it is necessary to use a special connector. There is no.

図5〜8に擁壁ブロック30の接続部31に連結した帯ベルト40の埋設形態を例示する。
図5の左方は擁壁ブロック30の接続部31に対し、所定の長さを有する帯ベルト40の両端部を交差させた場合を示し、同図の右方は帯ベルト40の両端部を交差さずに埋設した場合を示す。
The embedding form of the belt belt 40 connected to the connection part 31 of the retaining wall block 30 is illustrated in FIGS.
The left side of FIG. 5 shows a case where both ends of the belt belt 40 having a predetermined length intersect the connecting portion 31 of the retaining wall block 30, and the right side of FIG. The case where it is buried without crossing is shown.

また図6の横方向に配列した複数の擁壁ブロック30の各接続部31と盛土体20の間に、長尺の長さを有する帯ベルト40を波形(ジグザグ状)に敷設し、擁壁ブロック30の背面から延出した帯ベルト40の波形部を盛土体20に埋設した場合を示す。
図7は各擁壁ブロック30の接続部31に接続した単体の帯ベルト40の両端部を交差させ、その交差部にピン43を打設して帯ベルト40に連続性を付与した形態を示す。
Further, a belt belt 40 having a long length is laid in a corrugated shape (zigzag) between the connection portions 31 of the plurality of retaining wall blocks 30 arranged in the horizontal direction in FIG. The case where the corrugated part of the belt belt 40 extending from the back surface of the block 30 is embedded in the embankment 20 is shown.
FIG. 7 shows a form in which both ends of a single belt belt 40 connected to the connection portion 31 of each retaining wall block 30 are crossed, and pins 43 are placed at the crossing portion to give continuity to the belt belt 40. .

図6,7のように波形(ジグザグ状)に敷設した帯ベルト40の波形部を盛土体20に埋設すると、盛土体20の土圧による摩擦抵抗だけでなく、折り返した帯ベルト40の波形部により一部の盛土体20を囲繞することによる土塊抵抗が加わるので、図5と比べて擁壁ブロック30の支持力が高くなる。   6 and 7, when the corrugated portion of the belt belt 40 laid in a waveform (zigzag shape) is embedded in the embankment body 20, not only the frictional resistance caused by the earth pressure of the embankment body 20 but also the corrugated portion of the folded belt belt 40 As a result, a mass resistance due to surrounding a portion of the embankment body 20 is added, so that the supporting force of the retaining wall block 30 is higher than that in FIG.

また図8は図6,7に示した連続性を有する帯ベルト40の波形部を形成する複数の折り返し箇所に跨って、剛性の抵抗体42を係止させた場合を示す。
図8のように抵抗体42を追加した分だけ、擁壁ブロック30の支持力がさらに高まるので、擁壁ブロック30の背面側へ向けた帯ベルト40の埋設深さを短く設定しても擁壁ブロック30を高い支持力で支持することができる。
FIG. 8 shows a case where the rigid resistor 42 is locked over a plurality of folded portions forming the corrugated portion of the belt belt 40 having continuity shown in FIGS.
Since the support force of the retaining wall block 30 is further increased by the addition of the resistor 42 as shown in FIG. 8, even if the embedding depth of the belt belt 40 toward the back side of the retaining wall block 30 is set short, the retaining wall block 30 is retained. The wall block 30 can be supported with high supporting force.

一段目の施工が完了したら、一段目の擁壁ブロック30と一層目の盛土層20aの上面に、夫々図2の二点鎖線に示すように二段目の擁壁ブロック30と二層目の盛土層20bを積層して構築する。   When the first-stage construction is completed, the second-stage retaining wall block 30 and the second layer are formed on the upper surfaces of the first-stage retaining wall block 30 and the first-layer embankment layer 20a as shown by the two-dot chain lines in FIG. The embankment layer 20b is laminated and constructed.

二段目の擁壁ブロック30の背面にも帯ベルト40を連結し、当該帯ベルト40を二層目の盛土層20bに埋設することは上記した工程と同様である。   The belt belt 40 is also connected to the back surface of the second-stage retaining wall block 30, and the belt belt 40 is embedded in the second embankment layer 20b in the same manner as described above.

以上説明した、擁壁ブロック30の設置工、帯ベルト40の連結敷設工、盛土工を所要の回数だけ繰り返して、図1の擁壁盛土構造体10を得る。
帯ベルト40は擁壁ブロック30の背面の接続部31に対して任意の高さに連結して埋設できるので、擁壁ブロック30に対する帯ベルト40の連結高さが各盛土層20a,20b・・・の層厚(ピッチ厚)に制限されることがない。
また擁壁ブロック30の各段において、擁壁ブロック30に連結する帯ベルト40の設置数に比例して擁壁ブロック30の支持力が増すことになる。
The retaining wall block structure shown in FIG. 1 is obtained by repeating the above-described installation work of the retaining wall block 30, connection laying work of the belt belt 40, and embankment as many times as necessary.
Since the belt belt 40 can be connected to the connecting portion 31 on the back surface of the retaining wall block 30 at an arbitrary height and buried, the height of the belt belt 40 connected to the retaining wall block 30 is set to the embankment layers 20a, 20b,. The layer thickness (pitch thickness) is not limited.
In each stage of the retaining wall block 30, the supporting force of the retaining wall block 30 increases in proportion to the number of belt belts 40 connected to the retaining wall block 30.

(5)擁壁盛土構造体の特性
図1に示す如く擁壁盛土構造体10は、盛土体20の法面側が擁壁ブロック30で覆われている。
帯ベルト40は盛土体20の鉛直方向に作用する土圧による摩擦抵抗を受けて支持されており、各擁壁ブロック30は帯ベルト40を介して支持される。
したがって、盛土体20の側方に作用する土圧は、各擁壁ブロック30と帯ベルト40を介して盛土体20に支持される。
また帯ベルト40は適度の可撓性を有するので、盛土体20が圧密変形しても帯ベルト40は破断することなく盛土体20の変形に追従できる。
さらには、帯ベルト40が耐腐食性に優れた素材で形成されているため、帯ベルト40がその全長に亘り錆びに因る破断の恐れが完全になくなり、半永久的に擁壁ブロック30の支持機能を持続できる。
(5) Characteristics of Retaining Wall Embankment Structure As shown in FIG. 1, in the retaining wall embankment structure 10, the slope side of the embankment body 20 is covered with a retaining wall block 30.
The belt belt 40 is supported by receiving frictional resistance due to earth pressure acting in the vertical direction of the embankment body 20, and each retaining wall block 30 is supported via the belt belt 40.
Therefore, the earth pressure acting on the side of the embankment body 20 is supported by the embankment body 20 via each retaining wall block 30 and the belt belt 40.
Further, since the belt belt 40 has appropriate flexibility, the belt belt 40 can follow the deformation of the banking body 20 without breaking even if the banking body 20 is deformed by consolidation.
Furthermore, since the belt belt 40 is formed of a material having excellent corrosion resistance, the belt belt 40 is completely free from the risk of breakage due to rust throughout its entire length, and the retaining wall block 30 is supported semi-permanently. The function can be sustained.

[参考例2]
以下に参考例2を説明する。以降の説明に際し既述した参考例1と同一の部位は、同一の符号を付してその詳しい説明を省略する。
[Reference Example 2]
Reference Example 2 will be described below. In the following description, the same parts as those in Reference Example 1 described above are denoted by the same reference numerals, and detailed description thereof is omitted.

(1)擁壁盛土構造体の構造
図9,10は既述した参考例1の擁壁盛土構造体10を前提とし、これに盛土体20内に水平に敷設して埋設したシート状のジオグリッド70を追加して使用する他の形態を示す。
(1) Structure of Retaining Wall Embankment Structure FIGS. 9 and 10 are based on the retaining wall embankment structure 10 of Reference Example 1 described above, and a sheet-like geo that is horizontally laid and buried in the embankment body 20 on this. The other form which adds and uses the grid 70 is shown.

(2)本例で使用する追加資材
まず本例で使用するジオグリッド70について説明する。
(2) Additional materials used in this example First, the geogrid 70 used in this example will be described.

[ジオグリッド]
ジオグリッド70は、盛土体20の内部に水平に埋設して、盛土体20を補強するシート材で、例えば、高密度ポリエチレンの格子状ネットにアラミド繊維製の芯材に高密度ポリエチレンの被膜で覆ってネット状に形成した「アデム」(前田工繊株式会社製)が好適である。
[Geogrid]
The geogrid 70 is a sheet material that is horizontally embedded in the embankment body 20 and reinforces the embankment body 20, for example, a high-density polyethylene lattice net, an aramid fiber core material, and a high-density polyethylene film. “Adem” (manufactured by Maeda Kosen Co., Ltd.) formed in a net shape by covering is suitable.

(3)施工方法
擁壁ブロック30の設置工、帯ベルト40の連結敷設工、盛土工を繰り返し行うことは、前記した参考例1と同様であるが、本例は参考例1と比較して盛土工に上記したシート状のジオグリッド70を盛土体20の任意の高さに埋設して施工することが異なる。
(3) Construction method Repeating the installation work of the retaining wall block 30, the connection laying work of the belt belt 40, and the embankment work is the same as the reference example 1 described above, but this example is compared with the reference example 1. It differs in embedding and embedding the sheet-like geogrid 70 described above at an arbitrary height of the embankment body 20.

すなわち本参考例2では、擁壁ブロック30に帯ベルト40を連結して各盛土層20a,20b,20c・・・に埋設する過程において、各盛土層20a,20b,20c・・・の法面側に補助型枠ユニット60と、補助型枠ユニット60の内側に拘束シート90とを敷設して盛土することと、擁壁ブロック30の1スパン(全高)分の盛土を複数回に分けて行う際に、盛土の任意の高さにジオグリッド70を敷設して埋設する工程が、前記参考例1に追加される。   That is, in this reference example 2, the slope of each embankment layer 20a, 20b, 20c ... in the process of connecting the belt belt 40 to the retaining wall block 30 and embedding it in each embankment layer 20a, 20b, 20c ... The auxiliary formwork unit 60 on the side and the restraint sheet 90 on the inner side of the auxiliary formwork unit 60 are laid and banked, and one span (total height) of the retaining wall block 30 is banked in multiple times. At this time, the step of laying and burying the geogrid 70 at an arbitrary height of the embankment is added to the reference example 1.

ジオグリッド70は擁壁ブロック30に直接接続しない。
したがって、盛土体20に対するジオグリッド70の埋設ピッチは、擁壁ブロック30の高さに関係なく、盛土体20の土質や盛土高さを考慮して任意に設定することができる。
The geogrid 70 is not directly connected to the retaining wall block 30.
Therefore, the embedding pitch of the geogrid 70 with respect to the embankment body 20 can be arbitrarily set in consideration of the soil quality and embankment height of the embankment body 20 regardless of the height of the retaining wall block 30.

また本例では擁壁ブロック30を支持する帯ベルト40と、盛土体20を補強するジオグリッド70の埋設位置が互いに重ならない形態を図示しているが、両部材40,70を重ねて埋設してもよいことは勿論である。   In this example, the belt belt 40 that supports the retaining wall block 30 and the geogrid 70 that reinforces the embankment body 20 are illustrated in such a manner that the embedded positions do not overlap each other. Of course, it may be.

(4)擁壁盛土構造体の特性
図9に示す如く本参考例2に係る擁壁盛土構造体10は、前記参考例1の効果に加えて、ジオグリッド70と拘束シート90を併用して盛土体20を構築することで、参考例1と比べて盛土体20の安定性が格段に向上し、また耐震性にも優れる。
さらに、ジオグリッド70を埋設したことにより、盛土体20の経時的な変形を最小に抑制することができる。
このように盛土体20の安定性が増すことに伴い、擁壁ブロック30に作用する土圧を軽減できて、最終的に擁壁ブロック30の安定性を改善することができる。
(4) Characteristics of Retaining Wall Embankment Structure As shown in FIG. 9, the retaining wall embankment structure 10 according to the second reference example uses the geogrid 70 and the restraint sheet 90 in addition to the effects of the first reference example. By constructing the embankment body 20, compared with the reference example 1, the stability of the embankment body 20 is remarkably improved, and the earthquake resistance is also excellent.
Furthermore, by embedding the geogrid 70, the temporal deformation of the embankment body 20 can be suppressed to a minimum.
As the stability of the embankment body 20 increases as described above, the earth pressure acting on the retaining wall block 30 can be reduced, and the stability of the retaining wall block 30 can be finally improved.

[実施例]
(1)擁壁盛土構造体の構造
図11〜13に他の擁壁盛土構造体10を示す。
本実施例は、既述した参考例2の盛土体20を前提とし、これに盛土体20内に水平に敷設して埋設したシート状のジオグリッド70と、各盛土層20a,20b・・・の法面側に敷設しつつ各盛土層20a,20b・・・の端部を包囲する拘束シート90とを追加して使用すると共に、各擁壁ブロック30の背面と盛土体20との間に変形吸収層80を形成し、擁壁ブロック30および変形吸収層80の二重壁構造体により盛土体20の側面を被覆した他の形態を示す。
[Example]
(1) Structure of retaining wall embankment structure FIGS. 11 to 13 show another retaining wall embankment structure 10.
This example is based on the embankment body 20 of the reference example 2 described above, and a sheet-like geogrid 70 laid horizontally in the embankment body 20 and embedded therein, and each embankment layer 20a, 20b,. In addition to using a restraining sheet 90 that surrounds the ends of the embankment layers 20 a, 20 b... While laying on the slope side, the space between the back surface of each retaining wall block 30 and the embankment body 20. The deformation | transformation absorption layer 80 is formed and the other form which coat | covered the side surface of the embankment body 20 with the double wall structure of the retaining wall block 30 and the deformation | transformation absorption layer 80 is shown.

(2)本例で使用する追加資材
まず本例で使用する追加資材について説明する。
(2) Additional material used in this example First, the additional material used in this example will be described.

[拘束シート]
拘束シート90は各盛土層20a,20b・・・の端部を法面から所定の範囲に亘って包囲するシート材である。
拘束シート90は土砂の流出を阻止し、かつ各盛土層20a,20b・・・の端部(法面側)の土砂を補強するために機能するもので、例えば不織布、織布等の高分子シートを使用できる。
[Restricted sheet]
The restraint sheet 90 is a sheet material that surrounds the end portions of the embankment layers 20a, 20b... Over a predetermined range from the slope.
The restraint sheet 90 functions to prevent the outflow of earth and sand and to reinforce the earth and sand at the end (slope side) of each embankment layer 20a, 20b... Sheets can be used.

[ジオグリッド]
ジオグリッド70は、盛土体20の内部に水平に埋設して、盛土体20を補強するシート材で、例えば、高密度ポリエチレンの格子状ネットにアラミド繊維製の芯材に高密度ポリエチレンの被膜で覆ってネット状に形成した「アデム」(前田工繊株式会社製)が好適である。
[Geogrid]
The geogrid 70 is a sheet material that is horizontally embedded in the embankment body 20 and reinforces the embankment body 20, for example, a high-density polyethylene lattice net, an aramid fiber core material, and a high-density polyethylene film. “Adem” (manufactured by Maeda Kosen Co., Ltd.) formed in a net shape by covering is suitable.

[補助型枠ユニット]
この補助型枠ユニット60は、目の粗い板状の網体を法面勾配に対応して略L字形に折曲加工して形成した型枠である。
本例では、水平な裾部61と、裾部61の一端に起立部62を一体に成形し、裾部61と起立部62の間に補強用の斜材63を配置して補助型枠ユニット60を構成する場合について説明する。
補助型枠ユニット60は、本発明の必須の部材ではなく、省略する場合もある。
[Auxiliary formwork unit]
The auxiliary mold unit 60 is a mold formed by bending a rough mesh-like net body into a substantially L shape corresponding to the slope of the slope.
In this example, a horizontal skirt 61 and an upright portion 62 are integrally formed at one end of the skirt portion 61, and a reinforcing diagonal member 63 is disposed between the skirt portion 61 and the upright portion 62 so as to form an auxiliary form unit. The case where 60 is comprised is demonstrated.
The auxiliary mold unit 60 is not an essential member of the present invention and may be omitted.

(3)変形吸収層
変形吸収層80は、盛土体20の変形を吸収すると共に、その変形力を遮断して擁壁ブロック30へ伝達されるのを防止するために機能する。
図11では、各擁壁ブロック30の背面と盛土体20との間に形成された空間内の全域に充填した粒状物により変形吸収層80を構成する場合を示す。
変形吸収層80を構成する粒状物としては、砕石あるいは粒状の人工材料(例えばガラスリサイクル品、発泡スチロール等)を採用でき、また粒状物の大きさは単粒度であることが望ましい。
この変形吸収層80は、盛土体20の変形吸収機能だけでなく、雨水の排水路としても機能する。
(3) Deformation Absorbing Layer The deformation absorbing layer 80 functions to absorb deformation of the embankment body 20 and block the deformation force from being transmitted to the retaining wall block 30.
In FIG. 11, the case where the deformation | transformation absorption layer 80 is comprised with the granular material with which the whole area in the space formed between the back surface of each retaining wall block 30 and the embankment body 20 is comprised is shown.
As the granular material constituting the deformation absorbing layer 80, crushed stone or granular artificial material (for example, glass recycled product, polystyrene foam, etc.) can be adopted, and the size of the granular material is preferably a single particle size.
This deformation absorption layer 80 functions not only as a deformation absorption function of the embankment body 20 but also as a drainage for rainwater.

(4)施工方法
本例は、帯ベルト40の連結敷設工、盛土工を繰り返し行うことは、前記した参考例2と同様である。
本実施例は参考例2と比較して、擁壁ブロック30を盛土体20から所定の距離を隔てて立設する擁壁ブロック30の設置工と、既述した上記したシート状のジオグリッド70と拘束シート90とを併用して施工する盛土工が異なる。
(4) Construction method This example is the same as the reference example 2 described above in that the connecting and laying work of the belt belt 40 and the embankment work are repeated.
In this embodiment, compared with the reference example 2, the installation work of the retaining wall block 30 for standing the retaining wall block 30 at a predetermined distance from the embankment body 20 and the above-described sheet-shaped geogrid 70 described above. And the embankment work to be performed by using the restraint sheet 90 together.

すなわち本実施例では、擁壁ブロック30に帯ベルト40を連結して各盛土層20a,20b,20c・・・に埋設する過程において、各盛土層20a,20b,20c・・・の法面側に補助型枠ユニット60と、補助型枠ユニット60の内側に拘束シート90とを敷設して盛土することと、擁壁ブロック30の1スパン(全高)分の盛土を複数回に分けて行う際に、盛土の任意の高さにジオグリッド70を敷設して埋設する工程が、追加される。   That is, in the present embodiment, the slope side of each embankment layer 20a, 20b, 20c... In the process of connecting the belt belt 40 to the retaining wall block 30 and embedding it in each embankment layer 20a, 20b, 20c. When the auxiliary formwork unit 60 and the restraint sheet 90 are laid on the inner side of the auxiliary formwork unit 60 for embedding, and the embankment for one span (full height) of the retaining wall block 30 is performed in multiple times. In addition, a step of laying and embedding the geogrid 70 at an arbitrary height of the embankment is added.

ジオグリッド70は擁壁ブロック30に直接接続しない。
したがって、盛土体20に対するジオグリッド70の埋設ピッチは、擁壁ブロック30の高さに関係なく、盛土体20の土質や盛土高さを考慮して任意に設定することができる。
The geogrid 70 is not directly connected to the retaining wall block 30.
Therefore, the embedding pitch of the geogrid 70 with respect to the embankment body 20 can be arbitrarily set in consideration of the soil quality and embankment height of the embankment body 20 regardless of the height of the retaining wall block 30.

擁壁ブロック30のスパン(全高)毎に盛土を終えたら、各擁壁ブロック30の背面と盛土体20との間に形成された空間内の全域に粒状物を充填して変形吸収層80を形成する。
これにより、盛土体20の側面は、擁壁ブロック30および変形吸収層80で構成された二重壁構造体によって被覆される。
When the embankment is finished for each span (overall height) of the retaining wall block 30, the deformation absorbing layer 80 is formed by filling the entire area in the space formed between the back surface of each retaining wall block 30 and the embankment body 20. Form.
Thereby, the side surface of the embankment body 20 is covered with the double wall structure formed of the retaining wall block 30 and the deformation absorption layer 80.

本例では粒状物の充填前において、各擁壁ブロック30の背面と盛土体20の間に空間が形成される。
そのため、図12に拡大して示すように、補助型枠ユニット60の内側に拘束シート90を配置して盛土する際に、盛土の転圧により補助型枠ユニット60の平面状の起立部62が土圧により変形して円弧状に孕み出す。
したがって、法面側の盛土の締め固めを確実に行うことができる。
In this example, a space is formed between the back surface of each retaining wall block 30 and the embankment body 20 before filling the granular material.
Therefore, as shown in an enlarged view in FIG. 12, when the restraint sheet 90 is disposed inside the auxiliary mold unit 60 and embankment is performed, the planar upright portion 62 of the auxiliary mold unit 60 is caused by rolling of the embankment. Deforms due to earth pressure and squeezes into an arc.
Therefore, the banking on the slope side can be reliably compacted.

また本例のように擁壁ブロック30に勾配をつける場合、粒状物の充填が完了するまでの間、既設の盛土や図示しない支保工等から反力を得て擁壁ブロック30を盛土体20の法面から離隔させる。   Further, when the retaining wall block 30 is inclined as in this example, the retaining wall block 30 is obtained from the existing embankment or a supporting work (not shown) until the filling of the granular material is completed. Keep away from the slope.

(5)擁壁盛土構造体の特性
本実施例は、ジオグリッド70と拘束シート90を併用して盛土体20を構築することで、参考例2と比べて盛土体20の安定性が格段に向上し、また耐震性にも優れる。
また、拘束シート90で盛土の法面側を包み込むことで、施工後における盛土体20の法面の変形を抑制することができる。
さらに、ジオグリッド70を埋設したことにより、盛土体20の経時的な変形を最小に抑制することができる。
(5) Characteristics of retaining wall embankment structure In this embodiment, the embankment body 20 is constructed by using the geogrid 70 and the restraint sheet 90 in combination, so that the stability of the embankment body 20 is markedly higher than that of the reference example 2. Improved and excellent in earthquake resistance.
Moreover, the deformation | transformation of the slope of the embankment 20 after construction can be suppressed by wrapping the slope side of the embankment with the restraint sheet 90.
Furthermore, by embedding the geogrid 70, the temporal deformation of the embankment body 20 can be suppressed to a minimum.

また本実施例は、各擁壁ブロック30の背面と盛土体20との間に変形吸収層80を形成し、擁壁ブロック30および変形吸収層80の二重壁構造体により盛土体20の側面を被覆したものである。
したがって、本実施例に係る擁壁盛土構造体10は、前記した参考例1,2の効果に加えて、大地震等により盛土体20が万一、変形を起こしても、盛土体20の側面の変形を変形吸収層80で吸収できるので、擁壁ブロック30の飛び出しやずれを効果的に回避できるので、前記参考例1,2と比較して擁壁盛土構造体10の安定性がさらに良くなるという利点が得られる。
Further, in this embodiment, a deformation absorbing layer 80 is formed between the back surface of each retaining wall block 30 and the embankment body 20, and the side surface of the embankment body 20 is formed by the double wall structure of the retaining wall block 30 and the deformation absorbing layer 80. Is coated.
Therefore, the retaining wall embankment structure 10 according to the present embodiment has a side surface of the embankment body 20 even if the embankment body 20 is deformed due to a large earthquake in addition to the effects of the reference examples 1 and 2 described above. Since the deformation absorbing layer 80 can absorb the deformation of the retaining wall block 30, the retaining wall block 30 can be effectively prevented from jumping out and shifting, so that the retaining wall embankment structure 10 is more stable than the first and second reference examples. The advantage of becoming is obtained.

本例の変形吸収層80が存在しない場合は、盛土体20と擁壁ブロック30とを夫々支持する地盤反力に大きな差が生じる。
地盤反力の差は、盛土体20と擁壁ブロック30の重量差によるものである。
When the deformation absorption layer 80 of this example does not exist, a big difference arises in the ground reaction force which supports the embankment body 20 and the retaining wall block 30, respectively.
The difference in ground reaction force is due to the weight difference between the embankment body 20 and the retaining wall block 30.

尚、図13に示すように、変形吸収層80は粒状物で構成する場合の他に、各擁壁ブロック30の背面と盛土体20との間に形成された空間そのもので変形吸収層80を構成する場合もある。   As shown in FIG. 13, in addition to the case where the deformation absorbing layer 80 is made of a granular material, the deformation absorbing layer 80 is formed in the space itself formed between the back surface of each retaining wall block 30 and the embankment body 20. May be configured.

10・・・・・擁壁盛土構造体
20・・・・・盛土体
30・・・・・擁壁ブロック
31・・・・・接続部
40・・・・・帯ベルト
60・・・・・補助型枠ユニット
70・・・・・ジオグリッド
90・・・・・拘束シート
DESCRIPTION OF SYMBOLS 10 ... Retaining wall embankment structure 20 ... Embankment body 30 ... Retaining wall block 31 ... Connection part 40 ... Belt belt 60 ... Auxiliary formwork unit 70 ... Geogrid 90 ... Restraint sheet

Claims (6)

盛土体の側面を複数の擁壁ブロックを積み上げて覆った擁壁盛土構造体であって、
背面に一体成形により縦方向に沿って突出した接続部を有するとともに、該接続部の背面に高さ方向に沿って複数の接続孔を有する前記擁壁ブロックと、
択一的に選択した前記複数の接続孔の何れかに挿通して任意の高さに接続する繊維製でメッシュ状の帯ベルトと、
各盛土層の法面側に敷設しつつ各盛土層の端部を包囲する拘束シートと、
各盛土層に敷設して埋設するシート状のジオグリッドとを併用し、
前記拘束シートで盛土層の法面側を保持すると共に、シート状のジオグリッドを各盛土層に埋設して盛土体を構築し、
盛土層から所定の距離を隔てて擁壁ブロックを配置し、
前記擁壁ブロックの背面の任意の高さに繊維製の帯ベルトを接続し、
擁壁ブロックに接続した前記帯ベルトを盛土体に埋設し、
盛土体に埋設した繊維製の帯ベルトを介して各擁壁ブロックの変位を拘束し、
擁壁ブロックの背面と盛土体との間に変形吸収層を形成し、
前記擁壁ブロックおよび変形吸収層の二重壁構造体により盛土体の側面を被覆したことを特徴とする、
擁壁盛土構造体。
A retaining wall embankment structure in which a plurality of retaining wall blocks are stacked and covered on the side of the embankment body,
The retaining wall block having a connection portion protruding along the vertical direction by integral molding on the back surface, and having a plurality of connection holes along the height direction on the back surface of the connection portion,
A mesh belt belt made of fiber that is inserted into any of the plurality of connection holes that are alternatively selected and connected to an arbitrary height;
A restraint sheet that surrounds the end of each embankment layer while laying on the slope side of each embankment layer,
In combination with a sheet-like geogrid that is laid and buried in each embankment layer,
While holding the slope side of the embankment layer with the restraint sheet, construct a embankment body by embedding a sheet-like geogrid in each embankment layer,
Place retaining wall blocks at a predetermined distance from the embankment layer,
Connect a belt belt made of fiber to any height on the back of the retaining wall block;
Embed the belt belt connected to the retaining wall block in the embankment,
The displacement of each retaining wall block is restrained through a belt belt made of fiber embedded in the embankment body,
A deformation absorbing layer is formed between the back of the retaining wall block and the embankment body,
The side surface of the embankment is covered with the double wall structure of the retaining wall block and the deformation absorbing layer,
Retaining wall embankment structure.
請求項1において、各盛土層の法面側に補助型枠ユニットを載置し、該補助型枠ユニットの内方に拘束シートを敷設して各盛土層の端部を包囲することを特徴とする、擁壁盛土構造体。   In claim 1, the auxiliary mold unit is placed on the slope side of each embankment layer, and a restraint sheet is laid inward of the auxiliary mold unit to surround the end of each embankment layer. Retaining wall embankment structure. 請求項1または2において、横方向に配列した複数の擁壁ブロックの背面の接続部と盛土体の間に跨って連続性を有する帯ベルトを波形に敷設し、擁壁ブロックの背面から延出した帯ベルトの波形部を盛土体に埋設したことを特徴とする、擁壁盛土構造体。   In Claim 1 or 2, the belt belt which has continuity between the connection part and the embankment body of the back surface of the several retaining wall block arranged in the horizontal direction was laid in the waveform, and it extended from the back surface of the retaining wall block. Retaining wall embankment structure characterized in that the corrugated portion of the belt belt embedded in the embankment body. 請求項3において、前記帯ベルトの波形部の複数の折り返し箇所に跨って剛性の抵抗体を係止させ、帯ベルトの複数の折返部と一緒に抵抗体を盛土体に埋設したことを特徴とする、擁壁盛土構造体。   In claim 3, the rigid resistor is locked across a plurality of folded portions of the corrugated portion of the belt belt, and the resistor is embedded in the embankment body together with the plurality of folded portions of the belt belt. Retaining wall embankment structure. 請求項1乃至請求項4の何れか1項において、盛土体の側面を鉛直に形成し、該盛土体の側面に沿って擁壁ブロックを鉛直に積み上げたことを特徴とする、擁壁盛土構造体。   The retaining wall embankment structure according to any one of claims 1 to 4, wherein a side surface of the embankment body is vertically formed, and retaining wall blocks are vertically stacked along the side surface of the embankment body. body. 請求項1乃至請求項4の何れか1項において、盛土体の側面を所定の勾配を付与して形成し、該盛土体の側面に沿って擁壁ブロックを傾斜させて積み上げたことを特徴とする、擁壁盛土構造体。   5. The method according to claim 1, wherein a side surface of the embankment body is formed with a predetermined gradient, and the retaining wall block is inclined and stacked along the side surface of the embankment body. Retaining wall embankment structure.
JP2011033389A 2011-02-18 2011-02-18 Retaining wall embankment structure Active JP5008771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011033389A JP5008771B2 (en) 2011-02-18 2011-02-18 Retaining wall embankment structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011033389A JP5008771B2 (en) 2011-02-18 2011-02-18 Retaining wall embankment structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007540860A Division JP4824030B2 (en) 2005-10-19 2005-10-19 Retaining wall embankment structure

Publications (2)

Publication Number Publication Date
JP2011137370A true JP2011137370A (en) 2011-07-14
JP5008771B2 JP5008771B2 (en) 2012-08-22

Family

ID=44349024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011033389A Active JP5008771B2 (en) 2011-02-18 2011-02-18 Retaining wall embankment structure

Country Status (1)

Country Link
JP (1) JP5008771B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015209952A1 (en) 2014-05-30 2015-12-03 Denso Corporation Device and computer program for supporting a vehicle driver
JP2016000895A (en) * 2014-06-11 2016-01-07 東京インキ株式会社 Embankment structure, construction method for the embankment structure and wall part component of the embankment structure
JP6226217B1 (en) * 2017-06-22 2017-11-08 譲二 山下 Connecting member for constructing decorative covering protective wall of reinforced embankment wall and method for constructing decorative covering protective wall of reinforced embankment wall
JP2020197006A (en) * 2019-05-31 2020-12-10 糸井 元保 Retaining wall

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005155145A (en) * 2003-11-25 2005-06-16 Maeda Kosen Co Ltd Construction method for reinforced earth retaining wall and structure of the reinforced earth retaining wall

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005155145A (en) * 2003-11-25 2005-06-16 Maeda Kosen Co Ltd Construction method for reinforced earth retaining wall and structure of the reinforced earth retaining wall

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015209952A1 (en) 2014-05-30 2015-12-03 Denso Corporation Device and computer program for supporting a vehicle driver
JP2016000895A (en) * 2014-06-11 2016-01-07 東京インキ株式会社 Embankment structure, construction method for the embankment structure and wall part component of the embankment structure
JP6226217B1 (en) * 2017-06-22 2017-11-08 譲二 山下 Connecting member for constructing decorative covering protective wall of reinforced embankment wall and method for constructing decorative covering protective wall of reinforced embankment wall
JP2020197006A (en) * 2019-05-31 2020-12-10 糸井 元保 Retaining wall
JP7008662B2 (en) 2019-05-31 2022-01-25 元保 糸井 Retaining wall

Also Published As

Publication number Publication date
JP5008771B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JPWO2007046142A1 (en) Retaining wall embankment structure
JP5939970B2 (en) Seismic reinforcement construction method and seismic reinforcement structure
JP5008771B2 (en) Retaining wall embankment structure
JP6298250B2 (en) Retaining wall connection structure
JP7158016B2 (en) Cage structure for retaining earth and method for forming the same
KR101077949B1 (en) Block for reinforcement and construction method
JP6325248B2 (en) Cell structure construction method and cell structure
JP6192763B1 (en) Geogrid / Honeycomb Retaining Wall
JP5309378B2 (en) Self-supporting retaining wall
JP6215679B2 (en) Reinforced soil retaining wall and its construction method
KR101528725B1 (en) The slope reinforcement method using natural stone
JP5008770B2 (en) Retaining wall embankment structure
JP2011219919A (en) Retaining wall unit and method of constructing retaining wall unit
JP4188811B2 (en) Reinforced soil protection retaining wall
JP6072498B2 (en) Avalanche prevention slope structure
KR20080066797A (en) Retaining wall banking structure
KR200471401Y1 (en) Apparatus to set up giogrid for raising the ground
JP7142304B1 (en) Gabions and slope protection methods
JP5268163B2 (en) Reinforcement structure of embankment and mounting bracket used for it
JP3665896B2 (en) Reinforced embankment body and its construction method
JP3665895B2 (en) Protective embankment
JP2007191903A (en) Banking anchor
JP6371123B2 (en) Embankment structure, construction method of embankment structure and wall structure for embankment structure
JP5130563B2 (en) Lightweight retaining wall block and lightweight retaining wall structure using the same
KR102376019B1 (en) Corrugated steel wall

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120502

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120529

R150 Certificate of patent or registration of utility model

Ref document number: 5008771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250