JP2011135000A - Method of manufacturing dust core - Google Patents

Method of manufacturing dust core Download PDF

Info

Publication number
JP2011135000A
JP2011135000A JP2009295312A JP2009295312A JP2011135000A JP 2011135000 A JP2011135000 A JP 2011135000A JP 2009295312 A JP2009295312 A JP 2009295312A JP 2009295312 A JP2009295312 A JP 2009295312A JP 2011135000 A JP2011135000 A JP 2011135000A
Authority
JP
Japan
Prior art keywords
dust core
powder
iron
eddy current
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009295312A
Other languages
Japanese (ja)
Other versions
JP5568983B2 (en
Inventor
Satoshi Imamori
聡 今盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2009295312A priority Critical patent/JP5568983B2/en
Publication of JP2011135000A publication Critical patent/JP2011135000A/en
Application granted granted Critical
Publication of JP5568983B2 publication Critical patent/JP5568983B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dust core which balances high specific permittivity with low eddy current. <P>SOLUTION: This method of manufacturing a dust core includes processes of: forming a compact using powder containing an iron constituent; firing the compact to form a fired body having resistivity <50 μΩm; and heat-treating the fired body in steam. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、各種電気機器に用いられる圧粉コアの製造方法に関する。より詳しくは、本発明の圧粉コアの製造方法は、粉末冶金法によって形成される焼成体の磁気特性を向上させる、当該方法に関する。   The present invention relates to a method for manufacturing a dust core used in various electric devices. More specifically, the method for producing a dust core of the present invention relates to the method for improving the magnetic properties of a fired body formed by powder metallurgy.

近年、モータなどの電気機器として、圧粉コアと称される鉄心材料が注目されている。圧粉コアは鉄系の粉末に絶縁体をコーティングし、さらに必要に応じてバインダーを添加して、これらの混合物を、順次、プレス成形及び焼成することにより作製される。このような技術によれば、電磁鋼板から作製された従来の鉄心とは異なり、3次元構造の鉄心を得ることができる。従って、圧粉コアにより、電気機器の構造設計の範囲は大きく広がった。   In recent years, an iron core material called a dust core has attracted attention as an electric device such as a motor. The dust core is produced by coating an iron-based powder with an insulator, adding a binder as necessary, and sequentially pressing and baking the mixture. According to such a technique, an iron core having a three-dimensional structure can be obtained unlike a conventional iron core manufactured from an electromagnetic steel sheet. Therefore, the range of the structural design of electrical equipment has been greatly expanded by the dust core.

しかしながら、鉄心に圧粉コアを用いることには、いくつかの欠点も存在する。例えば、圧粉コアは絶縁体皮膜でコーティングされた鉄系粉末をプレス成形して得られるため、鉄粉の間に非磁性成分が介在し、磁壁の移動を妨げるおそれがある。このため、圧粉コアの透磁率は、電磁鋼板から作製された鉄心などのそれよりも低くなる可能性が高い。   However, the use of a dust core for the iron core also has some drawbacks. For example, since the dust core is obtained by press-molding iron-based powder coated with an insulating film, a nonmagnetic component may be present between the iron powders, which may hinder the movement of the domain wall. For this reason, the magnetic permeability of the dust core is likely to be lower than that of an iron core made of an electromagnetic steel sheet.

このような状況に対応すべく、透磁率を高めるためには、プレス成形後の焼成温度を高めるなどの方法が考えられるが、最大比透磁率を1000程度まで高めようとすると、500℃以上での熱処理が必要となるため、絶縁皮膜が破壊されてしまい、渦電流損が増加する。   In order to increase the magnetic permeability in order to cope with such a situation, a method such as increasing the firing temperature after press molding can be considered. However, if the maximum relative magnetic permeability is increased to about 1000, the temperature is 500 ° C. or higher. Therefore, the insulating film is destroyed and eddy current loss increases.

以上のように1000程度の高い最大比透磁率と低い渦電流損とを両立することは、従来技術においては不可能であった。   As described above, it has been impossible in the prior art to achieve both high maximum relative permeability of about 1000 and low eddy current loss.

そこで、渦電流損を低減するために、アトマイズ法によって粉末を作製する段階で、雰囲気に所定量以上の水蒸気を含ませることにより、粉末表面に酸化物層を形成する方法が開示されている。   Therefore, in order to reduce eddy current loss, a method of forming an oxide layer on the powder surface by incorporating a predetermined amount or more of water vapor in the atmosphere at the stage of producing the powder by the atomizing method is disclosed.

例えば、特許文献1には、Feを主成分とする軟磁性材料を溶融してなる溶湯を用い、アトマイズ法により前記軟磁性材料の粒子を製造する際に、前記アトマイズ法の条件が、(a)前記溶湯の温度は、前記軟磁性材料の融点をTm[℃]としたとき、Tm+200℃以上である、及び(b)水蒸気量10g/m3以上の水蒸気含有雰囲気下で行う、の条件を満たすことにより、前記粒子の表面に、前記軟磁性材料が酸化してなる酸化物で構成された被覆層を形成する、する酸化物被覆軟磁性粉末の製造方法が開示されている。 For example, in Patent Document 1, when the particles of the soft magnetic material are manufactured by an atomizing method using a molten metal obtained by melting a soft magnetic material containing Fe as a main component, the conditions of the atomizing method are (a ) When the melting point of the soft magnetic material is Tm [° C.], the temperature of the molten metal is Tm + 200 ° C. or higher, and (b) is performed in a steam-containing atmosphere with a water vapor amount of 10 g / m 3 or higher. A method for producing an oxide-coated soft magnetic powder is disclosed in which a coating layer composed of an oxide formed by oxidizing the soft magnetic material is formed on the surface of the particles by filling.

この方法を用いると、耐久性の高い酸化物層が形成され、渦電流損を低減することができるが、酸化物の皮膜は硬く、プレスの際に粉末が変形し難くなってしまうため、高圧でプレスを行わなければ高い密度、ひいては高い飽和磁束密度、及び透磁率のコアを得ることはできない。しかしながら、高圧でのプレスは金型の耐久性を著しく低下させるとともに、圧粉体の抜き出し時のトラブルの頻度をも上昇させる。さらに、形成された酸化物層は高圧でプレスを行うとその一部が破損してしまうおそれもある。この場合には、酸化物層の破損部分は電気的に同通してしまい、結局、渦電流損は低減できない。以上により、特許文献1には、高い最大比透磁率と低い渦電流損とを両立する技術については、何ら開示されていないこととなる。   When this method is used, a highly durable oxide layer can be formed and eddy current loss can be reduced, but the oxide film is hard and the powder is difficult to deform during pressing. If pressing is not performed, a core having a high density, that is, a high saturation magnetic flux density and a magnetic permeability cannot be obtained. However, pressing at high pressure significantly reduces the durability of the mold and also increases the frequency of troubles when the green compact is extracted. Furthermore, when the formed oxide layer is pressed at a high pressure, a part thereof may be damaged. In this case, the damaged portion of the oxide layer is electrically connected, and as a result, eddy current loss cannot be reduced. As described above, Patent Document 1 does not disclose any technique for achieving both high maximum relative permeability and low eddy current loss.

また、プレス後に酸化物層の補修工程を追加して性能を高めるなどの対策を施す技術も開示されている。   Also disclosed is a technique for taking measures such as adding an oxide layer repair process after pressing to enhance performance.

例えば、特許文献2には、鉄を主成分とする軟磁性粉末の表面に酸化膜を形成する表面酸化工程と、表面に酸化膜を形成した軟磁性粉末をプレス成形して所定形状の成形体とするプレス成形工程と、前記軟磁性粉末の成形体を焼成することにより、軟磁性材の焼結体とする焼結工程とを有し、前記焼結工程において、前記成形体を不活性ガスに弱酸化性ガスを混入した弱酸化性雰囲気ガスと接触させる酸化処理と、雰囲気ガスを系外に排出する脱気処理を交互に繰り返すことを特徴とする軟磁性材の製造方法が開示されている。   For example, in Patent Document 2, a surface oxidation step of forming an oxide film on the surface of a soft magnetic powder containing iron as a main component, and a molded body having a predetermined shape by press-molding the soft magnetic powder having an oxide film formed on the surface thereof And a sintering step to sinter the soft magnetic powder compact by firing the soft magnetic powder compact. In the sintering step, the compact is treated with an inert gas. There is disclosed a method for producing a soft magnetic material, characterized by alternately repeating an oxidation treatment in contact with a weak oxidizing atmosphere gas mixed with a weak oxidizing gas and a degassing treatment for discharging the atmospheric gas out of the system. Yes.

しかしながら、当該製造方法では、プレス後の酸化物層の補修工程の付加により、方法が複雑になるという問題がある。こうした事情により、1000程度の高い最大比透磁率が必要となるような、主に低周波用途の圧粉コアを製造する場合には、高い量産性を実現できない。以上により、特許文献2にも、高い最大比透磁率と低い渦電流損とを両立する技術については、何ら開示されていないこととなる。   However, in this manufacturing method, there is a problem that the method becomes complicated due to the addition of the repair process of the oxide layer after pressing. Under these circumstances, high mass productivity cannot be realized when producing a dust core mainly for low frequency use that requires a high maximum relative permeability of about 1000. As described above, Patent Document 2 does not disclose any technique for achieving both high maximum relative permeability and low eddy current loss.

特開2009−088496号公報JP 2009-088496 A 特開2006−108475号公報JP 2006-108475 A

このように、種々の圧粉コアの製造方法等が開示されているが、特に、高い比透磁率と低い渦流電流とを両立した圧粉コアの製造方法に対する要求が存在する。   As described above, various methods for producing a dust core have been disclosed, and there is a demand for a method for producing a dust core that achieves both a high relative magnetic permeability and a low eddy current.

従って、本発明の目的は、高い比透磁率と低い渦流電流とを両立した圧粉コアを提供することにあり、特に、焼成体に特定の熱処理を施すことにより、所定の特性を備える圧粉コアを得る技術を提供することにある。   Accordingly, an object of the present invention is to provide a dust core that has both a high relative permeability and a low eddy current, and in particular, a dust powder having predetermined characteristics by subjecting a fired body to a specific heat treatment. It is to provide a technique for obtaining a core.

本発明は、鉄成分を含む粉末を用いて圧粉体を形成する工程、上記圧粉体を焼成して、抵抗率が50μΩ・m未満の焼成体を形成する工程、及び上記焼成体を水蒸気中で熱処理する工程を含む、圧粉コアの製造方法に関する。本発明の圧粉コアの製造方法は、各種電気機器に使用される鉄心の製造に用いられる。   The present invention includes a step of forming a green compact using a powder containing an iron component, a step of firing the green compact to form a fired body having a resistivity of less than 50 μΩ · m, and the fired body as water vapor. The present invention relates to a method for producing a dust core, which includes a step of heat treatment in the inside. The method for producing a dust core of the present invention is used for producing an iron core used in various electric devices.

本発明の圧粉コアの製造方法は、上記鉄成分を含む粉末が純鉄粉末であることが望ましい。また、上記熱処理において、処理温度を120℃以上、処理湿度を100%、及び処理時間を100〜200時間とすることが望ましい。   As for the manufacturing method of the powder core of this invention, it is desirable that the powder containing the said iron component is a pure iron powder. In the heat treatment, it is desirable that the treatment temperature is 120 ° C. or higher, the treatment humidity is 100%, and the treatment time is 100 to 200 hours.

本発明の圧粉コアの製造方法によれば、所定の熱処理により、比透磁率と渦電流損との双方の特性を高いレベルで実現することができる。このため、本発明の製造方法により得られた圧粉コアは、各種電気機器の鉄心として有利に使用することができる。   According to the method for manufacturing a dust core of the present invention, it is possible to realize both characteristics of relative permeability and eddy current loss at a high level by a predetermined heat treatment. For this reason, the dust core obtained by the manufacturing method of the present invention can be advantageously used as an iron core of various electric devices.

本発明の圧粉コアについての、最大比透磁率と熱処理時間との関係を示すグラフである。It is a graph which shows the relationship between the maximum specific permeability and heat processing time about the dust core of this invention. 本発明の圧粉コアについての、磁束密度と熱処理時間との関係を示すグラフである。It is a graph which shows the relationship between magnetic flux density and heat processing time about the dust core of this invention. 本発明の圧粉コアについての、損失(ヒステリシス損、渦電流損、及びこれらの合計)と熱処理時間との関係を示すグラフである。It is a graph which shows the relationship between the loss (hysteresis loss, eddy current loss, and these total) and heat processing time about the dust core of this invention.

発明者は、上記課題に鑑み、粉末のプレス成形、焼成、及び熱処理を順次行うことにより、所定の特性、即ち、高い比透磁率と低い渦流電流とを備える圧粉コアを得る技術について、鋭意、検討した。また、今回の検討では、プレス成形、焼成、及び熱処理の3工程を終えた時点で、最大で1000以上といった高い最大比透磁率を得ることを優先的に考慮しつつ、プレス成形及び焼成の2工程を終えた時点での焼成体の不所望な渦電流値を、事後的に増大させるべく、熱処理を行うこととした。   In view of the above problems, the inventor has earnestly studied about a technique for obtaining a dust core having predetermined characteristics, that is, high relative permeability and low eddy current, by sequentially performing press molding, firing and heat treatment of powder. ,investigated. In addition, in this study, when the three steps of press molding, firing, and heat treatment are completed, it is important to obtain a maximum maximum magnetic permeability of 1000 or more, and press molding and firing. In order to increase the undesired eddy current value of the fired body at the time when the process is completed, heat treatment is performed.

その結果、熱処理前の焼成体の抵抗率が50μΩ・m未満であれば、水蒸気含有雰囲気での熱処理により、圧粉コアの抵抗率が効果的に上昇し、渦電流損を低減することができ、結果的に、高い比透磁率と低い渦流電流とを備える圧粉コアを得ることができるとの知見を得た。本発明は、以上の知見に鑑みてなされたものである。   As a result, if the resistivity of the fired body before heat treatment is less than 50 μΩ · m, the resistivity of the dust core can be effectively increased by heat treatment in a steam-containing atmosphere, and eddy current loss can be reduced. As a result, the inventors have found that a dust core having a high relative permeability and a low eddy current can be obtained. The present invention has been made in view of the above findings.

以上の知見に基づく本発明の圧粉コアの製造方法は、圧粉体の形成工程、焼成工程、及び熱処理工程を含む。以下に、各工程について詳述する。なお、以下に示す例は、本発明の一例であり、当業者であれば、適宜設計変更することができる。   The manufacturing method of the powder core of the present invention based on the above knowledge includes a green compact forming step, a firing step, and a heat treatment step. Below, each process is explained in full detail. The example shown below is an example of the present invention, and those skilled in the art can change the design as appropriate.

<圧粉体の形成工程>
まず、使用粉末として、鉄成分を含む粉末(以下、「鉄系粉末」と称する場合がある)を準備する。例えば、純鉄粉、ステンレス鋼粉等を用いることができる。
<Green compact formation process>
First, a powder containing an iron component (hereinafter sometimes referred to as “iron-based powder”) is prepared as a used powder. For example, pure iron powder, stainless steel powder, or the like can be used.

これらの鉄系粉末として、例えば、純鉄粉末を用いた場合には、後述する熱処理において、粉末表面にFe34(マグネタイト)が析出する。マグネタイトの抵抗率は50μΩ・m以上であるため、上記知見に従えば、結果的に、圧粉コアの高い比透磁率と低い渦流電流とを高いレベルで両立することができる。 For example, when pure iron powder is used as these iron-based powders, Fe 3 O 4 (magnetite) is deposited on the powder surface in the heat treatment described later. Since the resistivity of magnetite is 50 μΩ · m or more, according to the above knowledge, as a result, the high relative permeability and the low eddy current of the dust core can be achieved at a high level.

鉄系粉末として、アトマイズ法、還元法等の各種製法により得られた各種粉末に絶縁皮膜が施されたものを適用することができる。絶縁皮膜は渦電流損の抑制を目的として施される。これらのうちでも、水アトマイズ法により得られた粉末を適用することが、粉末の高圧縮性及び低コストという点で好ましい。   As the iron-based powder, those obtained by applying an insulating film to various powders obtained by various manufacturing methods such as an atomizing method and a reduction method can be applied. The insulating film is applied for the purpose of suppressing eddy current loss. Among these, it is preferable to apply the powder obtained by the water atomization method in terms of the high compressibility and low cost of the powder.

鉄系粉末の粒度は、圧粉コアに要求される磁束密度及びそれが用いられる特定の周波数領域により決定することができる。例えば、圧粉コアにより実現されるべき磁束密度が1.0 〜2.0Tであり、かつ、圧粉コアの使用周波数領域が50〜400Hzの場合には、鉄系粉末の粒度は、平均粒径100μm〜200μmの粉末を用いることが好ましい。   The particle size of the iron-based powder can be determined by the magnetic flux density required for the dust core and the specific frequency region in which it is used. For example, when the magnetic flux density to be realized by the dust core is 1.0 to 2.0 T and the operating frequency region of the dust core is 50 to 400 Hz, the particle size of the iron-based powder is the average particle size. It is preferable to use a powder having a diameter of 100 μm to 200 μm.

このような粉末に、所定のバインダーを加えて混合する。バインダーとしは、エポキシ樹脂、ポリアミド樹脂等を用いることができる、特に、ポリアミド樹脂を用いた場合には、高強度化の点で好ましい。   A predetermined binder is added to such powder and mixed. As the binder, an epoxy resin, a polyamide resin, or the like can be used. Particularly, when a polyamide resin is used, it is preferable in terms of increasing the strength.

鉄系粉末とバインダーとの混合は、バインダーの混合比率を0.005〜5質量%とし、混合回転機などで混合することができる。特に、バインダーの混合比率を0.005〜1%で行うことが、磁束密度の向上の点で好ましい。このようにして、鉄系粉末とバインダーとを含む原料を得る。   The mixing of the iron-based powder and the binder can be performed with a mixing rotator or the like with a binder mixing ratio of 0.005 to 5% by mass. In particular, the binder mixing ratio of 0.005 to 1% is preferable from the viewpoint of improving the magnetic flux density. Thus, the raw material containing an iron-type powder and a binder is obtained.

次に、所定の金型を用いて、上記原料をプレス成形する。金型の形状は特に限定されず、例えば、軸受け形状の金型を用いることができる。   Next, the raw material is press-molded using a predetermined mold. The shape of the mold is not particularly limited, and for example, a bearing-shaped mold can be used.

プレス成形の際には、高い圧縮性を得るため、及び、圧粉体の抜き出し時における金型内表面と圧粉体との摩擦を抑制するために、金型内表面に潤滑剤を予め塗布しておくことが好ましい。潤滑剤としては、例えば、ステアリン酸亜鉛、エチレンビスステアロアマイド、リン酸2水素カリウム等を用いることができ、具体的な塗布態様としては、静電塗布法等を適用することができる。   In press molding, in order to obtain high compressibility and to suppress friction between the inner surface of the mold and the green compact when the green compact is drawn out, a lubricant is applied to the inner surface of the mold in advance. It is preferable to keep it. As the lubricant, for example, zinc stearate, ethylene bisstearoamide, potassium dihydrogen phosphate, or the like can be used, and an electrostatic coating method or the like can be applied as a specific coating mode.

また、プレス成形条件としては、保持応力600〜1500MPaとすることができ、特に、保持応力を800〜1000MPaとすることがコアを高密度としつつ金型の寿命低下を防ぐ点で好ましい。   Moreover, as press molding conditions, it can be set as holding stress 600-1500 Mpa, and it is especially preferable at a point which prevents the lifetime reduction of a metal mold | die while making a core high density to make holding stress 800-1000 MPa.

以上のようにして、所定の圧粉体を得ることができる。   A predetermined green compact can be obtained as described above.

<焼成工程>
上記のようにして得られたバインダーを含む圧粉体を焼成する。焼成は、所定の焼成炉にて、大気又は窒素雰囲気の下、保持温度200〜600℃、及び保持時間10〜120分で行うことができる。
<Baking process>
The green compact containing the binder obtained as described above is fired. Firing can be performed in a predetermined firing furnace in an air or nitrogen atmosphere at a holding temperature of 200 to 600 ° C. and a holding time of 10 to 120 minutes.

このような条件下においては、特に、保持温度300〜550℃とすることが、絶縁皮膜の熱による破壊を抑え、渦電流損が抑えられる点と、内部歪の緩和により比透磁率が上昇し、ヒステリシス損が減少する点で好ましい。   Under such conditions, in particular, the holding temperature of 300 to 550 ° C. suppresses breakage of the insulating film due to heat and suppresses eddy current loss, and the relative permeability increases due to relaxation of internal strain. This is preferable in that the hysteresis loss is reduced.

以上のようにして、所定の焼成体を得ることができる。   As described above, a predetermined fired body can be obtained.

なお、焼成体の抵抗率は、例えば、通常の4端子法により測定することができる。   The resistivity of the fired body can be measured by, for example, a normal four-terminal method.

<熱処理工程>
上記のようにして得られた焼成体を熱処理する。熱処理は、所定の熱処理装置を湿度100%の状態として、保持温度100〜550℃、及び保持時間10分〜200時間として行うことができる。
<Heat treatment process>
The fired body obtained as described above is heat-treated. The heat treatment can be performed with a predetermined heat treatment apparatus at a humidity of 100%, a holding temperature of 100 to 550 ° C., and a holding time of 10 minutes to 200 hours.

以上のようにして、所定の圧粉コアを得ることができる。   As described above, a predetermined dust core can be obtained.

以下に本発明の効果を実施例により実証する。なお、以下の実施例は、本発明を説明するための代表例に過ぎず、本発明をなんら限定するものではない。   The effects of the present invention are demonstrated below by examples. The following examples are merely representative examples for explaining the present invention, and do not limit the present invention in any way.

<圧粉コアの作製>
ヘガネス社製リン酸塩皮膜つき純鉄粉末と、バインダーとを混合し、鉄系粉末とバインダーとを含む原料を得た。
<Preparation of powder core>
A pure iron powder with a phosphate film manufactured by Höganäs was mixed with a binder to obtain a raw material containing an iron-based powder and a binder.

次に、金型(外径35mm、内径25mm、及び高さ5mmのリング状)を用いて、上記原料をプレス成形した。プレス成形の際には、高い圧縮性等に鑑み、金型内表面に潤滑剤を予め塗布した。   Next, the raw material was press-molded using a mold (a ring shape having an outer diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm). In press molding, in view of high compressibility and the like, a lubricant was applied in advance to the inner surface of the mold.

ここで、プレス成形条件を、保持応力980MPa、とし、本発明例の圧粉体を得た。   Here, the green compact of the example of the present invention was obtained by setting the press molding condition to a holding stress of 980 MPa.

次いで、焼成炉にて、大気中雰囲気の下、保持温度500℃として圧粉体を焼成して、本発明例の焼成体を得た。   Next, the green compact was fired at a holding temperature of 500 ° C. in an air atmosphere in a firing furnace to obtain a fired body of the present invention example.

ここで、焼成体の最大比透磁率(定義:B/(μ0H)の最大値)を岩通計測社製の装置BHアナライザSY-8232で測定したところ、985であり、抵抗率(RS/L:Rは測定された抵抗値、Sは測定領域の断面積、Lは測定領域の長さを4端子法で測定したところ、7μΩ・mであった。 Here, the maximum relative magnetic permeability (definition: maximum value of B / (μ 0 H)) of the fired body was measured with an apparatus BH analyzer SY-8232 manufactured by Iwatatsu Measurement Co., Ltd., which was 985, and the resistivity (RS / L: R is the measured resistance value, S is the cross-sectional area of the measurement region, and L is 7 μΩ · m when the length of the measurement region is measured by the four-terminal method.

さらに、エスペック社製の熱処理装置内を湿度100%の状態として、保持温度120℃、及び保持時間200分として熱処理を行い、本発明例の圧粉コアを得た。   Furthermore, heat treatment was performed with a heat treatment apparatus manufactured by ESPEC Co., Ltd. at a humidity of 100%, a holding temperature of 120 ° C., and a holding time of 200 minutes, to obtain a dust core of the present invention example.

<磁気特性の評価>
以上のようにして得られた圧粉コアについて、最大比透磁率(B/(μ0H)の最大値)、磁束密度、並びにヒステリシス損及び渦電流損について、測定した。
<Evaluation of magnetic properties>
With respect to the dust core obtained as described above, the maximum relative permeability (the maximum value of B / (μ 0 H)), the magnetic flux density, the hysteresis loss, and the eddy current loss were measured.

最大比透磁率、磁束密度、損失については、岩通計測社製の装置BHアナライザSY-8232を用いて測定した。損失は2周波数法によりヒステリシス損と渦電流損に分離した。これらの結果を図1〜3に示す。   The maximum specific permeability, magnetic flux density, and loss were measured using an apparatus BH analyzer SY-8232 manufactured by Iwatatsu Keiki Co., Ltd. The loss was separated into hysteresis loss and eddy current loss by the two-frequency method. These results are shown in FIGS.

図1〜3によれば、焼成体に対して施した熱処理により、最大比透磁率、磁束密度、及びヒステリシス損を変化させることなく、渦電流のみを低減させることができる。これにより、熱処理を施した圧粉コアについては、高い比透磁率と低い渦電流損とを両立することができることが判る。   According to FIGS. 1-3, only the eddy current can be reduced by changing the maximum relative magnetic permeability, the magnetic flux density, and the hysteresis loss by the heat treatment applied to the fired body. Thereby, it can be seen that the powder core subjected to the heat treatment can achieve both high relative permeability and low eddy current loss.

本発明の圧粉コアの製造方法によれば、高い比透磁率と低い渦電流損とを両立した圧粉コアを得ることができる。従って、本発明は、今後益々、高い磁気特性が要請される鉄心の製造に適用することができる点で有望である。   According to the method for manufacturing a dust core of the present invention, it is possible to obtain a dust core that has both a high relative permeability and a low eddy current loss. Accordingly, the present invention is promising in that it can be applied to the manufacture of iron cores that are required to have higher magnetic properties.

Claims (3)

鉄成分を含む粉末を用いて圧粉体を形成する工程、
前記圧粉体を焼成して、抵抗率が50μΩ・m未満の焼成体を形成する工程、及び
前記焼成体を水蒸気中で熱処理する工程
を含むことを特徴とする、圧粉コアの製造方法。
Forming a green compact using a powder containing an iron component;
A method for producing a dust core, comprising: firing the green compact to form a fired body having a resistivity of less than 50 μΩ · m; and heat treating the fired body in water vapor.
前記鉄成分を含む粉末が純鉄粉末であることを特徴とする、請求項1に記載の圧粉コアの製造方法。   The method for producing a dust core according to claim 1, wherein the powder containing the iron component is pure iron powder. 前記熱処理において、処理温度を120℃以上、処理湿度を100%、及び処理時間を100〜200時間とすることを特徴とする、請求項1又は2に記載の圧粉コアの製造方法。   In the said heat processing, processing temperature is 120 degreeC or more, processing humidity is 100%, and processing time is 100 to 200 hours, The manufacturing method of the powder core of Claim 1 or 2 characterized by the above-mentioned.
JP2009295312A 2009-12-25 2009-12-25 Manufacturing method of powder core Expired - Fee Related JP5568983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009295312A JP5568983B2 (en) 2009-12-25 2009-12-25 Manufacturing method of powder core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009295312A JP5568983B2 (en) 2009-12-25 2009-12-25 Manufacturing method of powder core

Publications (2)

Publication Number Publication Date
JP2011135000A true JP2011135000A (en) 2011-07-07
JP5568983B2 JP5568983B2 (en) 2014-08-13

Family

ID=44347382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009295312A Expired - Fee Related JP5568983B2 (en) 2009-12-25 2009-12-25 Manufacturing method of powder core

Country Status (1)

Country Link
JP (1) JP5568983B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085187A1 (en) * 2021-11-11 2023-05-19 株式会社レゾナック Magnetic body and magnetic body production method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211052A (en) * 1985-03-15 1986-09-19 Toshiba Corp Yoke core for printer head
JP2002231518A (en) * 2001-02-02 2002-08-16 Daido Steel Co Ltd Soft magnetic powder and dust core formed thereof
JP2006049625A (en) * 2004-08-05 2006-02-16 Denso Corp Manufacturing method of soft magnetic material
JP2008288525A (en) * 2007-05-21 2008-11-27 Mitsubishi Steel Mfg Co Ltd Sintered soft magnetic powder molding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211052A (en) * 1985-03-15 1986-09-19 Toshiba Corp Yoke core for printer head
JP2002231518A (en) * 2001-02-02 2002-08-16 Daido Steel Co Ltd Soft magnetic powder and dust core formed thereof
JP2006049625A (en) * 2004-08-05 2006-02-16 Denso Corp Manufacturing method of soft magnetic material
JP2008288525A (en) * 2007-05-21 2008-11-27 Mitsubishi Steel Mfg Co Ltd Sintered soft magnetic powder molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085187A1 (en) * 2021-11-11 2023-05-19 株式会社レゾナック Magnetic body and magnetic body production method

Also Published As

Publication number Publication date
JP5568983B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
EP2680281B1 (en) Composite soft magnetic material having low magnetic strain and high magnetic flux density, method for producing same, and electromagnetic circuit component
US7871474B2 (en) Method for manufacturing of insulated soft magnetic metal powder formed body
JP5240234B2 (en) Manufacturing method of dust core
CN106663513B (en) Magnetic core, the manufacturing method of magnetic core and coil component
US7758706B2 (en) Method for producing dust core compact and dust core compact
WO2010084600A1 (en) Method for producing dust core
JP2013191839A (en) Dust core and powder for magnetic core used therefor
JP6667727B2 (en) Manufacturing method of dust core, manufacturing method of electromagnetic parts
JP2008172257A (en) Method for manufacturing insulating soft magnetic metal powder molding
JP2006097124A (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDE FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL FROM THE POWDER
JP6609255B2 (en) Soft magnetic powder mixture
JP4750471B2 (en) Low magnetostrictive body and dust core using the same
JPWO2005013294A1 (en) Soft magnetic material, dust core, transformer core, motor core, and method for manufacturing dust core
CN108140472B (en) Molded body, electromagnetic component, and method for producing molded body
JP6477124B2 (en) Soft magnetic metal dust core, and reactor or inductor
JP5568983B2 (en) Manufacturing method of powder core
JP2005079511A (en) Soft magnetic material and its manufacturing method
JP6556780B2 (en) Powder magnetic core, powder for magnetic core, and production method thereof
JP2006183121A (en) Iron based powder for powder magnetic core and powder magnetic core using the same
JP2010185126A (en) Composite soft magnetic material and method for producing the same
WO2005038829A1 (en) Process for producing soft magnetism material, soft magnetism material and powder magnetic core
JP5091100B2 (en) Soft magnetic material and manufacturing method thereof
WO2005024858A1 (en) Soft magnetic material and method for producing same
JP2018142642A (en) Powder magnetic core
JP6940674B2 (en) Manufacturing method of powder compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R150 Certificate of patent or registration of utility model

Ref document number: 5568983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees