JP2011135861A - Method for saccharifying cellulose - Google Patents

Method for saccharifying cellulose Download PDF

Info

Publication number
JP2011135861A
JP2011135861A JP2010070274A JP2010070274A JP2011135861A JP 2011135861 A JP2011135861 A JP 2011135861A JP 2010070274 A JP2010070274 A JP 2010070274A JP 2010070274 A JP2010070274 A JP 2010070274A JP 2011135861 A JP2011135861 A JP 2011135861A
Authority
JP
Japan
Prior art keywords
cellulose
aqueous solution
containing material
enzyme
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010070274A
Other languages
Japanese (ja)
Other versions
JP5733654B2 (en
Inventor
Kenji Nakamura
健治 中村
Seiji Higaki
誠司 檜垣
Aimi Yatsuka
愛実 八塚
Kazuo Tsuchiyama
和夫 土山
Kazuyoshi Iwane
和良 岩根
正樹 ▲高▼尾
Masaki Takao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Ehime Prefecture
Jeplan Inc
Original Assignee
Sekisui Chemical Co Ltd
Ehime Prefecture
Japan Environment Planning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd, Ehime Prefecture, Japan Environment Planning Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2010070274A priority Critical patent/JP5733654B2/en
Priority to PCT/JP2011/057323 priority patent/WO2011118760A1/en
Publication of JP2011135861A publication Critical patent/JP2011135861A/en
Application granted granted Critical
Publication of JP5733654B2 publication Critical patent/JP5733654B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for saccharifying cellulose by which the reaction velocity for hydrolyzing the cellulose contained in a cellulose-containing material by an enzyme can be improved. <P>SOLUTION: The method for saccharifying cellulose by hydrolyzing the cellulose to afford an aqueous solution of a water-soluble oligosaccharide or glucose includes carrying out an alkali treatment of bringing the cellulose-containing material into contact with an aqueous alkali solution, cleaning the resultant cellulose-containing material with water and/or an acidic aqueous solution, and subjecting the cleaned cellulose-containing material to an enzyme treatment by bringing the cellulose-containing material into contact with an aqueous solution containing a cellulolytic enzyme and a pH buffer stock within a range of 0-250 mM of the buffer solution concentration. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、セルロースの糖化方法に関する。より詳しくは、セルロース含有繊維製品やそれらの製品屑等のセルロース含有物に前処理を施すことにより、セルロース分解酵素によるセルロースの加水分解反応速度を向上させたセルロースの糖化方法に関する。   The present invention relates to a method for saccharifying cellulose. More specifically, the present invention relates to a cellulose saccharification method in which cellulose-containing materials such as cellulose-containing fiber products and product waste thereof are pretreated to improve the hydrolysis reaction rate of cellulose by a cellulose-degrading enzyme.

化石燃料の枯渇問題や地球温暖化をはじめとした環境問題を背景に、石油代替原料を用いた燃料開発、化学品・樹脂群への転換が進められている。たとえば、米国、ブラジル等ではトウモロコシやサトウキビを原料にしたバイオエタノール製造が大規模に進められている。しかしこれらは食糧資源と競合関係にあるため、近年、その供給に関して国際的な議論の対象となった。このような背景を受け、食糧資源と競合しないセルロース系バイオマス原料(木質系・草本系等)からのバイオエタノール合成が注目を集めており、各国がその商用化を競っている。しかし、製造技術面とコスト面が障害となり未だ大規模には実用化出来ていない。一方、セルロース系バイオマス原料としては、上記の木質系・草本系以外にも、不要品として廃棄・回収された紙資源や衣料品等のセルロース含有繊維廃棄物もその対象として検討が始められている。   Against the backdrop of fossil fuel depletion problems and global warming and other environmental problems, fuel development using petroleum alternative raw materials and conversion to chemicals and resin groups are being promoted. For example, in the United States, Brazil, etc., bioethanol production using corn and sugarcane as a raw material is being promoted on a large scale. However, these are in competition with food resources and have recently been the subject of international debate over their supply. Against such a background, bioethanol synthesis from cellulosic biomass raw materials (woody, herbaceous, etc.) that do not compete with food resources is attracting attention, and countries are competing for commercialization. However, manufacturing technology and cost are obstacles, and it has not been put into practical use on a large scale. On the other hand, in addition to the woody and herbaceous materials mentioned above, cellulose-based fiber waste such as paper resources and clothing that have been discarded and recovered as unnecessary items has been studied as cellulosic biomass raw materials. .

セルロース含有物のセルロースは、1000個以上のグルコースがβ−グリコシド結合でつながった多糖類である。セルロースを加水分解することにより、単糖であるグルコースのほか、グルコースが2〜6個つながった水溶性のオリゴ糖類(セロオリゴ糖)を得ることができる。これらの水溶性糖類の中でもグルコースは、微生物を用いた発酵法によるエタノール生産等に有用であることから、セルロースを含有する物からグルコース等の糖類を効率よく製造できる糖化技術が望まれている。   Cellulose-containing cellulose is a polysaccharide in which 1000 or more glucoses are connected by β-glycoside bonds. By hydrolyzing cellulose, in addition to glucose, which is a monosaccharide, water-soluble oligosaccharides (cellooligosaccharides) in which 2 to 6 glucoses are connected can be obtained. Among these water-soluble saccharides, glucose is useful for ethanol production and the like by fermentation using microorganisms. Therefore, a saccharification technique capable of efficiently producing saccharides such as glucose from cellulose-containing substances is desired.

セルロースを糖化する従来の方法としては、熱分解法、硫酸等を触媒とする酸触媒法(例えばアルケノール法)、超臨界または亜臨界状態の水溶液で加水分解する加圧熱水法(特許文献1参照)、酵素反応によって加水分解する酵素反応法(特許文献2参照)等が知られている。   Conventional methods for saccharifying cellulose include a thermal decomposition method, an acid catalyst method using sulfuric acid or the like as a catalyst (for example, an alkenol method), and a pressurized hydrothermal method in which hydrolysis is performed with a supercritical or subcritical aqueous solution (Patent Document 1). And an enzyme reaction method in which hydrolysis is performed by an enzyme reaction (see Patent Document 2) and the like are known.

熱分解法は、熱エネルギーによりセルロース分子鎖を切断する方法であり、セルロースを低分子化することが出来る。しかし、熱反応であるために反応の選択性が乏しく、グルコースの収率は低い。   The thermal decomposition method is a method in which cellulose molecular chains are cleaved by thermal energy, and cellulose can be reduced in molecular weight. However, since it is a thermal reaction, the selectivity of the reaction is poor and the yield of glucose is low.

酸触媒法は高濃度の硫酸でセルロースを加水分解処理した後に希硫酸で後処理をしてグルコースを得るものであるが、酸による設備腐食の問題と共に硫酸含有残渣処理・硫酸回収等の工程が必要となる問題がある。   In the acid catalyst method, cellulose is hydrolyzed with high-concentration sulfuric acid and then post-treated with dilute sulfuric acid to obtain glucose. However, there are processes such as sulfuric acid-containing residue treatment and sulfuric acid recovery along with the problem of equipment corrosion due to acid. There is a problem that is needed.

水は超臨界または亜臨界状態においてイオン積が増大し、あたかも酸性水溶液として挙動することが知られている。これを利用すれば酸触媒を添加しなくても効率よくしかも速やかにセルロースを加水分解する事ができるはずである。例えば、超臨界水または亜臨界水を用いることでセルロースからグルコースが20%以上の収率で得られるという報告がなされている(特許文献1参照)。温度・圧力条件を制御することによりグルコースの収率をある程度向上しうる。しかし、加水分解の効率を優先し過ぎると、生成したグルコースが熱分解反応して収率が低下してしまう。また、この際にエタノール発酵工程の阻害物質であるフルフラール類が生成される問題がある。   It is known that water has an increased ion product in a supercritical or subcritical state and behaves as an acidic aqueous solution. If this is utilized, it should be possible to hydrolyze cellulose efficiently and quickly without adding an acid catalyst. For example, it has been reported that glucose can be obtained in a yield of 20% or more from cellulose by using supercritical water or subcritical water (see Patent Document 1). By controlling temperature and pressure conditions, the yield of glucose can be improved to some extent. However, if priority is given to the efficiency of hydrolysis, the produced glucose undergoes a thermal decomposition reaction and the yield decreases. Moreover, there exists a problem in which the furfural which is an inhibitory substance of an ethanol fermentation process is produced | generated in this case.

酵素反応法はセルロースを加水分解する酵素(セルラーゼ)により処理する方法であり、穏和な反応条件(室温〜70℃)で処理できることが特徴である。近年、国内外の多くのメーカーが遺伝子操作技術を駆使して新規なセルラーゼ開発に力を入れている。しかし、一般にセルラーゼ自身が高価であることに加え、原料である高分子量のセルロースをグルコースに加水分解する効率が低く、生産性に劣る。例えば、数日から1週間程度の長時間の加水分解処理を行っても、グルコースへの転換率は30%未満である。このように反応速度が小さいのは、セルロースが固体状態でありかつ結晶性であるためにセルラーゼとの反応が固液反応となっているからだと考えられる。   The enzyme reaction method is a method of treatment with an enzyme (cellulase) that hydrolyzes cellulose, and is characterized in that it can be treated under mild reaction conditions (room temperature to 70 ° C.). In recent years, many domestic and overseas manufacturers have made efforts to develop new cellulases using gene manipulation technology. However, in general, cellulase itself is expensive, and the efficiency of hydrolyzing high molecular weight cellulose, which is a raw material, into glucose is low, resulting in poor productivity. For example, even if the hydrolysis treatment is performed for a long time of several days to a week, the conversion rate to glucose is less than 30%. The reason for the low reaction rate is considered to be that the reaction with cellulase is a solid-liquid reaction because cellulose is in a solid state and crystalline.

前記セルラーゼの低い加水分解効率の問題を解決するために、原料であるセルロースの前処理を工夫して加水分解効率を向上させる方法が提案されている(特許文献2参照)。すなわち、セルロースを超臨界水または亜臨界水で一時的に可溶化し、反応物が溶液中に溶解している間にセルラーゼで加水分解処理を行なう方法である。   In order to solve the problem of the low hydrolysis efficiency of the cellulase, a method for improving the hydrolysis efficiency by devising pretreatment of cellulose as a raw material has been proposed (see Patent Document 2). That is, it is a method in which cellulose is temporarily solubilized with supercritical water or subcritical water and subjected to hydrolysis treatment with cellulase while the reaction product is dissolved in the solution.

特開平5−31000号公報JP-A-5-31000 特開2001−95594号公報JP 2001-95594 A

しかしながら、上記の超臨界水処理における反応条件は320〜500℃で圧力が20〜50MPaと極めて厳しい条件であり、特殊な装置・設備を要するとともにエネルギーコストが高くなる問題がある。
本発明は上記事情に鑑みてなされたものであり、セルロース含有物に含まれるセルロースを酵素によって加水分解する際の反応速度を向上させることができるセルロースの糖化方法を提供することを課題とする。
However, the reaction conditions in the above supercritical water treatment are extremely severe conditions of 320 to 500 ° C. and a pressure of 20 to 50 MPa, and there is a problem that a special apparatus / equipment is required and the energy cost is increased.
This invention is made | formed in view of the said situation, and makes it a subject to provide the saccharification method of the cellulose which can improve the reaction rate at the time of hydrolyzing the cellulose contained in a cellulose containing material with an enzyme.

本発明の請求項1に記載のセルロースの糖化方法は、セルロースを加水分解して水溶性オリゴ糖又はグルコースを含む水溶液を得るセルロースの糖化方法であって、セルロース含有物とアルカリ水溶液とを接触させるアルカリ処理を行い、該セルロース含有物を水及び/又は酸性水溶液で洗浄した後、該セルロース含有物とセルロース分解酵素及びpH緩衝剤を含む水溶液とを0〜250mMの緩衝液濃度の範囲で接触させる酵素処理を行うことを特徴とする。
本発明の請求項2に記載のセルロースの糖化方法は、請求項1において、前記酵素処理における水溶液の緩衝液濃度を、酢酸及び酢酸NaからなるpH緩衝剤を用いて調整することを特徴とする。
本発明の請求項3に記載のセルロースの糖化方法は、請求項1又は2において、前記アルカリ処理において、−10℃〜50℃の温度範囲で、0.1〜10Nの前記アルカリ水溶液に、前記セルロース含有物を、0.1〜60分の時間範囲で接触させることを特徴とする。
本発明の請求項4に記載のセルロースの糖化方法は、請求項1〜3のいずれか一項に、前記酵素処理における酵素反応をpH3〜pH10の範囲で行うことを特徴とする。
本発明の請求項5に記載のセルロースの糖化方法は、請求項1〜4のいずれか一項において、前記セルロース含有物が、綿を含有する繊維であることを特徴とする。
本発明の請求項6に記載のセルロースの糖化方法は、請求項5において、前記綿を含有する繊維の長さが1mm以上1m以下であることを特徴とする。
The cellulose saccharification method according to claim 1 of the present invention is a saccharification method of cellulose in which cellulose is hydrolyzed to obtain an aqueous solution containing water-soluble oligosaccharides or glucose, and the cellulose-containing material and an alkaline aqueous solution are brought into contact with each other. After performing an alkali treatment and washing the cellulose-containing material with water and / or an acidic aqueous solution, the cellulose-containing material is brought into contact with an aqueous solution containing a cellulolytic enzyme and a pH buffering agent in a range of a buffer solution concentration of 0 to 250 mM. Enzymatic treatment is performed.
The cellulose saccharification method according to claim 2 of the present invention is characterized in that, in claim 1, the buffer solution concentration of the aqueous solution in the enzyme treatment is adjusted using a pH buffer comprising acetic acid and sodium acetate. .
The cellulose saccharification method according to claim 3 of the present invention is the saccharification method according to claim 1 or 2, wherein in the alkali treatment, the alkaline aqueous solution of 0.1 to 10 N is added to the alkaline aqueous solution at a temperature range of -10 ° C to 50 ° C. The cellulose-containing material is contacted in a time range of 0.1 to 60 minutes.
The method for saccharifying cellulose according to claim 4 of the present invention is characterized in that the enzyme reaction in the enzyme treatment is carried out in the range of pH 3 to pH 10 according to any one of claims 1 to 3.
The method for saccharifying cellulose according to claim 5 of the present invention is characterized in that in any one of claims 1 to 4, the cellulose-containing material is a fiber containing cotton.
The cellulose saccharification method according to claim 6 of the present invention is characterized in that, in claim 5, the length of the fiber containing cotton is 1 mm or more and 1 m or less.

本発明のセルロースの糖化方法によれば、高温高圧の前処理を必要とせず、アルカリによる前処理を行い、後段の酵素処理における反応溶液のpH緩衝剤の濃度を0〜250mMの範囲に調整することによって、セルロースの加水分解速度を向上させることができる。また、該酵素処理では、穏和な条件下でセルロースの加水分解を行うことにより、糖類の過分解物を発生させず、目的の生成物である水溶性オリゴ糖又はグルコースを高純度で得ることができる。得られた高純度の水溶性オリゴ糖又はグルコースは、エタノール発酵や乳酸発酵等の原料として有用である。   According to the cellulose saccharification method of the present invention, high temperature and high pressure pretreatment is not required, alkali pretreatment is performed, and the pH buffer concentration of the reaction solution in the subsequent enzyme treatment is adjusted to a range of 0 to 250 mM. Thus, the hydrolysis rate of cellulose can be improved. Further, in the enzyme treatment, by subjecting cellulose to hydrolysis under mild conditions, the desired product water-soluble oligosaccharide or glucose can be obtained with high purity without generating a saccharide hyperdegradation product. it can. The obtained high-purity water-soluble oligosaccharide or glucose is useful as a raw material for ethanol fermentation or lactic acid fermentation.

酵素処理における緩衝液濃度と糖化率(%)の関係を示すグラフである。It is a graph which shows the relationship between the buffer solution density | concentration and saccharification rate (%) in an enzyme process.

以下、本発明について詳しく説明する。
本発明のセルロースの糖化方法は、セルロース含有物を加水分解して糖化する方法であって、セルロース含有物とアルカリ水溶液とを接触させるアルカリ処理を行い(工程A)、該セルロース含有物を水及び/又は酸性水溶液で洗浄した後(工程B)、該セルロース含有物とセルロース分解酵素及びpH緩衝剤を含む水溶液とを0〜250mMの緩衝液濃度の範囲で接触させる酵素処理を行って、水溶性オリゴ糖又はグルコースを含む水溶液を得る(工程C)、という工程A〜Cを有する。本発明のセルロースの糖化方法は上記工程A〜Cを含むものであればよく、他の操作を行う工程を含むものであってもよい。
The present invention will be described in detail below.
The cellulose saccharification method of the present invention is a method of hydrolyzing and saccharifying a cellulose-containing material, and performing an alkali treatment for bringing the cellulose-containing material into contact with an aqueous alkali solution (Step A), After washing with an acidic aqueous solution (step B), an enzyme treatment is performed by bringing the cellulose-containing material into contact with an aqueous solution containing a cellulose-degrading enzyme and a pH buffering agent in a range of 0 to 250 mM buffer concentration. Steps A to C are obtained in which an aqueous solution containing oligosaccharide or glucose is obtained (Step C). The cellulose saccharification method of the present invention only needs to include the above steps A to C, and may include steps of performing other operations.

前記工程Aにおいて、前記セルロース含有物と前記アルカリ水溶液とを接触させる方法は特に制限されない。例えば、前記セルロース含有物を前記アルカリ水溶液に浸漬して接触させる方法を採用しても良いし、前記セルロース含有物を静置したところに、前記アルカリ水溶液を通液させて接触させても良い。より具体的な例として、アルカリ耐性のカゴに前記セルロース含有物を入れて、そのカゴを前記アルカリ水溶液中に浸漬して揺り動かすことにより前記アルカリ処理を行うこと方法が挙げられる。   In the step A, the method for bringing the cellulose-containing material into contact with the alkaline aqueous solution is not particularly limited. For example, a method of immersing the cellulose-containing material in the alkaline aqueous solution and bringing the cellulose-containing material into contact may be adopted, or the cellulose-containing material may be left in contact with the alkaline aqueous solution. As a more specific example, there is a method of performing the alkali treatment by putting the cellulose-containing material in an alkali-resistant basket and immersing and shaking the basket in the alkaline aqueous solution.

本発明におけるセルロース含有物としては、本発明の効果が十分に得られることから、セルロース含有繊維が好ましく、綿を含有する繊維がより好ましい。
前記セルロース含有繊維としては、セルロースを含有する繊維状の物であれば特に限定されず、例えば、衣料品等の繊維として用いられている綿、麻(苧麻、亜麻、マニラ麻、ザイザル麻、ケナフ麻等)、テンセル、レーヨン、キュブラ等や、コピー紙や包装紙、段ボール等の紙製品等が好適なものとして挙げられる。また、前記衣料品等の繊維として、ポリエステル等の合成繊維やシルク等のセルロースを含有していない繊維と混紡された繊維であってもよい。
前記セルロース含有繊維の形態は特に制限されず、綿状、糸状、綱状、布状、平面・立体状等に加工されたものを用いることができる。
The cellulose-containing material in the present invention is preferably a cellulose-containing fiber and more preferably a fiber containing cotton because the effects of the present invention can be sufficiently obtained.
The cellulose-containing fiber is not particularly limited as long as it is a fibrous material containing cellulose. For example, cotton, hemp (linax, flax, manila hemp, zaiza hemp, kenaf hemp used as a fiber for clothing, etc. Etc.), Tencel, Rayon, Cubula, etc., and paper products such as copy paper, wrapping paper, cardboard and the like. Further, the fiber of the clothing or the like may be a fiber blended with a synthetic fiber such as polyester or a fiber not containing cellulose such as silk.
The form of the cellulose-containing fiber is not particularly limited, and those processed into a cotton shape, a thread shape, a rope shape, a cloth shape, a flat surface, a solid shape, or the like can be used.

また、前記セルロース含有繊維の長さは、1mm以上1m以下が好ましく、5mm以上50cm以下がより好ましく、1cm以上30cm以下がさらに好ましい。
この範囲の長さであると、セルロース含有繊維の取り扱いが容易となる。特に、本発明の各工程においてセルロース含有繊維を脱水する場合に、セルロース含有繊維が通過し難い篩(ふるい)を用いて行う際の取り扱い性に優れる。
The length of the cellulose-containing fiber is preferably 1 mm or more and 1 m or less, more preferably 5 mm or more and 50 cm or less, and further preferably 1 cm or more and 30 cm or less.
When the length is within this range, the cellulose-containing fiber can be easily handled. In particular, when cellulose-containing fibers are dehydrated in each step of the present invention, the handleability when using a sieve that does not easily pass through the cellulose-containing fibers is excellent.

セルロースから糖類への転化率を高める観点から、該セルロース含有物には糖化反応を阻害するような不純物はなるべく含まれていない方が好ましい。すなわち、本発明において用いられるセルロース含有物のセルロース含有率は高いほど好ましい。   From the viewpoint of increasing the conversion rate from cellulose to saccharide, it is preferable that the cellulose-containing product contains as little impurities as possible to inhibit the saccharification reaction. That is, the higher the cellulose content of the cellulose-containing material used in the present invention, the better.

前記工程Aにおいて、本発明のアルカリ処理におけるアルカリ水溶液としては、前記セルロース含有物の吸水量を高めて膨潤させることができるものであれば特に制限されず、水酸化ナトリウム、アンモニア水等が挙げられる。
これらのなかでも、水酸化ナトリウムが好ましい。水酸化ナトリウムを用いることにより、当該セルロース含有物中のセルロース(セルロース結晶)の吸水量を高めて膨潤することができ、さらに、後段の工程Bの水及び/又は酸性水溶液による洗浄後に該セルロースをNaイオンが吸着したセルロースNa塩とすることができる。その結果、後段の工程Cの酵素処理における反応系に酢酸を所定の量で添加すると、セルロースに吸着したNaイオン及び酢酸がpH緩衝剤として機能して、該反応系を酵素反応に好ましいpHで安定化することができる。
In Step A, the aqueous alkali solution in the alkali treatment of the present invention is not particularly limited as long as it can swell by increasing the water absorption of the cellulose-containing material, and examples thereof include sodium hydroxide and aqueous ammonia. .
Among these, sodium hydroxide is preferable. By using sodium hydroxide, the water absorption of cellulose (cellulose crystals) in the cellulose-containing material can be increased to swell, and the cellulose is washed after washing with water and / or acidic aqueous solution in the subsequent step B. It can be set as the cellulose Na salt which Na ion adsorb | sucked. As a result, when acetic acid is added in a predetermined amount to the reaction system in the enzyme treatment in the subsequent stage C, Na ions and acetic acid adsorbed on cellulose function as pH buffering agents, and the reaction system has a pH preferable for the enzyme reaction. Can be stabilized.

また、綿繊維等のセルロース含有繊維を、水酸化ナトリウム等でアルカリ処理することによって、該セルロース含有繊維が膨潤してセルロースの非晶領域が3倍以上増加しうる。さらに、X線回折によって測定される該セルロースの結晶格子の大きさも変化することから、セルロースの分子間相互作用が当該アルカリ処理によって変化させられると考えられる。その要因として、例えば、Naイオンの吸着によってセルロースの水酸基間の水素結合が切れて分子間の結合力が低下することが考えられる。   In addition, by subjecting cellulose-containing fibers such as cotton fibers to an alkali treatment with sodium hydroxide or the like, the cellulose-containing fibers can swell and the amorphous region of cellulose can increase three times or more. Further, since the size of the crystal lattice of cellulose measured by X-ray diffraction also changes, it is considered that the intermolecular interaction of cellulose is changed by the alkali treatment. As the factor, for example, it is conceivable that the hydrogen bond between the hydroxyl groups of cellulose is broken by the adsorption of Na ions, and the bonding force between molecules is reduced.

このように、アルカリ処理によって膨潤して吸水量が増加した綿繊維等のセルロース含有物は、後段の工程Cの酵素処理において、セルロース分解酵素が前記セルロース含有物のセルロースにアタックし易くなっているため、酵素反応の効率を著しく向上させることができる。   As described above, cellulose-containing materials such as cotton fibers that have been swollen by alkali treatment and have increased water absorption are easily attacked by cellulose-degrading enzymes on cellulose in the cellulose-containing material in the enzyme treatment in the subsequent step C. Therefore, the efficiency of the enzyme reaction can be significantly improved.

前記工程Aにおいて、アルカリ水溶液が水酸化ナトリウム水溶液である場合には、その濃度(規定度)は、0.1〜10Nが好ましく、1〜5Nがより好ましい。
上記範囲の下限値以上及び上限値以下であると、前記セルロース含有物におけるセルロース(セルロース結晶)の膨潤及び吸水量を高めて、後段の酵素反応をより効率良く行うことができる。
一方、上記範囲の下限値未満及び上限値超であると、前記セルロース含有物におけるセルロースの膨潤及び吸水量が低下してしまう傾向がある。
In the step A, when the alkaline aqueous solution is a sodium hydroxide aqueous solution, the concentration (normality) is preferably 0.1 to 10N, and more preferably 1 to 5N.
When the amount is not less than the lower limit and not more than the upper limit of the above range, the cellulose (cellulose crystals) in the cellulose-containing product can be increased in swelling and water absorption, and the subsequent enzyme reaction can be performed more efficiently.
On the other hand, when the amount is less than the lower limit and exceeds the upper limit of the above range, the cellulose swelling and water absorption in the cellulose-containing material tend to decrease.

前記工程Aにおいて、前記セルロース含有物と前記アルカリ水溶液とを接触させる際の温度は、−10〜50℃が好ましく、−5〜30℃がさらに好ましい。
上記範囲の下限値以上及び上限値以下であると、前記セルロース含有物におけるセルロースの膨潤及び吸水量を高めて、後段の酵素反応をより効率良く行うことができる。
一方、上記範囲の下限値未満及び上限値超であると、前記セルロース含有物におけるセルロースの膨潤及び吸水量が低下してしまう傾向がある。
なお、前記膨潤及び吸水量をさらに向上させる温度としては、4〜20℃が良く、4〜15℃がさらに良く、4〜10℃が最も良い。しかし、アルカリ処理における温度を室温付近に設定することにより、冷却のためのエネルギーコストを不要とすることができる。
In the said process A, -10-50 degreeC is preferable and, as for the temperature at the time of making the said cellulose containing material and the said alkaline aqueous solution contact, -5-30 degreeC is more preferable.
When the amount is not less than the lower limit and not more than the upper limit of the above range, the swelling and water absorption of cellulose in the cellulose-containing material can be increased, and the subsequent enzyme reaction can be performed more efficiently.
On the other hand, when the amount is less than the lower limit and exceeds the upper limit of the above range, the cellulose swelling and water absorption in the cellulose-containing material tend to decrease.
The temperature for further improving the swelling and water absorption is preferably 4 to 20 ° C, more preferably 4 to 15 ° C, and most preferably 4 to 10 ° C. However, the energy cost for cooling can be made unnecessary by setting the temperature in the alkali treatment to around room temperature.

前記工程Aにおいて、前記セルロース含有物と前記アルカリ水溶液とを接触させる際の処理時間の範囲は、通常48時間以下で行うことができ、0.1分〜60分が好ましく、1分〜30分がさらに好ましい。
上記範囲の下限値以上及び上限値以下であると、前記セルロース含有物におけるセルロースの膨潤及び吸水量を高めて、後段の酵素反応をより効率良く行うことができる。
一方、上記範囲の下限値未満であると、前記セルロース含有物におけるセルロースの膨潤及び吸水量が低下してしまう傾向がある。また、48時間を超えてアルカリ処理を行った場合には、アルカリ濃度にもよるが、概して変化の程度が少なくなり、膨潤及び吸水量は頭打ちとなる傾向がある。
In the step A, the treatment time when the cellulose-containing material and the alkaline aqueous solution are contacted can be usually 48 hours or less, preferably 0.1 to 60 minutes, preferably 1 to 30 minutes. Is more preferable.
When the amount is not less than the lower limit and not more than the upper limit of the above range, the swelling and water absorption of cellulose in the cellulose-containing material can be increased, and the subsequent enzyme reaction can be performed more efficiently.
On the other hand, when the amount is less than the lower limit of the above range, the cellulose swelling and water absorption in the cellulose-containing material tend to decrease. Further, when the alkali treatment is performed for more than 48 hours, although depending on the alkali concentration, the degree of change generally decreases, and the swelling and water absorption tend to reach a peak.

前記工程Bにおいて、前記アルカリ処理を行った前記セルロース含有物を水及び/又は酸性水溶液で洗浄する方法としては、該セルロース含有物からアルカリを水及び/又は酸性水溶液で洗い流すことができるものであれば特に制限されない。例えば、該セルロース含有物を脱イオン水及び/又は酸性水溶液に浸漬して洗浄する方法を採用しても良いし、該セルロース含有物を静置したところに、脱イオン水及び/又は酸性水溶液を通液させて洗浄しても良い。より具体的な例として、アルカリ耐性のカゴに前記セルロース含有物を入れて、そのカゴを脱イオン水及び/又は酸性水溶液中に浸漬して揺り動かし、適宜、該脱イオン水及び/又は酸性水溶液を交換することにより前記アルカリを該セルロース含有物から除去する方法が挙げられる。   In the step B, as the method for washing the cellulose-containing material subjected to the alkali treatment with water and / or an acidic aqueous solution, the alkali can be washed away from the cellulose-containing material with water and / or an acidic aqueous solution. There is no particular limitation. For example, a method of washing the cellulose-containing material by immersing it in deionized water and / or an acidic aqueous solution may be adopted, or the cellulose-containing material may be allowed to stand, and deionized water and / or acidic aqueous solution may be used. You may let it pass and wash. As a more specific example, the cellulose-containing material is put in an alkali-resistant basket, the basket is immersed in deionized water and / or an acidic aqueous solution and shaken, and the deionized water and / or acidic aqueous solution is appropriately used. A method of removing the alkali from the cellulose-containing material by exchanging is mentioned.

前記酸性水溶液は、後段の工程Cにおける酵素反応を阻害しないものであれば特に制限されず、例えば酢酸緩衝液、クエン酸緩衝液、リン酸緩衝液等が好適に用いられる。
前記酸性水溶液のpHの範囲は、後段の工程Cにおける酵素反応を阻害しない範囲であればよく、pH2.0〜6.9が好ましく、pH3.0〜pH6.9がより好ましく、pH4.0〜pH6.0がさらに好ましい。
この範囲のpHであると、洗浄したセルロース含有物に含まれる水溶液のpHを、後段の工程Cにおける酵素反応の至適pH(一般にpH4〜6)に合わせることができるので好ましい。
なお、前記酸性水溶液の濃度は、前記アルカリ処理におけるアルカリの濃度によって適宜調整される。
The acidic aqueous solution is not particularly limited as long as it does not inhibit the enzyme reaction in the subsequent step C. For example, an acetate buffer solution, a citrate buffer solution, a phosphate buffer solution and the like are preferably used.
The pH range of the acidic aqueous solution may be a range that does not inhibit the enzyme reaction in the subsequent step C, preferably pH 2.0 to 6.9, more preferably pH 3.0 to pH 6.9, and pH 4.0 to 4.0. More preferred is pH 6.0.
The pH within this range is preferable because the pH of the aqueous solution contained in the washed cellulose-containing material can be adjusted to the optimum pH (generally pH 4 to 6) for the enzyme reaction in the subsequent step C.
The concentration of the acidic aqueous solution is appropriately adjusted depending on the concentration of alkali in the alkali treatment.

前記水及び/又は酸性水溶液で洗浄した後の前記セルロース含有物に残存するアルカリは、該セルロース含有物に含まれる水又は酸性水溶液のpHが酸性〜中性付近となるように、できる限り少ない量であることが望ましい。しかし、後段の工程Cにおける酵素反応を阻害しない程度であれば、該アルカリが残存していてもよい。また、塩酸等の酸を用いて残存したアルカリを中和してもよい。   The alkali remaining in the cellulose-containing material after washing with the water and / or acidic aqueous solution is as small as possible so that the pH of the water or acidic aqueous solution contained in the cellulose-containing material is in the vicinity of acidic to neutral. It is desirable that However, the alkali may remain as long as the enzyme reaction in the subsequent step C is not inhibited. Moreover, you may neutralize the remaining alkali using acids, such as hydrochloric acid.

より具体的な前記工程A、並びに前記工程Bにおける酢酸による洗浄及びアルカリ中和の方法として、次の操作が例示できる。
まず、アルカリ耐性の容器(チーズ染色機)内において、木綿1kgに水を含ませてから脱水し、4N(15.8質量%)の水酸化ナトリウム水溶液9Lを投入して、前記アルカリ処理を所定時間行った後、該水酸化ナトリウム水溶液を排水する。該容器中に残ったアルカリを含む木綿に対して、4質量%の酢酸6Lを投入し、これを排水した後、再度4質量%の酢酸6Lを投入して排水する。このとき、1回目の排水はpH13以上であるが、2回目の排水はpH4〜5となっていることから、2度の酢酸投入後の木綿に含まれる水溶液は、酢酸と酢酸ナトリウムで構成されるpH4〜5の酢酸緩衝液に調製されていることがわかる。なお、このアルカリの中和反応は、CHCOOH+NaOH→CHCOONa+HOの反応式で表される。このようにpH調整された木綿は脱水しなくても、後段の工程Cに使用することができる。
The following operation can be illustrated as a more specific method of washing with acetic acid and alkali neutralization in step A and step B.
First, in an alkali-resistant container (cheese dyeing machine), 1 kg of cotton is mixed with water and then dehydrated, and 9 L of 4N (15.8 mass%) aqueous sodium hydroxide solution is added to perform the alkali treatment. After a period of time, the aqueous sodium hydroxide solution is drained. 4 L of acetic acid (6 L) is added to the cotton containing alkali remaining in the container, and after draining it, 4 L of acetic acid (6 L) is added again and drained. At this time, the drainage of the first time is pH 13 or higher, but the drainage of the second time is pH 4-5, so the aqueous solution contained in the cotton after the addition of acetic acid twice is composed of acetic acid and sodium acetate. It can be seen that it is prepared in an acetate buffer solution of pH 4-5. The alkali neutralization reaction is represented by a reaction formula of CH 3 COOH + NaOH → CH 3 COONa + H 2 O. The cotton thus adjusted in pH can be used in the subsequent step C without being dehydrated.

前記工程Cにおいて、前記水及び/又は酸性水溶液で洗浄したセルロース含有物とセルロース分解酵素を含む水溶液とを接触させる方法は、特に制限されない。例えば、前記セルロース含有物をセルロース分解酵素を含む水溶液に浸漬して接触させる方法を採用しても良いし、前記セルロース含有物を静置したところに、前記セルロース分解酵素を含む水溶液を通液させて接触させても良い。より具体的な例として、カゴに前記セルロース含有物を入れて、そのカゴを前記セルロース分解酵素を含む水溶液中に浸漬して揺り動かすことにより前記酵素処理を行う方法が挙げられる。   In the step C, the method for bringing the cellulose-containing material washed with the water and / or the acidic aqueous solution into contact with the aqueous solution containing the cellulolytic enzyme is not particularly limited. For example, a method of immersing the cellulose-containing material in an aqueous solution containing a cellulolytic enzyme may be employed, or the aqueous solution containing the cellulose-degrading enzyme may be allowed to flow when the cellulose-containing material is allowed to stand. May be contacted. As a more specific example, there is a method in which the enzyme treatment is performed by putting the cellulose-containing material into a basket and immersing the basket in an aqueous solution containing the cellulose-degrading enzyme and shaking it.

本発明における工程Cでは、前記セルロース含有物とセルロース分解酵素を含む水溶液とを接触させる際の酵素反応溶液の緩衝液濃度を、0〜250mMに調整する。
その緩衝液濃度の調整に用いるpH緩衝剤としては、前記セルロース分解酵素の酵素活性を阻害するものでなければ特に制限されず、例えば酢酸及び酢酸Na、クエン酸及びクエン酸Na、並びにリン酸及びリン酸Na等が挙げられる。これらのナトリウム(Na)塩は、カリウム塩に代えてもよい。
酵素反応溶液の緩衝液濃度を上記範囲に調製することによって、糖化反応速度が向上するメカニズムとしては、溶液のpHが安定すること、塩析によりセルロース分解酵素が基質であるセルロース含有物に吸着しやすくなること等が考えられる。
In Step C of the present invention, the buffer solution concentration of the enzyme reaction solution when the cellulose-containing material and an aqueous solution containing a cellulolytic enzyme are brought into contact with each other is adjusted to 0 to 250 mM.
The pH buffer used for adjusting the buffer concentration is not particularly limited as long as it does not inhibit the enzyme activity of the cellulolytic enzyme. For example, acetic acid and Na acetate, citric acid and Na citrate, and phosphoric acid and Examples thereof include sodium phosphate. These sodium (Na) salts may be replaced with potassium salts.
By adjusting the buffer concentration of the enzyme reaction solution within the above range, the saccharification reaction rate can be improved by stabilizing the pH of the solution and adsorbing the cellulolytic enzyme on the cellulose-containing material as a substrate by salting out. It may be easier.

前記工程Cにおけるセルロース分解酵素としては、セルロースを加水分解して水溶性オリゴ糖又はグルコースを生成できるものであれば特に制限されず、公知のセルロース分解酵素(セルラーゼ)を所定の量で用いればよい。ここで、該水溶性オリゴ糖は、2〜6分子程度のグルコースが縮合してつながった分子構造を有する水溶性のセロオリゴ糖をいう。   The cellulose-degrading enzyme in Step C is not particularly limited as long as it can hydrolyze cellulose to produce a water-soluble oligosaccharide or glucose, and a known cellulose-degrading enzyme (cellulase) may be used in a predetermined amount. . Here, the water-soluble oligosaccharide refers to a water-soluble cellooligosaccharide having a molecular structure in which about 2 to 6 molecules of glucose are condensed and connected.

前記工程Cにおけるセルロース分解酵素を含む水溶液には、pHを安定させるためのpH緩衝剤を含ませることが好ましい。該水溶液のpHとしては、該セルロース分解酵素の至適pH(酵素活性が高くなるpH)付近であることが望ましい。一般に、該至適pHは酸性〜中性であることが多いので、酢酸緩衝液、クエン酸緩衝液、リン酸緩衝液等が好適に用いられる。   The aqueous solution containing the cellulolytic enzyme in Step C preferably contains a pH buffer for stabilizing the pH. The pH of the aqueous solution is desirably around the optimum pH of the cellulolytic enzyme (the pH at which the enzyme activity increases). In general, since the optimum pH is often acidic to neutral, an acetate buffer, a citrate buffer, a phosphate buffer, or the like is preferably used.

前述したように、水酸化ナトリウム水溶液を用いてアルカリ処理を行ったセルロース含有物の水酸基のプロトンの一部はNaカチオンに変換されている可能性があるので、前記セルロース分解酵素を含む水溶液に酢酸、クエン酸、リン酸等の酸を所定の量加えて該セルロース含有物に接触させることにより水酸基に戻すと共に、セルロース分解酵素によるセルロースの加水分解に適した酸性〜中性付近のpHに調整することにより、当該酵素処理を効率よく行うことができる。   As described above, since some of the protons of the hydroxyl group of the cellulose-containing material that has been alkali-treated with an aqueous sodium hydroxide solution may be converted to Na cations, acetic acid is added to the aqueous solution containing the cellulose-degrading enzyme. In addition, a predetermined amount of an acid such as citric acid or phosphoric acid is added and brought into contact with the cellulose-containing material to return to the hydroxyl group, and the pH is adjusted to an acidic to neutral pH suitable for cellulose hydrolysis by a cellulose-degrading enzyme. Thus, the enzyme treatment can be performed efficiently.

前記工程Cにおける酵素処理において、前記セルロース含有物と前記セルロース分解酵素を含む水溶液とを接触させる際の温度は、該セルロース分解酵素の至適温度(酵素活性が高くなる温度)付近であることが望ましい。一般には、該至適温度は10〜80℃の範囲であり、40〜70℃がより好ましく、50〜65℃がさらに好ましい。   In the enzyme treatment in the step C, the temperature at which the cellulose-containing material and the aqueous solution containing the cellulolytic enzyme are brought into contact with each other is close to the optimum temperature of the cellulolytic enzyme (the temperature at which the enzyme activity increases). desirable. Generally, the optimum temperature is in the range of 10 to 80 ° C, more preferably 40 to 70 ° C, and further preferably 50 to 65 ° C.

前記工程Cにおける酵素処理において、前記セルロース含有物と前記セルロース分解酵素を含む水溶液とを接触させる際の処理時間の範囲は、適切な酵素濃度、pH、温度であれば、14日以下で行うことができる。多くの場合、反応開始後1日間が最も反応速度が高く、その後2〜6日間で反応速度が徐々に低下し、反応開始10日後以降では反応がほぼ停止してセルロース含有物に含まれるセルロースのグルコースへの転換率が頭打ちになる傾向がある。   In the enzyme treatment in Step C, the treatment time range when contacting the cellulose-containing material and the aqueous solution containing the cellulolytic enzyme is 14 days or less as long as the enzyme concentration, pH, and temperature are appropriate. Can do. In many cases, the reaction rate is highest for 1 day after the start of the reaction, the reaction rate gradually decreases after 2 to 6 days, and the reaction is almost stopped after 10 days from the start of the reaction. The conversion rate to glucose tends to reach a peak.

ここで、前記転換率とは、セルロース含有物に含まれるセルロースの質量に対する、糖化反応により得られた糖類の質量の割合をいう。該糖類とは、前記水溶性オリゴ糖又はグルコースをいう。   Here, the said conversion rate means the ratio of the mass of the saccharide obtained by saccharification reaction with respect to the mass of the cellulose contained in a cellulose containing material. The saccharide refers to the water-soluble oligosaccharide or glucose.

前記工程Cでは、セルロースの加水分解を酵素を用いて比較的穏やかな条件で行うため、生成した前記糖類の過分解がほとんど起こらず、純度の高い糖類を得ることができる。生成した前記糖類は前記セルロース分解酵素を含む水溶液中に溶解している。該糖類を該水溶液から回収して得る方法は特に制限されず、クロマトグラフィー等の公知の方法で行えばよい。   In the step C, since hydrolysis of cellulose is performed under relatively mild conditions using an enzyme, the produced saccharide is hardly excessively decomposed, and a highly pure saccharide can be obtained. The produced saccharide is dissolved in an aqueous solution containing the cellulolytic enzyme. The method for recovering the saccharide from the aqueous solution is not particularly limited, and may be performed by a known method such as chromatography.

次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited by these examples.

[試験例1]
セルロース含有物である綿糸5gと、4Nの水酸化ナトリウム水溶液200gとをガラス製ビーカー(300mL)で混合して、5℃で30分間、接触させた(工程A)。
つぎに、ビーカーから前記水酸化ナトリウム水溶液を除去して、脱イオン水を加え、アルカリ処理した前記セルロース含有物を水洗し8時間放置した(工程B)。その後、脱水を行い乾燥を行った。
[Test Example 1]
5 g of cotton yarn containing cellulose and 200 g of 4N sodium hydroxide aqueous solution were mixed in a glass beaker (300 mL) and contacted at 5 ° C. for 30 minutes (step A).
Next, the sodium hydroxide aqueous solution was removed from the beaker, deionized water was added, and the alkali-treated cellulose-containing material was washed with water and allowed to stand for 8 hours (step B). Then, it dehydrated and dried.

つづいて、上記処理済み乾燥木綿0.5gを、6本のポリプロピレン試験管中にそれぞれ取り、酢酸−酢酸Na緩衝液(pH5.0)を投入し、その緩衝液濃度を0,10,50,250,1000,2000mMに調製した9.975mlの溶液A〜Fを得た。
次いで、セルロース分解酵素であるセルラーゼSS(ナガセケムテック株式会社製;活性1600CUN/g以上)の酵素溶液0.025mlを各溶液A〜Fに添加した。この反応溶液における酵素溶液濃度は5.0%{%:ml(酵素溶液)/g(基質)×100}である。この反応溶液をよく攪拌した後、静置した状態で、5日間、50℃で糖化反応を行った。
Subsequently, 0.5 g of the above treated dry cotton was taken in each of six polypropylene test tubes, and an acetic acid-Na acetate buffer solution (pH 5.0) was added. The buffer solution concentration was 0, 10, 50, 9.975 ml of solutions A to F adjusted to 250, 1000 and 2000 mM were obtained.
Subsequently, 0.025 ml of an enzyme solution of cellulase SS (manufactured by Nagase ChemteX Corporation; activity 1600 CUN / g or more), which is a cellulose-degrading enzyme, was added to each of the solutions A to F. The concentration of the enzyme solution in this reaction solution is 5.0% {%: ml (enzyme solution) / g (substrate) × 100}. After thoroughly stirring this reaction solution, saccharification reaction was carried out at 50 ° C. for 5 days in a state of standing still.

この酵素処理の開始後、所定日数経過後における反応液に含まれるグルコース量をHPLCにより測定し、「グルコース転換率(質量%)=生成したグルコースの質量/綿繊維の質量(0.5g)」の計算を行った。
その結果、反応開始5日後の各溶液のグルコース転換率は、59%(溶液A),67%(溶液B),68%(溶液C),59%(溶液D),40%(溶液E),28%(溶液F),となった。この結果を図1に示す。
After the start of the enzyme treatment, the amount of glucose contained in the reaction solution after a predetermined number of days was measured by HPLC, and “glucose conversion rate (mass%) = mass of glucose produced / mass of cotton fiber (0.5 g)” Was calculated.
As a result, the glucose conversion rate of each solution 5 days after the start of the reaction was 59% (solution A), 67% (solution B), 68% (solution C), 59% (solution D), 40% (solution E). , 28% (Solution F). The result is shown in FIG.

以上の結果から、糖化反応速度を速めるために、反応溶液の緩衝液濃度を0〜250mMの範囲とすることが好ましく、10mM〜200mMの範囲とすることがより好ましいことが明らかである。   From the above results, it is apparent that the buffer concentration of the reaction solution is preferably in the range of 0 to 250 mM, more preferably in the range of 10 mM to 200 mM, in order to increase the saccharification reaction rate.

本発明のセルロースの糖化方法は、セルロース含有物から糖類を製造するために広く利用することが可能である。   The cellulose saccharification method of the present invention can be widely used for producing saccharides from cellulose-containing materials.

Claims (6)

セルロースを加水分解して水溶性オリゴ糖又はグルコースを含む水溶液を得るセルロースの糖化方法であって、
セルロース含有物とアルカリ水溶液とを接触させるアルカリ処理を行い、該セルロース含有物を水及び/又は酸性水溶液で洗浄した後、該セルロース含有物とセルロース分解酵素及びpH緩衝剤を含む水溶液とを0〜250mMの緩衝液濃度の範囲で接触させる酵素処理を行うことを特徴とするセルロースの糖化方法。
A method for saccharifying cellulose by hydrolyzing cellulose to obtain an aqueous solution containing water-soluble oligosaccharides or glucose,
An alkali treatment is performed in which the cellulose-containing material is brought into contact with an alkaline aqueous solution, and the cellulose-containing material is washed with water and / or an acidic aqueous solution. A method for saccharification of cellulose, comprising performing an enzyme treatment for contact in a buffer solution concentration range of 250 mM.
前記酵素処理における水溶液の緩衝液濃度を、酢酸及び酢酸NaからなるpH緩衝剤を用いて調整することを特徴とする請求項1に記載のセルロースの糖化方法。   The method for saccharifying cellulose according to claim 1, wherein the buffer solution concentration of the aqueous solution in the enzyme treatment is adjusted by using a pH buffering agent comprising acetic acid and Na acetate. 前記アルカリ処理において、−10℃〜50℃の温度範囲で、0.1〜10Nの前記アルカリ水溶液に、前記セルロース含有物を、0.1〜60分の時間範囲で接触させることを特徴とする請求項1又は2に記載のセルロースの糖化方法。   In the alkali treatment, the cellulose-containing material is brought into contact with the alkali aqueous solution of 0.1 to 10N in a temperature range of −10 ° C. to 50 ° C. for a time range of 0.1 to 60 minutes. The method for saccharification of cellulose according to claim 1 or 2. 前記酵素処理における酵素反応をpH3〜pH10の範囲で行うことを特徴とする請求項1〜3のいずれか一項に記載のセルロースの糖化方法。   The saccharification method of cellulose according to any one of claims 1 to 3, wherein an enzyme reaction in the enzyme treatment is performed in a range of pH 3 to pH 10. 前記セルロース含有物が、綿を含有する繊維であることを特徴とする請求項1〜4のいずれか一項に記載のセルロースの糖化方法。   The cellulose saccharification method according to any one of claims 1 to 4, wherein the cellulose-containing material is a fiber containing cotton. 前記綿を含有する繊維の長さが1mm以上1m以下であることを特徴とする請求項5に記載のセルロースの糖化方法。   6. The cellulose saccharification method according to claim 5, wherein the length of the fiber containing cotton is 1 mm or more and 1 m or less.
JP2010070274A 2009-12-04 2010-03-25 Method for saccharification of cellulose Expired - Fee Related JP5733654B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010070274A JP5733654B2 (en) 2009-12-04 2010-03-25 Method for saccharification of cellulose
PCT/JP2011/057323 WO2011118760A1 (en) 2010-03-25 2011-03-25 Method for saccrification of cellulose

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009276910 2009-12-04
JP2009276910 2009-12-04
JP2010070274A JP5733654B2 (en) 2009-12-04 2010-03-25 Method for saccharification of cellulose

Publications (2)

Publication Number Publication Date
JP2011135861A true JP2011135861A (en) 2011-07-14
JP5733654B2 JP5733654B2 (en) 2015-06-10

Family

ID=44347969

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2010070274A Expired - Fee Related JP5733654B2 (en) 2009-12-04 2010-03-25 Method for saccharification of cellulose
JP2010070273A Withdrawn JP2011135860A (en) 2009-12-04 2010-03-25 Method for saccharifying cellulose
JP2010102492A Pending JP2011135862A (en) 2009-12-04 2010-04-27 Method for saccharifying cellulose
JP2010170616A Pending JP2011135863A (en) 2009-12-04 2010-07-29 Method for producing microorganism-fermented product
JP2010263874A Withdrawn JP2011135866A (en) 2009-12-04 2010-11-26 Method for saccharifying cellulose
JP2010266823A Pending JP2011135869A (en) 2009-12-04 2010-11-30 Method for saccharifying cellulose

Family Applications After (5)

Application Number Title Priority Date Filing Date
JP2010070273A Withdrawn JP2011135860A (en) 2009-12-04 2010-03-25 Method for saccharifying cellulose
JP2010102492A Pending JP2011135862A (en) 2009-12-04 2010-04-27 Method for saccharifying cellulose
JP2010170616A Pending JP2011135863A (en) 2009-12-04 2010-07-29 Method for producing microorganism-fermented product
JP2010263874A Withdrawn JP2011135866A (en) 2009-12-04 2010-11-26 Method for saccharifying cellulose
JP2010266823A Pending JP2011135869A (en) 2009-12-04 2010-11-30 Method for saccharifying cellulose

Country Status (1)

Country Link
JP (6) JP5733654B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014092443A (en) * 2012-11-02 2014-05-19 Taisei Corp Evaluation method of saccharification performance
US10519093B2 (en) 2016-03-29 2019-12-31 Toray Industries, Inc. Method of producing hydroxycinnamic acids

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038940A1 (en) * 2011-09-16 2013-03-21 花王株式会社 Method for producing sugar
JP5987223B2 (en) * 2012-03-06 2016-09-07 愛媛県 Method for producing cellulose solution, method for producing cellulose, method for saccharification of cellulose
CN106103726A (en) * 2014-01-16 2016-11-09 A·M·拉里 Separate the method for oligosaccharides from agricultural wastes classification

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007097585A (en) * 2005-09-08 2007-04-19 Nisshin Flour Milling Inc Method for saccharifying lignocellulosic plant material
JP2008271962A (en) * 2007-04-04 2008-11-13 National Institute Of Advanced Industrial & Technology Method for producing saccharide
WO2009022415A1 (en) * 2007-08-15 2009-02-19 Asahi Kasei Chemicals Corporation Method of producing cellulase and cellooligosaccharide
JP2009125050A (en) * 2007-11-28 2009-06-11 Jfe Engineering Corp Pretreatment method for enzymatic hydrolysis of herbaceous biomass, ethanol production method using herbaceous biomass as raw material and ethanol production method using palm hollow bunch

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60244294A (en) * 1984-05-21 1985-12-04 Res Assoc Petroleum Alternat Dev<Rapad> Process for semicontinuous production of alcohol in high concentration from cellulose
JPS6255093A (en) * 1985-05-14 1987-03-10 Res Assoc Petroleum Alternat Dev<Rapad> Production of ethanol by fermentation
JPS63167796A (en) * 1986-12-27 1988-07-11 Res Assoc Petroleum Alternat Dev<Rapad> Pretreating method of enzymatic hydrolysis of cellulose material
JP2008104452A (en) * 2006-09-29 2008-05-08 Kumamoto Univ Alcohol production system and alcohol production method
JP2009065870A (en) * 2007-09-11 2009-04-02 Juon:Kk Method for producing ethanol and method for transporting ethanol-containing saccharified liquid
JP2009284867A (en) * 2008-05-30 2009-12-10 Toshiba Corp Cellulose saccharification system, ethanol production system and method thereof
JP2010004829A (en) * 2008-06-27 2010-01-14 Japan Environment Planning Co Ltd Method for producing flammable liquid
JP2011109965A (en) * 2009-11-27 2011-06-09 Tokai Senko Kk Saccharification pretreatment method for cellulose-containing fiber material, and method for saccharifying the cellulose-containing fiber material, having the saccharification pretreatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007097585A (en) * 2005-09-08 2007-04-19 Nisshin Flour Milling Inc Method for saccharifying lignocellulosic plant material
JP2008271962A (en) * 2007-04-04 2008-11-13 National Institute Of Advanced Industrial & Technology Method for producing saccharide
WO2009022415A1 (en) * 2007-08-15 2009-02-19 Asahi Kasei Chemicals Corporation Method of producing cellulase and cellooligosaccharide
JP2009125050A (en) * 2007-11-28 2009-06-11 Jfe Engineering Corp Pretreatment method for enzymatic hydrolysis of herbaceous biomass, ethanol production method using herbaceous biomass as raw material and ethanol production method using palm hollow bunch

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014033674; Jeihanipour and Taherzadeh: Bioresource Technology Vol.100, p.1007-1010(2009.01) *
JPN6015004900; Kaar and Holtzapple: Biotechnology and Bioengineering Vol.59,No.4, p.419-427 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014092443A (en) * 2012-11-02 2014-05-19 Taisei Corp Evaluation method of saccharification performance
US10519093B2 (en) 2016-03-29 2019-12-31 Toray Industries, Inc. Method of producing hydroxycinnamic acids

Also Published As

Publication number Publication date
JP2011135860A (en) 2011-07-14
JP2011135869A (en) 2011-07-14
JP2011135863A (en) 2011-07-14
JP5733654B2 (en) 2015-06-10
JP2011135862A (en) 2011-07-14
JP2011135866A (en) 2011-07-14

Similar Documents

Publication Publication Date Title
CN100999739B (en) Process for treating straw by vapour explosive and alkaline oxydol oxydizing
US10072380B2 (en) Detoxifying and recycling of washing solution used in pretreatment of lignocellulose-containing materials
Wu et al. Enhanced enzymatic saccharification of sorghum straw by effective delignification via combined pretreatment with alkali extraction and deep eutectic solvent soaking
JP5733654B2 (en) Method for saccharification of cellulose
CN102212976B (en) Method for separating bagasse cellulose from lignin
JP4431106B2 (en) Method for producing cellooligosaccharide
WO2012168410A2 (en) Methods for treating lignocellulosic material
WO2011065449A9 (en) Process for production of monosaccharide
JP5828913B2 (en) Biomass saccharification method
CN107164424A (en) It is a kind of to aoxidize the lignocellulose pretreatment method that delignification improves enzyme hydrolysis rate
WO2012039462A1 (en) Method for producing cellulose solution, method for producing cellulose precipitate, method for saccharifying cellulose, cellulose solution, and cellulose precipitate
CN107164433A (en) A kind of method of ultrasonic assistant alkalinity potassium permanganate preprocessing lignocellulose
CN101565468B (en) Method for producing xylo-oligosaccharide by utilizing cotton seed hulls
JP2008092883A (en) Method for producing sugar
WO2011118760A1 (en) Method for saccrification of cellulose
CN101215795B (en) Sulfuric acid catalysis ethanol pulp preparing technique for ryegrass
CN111020714B (en) Green production method of bamboo fiber
JP2012175968A (en) Method for saccharifying cellulose
CN106279444B (en) method for preparing nano cellulose fibril by using natural cellulose fiber and application
Sumantri et al. Comparison of pretreatment process of sodium hydroxide and soaking in aqueous ammonia for delignification of rice husk
JP2012044880A (en) Method for saccharifying cellulose
CN105985993A (en) Corn stalk pre-processing method
EP3870715A1 (en) Process for enzymatic hydrolysis of carbohydrate material and fermentation of sugars
CN116904535A (en) Method for producing high Wen Lianchan xylose oligomer capable of fermenting sugar by utilizing apple pomace at low temperature, prepared xylose oligomer and application thereof
CN111320704A (en) Preparation method of low-whiteness cellulose ether

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130322

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150403

R150 Certificate of patent or registration of utility model

Ref document number: 5733654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees