JP2011135799A - Method of detecting and/or identifying biopolymer - Google Patents

Method of detecting and/or identifying biopolymer Download PDF

Info

Publication number
JP2011135799A
JP2011135799A JP2009296885A JP2009296885A JP2011135799A JP 2011135799 A JP2011135799 A JP 2011135799A JP 2009296885 A JP2009296885 A JP 2009296885A JP 2009296885 A JP2009296885 A JP 2009296885A JP 2011135799 A JP2011135799 A JP 2011135799A
Authority
JP
Japan
Prior art keywords
molecular weight
probe
complex
target biopolymer
biopolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009296885A
Other languages
Japanese (ja)
Inventor
Kengo Kubota
健吾 久保田
Hideki Harada
秀樹 原田
Yasuyuki Takemura
泰幸 竹村
Yuji Sekiguchi
勇地 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Tohoku University NUC
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, National Institute of Advanced Industrial Science and Technology AIST filed Critical Tohoku University NUC
Priority to JP2009296885A priority Critical patent/JP2011135799A/en
Publication of JP2011135799A publication Critical patent/JP2011135799A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a detection technology which solves problems in a method of detecting and/or identifying a biopolymer, is quick, simple and inexpensive, further can easily achieve high throughput and is capable of processing numerous samples. <P>SOLUTION: The method of detecting and/or identifying a target biopolymer in a sample includes the following: (1) the step of causing a probe having a molecular weight smaller than that of the target biopolymer and specifically coupling with the target biopolymer to specifically react with the target biopolymer included in the sample to form a complex; (2) the step of separating the complex from the probe by molecular cutoff means; (3) the step of collecting the separated complex; and (4) the step of detecting the probe included in the collected complex. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、核酸(ポリヌクレオチド)及び蛋白質等の生体高分子を検出及び/又は同定するための方法、特に、分子量分画の原理を利用して、該生体高分子と特異的に結合するプローブとの標的核酸の分子量の違いにより検体中の核酸を迅速かつ簡便に、特異的に検出及び/又は同定する方法に関する。 The present invention relates to a method for detecting and / or identifying biopolymers such as nucleic acids (polynucleotides) and proteins, and in particular, a probe that specifically binds to the biopolymer using the principle of molecular weight fractionation. The present invention relates to a method for specifically detecting and / or identifying a nucleic acid in a specimen quickly and easily by the difference in the molecular weight of the target nucleic acid.

生体高分子の検出及び/又は同定は、医学界や産業界等で重要な技術であり、安価で迅速かつ簡便な技術の確立が求められている。核酸の場合、塩基配列解読を行い微生物の検出や同定も行われるが通常2日程度を要する。 Detection and / or identification of biopolymers is an important technique in the medical community, industry, and the like, and establishment of an inexpensive, quick and simple technique is required. In the case of nucleic acid, the base sequence is decoded to detect and identify microorganisms, but usually it takes about 2 days.

この他に、標的微生物又は遺伝子マーカーに特異的なプローブやプライマーを用いて、PCR やreal-time PCRにより増幅の有無や増幅量、増幅産物分子量の違いなどから微生物を検出・同定・定量する方法が記載されている(非特許文献1、非特許文献2)。又、PCRを介さず迅速・簡便な方法として、rRNAとプローブを交雑させ、そこにRNaseHを添加することで、RNAを配列特異的に切断し、微生物を特異的に検出・同定・定量するRNaseH配列特異的切断法(非特許文献3及び特許文献1)がある。 In addition to this, a method for detecting, identifying, and quantifying microorganisms based on the presence or absence of amplification, the amount of amplification, or the difference in the molecular weight of the amplification product by PCR or real-time PCR using probes or primers specific to the target microorganism or gene marker (Non-Patent Document 1, Non-Patent Document 2). In addition, as a quick and simple method that does not involve PCR, RNaseH can be used to hybridize rRNA and probe, and then add RNaseH to cleave RNA in a sequence-specific manner to specifically detect, identify, and quantify microorganisms. There are sequence-specific cleavage methods (Non-patent Document 3 and Patent Document 1).

更に、特許文献2には、結合性核酸と非結合性核酸を含む溶液に、結合性核酸と複合体を形成可能であって、且つ、核酸よりも高分子となるような複合体を形成するような物質(具体的には、β−1,3−グルカン)を加えて高分子複合体を形成させ、結合性核酸複合体を分子量分画フィルターで分離する方法が記載されている。 Furthermore, in Patent Document 2, a complex that can form a complex with a binding nucleic acid and is a polymer higher than the nucleic acid is formed in a solution containing the binding nucleic acid and the non-binding nucleic acid. A method is described in which such a substance (specifically, β-1,3-glucan) is added to form a polymer complex, and the binding nucleic acid complex is separated by a molecular weight fractionation filter.

特開2005-065535号公報JP 2005-065535 A 特開2005-112828号公報JP 2005-112828 JP

Song et al.,, FEMS Lett, vol. 187, 167-173, (2000)Song et al. ,, FEMS Lett, vol. 187, 167-173, (2000) Fanget al., JCM, vol. 40, No. 1, 287-291 (2002)Fanget al., JCM, vol. 40, No. 1, 287-291 (2002) Uyenoet al., AEM, vol. 70, No. 6, 3650-3663 (2004)Uyenoet al., AEM, vol. 70, No. 6, 3650-3663 (2004)

PCRを用いる上記の従来方法は感度が高いが、2種類以上のプライマー又はプローブを用いるため実験条件の設定に多大な労力が必要である。更に、PCRバイアス(増幅効率が一定でないこと等に基因する)により定量結果が試料中の存在量と一致しないことが知られている。 The above conventional method using PCR is highly sensitive, but requires two or more kinds of primers or probes, and requires a great amount of labor for setting experimental conditions. Furthermore, it is known that the quantification result does not match the abundance in the sample due to PCR bias (due to the fact that the amplification efficiency is not constant, etc.).

又、従来のRNaseH配列特異的切断法は外部標準を必要とせず、迅速・簡便であるが、一塩基ミスマッチを識別することが出来ないため、プローブ設計の条件が非常に厳しいものとなる。またrRNA以外の核酸を標的とすることは難しい、という問題点があった。 In addition, the conventional RNaseH sequence-specific cleavage method does not require an external standard and is quick and simple. However, since a single base mismatch cannot be identified, the probe design conditions become very severe. There is also a problem that it is difficult to target nucleic acids other than rRNA.

本発明は、従来の生体高分子の検出及び/又は同定方法における、このような問題点を解決し、迅速・簡便かつ安価であって、更に、容易にハイスループット化することができ多検体処理を可能とする検出技術を提供することを目的とする。 The present invention solves such problems in conventional detection and / or identification methods for biopolymers, is rapid, simple and inexpensive, and can easily achieve high throughput, and can handle multiple samples. It is an object of the present invention to provide a detection technique that makes it possible.

本発明者は上記課題を解決すべく研究の結果、核酸及び蛋白質等の生体高分子と該生体高分子を標的として特異的に結合するプローブとの分子量の違いに基づき、分子量分画手段を用いることによって検体中の生体高分子を迅速かつ簡便に検出及び/又は同定することが出来ることを見出し、本発明を完成した。 As a result of research to solve the above problems, the present inventor uses molecular weight fractionation means based on the difference in molecular weight between a biopolymer such as a nucleic acid and a protein and a probe that specifically binds to the biopolymer. Thus, the present inventors have found that a biopolymer in a specimen can be detected and / or identified quickly and easily, and the present invention has been completed.

即ち、本発明は以下に示す各態様に係るものである。
[態様1]
以下の工程を含む、検体中の標的生体高分子を検出及び/又は同定するための方法:
(1)標的生体高分子より分子量が小さく該標的生体高分子と特異的に結合するプローブを検体に含まれる該標的生体高分子と特異的に反応させて複合体を形成する工程、
(2)分子量分画手段によって該複合体を該プローブから分離する工程、
(3)分離された該複合体を回収する工程、及び
(4)回収された該複合体に含まれる該プローブを検出する工程。
[態様2]
工程(3)における分離が、該標的生体高分子、該プローブ、及び、該複合体を含む反応液を分子量分画手段である分子量分画膜に透過させ、該標的生体高分子及び該複合体の少なくとも一部を該分子量分画膜上に捕捉することによって行なわれる、態様1記載の方法。
[態様3]
分子量分画膜の分画分子量が少なくとも50,000MWである、態様2記載の方法。
[態様4]
標的生体高分子がポリヌクレオチドである、態様1〜3のいずれか一項に記載の方法。
[態様5]
ポリヌクレオチドがDNA又はRNAである、態様4記載の方法。
[態様6]
DNAがPCR産物である、態様5記載の方法。
[態様7]
プローブの分子量が3,000〜20,000である、態様1〜6のいずれか一項に記載の方法。
[態様8]
プローブが塩基長10〜50bpのオリゴヌクレオチドである、態様7記載の方法。
[態様9]
プローブが標識されている、態様1〜6のいずれか一項に記載の方法。
[態様10]
プローブが蛍光物質によって標識される、態様9記載の方法。
[態様11]
態様1〜10のいずれか一項に記載の方法を実施する為に使用するキットであって、標的生体高分子より分子量が小さく該標的生体高分子と特異的に結合するプローブ、及び、分子量分画手段を含む前記キット。
That is, the present invention relates to each aspect shown below.
[Aspect 1]
A method for detecting and / or identifying a target biopolymer in an analyte comprising the following steps:
(1) a step of forming a complex by specifically reacting a probe having a molecular weight smaller than that of a target biopolymer and specifically binding to the target biopolymer with the target biopolymer contained in a specimen;
(2) separating the complex from the probe by molecular weight fractionation means;
(3) a step of recovering the separated complex, and (4) a step of detecting the probe contained in the recovered complex.
[Aspect 2]
The separation in the step (3) allows the reaction liquid containing the target biopolymer, the probe, and the complex to pass through a molecular weight fractionation membrane that is a molecular weight fractionation means, and the target biopolymer and the complex. The method according to embodiment 1, which is carried out by capturing at least a part of the molecular weight on the molecular weight fractionation membrane.
[Aspect 3]
A method according to embodiment 2, wherein the molecular weight cutoff membrane has a molecular weight cut-off of at least 50,000 MW.
[Aspect 4]
The method according to any one of aspects 1 to 3, wherein the target biopolymer is a polynucleotide.
[Aspect 5]
The method according to embodiment 4, wherein the polynucleotide is DNA or RNA.
[Aspect 6]
The method of embodiment 5, wherein the DNA is a PCR product.
[Aspect 7]
The method according to any one of Embodiments 1 to 6, wherein the molecular weight of the probe is 3,000 to 20,000.
[Aspect 8]
The method according to embodiment 7, wherein the probe is an oligonucleotide having a base length of 10 to 50 bp.
[Aspect 9]
The method according to any one of aspects 1 to 6, wherein the probe is labeled.
[Aspect 10]
The method of embodiment 9, wherein the probe is labeled with a fluorescent material.
[Aspect 11]
A kit used for carrying out the method according to any one of embodiments 1 to 10, wherein the probe has a molecular weight smaller than that of the target biopolymer and specifically binds to the target biopolymer, and a molecular weight fraction The kit comprising a drawing means.

本発明方法によれば、1時間程度の極めて短時間で標的生体高分子の検出及び/又は同定が可能となる。更に、安価な分子量分画手段である分子量分画膜等を使用することによって検出に要するコストも他の検出技術に比べて非常に低くすることが出来る。更に、容易にハイスループット化することができるので多検体処理が可能である。 According to the method of the present invention, the target biopolymer can be detected and / or identified in an extremely short time of about 1 hour. Furthermore, the use of a molecular weight fractionation film, which is an inexpensive molecular weight fractionation means, makes it possible to make the cost required for detection very low compared to other detection techniques. Furthermore, since it is possible to easily increase the throughput, multi-sample processing is possible.

本発明方法の一例の概略を示す。An outline of an example of the method of the present invention is shown. 分子量分画膜を用いる本発明方法を示す。The method of this invention using a molecular weight fractionation membrane is shown. 実施例3において、アプライした16S rRNA遺伝子サンプル (PCR産物) 別のキャピラリー電気泳動の結果を示す。In Example 3, the result of capillary electrophoresis according to the applied 16S rRNA gene sample (PCR product) is shown. 実施例4において、アプライした16S rRNAサンプル (人工合成RNA) 別にキャピラリー電気泳動した結果を示す。In Example 4, the result of capillary electrophoresis for each applied 16S rRNA sample (artificial synthetic RNA) is shown.

本発明に係る検体中の標的生体高分子を検出及び/又は同定するための方法は以下の工程を含む。
(1)標的生体高分子より分子量が小さく該標的生体高分子と特異的に結合するプローブを検体に含まれる該標的生体高分子と特異的に反応させて複合体を形成する工程、
(2)分子量分画手段によって該複合体を該プローブから分離する工程、
(3)分離された該複合体を回収する工程、及び
(4)回収された該複合体に含まれる該プローブを検出する工程。
The method for detecting and / or identifying a target biopolymer in a specimen according to the present invention includes the following steps.
(1) a step of forming a complex by specifically reacting a probe having a molecular weight smaller than that of a target biopolymer and specifically binding to the target biopolymer with the target biopolymer contained in a specimen;
(2) separating the complex from the probe by molecular weight fractionation means;
(3) a step of recovering the separated complex, and (4) a step of detecting the probe contained in the recovered complex.

本明細書において、検出及び/又は同定の対象となる「生体高分子」の構造に特に制限はなく、例えば、DNA、RNA及びそれらの各種修飾体等の各種ポリヌクレオチド(核酸)、蛋白質(ポリペプチド)、リポ蛋白質、糖蛋白質、糖脂質、多糖、及びそれらの複合体等を挙げることが出来る。従って、生体高分子の分子量に特に制限はなく、例えば、十数万〜数百万の範囲をとり得る。尚、検出は定性的、半定量的、及び定量的測定として行なうことが可能である。 In this specification, there is no restriction | limiting in particular in the structure of "biopolymer" used as the object of a detection and / or identification, For example, various polynucleotides (nucleic acid), protein (polyester), such as DNA, RNA, and those various modifications Peptide), lipoprotein, glycoprotein, glycolipid, polysaccharide, and complexes thereof. Accordingly, there is no particular limitation on the molecular weight of the biopolymer, and for example, it can range from several tens of thousands to several millions. Detection can be performed as qualitative, semi-quantitative and quantitative measurements.

又、生体高分子はヒト、動物、植物、微生物及びウィルス等の広義の生物に元来含まれる由来の物質に加えて、例えば、PCR産物であるDNA等の遺伝子工学的手段及び化学合成等で人工的に調製された物質も含む。 Biopolymers are derived from materials originally contained in broadly defined organisms such as humans, animals, plants, microorganisms and viruses, as well as genetic engineering means such as DNA that is a PCR product and chemical synthesis. Also includes artificially prepared materials.

「検体」とは、このような検出及び/又は同定の対象となる生体高分子を含む任意の試料を意味し、例えば、各種生物種から採取された血液及び尿等の各種体液又は抽出物、並びに、土壌、河川水及び海水等の自然環境から採取された微生物を含む各種試料、更には人工的に調製された生体高分子を含む試料等を意味する。 “Sample” means any sample containing a biopolymer to be detected and / or identified, such as various body fluids or extracts such as blood and urine collected from various biological species, Further, it means various samples containing microorganisms collected from natural environments such as soil, river water and seawater, and samples containing biopolymers prepared artificially.

本発明方法の工程(2)で使用する分子量分画手段としては、分子量の相違に基づき該複合体と該プローブとを有効に分離することができる限り当業者に公知の任意の適当なものを使用することが出来る。即ち、標的生体高分子及び/又はそれとプローブとの複合体の少なくとも一部、好ましくは50%程度以上、より好ましくは95%以上がプローブとは異なる別の画分(例えば、「B/F分離におけるB(Bound)画分」)として分離されるようにすることが望ましい。 As the molecular weight fractionating means used in step (2) of the method of the present invention, any appropriate means known to those skilled in the art can be used as long as the complex and the probe can be effectively separated based on the difference in molecular weight. Can be used. That is, at least a part of the target biopolymer and / or its complex with the probe, preferably about 50% or more, more preferably 95% or more is different from the probe (for example, “B / F separation”). It is desirable to separate them as B (Bound) fractions).

分子量分画手段の代表例として、限外濾過膜等の各種分子量分画膜等を挙げることが出来る。分子量分画膜の分画分子量は、検出及び/又は同定の対象となる生体高分子の種類及び大きさ、プローブの種類及び大きさ、並びに、分離等の操作条件等に応じて当業者が適宜選択することが出来る。通常、50,000MW程度以上が好適である。 Representative examples of molecular weight fractionating means include various molecular weight fractionated membranes such as ultrafiltration membranes. The fractional molecular weight of the molecular weight fractionation membrane is appropriately determined by those skilled in the art according to the type and size of the biopolymer to be detected and / or identified, the type and size of the probe, and the operating conditions such as separation. You can choose. Usually, about 50,000 MW or more is suitable.

一方、プローブ、標的生体高分子の種類及び大きさ等に応じて、それと特異的に反応するような化合物を当業者が適宜選択することが出来、その種類及び構造に特に制限はない。標的生体高分子がポリゴヌクレオチドの場合にはオリゴヌクレオチドからなるプローブが好適である。又、標的生体高分子が蛋白質の場合にもオリゴヌクレオチドからなるプローブを「アプタマー」として使用することが出来る。 On the other hand, depending on the type and size of the probe and the target biopolymer, those skilled in the art can appropriately select a compound that specifically reacts therewith, and the type and structure are not particularly limited. When the target biopolymer is a polynucleotide, a probe comprising an oligonucleotide is preferred. Even when the target biopolymer is a protein, an oligonucleotide probe can be used as an “aptamer”.

標的生体高分子又は該標的生体高分子と該プローブとの複合体から分子量の相違に基づきプローブが分離可能であるように、プローブはそれらに対して有意に小さな分子量を有する。例えば、プローブの分子量は通常、3,000〜20,000程度であることが好ましい。又、プローブがオリゴヌクレオチドである場合には、通常、10〜50bp程度の塩基長であることが好ましい。 The probes have a significantly smaller molecular weight relative to them, such that the probes can be separated from the target biopolymer or a complex of the target biopolymer and the probe based on molecular weight differences. For example, the molecular weight of the probe is usually preferably about 3,000 to 20,000. When the probe is an oligonucleotide, it is usually preferable that the probe has a base length of about 10 to 50 bp.

本発明の効果を十分に奏効する為には、分子量分画手段及びプローブの分子量を適当に組み合わせて選択することによって、好ましくは該プローブの90%以上、より好ましくは99.5%以上が標的生体高分子と該プローブとの複合体とは別の画分(例えば、「B/F分離におけるF(Free)画分」)として分離されるようにすることが望ましい。 In order to sufficiently exert the effects of the present invention, the molecular weight fractionating means and the molecular weight of the probe are selected in an appropriate combination, so that preferably 90% or more, more preferably 99.5% or more of the probe is targeted. It is desirable that the complex of the biopolymer and the probe is separated as a separate fraction (for example, “F (Free) fraction in B / F separation”).

例えば、ミリポア社のマイクロコンYM-100を分子量分画手段として使用する場合、該膜は分子量1万程の物質を1%しか回収できないのに対し、分子量15万程の物質は約95%以上の回収が可能である(ミリポア社公開データ)。そこで、例えば、標的生体高分子として16S rRNA(分子量約50万)を検出したい場合、まず20塩基程度の蛍光標識遺伝子プローブ(分子量約7,000)を使用することが好ましい。溶液中で該RNAにプローブを反応(交雑・ハイブリダイズ)させた後、分子量分画膜の一種であるマイクロコンYM-100にアプライする。該プローブの殆どはYM-100を透過するので、YM-100では殆ど回収されないのに対し、RNAは分子量がYM-100の分画分子量より大きいためにその多くが回収可能であり、その結果、該RNAと交雑したプローブは該RNAと結合して複合体を形成しているため分子量分画膜上にRNAと共にトラップ(捕捉)される。 For example, when Millipore Microcon YM-100 is used as a molecular weight fractionation means, the membrane can recover only 1% of a substance having a molecular weight of about 10,000, whereas a substance having a molecular weight of about 150,000 is about 95% or more. Can be collected (Millipore's public data). Thus, for example, when 16S rRNA (molecular weight of about 500,000) is to be detected as the target biopolymer, it is preferable to first use a fluorescently labeled gene probe (molecular weight of about 7,000) of about 20 bases. A probe is reacted (hybridized / hybridized) with the RNA in a solution, and then applied to Microcon YM-100, which is a kind of molecular weight fractionation membrane. Most of the probes permeate YM-100 and are hardly recovered by YM-100, whereas RNA has a molecular weight larger than the fractional molecular weight of YM-100. Since the probe hybridized with the RNA binds to the RNA to form a complex, it is trapped (captured) together with the RNA on the molecular weight fractionation membrane.

該複合体に含まれる該プローブを検出する為に、プローブは当業者に公知の任意の物質によって標識されていることが好ましい。このような標識物質として、32P等の放射標識、Cy2, Cy3及びCy5のようなシアニン類、フルオレセイン(FITC)並びにテトラメチルローダミン(TRITC)のようなローダミン系色素に代表される蛍光物質、並びに、化学発光物質等を上げることが出来る。尚、プローブの標識は当業者に公知の任意の方法で行なうことが出来る。 In order to detect the probe contained in the complex, the probe is preferably labeled with any substance known to those skilled in the art. Examples of such labeling substances include radiolabels such as 32 P, cyanines such as Cy2, Cy3 and Cy5, fluorescent substances represented by rhodamine dyes such as fluorescein (FITC) and tetramethylrhodamine (TRITC), and , Chemiluminescent substances, etc. can be raised. The probe can be labeled by any method known to those skilled in the art.

工程(3)における分離された該複合体の回収、及び、工程(4)における回収された該複合体に含まれるプローブの検出は、標的生体高分子、プローブ及び分子量分画手段等の修理・性質等に応じて当業者に公知の任意の方法で実施することが出来る。 The recovery of the separated complex in the step (3) and the detection of the probe contained in the recovered complex in the step (4) are performed by repairing the target biopolymer, the probe, the molecular weight fractionation means, etc. Depending on the properties and the like, it can be carried out by any method known to those skilled in the art.

本発明方法の特徴は、標的生体高分子の分子量と該プローブの分子量の相違に基づき、分子量分画によってそれらを迅速かつ簡便に分離することである。本発明方法の一例の概略を図1に示す。更に、より具体的な例として分子量分画膜を用いる本発明方法(図2)を以下に概説する。   A feature of the method of the present invention is that the molecular weight fractionation separates them quickly and easily based on the difference between the molecular weight of the target biopolymer and the molecular weight of the probe. An outline of an example of the method of the present invention is shown in FIG. Furthermore, as a more specific example, the method of the present invention (FIG. 2) using a molecular weight fractionation membrane is outlined below.

工程(1):
工程(1)を実施するに先立ち、検体の種類等に応じて、粉砕、破砕、溶解及び抽出操作等の当業者に公知の適当な前処理を適宜実施することによって標的生体高分子を含む検体を以降の反応に適した形態、例えば、標的生体高分子を含む溶液として調製することが出来る。同様に、使用するプローブも、通常、適当な緩衝液等を用いて適当な濃度の溶液として調製することが好ましい。
Step (1):
Prior to carrying out step (1), a specimen containing the target biopolymer is appropriately subjected to appropriate pretreatments known to those skilled in the art, such as grinding, crushing, dissolution and extraction operations, depending on the kind of specimen. Can be prepared in a form suitable for the subsequent reaction, for example, as a solution containing the target biopolymer. Similarly, the probe to be used is usually preferably prepared as a solution with an appropriate concentration using an appropriate buffer or the like.

標的生体高分子とプローブとの特異的な反応の形式に特に制限はなく、それらの構造及び性質等に応じて様々な反応様式をとることが可能である。例えば、標的生体高分子がポリヌクレオチドであり、プローブがオリゴヌクレオチドである場合には、交雑(ハイブリダイズ)反応と呼ばれる反応によって、それらの間に特異的な結合が生じる。
上記の特異的反応は、標的生体高分子とプローブの種類及び量、並びに反応系の種類等に応じて、適当な温度及び時間等の反応条件下で実施することが出来る。例えば、ハイブリダイズ反応の場合は、通常、30〜60℃、2〜10分程度反応させることが好ましい。
There is no particular limitation on the type of specific reaction between the target biopolymer and the probe, and various reaction modes can be taken according to their structure and properties. For example, when the target biopolymer is a polynucleotide and the probe is an oligonucleotide, specific binding occurs between them by a reaction called a hybridization reaction.
The above specific reaction can be carried out under reaction conditions such as an appropriate temperature and time depending on the type and amount of the target biopolymer and the probe, the type of reaction system, and the like. For example, in the case of a hybridization reaction, it is usually preferable to react at 30 to 60 ° C. for about 2 to 10 minutes.

工程(2):
標的生体高分子とプローブとの複合体をプローブから分離するには、例えば、工程(1)で反応が終了した反応液を分子量分画膜上にかけて、適当な条件、例えば遠心分離処理あるいは吸引濾過等により反応液を透過させ、更に、必要に応じて、該分子量分画膜上に適当な洗浄液を滴下して、適当な条件、例えば遠心分離処理あるいは吸引濾過等により洗浄液を透過させることで膜を洗浄することによって、B/F分離に基づき、標的生体高分子とプローブとの複合体をプローブから有効に分離することが出来る。
Step (2):
In order to separate the complex of the target biopolymer and the probe from the probe, for example, the reaction solution that has been reacted in the step (1) is applied on the molecular weight fractionation membrane and subjected to appropriate conditions such as centrifugation or suction filtration. The membrane is obtained by allowing the reaction solution to permeate by, for example, dropping a suitable washing solution onto the molecular weight fractionation membrane as necessary, and allowing the washing solution to permeate under suitable conditions such as centrifugation or suction filtration. By washing, the complex of the target biopolymer and the probe can be effectively separated from the probe based on B / F separation.

工程(3):
工程(2)で処理した分子量分画膜を、例えば、適当な条件下で逆遠心処理することによって、該分子量分画膜上に捕捉された該複合体を適当な溶液として回収することが出来る。
Step (3):
The complex trapped on the molecular weight fractionation membrane can be recovered as an appropriate solution, for example, by subjecting the molecular weight fractionation membrane treated in the step (2) to reverse centrifugation under suitable conditions. .

工程(4):
工程(3)で回収された該複合体に含まれる該プローブは、その性質、例えば、標識物質の特性等に応じて、蛍光分光光度計等の当業者に公知の任意の適当な検出装置・手段を用いることによって容易に検出することが出来る。尚、検出に先立ち、該複合体を電気泳動等の適当な分離手段によって分離した後、検出することも可能である。
Step (4):
The probe contained in the complex recovered in the step (3) may be any suitable detection device known to those skilled in the art, such as a fluorescence spectrophotometer, depending on its properties, for example, the characteristics of the labeling substance. It can be easily detected by using means. Prior to detection, the complex can be detected after being separated by an appropriate separation means such as electrophoresis.

上記の本発明方法を実施する為に使用するキットは、標的生体高分子より分子量が小さく該標的生体高分子と特異的に結合するプローブ、及び、分子量分画手段を含む。更に、その使用目的等に応じて、例えば、当業者に公知の任意の適当なプローブ検出装置・手段、緩衝液、バイアル、及び、その他の必要なその他の物質・器具・装置類を適宜含むことが出来る。 The kit used for carrying out the above-described method of the present invention includes a probe having a molecular weight smaller than that of the target biopolymer and specifically binding to the target biopolymer, and a molecular weight fractionating means. Furthermore, depending on the purpose of use, for example, any appropriate probe detection device / means known to those skilled in the art, buffer solution, vial, and other necessary other substances / instruments / devices are included as appropriate. I can do it.

以下に実施例を参照して本発明を具体的に説明するが、これらは単に本発明の説明のために提供されているものである。従って、これらの実施例は、本願で開示する発明の範囲を限定し、又は制限するものではない。本発明では、特許請求の範囲の請求項に記載された技術的思想に基づく様々な実施形態が可能であることは当業者には容易に理解される。   The present invention will be described in detail with reference to the following examples, which are merely provided for explaining the present invention. Accordingly, these examples do not limit or limit the scope of the invention disclosed herein. It is easily understood by those skilled in the art that various embodiments based on the technical idea described in the claims can be made in the present invention.

1.使用する分子量分画膜によるオリゴヌクレオチドプローブの透過性能評価
1.1.実験概要
塩基長の異なる蛍光標識したオリゴヌクレオチドプローブを分子量分画膜(YMシリーズ)に滴下し、14,000gで遠心分離を行った後、分子量分画膜を反転させ、逆遠心することで分子量分画膜上にトラップされたプローブを回収した。
1. Evaluation of permeation performance of oligonucleotide probe by molecular weight fractionation membrane used 1.1. Outline of Experiment Dropping fluorescently labeled oligonucleotide probes with different base lengths onto a molecular weight fractionation membrane (YM series), centrifuging at 14,000 g, inverting the molecular weight fractionation membrane, and then centrifuging to reverse the molecular weight The probe trapped on the membrane was collected.

1.2.実験方法
1.2.1実験手順
・蛍光標識オリゴヌクレオチドプローブ(表1)を約1000fmol/μL(1000nM)に調整した。
・分子量分画膜(YMシリーズ)上にプローブ溶液を100μL滴下し、分子量分画膜ユニットを14,000×gで遠心分離した(YM-3: 20min, YM-10: 6min, YM-30,50,100: 3min)。
・ろ液を捨て,Milli Qを500μL分子量分画膜上に滴下し、14,000×gで遠心分離した(YM-10: 30min, YM-30,50,100: 12min)(洗浄)。
・分子量分画膜を反転させ、Milli Qを10μL滴下し、1,000×gで遠心分離した(3min)(逆遠心分離。)
1.2. Experimental Method 1.2.1 Experimental Procedures ・ Fluorescently labeled oligonucleotide probe (Table 1) was adjusted to about 1000 fmol / μL (1000 nM).
・ 100 μL of the probe solution was dropped onto the molecular weight fractionation membrane (YM series), and the molecular weight fractionation membrane unit was centrifuged at 14,000 × g (YM-3: 20 min, YM-10: 6 min, YM-30, 50, 100: 3min).
-The filtrate was discarded, and Milli Q was dropped onto a 500 μL molecular weight fractionation membrane and centrifuged at 14,000 × g (YM-10: 30 min, YM-30, 50, 100: 12 min) (washing).
・ Invert the molecular weight fractionation membrane, drop 10 μL of Milli Q, and centrifuge at 1,000 × g (3 min) (reverse centrifugation)

1.2.2測定および評価方法
約1000nMに調整した蛍光標識オリゴヌクレオチドプローブ溶液および逆遠心分離後に回収された溶液について蛍光スペクトロメータ(NanoDrop ND-3300)により測定した。ND-3300の検出感度はサンプルを2μL使用した場合に5fmol(2.5nM)であり、検出範囲は2.5〜3000nMである。
プローブ溶液100μLが分子量分画膜を通過し、分子量分画膜上に残るプローブが逆遠心分離後の溶液10μLに回収されて10倍に濃縮されると仮定し、プローブの分子量分画膜透過率(%)を次式で評価した。
1.2.2 Measurement and Evaluation Method The fluorescence-labeled oligonucleotide probe solution adjusted to about 1000 nM and the solution collected after reverse centrifugation were measured with a fluorescence spectrometer (NanoDrop ND-3300). The detection sensitivity of ND-3300 is 5 fmol (2.5 nM) when 2 μL of sample is used, and the detection range is 2.5 to 3000 nM.
Assuming that 100 μL of the probe solution passes through the molecular weight fractionation membrane and that the probe remaining on the molecular weight fractionation membrane is recovered in 10 μL of the solution after reverse centrifugation and concentrated 10 times, the molecular weight fractionation membrane permeability of the probe (%) Was evaluated by the following formula.

1.3.結果のまとめ
表2に分子量分画膜(YMシリーズ)における塩基長別オリゴヌクレオチドプローブの分子量分画膜(YMシリーズ)透過率をまとめた。分子量分画膜YM-100において、塩基長がそれぞれ10,18,25のプローブの透過率は99.5%以上であった。
また、1000nMのEco327-18を用いて、溶液中に0〜1,000mMのNaCl、0〜6Mのureaを含んだ系でも同様に99.5%以上の透過率を得た。
1.3. Summary of results Table 2 summarizes the transmittance of the molecular weight fractionated membranes (YM series) of the oligonucleotide probes classified by base length in the molecular weight fractionated membranes (YM series). In the molecular weight fractionation membrane YM-100, the transmittance of probes having base lengths of 10, 18, and 25 was 99.5% or more.
Moreover, the transmittance | permeability of 99.5% or more was similarly obtained also in the system which contained 0-1,000 mM NaCl and 0-6M urea in 1000nM Eco327-18.

2.PCR産物あるいは人工合成RNAのYM-100透過性能評価
2.1.実験概要
塩基長の異なるPCR産物あるいは人工合成RNAを分子量分画膜(YM-100)に滴下し、3,000gで遠心分離を行った後、分子量分画膜を反転させ、逆遠心することで分子量分画膜上にトラップされたPCR産物あるいは人工合成RNAを回収した。
2. Evaluation of YM-100 permeation performance of PCR products or artificially synthesized RNA 2.1. Outline of Experiment Drop PCR products or artificially synthesized RNAs with different base lengths onto a molecular weight fractionation membrane (YM-100), perform centrifugation at 3,000 g, invert the molecular weight fractionation membrane, and reverse-centrifuge to obtain a molecular weight The PCR product or artificially synthesized RNA trapped on the fractionation membrane was recovered.

2.2.実験方法
2.2.1実験手順(PCR産物)
1) E. coli K12より抽出したゲノムDNAを鋳型DNAに、16S rRNA遺伝子に特異的なプライマーセット(表3)を用いて塩基長の異なるPCR産物を得た。
2) 分子量分画膜(YM-100)上に適切な濃度(0.15ng/μL程度)に希釈したPCR産物を100μL滴下し、500×gで遠心分離した(10min)。
3) ろ液を捨て、Milli Qを500μL分子量分画膜上に滴下し、500×gで遠心分離した(46min)。
4) 分子量分画膜を反転させ、Milli Qを10μL滴下し,1,000×gで遠心分離した(3min)(逆遠心分離)。
2.2. Experimental method 2.2.1 Experimental procedure (PCR product)
1) PCR products with different base lengths were obtained using genomic DNA extracted from E. coli K12 as template DNA and a primer set specific to the 16S rRNA gene (Table 3).
2) 100 μL of the PCR product diluted to an appropriate concentration (about 0.15 ng / μL) was dropped on the molecular weight fractionation membrane (YM-100) and centrifuged at 500 × g (10 min).
3) The filtrate was discarded, and Milli Q was dropped on a 500 μL molecular weight fractionation membrane and centrifuged at 500 × g (46 min).
4) The molecular weight fractionation membrane was inverted, 10 μL of Milli Q was added dropwise, and centrifuged at 1,000 × g (3 min) (reverse centrifugation).

2.2.2実験手順(人工合成RNA)
1) T7プロモーター(5’-TAA TAC GAC TCA CTA TAG GG-3’)をforward primerの5’末端に付加したprimerを用いて2.2.1と同様に塩基長の異なるPCR産物を得た。
2) T7由来のRNAポリメラーゼによりRNAを合成(転写反応)し、塩基長の異なる人工合成RNAを得た。
3) 分子量分画膜(YM-100)上に適切な濃度(0.5ng/μL程度)に希釈した人工合成RNAを100μL滴下し,500×gで遠心分離した(10min)。
以下は2.2.1の3), 4)と同様。
2.2.2 Experimental procedure (artificial synthetic RNA)
1) PCR products with different base lengths were obtained using a primer with the T7 promoter (5'-TAA TAC GAC TCA CTA TAG GG-3 ') added to the 5' end of the forward primer as in 2.2.1 .
2) RNA was synthesized (transcription reaction) with T7-derived RNA polymerase to obtain artificially synthesized RNAs with different base lengths.
3) 100 μL of artificially synthesized RNA diluted to an appropriate concentration (about 0.5 ng / μL) was dropped onto the molecular weight fractionation membrane (YM-100) and centrifuged at 500 × g (10 min).
The following is the same as 3.2.1 and 4) of 2.2.1.

2.3測定および評価方法
適切な濃度(0.1-0.2ng/μL)に希釈したPCR産物あるいは人工合成RNAおよびそれぞれの逆遠心後に回収された溶液について、高感度核酸染色剤(PCR産物の場合:Sybr(商標) Green I,人工合成RNAの場合:RiboGreen(商標))を用いて染色し、蛍光スペクトロメータ(NanoDrop ND-3300)により測定した。ND-3300の検出範囲は,Sybr(商標) Green Iの場合0.002-2ng/μL,RiboGreen(商標)の場合0.02-2ng/μLである。
PCR産物あるいは人工合成RNA溶液100μLが分子量分画膜上に残り、逆遠心分離後の溶液10μLに回収されて10倍に濃縮されると仮定し、PCR産物あるいは人工合成RNAの分子量分画膜透過率(%)を次式で評価した。
2.3 Measurement and Evaluation Method For highly sensitive nucleic acid stains (for PCR products: PCR products or artificially synthesized RNA diluted to an appropriate concentration (0.1-0.2 ng / μL) and solutions collected after each reverse centrifugation. In the case of Sybr (trademark) Green I, artificially synthesized RNA: RiboGreen (trademark)), it was stained and measured with a fluorescence spectrometer (NanoDrop ND-3300). The detection range of ND-3300 is 0.002-2 ng / μL for Sybr ™ Green I and 0.02-2 ng / μL for RiboGreen ™.
Assuming that 100 μL of PCR product or artificially synthesized RNA solution remains on the molecular weight fractionation membrane and is recovered in 10 μL of the solution after reverse centrifugation and concentrated 10-fold, the PCR product or artificially synthesized RNA permeates through the molecular weight fractionation membrane. The rate (%) was evaluated by the following formula.

2.4 結果のまとめ
表4に分子量分画膜(YM-100)における塩基長別PCR産物あるいは人工合成RNAの分子量概算値および分子量分画膜回収率をまとめた(回収率50%を基準とし評価)。尚、YM-100における公称分子分画量は100,000MWである。
塩基長の異なる全てのPCR産物あるいは人工合成RNAの50%以上が分子量分画膜上にトラップされ、回収できることを確認した。
2.4 Summary of Results Table 4 summarizes the approximate molecular weights of PCR products or artificially synthesized RNAs by molecular length and the molecular weight fractionated membrane recovery rate in the molecular weight fractionated membrane (YM-100) (based on a recovery rate of 50% as a reference). Evaluation). The nominal molecular fraction of YM-100 is 100,000 MW.
It was confirmed that 50% or more of all PCR products or artificially synthesized RNAs with different base lengths were trapped on the molecular weight fractionation membrane and recovered.

3.Eco327-18-D3プローブを用いたEscherichia coliの16S rRNA遺伝子の検出
3.1.実験概要
Escherichia coliあるいはMethanococcus maripaludisのほぼ全長の16S rRNA遺伝子(約1500塩基)とE. coliの16S rRNAに特異的な蛍光標識プローブ(Eco327-18-D3)(Eco327-18を蛍光物質(Beckman Dye3)で標識したプローブ)を液中で交雑させ、分子量分画膜(YM-100)にアプライし、プローブの余剰分を遠心分離により除去した。その後、YM-100上に残ったE. coliの16S rRNA遺伝子に特異的に交雑したプローブをキャピラリー電気泳動(CEQ8000)により検出した。
3. 3. Detection of Escherichia coli 16S rRNA gene using Eco327-18-D3 probe 3.1. Outline of experiment
The almost full-length 16S rRNA gene of Escherichia coli or Methanococcus maripaludis (approximately 1500 bases) and the fluorescently labeled probe (Eco327-18-D3) specific for E. coli 16S rRNA (Eco327-18 as a fluorescent substance (Beckman Dye3)) The labeled probe) was hybridized in the solution, applied to a molecular weight fractionation membrane (YM-100), and the excess probe was removed by centrifugation. Thereafter, the probe specifically hybridized with the 16S rRNA gene of E. coli remaining on YM-100 was detected by capillary electrophoresis (CEQ8000).

3.2.実験方法
3.2.1サンプルの準備(PCR産物)
E. coli K12およびM. maripaludis S2より抽出したゲノムDNAを鋳型DNAに、16S rRNA遺伝子に特異的なプライマーセット(EUB8f-UNIV1500r又はARC21f-UNIV1500r)を用いて16S rRNA遺伝子のほぼ全長のPCR産物を得た。
3.2. Experimental method 3.2.1 Sample preparation (PCR product)
Using the genomic DNA extracted from E. coli K12 and M. maripaludis S2 as template DNA, and using a primer set specific to 16S rRNA gene (EUB8f-UNIV1500r or ARC21f-UNIV1500r), PCR product of almost full length of 16S rRNA gene Obtained.

3.2.2液中交雑
16S rRNA遺伝子サンプルとEco327-18-D3プローブを全量15μLのhybridization buffer (20mM Tris-HCl,100mM NaCl,1M urea)中46℃で5分間反応させた。その反応溶液全量を135μLのhybridization bufferに移し、46℃で1分間反応させた。
3.2.2 Cross in liquid
The 16S rRNA gene sample and the Eco327-18-D3 probe were reacted at 46 ° C. for 5 minutes in a total volume of 15 μL of hybridization buffer (20 mM Tris-HCl, 100 mM NaCl, 1M urea). The whole reaction solution was transferred to 135 μL of hybridization buffer and reacted at 46 ° C. for 1 minute.

3.2.3分子量分画膜によるプローブ余剰分の洗浄
分子量分画膜(YM-100)上に液中交雑反応溶液を全量アプライし、500×gで遠心分離した(3min)。さらに500μL のhybridization bufferをYM-100上にアプライし、500×gで遠心分離した(45min)。その後、逆遠心によりYM-100上に残った16S rRNA遺伝子およびE. coliの16S rRNA遺伝子に特異的に交雑したプローブが10μL中に回収された。
3.2.3 Washing of probe surplus with molecular weight fractionation membrane The whole amount of the cross-reaction solution in liquid was applied onto the molecular weight fractionation membrane (YM-100) and centrifuged at 500 × g (3 min). Furthermore, 500 μL of hybridization buffer was applied onto YM-100 and centrifuged at 500 × g (45 min). Thereafter, the probe specifically crossed with the 16S rRNA gene remaining on YM-100 and the 16S rRNA gene of E. coli was collected in 10 μL by reverse centrifugation.

3.2.4キャピラリー電気泳動による解析
3.2.3で回収された溶液1μLをSample Loading Solution: 39.8μLおよびDNA size standard 80 kit: 0.2μLと混合し,CEQ8000により6kVで16minの電気泳動を行ない、蛍光標識プローブ(Eco327-D3)をCEQ8000システムのフラグメント解析ソフトウェアにより解析した。
3.2.4 Analysis by capillary electrophoresis Mix 1 μL of the solution collected in 3.2.3 with Sample Loading Solution: 39.8 μL and DNA size standard 80 kit: 0.2 μL, and perform electrophoresis for 16 min at 6 kV with CEQ8000. The fluorescence-labeled probe (Eco327-D3) was analyzed by the fragment analysis software of the CEQ8000 system.

3.3実験結果
アプライした16S rRNA遺伝子サンプル別にキャピラリー電気泳動した結果を図3(a)-(c)に示す。図3(a)はE. coli の16S rRNA遺伝子(約280ng)のみ、図3(b)はM. maripaludisの16S rRNA遺伝子(約300ng)のみ、図3(c)は両者の半量ずつ(E. coli : 約140ng,M. maripaludis : 約150ng)である。M. maripaludisのみの系ではEco327-18-D3によるピークは全く検出されず(図3(b))、E. coliとM. maripaludisの両者を半量ずつ混合させた系(図3(c))では,Eco327-18-D3によるピークエリア(3469)がE.coliのみの系(図3(a))のピークエリア(6630)のほぼ1/2になっていることがわかる。
3.3 Experimental Results The results of capillary electrophoresis for each applied 16S rRNA gene sample are shown in FIGS. 3 (a)-(c). Fig. 3 (a) shows only E. coli 16S rRNA gene (about 280ng), Fig. 3 (b) shows only M. maripaludis 16S rRNA gene (about 300ng), and Fig. 3 (c) shows half of both (E coli: about 140 ng, M. maripaludis: about 150 ng). In the M. maripaludis-only system, no peak due to Eco327-18-D3 was detected (Fig. 3 (b)), and a system in which half of both E. coli and M. maripaludis were mixed (Fig. 3 (c)). Then, it can be seen that the peak area (3469) due to Eco327-18-D3 is almost half the peak area (6630) of the E. coli-only system (Fig. 3 (a)).

4.Eco327-18-D3プローブを用いたEscherichia coliの16S rRNAの検出
4.1.実験概要
Escherichia coliあるいはMethanococcus maripaludisのほぼ全長の16S rRNA(約1500塩基)とE. coliの16S rRNAに特異的な蛍光標識プローブ(Eco327-18-D3)を液中で交雑させ、分子量分画膜(YM-100)にアプライし、プローブの余剰分を遠心分離により除去した。その後,YM-100上に残ったE. coliの16S rRNAに特異的に交雑したプローブをキャピラリー電気泳動(CEQ8000)により検出した。
4). 4. Detection of Escherichia coli 16S rRNA using Eco327-18-D3 probe 4.1. Outline of experiment
An approximately full-length 16S rRNA (approximately 1500 bases) of Escherichia coli or Methanococcus maripaludis and a fluorescently labeled probe (Eco327-18-D3) specific for E. coli 16S rRNA were hybridized in the solution, and molecular weight fractionation membrane (YM -100) and the excess of the probe was removed by centrifugation. Thereafter, the probe specifically hybridized to the 16S rRNA of E. coli remaining on YM-100 was detected by capillary electrophoresis (CEQ8000).

4.2.実験方法
4.2.1サンプルの準備(PCR産物)
E. coli K12およびM. maripaludis S2より抽出したゲノムDNAを鋳型DNAに、16S rRNA遺伝子に特異的なT7付プライマーセット(T7EUB8f-UNIV1500rあるいはT7ARC21f-UNIV1500r)を用いて16S rRNA遺伝子のほぼ全長のPCR産物を得て、T7由来のRNAポリメラーゼによりほぼ全長の16S rRNAを合成した。
4.2. Experimental method 4.2.1 Sample preparation (PCR product)
PCR of almost full length of 16S rRNA gene using genomic DNA extracted from E. coli K12 and M. maripaludis S2 as template DNA and primer set with T7 specific to 16S rRNA gene (T7EUB8f-UNIV1500r or T7ARC21f-UNIV1500r) The product was obtained and almost full length 16S rRNA was synthesized by T7-derived RNA polymerase.

4.2.2液中交雑
16S rRNAサンプルとEco327-D3プローブを全量15μLのhybridization buffer (20mM Tris-HCl,100mM NaCl,1M urea)中46℃で5分間反応させた。その反応溶液全量を135μLのhybridization bufferに移し、46℃で1分間反応させた。
4.2.2 Cross in liquid
The 16S rRNA sample and Eco327-D3 probe were reacted at 46 ° C. for 5 minutes in a total volume of 15 μL of hybridization buffer (20 mM Tris-HCl, 100 mM NaCl, 1M urea). The whole reaction solution was transferred to 135 μL of hybridization buffer and reacted at 46 ° C. for 1 minute.

4.2.3分子量分画膜によるプローブ余剰分の洗浄
分子量分画膜(YM-100)上に液中交雑反応溶液を全量アプライし、500×gで遠心分離した(3min)。つづいて500μL のhybridization bufferをYM-100上にアプライし、500×gで遠心分離した(45min)。さらに100μL のhybridization bufferをYM-100上にアプライし、500×gで遠心分離した(10min)。逆遠心によりYM-100上に残った16S rRNAおよびE. coliの16S rRNAに特異的に交雑したプローブが10μL中に回収された。
4.2.3 Washing of probe surplus with molecular weight fractionation membrane All the in-liquid hybridization reaction solution was applied onto the molecular weight fractionation membrane (YM-100) and centrifuged at 500 × g (3 min). Subsequently, 500 μL of hybridization buffer was applied onto YM-100 and centrifuged at 500 × g (45 min). Further, 100 μL of hybridization buffer was applied onto YM-100 and centrifuged at 500 × g (10 min). Probes specifically hybridized to 16S rRNA remaining on YM-100 and E. coli 16S rRNA were recovered in 10 μL by reverse centrifugation.

4.2.4キャピラリー電気泳動による解析
2.3で回収された溶液1μLをSample Loading Solution: 39.8μLおよびDNA size standard 80 kit: 0.2μLと混合し,CEQ8000により6kVで16minの電気泳動を行ない、蛍光標識プローブ(Eco327-D3)をCEQ8000システムのフラグメント解析ソフトウェアにより解析した。
4.2.4 Analysis by capillary electrophoresis 1μL of the solution collected in 2.3 is mixed with Sample Loading Solution: 39.8μL and DNA size standard 80 kit: 0.2μL, and electrophoresis is performed with CEQ8000 at 6kV for 16min. The fluorescently labeled probe (Eco327-D3) was analyzed with the fragment analysis software of the CEQ8000 system.

4.3実験結果
アプライした16S rRNAサンプル別にキャピラリー電気泳動の結果を図4に示す。図4(a)はE. coli の16S rRNA(約320ng)のみ、図4(b)はM. maripaludisの16S rRNA(約340ng)のみ、図4(c)は両者の半量ずつ(E. coli : 約160ng,M. maripaludis : 約170ng)である。M. maripaludisのみの系ではEco327-18-D3によるピークは全く検出されず(図4(b)),E. coliとM. maripaludisの両者を半量ずつ混合させた系(図4(c))では,Eco327-18-D3によるピークエリア(20630)がE.coliのみの系(図4(a))のピークエリア(42387)のほぼ1/2になっていることがわかる。
4.3 Experimental results Fig. 4 shows the results of capillary electrophoresis for each applied 16S rRNA sample. Fig. 4 (a) shows E. coli 16S rRNA (approx. 320ng) only, Fig. 4 (b) shows M. maripaludis 16S rRNA (approx. 340ng) only, and Fig. 4 (c) shows half of both (E. coli). : About 160 ng, M. maripaludis: about 170 ng). In the M. maripaludis-only system, no peak due to Eco327-18-D3 was detected (Fig. 4 (b)), and a half-volume mixture of both E. coli and M. maripaludis (Fig. 4 (c)). Then, it can be seen that the peak area (20630) by Eco327-18-D3 is almost half of the peak area (42387) of the E. coli-only system (Fig. 4 (a)).

本発明を利用することによって、例えば、環境微生物分野において実用的な検出限界である、100個中1個程度の微生物(感度1%)(DNAあるいはRNA)が検出可能である。又、本発明方法は各種遺伝子配列情報に基づく診断方法にも応用することが出来る。更に、本発明方法は、SNIPS(1塩基変異)の検出や多種核酸混合系で利用することも可能である。 By utilizing the present invention, for example, about 1 microorganism out of 100 (sensitivity 1%) (DNA or RNA), which is a practical detection limit in the field of environmental microorganisms, can be detected. The method of the present invention can also be applied to diagnostic methods based on various gene sequence information. Furthermore, the method of the present invention can also be used in SNIPS (single nucleotide mutation) detection and mixed nucleic acid systems.

Claims (11)

以下の工程を含む、検体中の標的生体高分子を検出及び/又は同定するための方法:
(1)標的生体高分子より分子量が小さく該標的生体高分子と特異的に結合するプローブを検体に含まれる該標的生体高分子と特異的に反応させて複合体を形成する工程、
(2)分子量分画手段によって該複合体を該プローブから分離する工程、
(3)分離された該複合体を回収する工程、及び
(4)回収された該複合体に含まれる該プローブを検出する工程。
A method for detecting and / or identifying a target biopolymer in an analyte comprising the following steps:
(1) a step of forming a complex by specifically reacting a probe having a molecular weight smaller than that of a target biopolymer and specifically binding to the target biopolymer with the target biopolymer contained in a specimen;
(2) separating the complex from the probe by molecular weight fractionation means;
(3) a step of recovering the separated complex, and (4) a step of detecting the probe contained in the recovered complex.
工程(3)における分離が、該標的生体高分子、該プローブ、及び、該複合体を含む反応液を分子量分画手段である分子量分画膜に透過させ、該標的生体高分子及び該複合体の少なくとも一部を該分子量分画膜上に捕捉することによって行なわれる、請求項1記載の方法。 The separation in the step (3) allows the reaction liquid containing the target biopolymer, the probe, and the complex to pass through a molecular weight fractionation membrane that is a molecular weight fractionation means, and the target biopolymer and the complex. The method according to claim 1, wherein the method is carried out by capturing at least a part of the protein on the molecular weight fractionation membrane. 分子量分画膜の分画分子量が少なくとも50,000MWである、請求項2記載の方法。 The method according to claim 2, wherein the molecular weight cut-off membrane has a molecular weight cut-off of at least 50,000 MW. 標的生体高分子がポリヌクレオチドである、請求項1〜3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the target biopolymer is a polynucleotide. ポリヌクレオチドがDNA又はRNAである、請求項4記載の方法。 The method according to claim 4, wherein the polynucleotide is DNA or RNA. DNAがPCR産物である、請求項5記載の方法。 6. The method according to claim 5, wherein the DNA is a PCR product. プローブの分子量が3,000〜20,000である、請求項1〜6のいずれか一項に記載の方法。 The method according to any one of claims 1 to 6, wherein the probe has a molecular weight of 3,000 to 20,000. プローブが塩基長10〜50bpのオリゴヌクレオチドである、請求項7記載の方法。 The method according to claim 7, wherein the probe is an oligonucleotide having a base length of 10 to 50 bp. プローブが標識されている、請求項1〜6のいずれか一項に記載の方法。 The method according to any one of claims 1 to 6, wherein the probe is labeled. プローブが蛍光物質によって標識される、請求項9記載の方法。 The method of claim 9, wherein the probe is labeled with a fluorescent material. 請求項1〜10のいずれか一項に記載の方法を実施する為に使用するキットであって、標的生体高分子より分子量が小さく該標的生体高分子と特異的に結合するプローブ、及び、分子量分画手段を含む前記キット。 It is a kit used in order to implement the method as described in any one of Claims 1-10, Comprising: The probe whose molecular weight is smaller than a target biopolymer, and specifically couple | bonds with this target biopolymer, and molecular weight Said kit comprising fractionation means.
JP2009296885A 2009-12-28 2009-12-28 Method of detecting and/or identifying biopolymer Pending JP2011135799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009296885A JP2011135799A (en) 2009-12-28 2009-12-28 Method of detecting and/or identifying biopolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009296885A JP2011135799A (en) 2009-12-28 2009-12-28 Method of detecting and/or identifying biopolymer

Publications (1)

Publication Number Publication Date
JP2011135799A true JP2011135799A (en) 2011-07-14

Family

ID=44347914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009296885A Pending JP2011135799A (en) 2009-12-28 2009-12-28 Method of detecting and/or identifying biopolymer

Country Status (1)

Country Link
JP (1) JP2011135799A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05123198A (en) * 1991-10-31 1993-05-21 Wakunaga Pharmaceut Co Ltd Single stranded nucleic probe and method for detecting and isolating double stranded nucleic acid using the same probe
JP2008086271A (en) * 2006-10-03 2008-04-17 Canon Inc Method for detecting target nucleic acid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05123198A (en) * 1991-10-31 1993-05-21 Wakunaga Pharmaceut Co Ltd Single stranded nucleic probe and method for detecting and isolating double stranded nucleic acid using the same probe
JP2008086271A (en) * 2006-10-03 2008-04-17 Canon Inc Method for detecting target nucleic acid

Similar Documents

Publication Publication Date Title
US20180126383A1 (en) Microorganism nucleic acid purification from host samples
EP3052658B1 (en) Methods to profile molecular complexes by using proximity dependant bar-coding
JP2022088629A (en) Direct amplification and detection of viral and bacterial pathogens
US8785130B2 (en) Use of markers including nucleotide sequence based codes to monitor methods of detection and identification of genetic material
US20150141264A1 (en) In-field dna extraction, detection and authentication methods and systems therefor
US20080145898A1 (en) Sequencing methods
US10724089B2 (en) Spatial molecular analysis of tissue
JP2005521409A (en) Single primer isothermal nucleic acid amplification-enhanced analyte detection and quantification
CN108614102A (en) Multiple assay based on aptamer
EP3277834B1 (en) Methods of capturing sperm nucleic acids
JP2008154493A (en) Separation/purification method and microfluid circuit
JP2017532015A (en) Method for extracting, detecting and authenticating DNA on site and system therefor
CN104212792A (en) Nicking endonuclease-based netted rolling cycle amplification system and use thereof
CN1475576A (en) Single chain DNA fast preparation technology and reagent box
WO2013166302A1 (en) Nucleic acid sequencing systems and methods
JP2011135799A (en) Method of detecting and/or identifying biopolymer
EP4271834A1 (en) Pathogen detection in liquid matrix
WO2022040269A1 (en) Hybridisation-based sensor systems and probes
JP7152599B2 (en) Systems and methods for modular and combinatorial nucleic acid sample preparation for sequencing
CN101824492A (en) Kit for detecting AH1N1 influenza virus
US20220025430A1 (en) Sequence based imaging
CN102230026A (en) Human enterovirus 71 detection kit
JP2006230342A (en) Method and apparatus for separating single stranded nucleic acid and microarray and dna chip
CN101824493A (en) Kit for detecting hepatitis B virus
TW202411430A (en) Methods for accurate parallel detection and quantification of nucleic acids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141125