JP2011133750A - Member with protective film for forming resist pattern, and method for producing the same, and method for producing resist pattern - Google Patents

Member with protective film for forming resist pattern, and method for producing the same, and method for producing resist pattern Download PDF

Info

Publication number
JP2011133750A
JP2011133750A JP2009294532A JP2009294532A JP2011133750A JP 2011133750 A JP2011133750 A JP 2011133750A JP 2009294532 A JP2009294532 A JP 2009294532A JP 2009294532 A JP2009294532 A JP 2009294532A JP 2011133750 A JP2011133750 A JP 2011133750A
Authority
JP
Japan
Prior art keywords
resist pattern
protective film
resist
film
photomask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009294532A
Other languages
Japanese (ja)
Other versions
JP5617239B2 (en
Inventor
Junichi Kon
純一 今
Hiroshi Chiba
洋 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2009294532A priority Critical patent/JP5617239B2/en
Publication of JP2011133750A publication Critical patent/JP2011133750A/en
Application granted granted Critical
Publication of JP5617239B2 publication Critical patent/JP5617239B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a member for forming a resist pattern with a new protective film formed on the member. <P>SOLUTION: The member with a protective film for forming a resist pattern comprises: a member for forming a resist pattern having a surface containing an oxide and used by adhering to a resist film 2 for forming a resist pattern; and a protective film 4 formed on the member for forming the resist pattern which contains a straight-chain amphiphilic molecule containing a perfluoro polyether in a main chain and a hydroxyl group in a terminal group. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、レジストパターンの形成技術に関する。   The present invention relates to a resist pattern forming technique.

半導体装置の一部あるいは実装回路基板においては、加工寸法がミクロンオーダーからサブミクロンオーダーに移行しつつあり、これに伴い、レジストパターン形成に用いられる露光方式は従来の投影方式やプロキシミティ方式からコンタクト方式や縮小投影方式へと移行しつつある。   In some semiconductor devices or mounting circuit boards, the processing dimensions are shifting from micron order to submicron order, and as a result, the exposure method used for resist pattern formation is contact from the conventional projection method or proximity method. The system and the reduced projection system are shifting.

この中でコンタクト露光方式は、比較的安価にサブミクロンの加工が実現できる反面、フォトマスクと基板を密着させて露光を行うがゆえに、フォトレジストや異物が付着してフォトマスクを汚染、損傷するという課題がある。   Among them, the contact exposure method can realize sub-micron processing at a relatively low cost, but exposure is performed by bringing the photomask and the substrate into close contact with each other. There is a problem.

フォトマスクの透光部(ガラスや石英等)に異物が付着すると、コンタクト露光の際にレジストに光が到達しなくなり解像不良が発生する。また、フォトマスクの遮光部(クロム等)に異物が付着すると、コンタクト露光の際にフォトマスクとレジストの間に隙間が生じ、解像性が劣化する。よって、歩留り低下を抑制するために、露光処理毎のフォトマスク洗浄や修復が必要となる。   If foreign matter adheres to the light transmitting portion (glass, quartz, etc.) of the photomask, light does not reach the resist during contact exposure, resulting in poor resolution. In addition, when foreign matter adheres to the light shielding portion (such as chromium) of the photomask, a gap is generated between the photomask and the resist during contact exposure, and resolution is deteriorated. Therefore, in order to suppress a decrease in yield, photomask cleaning and repair are required for each exposure process.

フォトマスクへフッ素樹脂をコーティングし保護膜を形成することで、レジストや異物の付着による汚染を抑止する試みがなされている。しかし、保護膜が厚すぎると、保護膜自体がレジストとマスクの間のギャップとなり、解像性が劣化する。   Attempts have been made to suppress contamination due to adhesion of resists and foreign substances by coating a photomask with a fluororesin to form a protective film. However, if the protective film is too thick, the protective film itself becomes a gap between the resist and the mask, and resolution is deteriorated.

また近年、ナノメートルオーダーの微細加工を比較的簡便に実現すべく、凹凸パターンを形成したモールドを基板上の液状レジスト等に押し付けてパターンを転写するナノインプリント技術の開発が盛んに進められている。このパターン形成技術においても、パターン転写後のモールドと基板の引き離しの際に、モールドにレジストや異物の付着が生じ、繰り返し加工を行う際の歩留りが低下しやすい。   In recent years, nanoimprint technology for transferring a pattern by pressing a mold having a concavo-convex pattern against a liquid resist or the like on a substrate has been actively developed in order to realize microfabrication on the order of nanometers relatively easily. Also in this pattern formation technique, when the mold and the substrate after pattern transfer are separated from each other, resist and foreign matters are attached to the mold, and the yield during repeated processing tends to be reduced.

特開2008−178984号公報JP 2008-178984 A 米国特許第6300042号明細書US Patent No. 6300042

本発明の一目的は、コンタクト露光のフォトマスクや、ナノインプリントのモールド等、レジストパターン形成のためにレジスト材料に密着させる部材への新規な保護膜形成技術、あるいは、そのような保護膜が形成された部材と、そのような保護膜を利用したレジストパターン形成技術を提供することである。   One object of the present invention is to provide a novel protective film forming technique for a member to be in close contact with a resist material for forming a resist pattern, such as a contact exposure photomask or a nanoimprint mold, or such a protective film is formed. And providing a resist pattern forming technique using such a protective film.

本発明の一観点によれば、酸化物を含む表面を有し、レジストパターン形成のためレジスト膜に密着して用いられるレジストパターン形成用部材と、前記レジストパターン形成用部材上に形成され、直鎖状で主鎖がパーフルオロポリエーテルを含み末端基に水酸基を含む両親媒性分子を含む保護膜とを有する保護膜付きレジストパターン形成用部材が提供される。   According to one aspect of the present invention, a resist pattern forming member having a surface containing an oxide and used in close contact with a resist film for forming a resist pattern is formed on the resist pattern forming member. There is provided a resist pattern forming member with a protective film having a chain and a protective film containing an amphiphilic molecule having a main chain containing perfluoropolyether and a terminal group containing a hydroxyl group.

直鎖状で主鎖がパーフルオロポリエーテルを含み末端基に水酸基を含む両親媒性分子を含む保護膜は、酸化物を含むレジストパターン形成用部材の表面に、水素結合により密着性良く形成される。   A protective film containing an amphiphilic molecule that is linear and has a perfluoropolyether and a terminal hydroxyl group is formed on the surface of the resist pattern forming member containing an oxide with good adhesion by hydrogen bonding. The

図1A〜図1Dは、コンタクト露光によるレジストパターン形成工程を概略的に示す断面図である。1A to 1D are cross-sectional views schematically showing a resist pattern forming process by contact exposure. 図2A〜図2Cは、ナノインプリントによるレジストパターン形成工程を概略的に示す断面図である。2A to 2C are cross-sectional views schematically showing a resist pattern forming process by nanoimprint.

まず、コンタクト露光によるレジストパターン形成技術に係る第1及び第2実施例について説明する。図1A〜図1Dは、コンタクト露光によるレジストパターン形成工程を概略的に示す断面図である。   First, first and second embodiments relating to a resist pattern forming technique by contact exposure will be described. 1A to 1D are cross-sectional views schematically showing a resist pattern forming process by contact exposure.

図1Aに示すように、基板1上に、フォトレジスト材料でレジスト膜2が形成されている。基板1は、レジスト膜2で形成するレジストパターンを用いてパターン形成を行いたい基板であり、例えば、前工程で必要に応じて半導体素子や絶縁膜や配線等が形成された半導体基板である。   As shown in FIG. 1A, a resist film 2 is formed on a substrate 1 with a photoresist material. The substrate 1 is a substrate on which a pattern is desired to be formed using a resist pattern formed by the resist film 2, and is, for example, a semiconductor substrate on which a semiconductor element, an insulating film, a wiring, or the like is formed in a previous process as necessary.

フォトマスク3が、透光性基板3aと遮光膜3bとを含む。透光性基板3aは、例えばガラスや石英で形成される。透光性基板3aのレジスト膜2と対向する表面の、遮光部Pbとする領域上に、例えばクロムで遮光膜3bが形成され、遮光膜3bの形成されない領域が、透光部Paとなる。   The photomask 3 includes a translucent substrate 3a and a light shielding film 3b. The translucent substrate 3a is made of glass or quartz, for example. On the surface of the translucent substrate 3a facing the resist film 2, the light shielding film 3b is formed of, for example, chromium on the region to be the light shielding portion Pb, and the region where the light shielding film 3b is not formed becomes the light transmitting portion Pa.

フォトマスク3の、(少なくとも)レジスト膜2と対向する表面に、遮光膜3b及び露出した透光性基板3aを覆って、保護膜4が形成されている。保護膜4の形成に好適な第1及び第2実施例の材料について、詳細は後述する。   A protective film 4 is formed on the surface of the photomask 3 facing (at least) the resist film 2 so as to cover the light shielding film 3b and the exposed translucent substrate 3a. Details of the materials of the first and second embodiments suitable for forming the protective film 4 will be described later.

図1Bに示すように、フォトマスク3の遮光膜3b側表面を、保護膜4を介してレジスト膜2に密着させ、透光部Paから光Lをレジスト膜2に照射して、コンタクト露光を行う。レジスト膜2の感光部分を2a、非感光部分を2bとする。   As shown in FIG. 1B, the surface of the photomask 3 on the light-shielding film 3b side is brought into close contact with the resist film 2 through the protective film 4, and the resist film 2 is irradiated with light L from the translucent portion Pa to perform contact exposure. Do. The photosensitive portion of the resist film 2 is 2a, and the non-photosensitive portion is 2b.

図1Cに示すように、コンタクト露光後、フォトマスク3をレジスト膜2から引き離す。   As shown in FIG. 1C, after contact exposure, the photomask 3 is separated from the resist film 2.

図1Dに示すように、現像により、感光部分2aを除去し非感光部分2bを残して、レジストパターンRP1を形成する。なお、ポジ型のレジスト材料を例示したが、ネガ型のレジスト材料を用いることも可能である。   As shown in FIG. 1D, a resist pattern RP1 is formed by development to remove the photosensitive portion 2a and leave the non-photosensitive portion 2b. Although a positive resist material has been exemplified, a negative resist material can also be used.

保護膜4は、コンタクト露光時にレジスト2とフォトマスク3との間に介在することにより、フォトマスク3にレジスト材料が付着することを防止する。保護膜4には、レジスト材料が付着しにくいことや、解像性を劣化させにくいこと等の特性が要求される。本願発明者らは、以下に説明するように、好適な保護膜形成材料について研究を行った。   The protective film 4 is interposed between the resist 2 and the photomask 3 during contact exposure, thereby preventing the resist material from adhering to the photomask 3. The protective film 4 is required to have characteristics such that resist material is difficult to adhere and resolution is hardly deteriorated. The inventors of the present invention have studied a suitable protective film forming material as described below.

まず、第1実施例として、保護膜形成材料に第1の材料(両親媒性分子及び溶剤)を採用した第1〜第4の実験について説明する。   First, as a first example, first to fourth experiments in which a first material (an amphiphilic molecule and a solvent) is used as a protective film forming material will be described.

第1実施例では、下記一般式(1)で表されるような、直鎖状で主鎖がパーフルオロポリエーテルを含み、両方の末端基に水酸基を含むフッ素含有両親媒性分子(ソルベイソレクシス社製)を原料とし、これを調整して用いた。

Figure 2011133750
In the first example, a fluorine-containing amphiphilic molecule (solveisosodium) having a linear shape and a main chain containing perfluoropolyether and hydroxyl groups at both terminal groups as represented by the following general formula (1): Lexis) was used as a raw material.
Figure 2011133750

また、調整した両親媒性分子を溶解する溶剤として、フッ素を含む(フッ素系の)溶剤(HGALDEN:ソルベイソレクシス社製)を用いた。   In addition, a fluorine-containing (fluorine-based) solvent (HGALDEN: manufactured by Solvay Solexis) was used as a solvent for dissolving the adjusted amphiphilic molecule.

第1の実験について説明する。第1の実験では、(平均分子量2000の両親媒性分子を調製するのに適した分子量分布を持つ)原料の両親媒性分子から、超臨界抽出装置(SCF−201;日本分光製)を用い、温度50℃〜70℃、圧力10MPa〜30MPaの範囲で炭酸ガスによる超臨界抽出を行って、平均分子量2000の両親媒性分子を調製した。ゲルパーミエーションクロマトグラフィー(GPC)より求められた分散度(重量平均分子量/数平均分子量)は、超臨界抽出前の1.45に対し、超臨界抽出後は1.40に減少した。   The first experiment will be described. In the first experiment, a supercritical extraction device (SCF-201; manufactured by JASCO Corporation) was used from raw material amphiphilic molecules (having a molecular weight distribution suitable for preparing amphiphilic molecules having an average molecular weight of 2000). Then, supercritical extraction with carbon dioxide gas was performed at a temperature of 50 ° C. to 70 ° C. and a pressure of 10 MPa to 30 MPa to prepare amphiphilic molecules having an average molecular weight of 2000. The degree of dispersion (weight average molecular weight / number average molecular weight) determined by gel permeation chromatography (GPC) decreased to 1.40 after supercritical extraction, compared to 1.45 before supercritical extraction.

調整した両親媒性分子を、上記溶剤に0.5%の濃度で溶解した。そして、この溶液をフォトマスク上にディップコートで塗布して、保護膜を形成した。   The adjusted amphiphilic molecule was dissolved in the solvent at a concentration of 0.5%. Then, this solution was applied on a photomask by dip coating to form a protective film.

第1の実験のフォトマスクは、石英製のブランクス上にクロム製の遮光膜でラインアンドスペースパターンが形成されたものである。線幅0.5μm及び線間0.5μmのラインアンドスペースパターンから、線幅2μm及び線間2μmのラインアンドスペースパターンまで、線幅及び線間を0.1μmずつ変えた複数のラインアンドスペースパターンが形成されている。   The photomask of the first experiment is such that a line and space pattern is formed on a quartz blank with a chromium light-shielding film. Multiple line and space patterns with line width and line spacing changed by 0.1 μm from line and space pattern with 0.5 μm line width and 0.5 μm between lines to line and space pattern with 2 μm line width and 2 μm between lines Is formed.

得られた保護膜の厚みを、X線光電子分光(ESCA)のC1sスペクトル、及び赤外分光光度計(JIR−100;日本電子製)を用い、C−Fの伸縮振動の吸収強度を測定することにより求めたところ、膜厚は9nmであった。   Using the C1s spectrum of X-ray photoelectron spectroscopy (ESCA) and an infrared spectrophotometer (JIR-100; manufactured by JEOL), the thickness of the obtained protective film is measured for the absorption strength of stretching vibration of CF. As a result, the film thickness was 9 nm.

また、表面に保護膜を形成したフォトマスクの表面エネルギーを、接触角計(CA−QI;協和界面科学製)を用いて測定した接触角の変化により求めた。この結果、保護膜形成前のフォトマスク透光部(石英部分)及び遮光部(クロム部分)の表面自由エネルギーが50mN/mより大きかったのに対し、保護膜形成後の表面自由エネルギーは30mN/m以下に減少した。   Further, the surface energy of a photomask having a protective film formed on the surface was determined by a change in contact angle measured using a contact angle meter (CA-QI; manufactured by Kyowa Interface Science). As a result, the surface free energy of the photomask translucent part (quartz part) and the light shielding part (chrome part) before forming the protective film was larger than 50 mN / m, whereas the surface free energy after forming the protective film was 30 mN / m. m or less.

シリコン基板上に、市販の(ポジ型の)ノボラックレジスト材料(TMMR P−W1000PM;東京応化工業製)を、1μmの厚みとなるように回転塗布した後、110℃にて90秒間ベークを行って、レジスト膜を形成した。   A commercially available (positive type) novolak resist material (TMMR P-W1000PM; manufactured by Tokyo Ohka Kogyo Co., Ltd.) was spin-coated on a silicon substrate to a thickness of 1 μm, and then baked at 110 ° C. for 90 seconds. A resist film was formed.

コンタクトアライナー(PEM−2000;ユニオン光学)を用い、フォトマスクとレジスト膜を密着させ、低圧水銀灯を紫外光源としてコンタクト露光を行った。フォトマスクの引き離し後、2.38%の水酸化テトラメチルアンモニウム(TMAH)水溶液を用い、90秒間の現像を行って、レジストパターンを形成した。比較のため、保護膜無しのフォトマスクを用い、同様にしてレジストパターンを形成した。   Using a contact aligner (PEM-2000; Union Optics), the photomask and the resist film were brought into close contact, and contact exposure was performed using a low-pressure mercury lamp as an ultraviolet light source. After separation of the photomask, development was performed for 90 seconds using a 2.38% aqueous tetramethylammonium hydroxide (TMAH) solution to form a resist pattern. For comparison, a resist pattern was similarly formed using a photomask without a protective film.

保護膜有りのフォトマスクで形成したレジストパターンと、保護膜無しのフォトマスクで形成したレジストパターンとに対し、限界解像度を測定した。その結果、保護膜の有無に関わらず、限界解像度は1.1μmであった。このように、第1実施例の材料で形成した保護膜は、解像性劣化を抑制してコンタクト露光をできることがわかった。   The critical resolution was measured for a resist pattern formed with a photomask with a protective film and a resist pattern formed with a photomask without a protective film. As a result, the limit resolution was 1.1 μm regardless of the presence or absence of the protective film. Thus, it was found that the protective film formed of the material of the first example can perform contact exposure while suppressing the deterioration of resolution.

なお、保護膜の平坦性が良くないと、解像性劣化を招くと考えられる。保護膜の平坦性確保の観点から、両親媒性分子の分散度は1.4以下とすることが好ましいと考えられる。   Note that it is considered that if the flatness of the protective film is not good, the resolution is deteriorated. From the viewpoint of ensuring the flatness of the protective film, it is considered preferable that the degree of dispersion of the amphiphilic molecules is 1.4 or less.

第2の実験について説明する。第2の実験も、第1の実験と同様にして、平均分子量2000に調整した両親媒性分子を上記溶剤に濃度0.5%で溶解した材料で、フォトマスクに保護膜を形成した。   The second experiment will be described. In the second experiment, similarly to the first experiment, a protective film was formed on the photomask using a material in which amphiphilic molecules adjusted to an average molecular weight of 2000 were dissolved in the solvent at a concentration of 0.5%.

ただし、第2の実験のフォトマスクは、線幅1.5μm及び線間1.5μmのラインアンドスペースパターンが形成されたものである。このフォトマスクを用いて、1回の露光で1枚のウエハにパターンを露光した。繰り返し露光を行って、複数のウエハにレジストパターンを形成した。各ウエハのレジストパターンについて、ウエハ面内の21ポイントの歩留りを評価した。比較のため、保護膜無しのフォトマスクについても、同様な評価を行った。   However, the photomask of the second experiment is one in which a line and space pattern having a line width of 1.5 μm and a line spacing of 1.5 μm is formed. Using this photomask, a pattern was exposed on one wafer in one exposure. Repeated exposure was performed to form resist patterns on a plurality of wafers. For the resist pattern of each wafer, the yield of 21 points in the wafer surface was evaluated. For comparison, the same evaluation was performed for a photomask without a protective film.

保護膜無しのフォトマスクを用いた場合は、2回目の露光で歩留りが71%に低下した。一方、保護膜有りのフォトマスクを用いた場合は、20回の露光を繰り返しても、歩留りが90%以上であった。   When a photomask without a protective film was used, the yield decreased to 71% by the second exposure. On the other hand, when a photomask with a protective film was used, the yield was 90% or more even after 20 exposures.

保護膜無しのフォトマスクは、レジスト材料の付着により、繰り返し露光を行うと良好なパターン形成が困難になったと考えられる。一方、保護膜有りのフォトマスクは、低い表面自由エネルギーにより、レジスト材料の付着が抑制されて、繰り返し露光を行っても良好なパターン形成が行えたと考えられる。保護膜の表面自由エネルギーは、50mN/m以下であれば、保護膜無しの場合に比べレジスト材料の付着が抑制され好ましい。   A photomask without a protective film is considered to be difficult to form a good pattern when repeatedly exposed due to adhesion of a resist material. On the other hand, it is considered that a photomask with a protective film can form a good pattern even when repeated exposure is performed by suppressing the adhesion of a resist material due to low surface free energy. When the surface free energy of the protective film is 50 mN / m or less, the adhesion of the resist material is preferably suppressed as compared with the case without the protective film.

第3の実験について説明する。第3の実験では、平均分子量をそれぞれ1000及び5000に調整した両親媒性分子を用意した。   A third experiment will be described. In the third experiment, amphiphilic molecules having average molecular weights adjusted to 1000 and 5000, respectively, were prepared.

平均分子量1000の両親媒性分子は、(平均分子量1000の両親媒性分子を調製するのに適した分子量分布を持つ)原料の両親媒性分子から、超臨界抽出装置を用い、温度50℃〜70℃、圧力10MPa〜30MPaの範囲で炭酸ガスによる超臨界抽出を行って調製した。GPCより求められた分散度は、超臨界抽出前の1.50に対し、超臨界抽出後は1.40に減少した。   An amphiphilic molecule having an average molecular weight of 1000 is obtained from a raw material amphiphilic molecule (having a molecular weight distribution suitable for preparing an amphiphilic molecule having an average molecular weight of 1000) by using a supercritical extraction apparatus and a temperature of 50 ° C. to It was prepared by performing supercritical extraction with carbon dioxide gas at 70 ° C. and pressure of 10 MPa to 30 MPa. The degree of dispersion determined by GPC decreased to 1.40 after supercritical extraction, compared to 1.50 before supercritical extraction.

平均分子量5000の両親媒性分子は、(平均分子量5000の両親媒性分子を調製するのに適した分子量分布を持つ)原料の両親媒性分子から、超臨界抽出装置を用い、温度50℃〜70℃、圧力10MPa〜30MPaの範囲で炭酸ガスによる超臨界抽出を行って調製した。GPCより求められた分散度は、超臨界抽出前の1.40に対し、超臨界抽出後は1.35に減少した。   An amphiphilic molecule having an average molecular weight of 5000 is obtained from a raw material amphiphilic molecule (having a molecular weight distribution suitable for preparing an amphiphilic molecule having an average molecular weight of 5000) by using a supercritical extraction apparatus and a temperature of 50 ° C. to It was prepared by performing supercritical extraction with carbon dioxide gas at 70 ° C. and pressure of 10 MPa to 30 MPa. The degree of dispersion determined by GPC decreased to 1.35 after supercritical extraction, compared to 1.40 before supercritical extraction.

平均分子量1000及び5000の両親媒性分子について、それぞれ、第1及び第2の実験と同様に、上記溶剤に濃度0.5%で溶解して保護膜形成材料とし、第1の実験と同様にして解像性評価を行うとともに、第2の実験と同様にして歩留り評価を行った。   As in the first and second experiments, amphiphilic molecules having an average molecular weight of 1000 and 5000 were dissolved in the solvent at a concentration of 0.5% to form a protective film forming material, respectively. In addition to evaluating the resolution, the yield was evaluated in the same manner as in the second experiment.

平均分子量1000の両親媒性分子を用いた場合、限界解像度は1.1μmであり、歩留りは2回目の露光で86%に低下した。平均分子量5000の両親媒性分子を用いた場合、限界解像度は1.3μmであり、歩留りは20回の露光を繰り返しても、90%以上であった。   When an amphiphilic molecule having an average molecular weight of 1000 was used, the limit resolution was 1.1 μm, and the yield decreased to 86% in the second exposure. When an amphiphilic molecule having an average molecular weight of 5000 was used, the limit resolution was 1.3 μm, and the yield was 90% or more even after 20 exposures.

平均分子量が小さいほど、保護膜の耐熱性や被覆性が低下すると考えられ、被覆性が低下すれば、繰り返し露光での歩留りが低下しやすくなると考えられる。また、平均分子量が大きいほど、保護膜の平坦性が低下してレジストパターンの解像不良が生じやすくなると考えられる。   The smaller the average molecular weight, the lower the heat resistance and coverage of the protective film, and the lower the coverage, the lower the yield in repeated exposure. In addition, it is considered that the higher the average molecular weight, the lower the flatness of the protective film and the more likely the resist pattern resolution failure occurs.

歩留りは、平均分子量1000のサンプルにおいて、2回目の露光で86%に低下しているが、保護膜無しに比べれば保護膜の効果が見られる。これより、好ましい平均分子量の下限は、1000と考えてよいであろう。平均分子量を1500以上とすれば、さらに好ましいであろう。   The yield is reduced to 86% by the second exposure in the sample having an average molecular weight of 1000, but the effect of the protective film can be seen as compared with the case without the protective film. From this, the lower limit of the preferred average molecular weight may be considered to be 1000. It would be more preferable if the average molecular weight is 1500 or more.

限界解像度は、平均分子量5000のサンプルにおいて、(保護膜無しの1.1μmから)1.3μmに劣化しているが、この程度の限界解像度劣化までは許容される。これより、好ましい平均分子量の上限は、5000と考えてよいであろう。平均分子量を4500以下とすれば、さらに好ましいであろう。   The limit resolution deteriorates to 1.3 μm (from 1.1 μm without a protective film) in the sample having an average molecular weight of 5000, but this limit resolution deterioration is allowed. From this, a preferable upper limit of the average molecular weight may be considered to be 5000. It would be more preferable if the average molecular weight is 4500 or less.

第4の実験について説明する。第4の実験も、第1の実験と同様に、平均分子量を2000に調整した両親媒性分子を、上記溶剤に溶解した材料でフォトマスクに保護膜を形成した。ただし、上記溶剤に溶解する濃度を(第1の実験の0.5%に比べ)1%に増やした。   A fourth experiment will be described. In the fourth experiment, similarly to the first experiment, a protective film was formed on the photomask with a material in which amphiphilic molecules having an average molecular weight adjusted to 2000 were dissolved in the solvent. However, the concentration dissolved in the solvent was increased to 1% (compared to 0.5% in the first experiment).

X線光電子分光及び赤外分光光度計により測定した保護膜の厚さは10nmであり、第1の実験の9nmに比べて厚くなった。また、第1の実験と同様にして解像性を評価したところ、限界解像度は1.2μmであり、第1の実験の1.1μmに比べてやや劣化した。   The thickness of the protective film measured by X-ray photoelectron spectroscopy and infrared spectrophotometer was 10 nm, which was thicker than 9 nm in the first experiment. Further, when the resolution was evaluated in the same manner as in the first experiment, the limit resolution was 1.2 μm, which was slightly deteriorated compared to 1.1 μm in the first experiment.

両親媒性分子の濃度が高いほど、保護膜が厚くなり、フォトマスクとレジスト膜との間のギャップが広がることに起因して、解像性が劣化しやすくなると考えられる。この観点より、両親媒性分子の濃度の上限は1%と見積もられ、保護膜の厚さの上限は10nmと見積もられる。   It is considered that the higher the concentration of the amphiphilic molecule, the thicker the protective film, and the resolution is likely to deteriorate due to the wide gap between the photomask and the resist film. From this viewpoint, the upper limit of the amphiphilic molecule concentration is estimated to be 1%, and the upper limit of the thickness of the protective film is estimated to be 10 nm.

なお、両親媒性分子の濃度が低すぎると、均一な保護膜の形成が難しくなる。この観点より、両親媒性分子の濃度の下限は0.01%程度と思われ、保護膜の厚さの下限は0.5nm程度と思われる。   If the concentration of amphiphilic molecules is too low, it is difficult to form a uniform protective film. From this viewpoint, the lower limit of the concentration of the amphiphilic molecule seems to be about 0.01%, and the lower limit of the thickness of the protective film seems to be about 0.5 nm.

第1〜第4の実験を参照して説明したように、第1実施例の材料で形成した保護膜を用いることにより、解像性劣化を抑制しつつ、フォトマスクへのレジスト材料付着を抑制して、コンタクト露光によるレジストパターンを形成することができる。   As described with reference to the first to fourth experiments, by using the protective film formed of the material of the first embodiment, the resist material adhesion to the photomask is suppressed while suppressing the resolution degradation. Thus, a resist pattern can be formed by contact exposure.

次に、第2実施例として、保護膜形成材料に第2の材料(両親媒性分子及び溶剤)を採用した第5及び第6の実験について説明する。   Next, as a second example, fifth and sixth experiments in which a second material (amphiphilic molecules and a solvent) is employed as a protective film forming material will be described.

第2実施例では、下記一般式(2)で表されるような、直鎖状で主鎖がパーフルオロポリエーテルを含み、両方の末端基に水酸基を含むフッ素含有両親媒性分子(ソルベイソレクシス社製)を原料とし、これを調整して用いた。第1実施例と異なるのは、両親媒性分子の末端基として2種類のものが混ざっていることであり、1種類の末端基は、第1実施例と同種のもので水酸基を1つ含み、もう1種類の末端基は、水酸基を2つ含む。

Figure 2011133750
In the second example, a fluorine-containing amphipathic molecule (solveisosodium) having a linear shape and a main chain containing perfluoropolyether and hydroxyl groups at both terminal groups, as represented by the following general formula (2): Lexis) was used as a raw material. The difference from the first example is that two types of end groups of the amphiphilic molecule are mixed, and one type of end group is the same type as the first example and contains one hydroxyl group. Another type of terminal group contains two hydroxyl groups.
Figure 2011133750

調整した両親媒性分子を溶解する溶剤として、第1実施例と別の、フッ素系の溶剤(FC−77:ソルベイソレクシス社製)を用いた。   As a solvent for dissolving the adjusted amphiphilic molecule, a fluorine-based solvent (FC-77: manufactured by Solvay Solexis) different from the first example was used.

第5の実験について説明する。第5の実験では、(平均分子量2500の両親媒性分子を調製するのに適した分子量分布を持つ)原料の両親媒性分子から、超臨界抽出装置(SCF−201;日本分光製)を用い、温度50℃〜70℃、圧力10MPa〜30MPaの範囲で炭酸ガスによる超臨界抽出を行って、平均分子量2500の両親媒性分子を調製した。GPCより求められた分散度は、超臨界抽出前の1.3に対し、超臨界抽出後は1.2に減少した。   The fifth experiment will be described. In the fifth experiment, a supercritical extraction device (SCF-201; manufactured by JASCO) was used from the amphiphilic molecules of the raw material (having a molecular weight distribution suitable for preparing an amphiphilic molecule having an average molecular weight of 2500). Then, supercritical extraction with carbon dioxide gas was performed at a temperature of 50 ° C. to 70 ° C. and a pressure of 10 MPa to 30 MPa to prepare amphiphilic molecules having an average molecular weight of 2500. The degree of dispersion determined by GPC decreased to 1.2 after supercritical extraction, compared to 1.3 before supercritical extraction.

調整した両親媒性分子を、上記溶剤に0.3%の濃度で溶解した。そして、この溶液をフォトマスク上にディップコートで塗布して、保護膜を形成した。第5の実験のフォトマスクは、第1の実験と同様のものであり、線幅及び線間0.5μm〜線幅及び線間2μmの複数のラインアンドスペースパターンが形成されたものである。   The adjusted amphiphilic molecule was dissolved in the solvent at a concentration of 0.3%. Then, this solution was applied on a photomask by dip coating to form a protective film. The photomask of the fifth experiment is the same as that of the first experiment, in which a plurality of line and space patterns having a line width and a line spacing of 0.5 μm to a line width and a line spacing of 2 μm are formed.

保護膜の厚みを、X線光電子分光及び赤外分光光度計により求めたところ、膜厚は6nmであった。   When the thickness of the protective film was determined by X-ray photoelectron spectroscopy and infrared spectrophotometer, the film thickness was 6 nm.

また、保護膜を形成したフォトマスクの表面エネルギーを、接触角計を用いて測定したところ、保護膜形成前のフォトマスク透光部(石英部分)及び遮光部(クロム部分)の表面自由エネルギーが50mN/mより大きかったのに対し、保護膜形成後の表面自由エネルギーは35mN/m以下に減少した。   Moreover, when the surface energy of the photomask having the protective film formed thereon was measured using a contact angle meter, the surface free energy of the photomask light transmitting part (quartz part) and the light shielding part (chrome part) before the protective film was formed was measured. While it was larger than 50 mN / m, the surface free energy after the formation of the protective film decreased to 35 mN / m or less.

レジスト膜を形成したシリコン基板を準備してコンタクト露光を行い、現像を行って、レジストパターンを形成した。レジスト膜の形成方法、コンタクト露光の方法、現像方法は、第1の実験と同様である。比較のため、保護膜無しのフォトマスクを用い、同様にしてレジストパターンを形成した。   A silicon substrate on which a resist film was formed was prepared, contact exposure was performed, and development was performed to form a resist pattern. The resist film formation method, contact exposure method, and development method are the same as in the first experiment. For comparison, a resist pattern was similarly formed using a photomask without a protective film.

保護膜有りのフォトマスクで形成したレジストパターンと、保護膜無しのフォトマスクで形成したレジストパターンとに対し、限界解像度を測定した。その結果、保護膜の有無に関わらず、限界解像度は1.1μmであった。   The critical resolution was measured for a resist pattern formed with a photomask with a protective film and a resist pattern formed with a photomask without a protective film. As a result, the limit resolution was 1.1 μm regardless of the presence or absence of the protective film.

第6の実験について説明する。第6の実験も、第5の実験と同様にして、第2実施例の保護膜形成材料で、フォトマスクに保護膜を形成した。   A sixth experiment will be described. In the sixth experiment, similarly to the fifth experiment, a protective film was formed on the photomask using the protective film forming material of the second example.

第6の実験のフォトマスクは、第2の実験と同様のものであり、線幅及び線間1.5μmのラインアンドスペースパターンが形成されたものである。第2の実験と同様に、繰り返し露光を行って複数のウエハにレジストパターンを形成し、各ウエハのレジストパターンについて、ウエハ面内の21ポイントの歩留りを評価した。比較のため、保護膜無しのフォトマスクについても、同様な評価を行った。   The photomask of the sixth experiment is the same as the second experiment, in which a line and space pattern having a line width and a line spacing of 1.5 μm is formed. Similar to the second experiment, repeated exposure was performed to form resist patterns on a plurality of wafers, and the yield of 21 points in the wafer plane was evaluated for the resist patterns of each wafer. For comparison, the same evaluation was performed for a photomask without a protective film.

保護膜無しのフォトマスクを用いた場合は、2回目の露光で歩留りが71%に低下した。一方、保護膜有りのフォトマスクを用いた場合は、20回の露光を繰り返しても、歩留りが90%以上であった。   When a photomask without a protective film was used, the yield decreased to 71% by the second exposure. On the other hand, when a photomask with a protective film was used, the yield was 90% or more even after 20 exposures.

第5及び第6の実験を参照して説明したように、第2実施例の材料で形成した保護膜を用いても、解像性劣化を抑制しつつ、フォトマスクへのレジスト材料付着を抑制して、コンタクト露光によるレジストパターンを形成することができる。   As described with reference to the fifth and sixth experiments, even when the protective film formed of the material of the second embodiment is used, the resist material adhesion to the photomask is suppressed while suppressing the deterioration of resolution. Thus, a resist pattern can be formed by contact exposure.

上式(1)及び(2)に示したように、第1及び第2実施例のフッ素含有両親媒性分子は、直鎖状で主鎖がパーフルオロポリエーテルを含み、両方の末端基に水酸基を含む。   As shown in the above formulas (1) and (2), the fluorine-containing amphiphilic molecules of the first and second examples are linear and the main chain contains a perfluoropolyether, and both end groups have Contains a hydroxyl group.

フォトマスクの透光部は、石英やガラスで形成され表面にシリコン酸化物を含み、また、遮光部は、クロムで形成され表面に自然酸化によるクロム酸化物を含む。実施例の両親媒性分子は、末端に配置された極性の水酸基部分が、フォトマスクの透光部、遮光部双方の酸化物表面(の酸素)に水素結合することができるので、密着性の高い保護膜を形成すると考えられる。一方、主鎖中の非極性のパーフルオロポリエーテルの部分が、レジスト膜側に露出することにより、表面自由エネルギーが低下して、保護膜へのレジスト材料付着が抑制される。   The light transmitting portion of the photomask is formed of quartz or glass and includes silicon oxide on the surface, and the light shielding portion is formed of chromium and includes chromium oxide formed by natural oxidation on the surface. Since the amphiphilic molecule of the example has a polar hydroxyl group arranged at the terminal, it can hydrogen bond to the oxide surface (oxygen) of both the light transmitting part and the light shielding part of the photomask. It is considered that a high protective film is formed. On the other hand, the portion of the nonpolar perfluoropolyether in the main chain is exposed to the resist film side, so that the surface free energy is lowered and the adhesion of the resist material to the protective film is suppressed.

次に、ナノインプリントによるレジストパターン形成技術に係る第3実施例について説明する。図2A〜図2Cは、ナノインプリントによるレジストパターン形成工程を概略的に示す断面図である。   Next, a description will be given of a third embodiment according to a resist pattern formation technique by nanoimprint. 2A to 2C are cross-sectional views schematically showing a resist pattern forming process by nanoimprint.

図2Aに示すように、基板11上に、ナノインプリント用の液状のレジスト材料でレジスト膜12が形成されている。基板11は、レジスト膜12を用いて形成するレジストパターンによりパターン形成を行いたい基板であり、例えば、前工程で必要に応じて半導体素子や絶縁膜や配線等が形成された半導体基板である。   As shown in FIG. 2A, a resist film 12 is formed on a substrate 11 with a liquid resist material for nanoimprinting. The substrate 11 is a substrate on which a pattern is to be formed by a resist pattern formed using the resist film 12, and is, for example, a semiconductor substrate on which a semiconductor element, an insulating film, a wiring, or the like is formed in a previous process as necessary.

モールド13のレジスト膜12と対向する側の表面に、所望のレジストパターンに対応する型が形成されている。モールド13は、例えば石英で形成される。   A mold corresponding to a desired resist pattern is formed on the surface of the mold 13 on the side facing the resist film 12. The mold 13 is made of, for example, quartz.

モールド13の、(少なくとも)レジスト膜12と対向する表面に、型を覆って、保護膜14が形成されている。保護膜14の形成に好適な第3実施例の材料について、詳細は後述する。   A protective film 14 is formed on the surface of the mold 13 facing (at least) the resist film 12 so as to cover the mold. Details of the material of the third embodiment suitable for forming the protective film 14 will be described later.

図2Bに示すように、モールド13を、保護膜14を介してレジスト膜12にプレスし密着させ、不要なレジスト材料を型の外部に押し出して、レジスト膜12に型形状を転写する。そして、レジスト膜12を冷却し硬化させて、レジストパターンRP11を形成する。   As shown in FIG. 2B, the mold 13 is pressed and brought into close contact with the resist film 12 through the protective film 14, and unnecessary resist material is pushed out of the mold to transfer the mold shape to the resist film 12. Then, the resist film 12 is cooled and cured to form a resist pattern RP11.

図2Cに示すように、レジストパターンRP11が充分硬化したら、モールド13を引き離す。   As shown in FIG. 2C, when the resist pattern RP11 is sufficiently cured, the mold 13 is pulled away.

保護膜14は、プレス時にレジスト12とモールド13との間に介在することにより、モールド13にレジスト材料が付着することを防止する。第1実施例で説明した、コンタクト露光のフォトマスク保護膜形成材料は、以下に説明するように、ナノインプリントのモールド保護膜形成材料として用いることもできる。   The protective film 14 is interposed between the resist 12 and the mold 13 during pressing, thereby preventing the resist material from adhering to the mold 13. The contact exposure photomask protective film forming material described in the first embodiment can also be used as a nanoimprint mold protective film forming material as described below.

第3実施例に係る第7の実験について説明する。第7の実験では、第1実施例の第1の実験等と同様に、上式(1)で示される両親媒性分子(ソルベイソレクシス社製)を平均分子量2000に調整したものを、フッ素系溶剤(HGALDEN:ソルベイソレクシス社製)に0.5%の濃度で溶解した。   A seventh experiment according to the third embodiment will be described. In the seventh experiment, as in the first experiment of the first example, an amphiphilic molecule represented by the above formula (1) (manufactured by Solvay Solexis) was adjusted to an average molecular weight of 2000, It was dissolved at a concentration of 0.5% in a system solvent (HGALDEN: manufactured by Solvay Solexis).

そして、この溶液をモールド上にディップコートで塗布して、保護膜を形成した。第7の実験のモールドは、石英製の基板に溝幅50nm及び溝間50nmのラインアンドスペースパターンが形成されたものである。   And this solution was apply | coated by the dip coating on the mold, and the protective film was formed. The mold of the seventh experiment is such that a line-and-space pattern having a groove width of 50 nm and a groove space of 50 nm is formed on a quartz substrate.

保護膜の厚みを、X線光電子分光及び赤外分光光度計により求めたところ、膜厚は9nmであった。また、保護膜を形成したモールドの表面エネルギーを、接触角計を用いて測定したところ、保護膜形成前の表面自由エネルギーが50mN/mより大きかったのに対し、保護膜形成後の表面自由エネルギーは25mN/m以下に減少した。   When the thickness of the protective film was determined by X-ray photoelectron spectroscopy and infrared spectrophotometer, the film thickness was 9 nm. In addition, when the surface energy of the mold with the protective film was measured using a contact angle meter, the surface free energy before the protective film was formed was larger than 50 mN / m, whereas the surface free energy after the protective film was formed. Decreased to 25 mN / m or less.

シリコン基板上に、市販のポリメチルメタクリレート(PMMA)を含むレジスト材料(OEBR−1000;東京応化工業製)を回転塗布した後、110℃でベークして、液状レジスト膜を形成した。   A resist material (OEBR-1000; manufactured by Tokyo Ohka Kogyo Co., Ltd.) containing commercially available polymethyl methacrylate (PMMA) was spin-coated on a silicon substrate, and then baked at 110 ° C. to form a liquid resist film.

そして、モールドをレジスト膜にプレスし、レジスト膜を冷却し硬化させ、モールドを引き離して、レジストパターンを形成した。比較のため、保護膜無しのモールドを用い、同様にしてレジストパターンを形成した。   Then, the mold was pressed onto the resist film, the resist film was cooled and cured, and the mold was separated to form a resist pattern. For comparison, a resist pattern was similarly formed using a mold without a protective film.

繰り返しプレスを行って複数のウエハにレジストパターンを形成し、各ウエハのレジストパターンについて、ウエハ面内の21ポイントの歩留りを評価した。比較のため、保護膜無しのモールドについても、同様な評価を行った。   A resist pattern was formed on a plurality of wafers by repeatedly pressing, and the yield of 21 points in the wafer surface was evaluated for the resist pattern of each wafer. For comparison, the same evaluation was performed for a mold without a protective film.

保護膜無しのモールドを用いた場合は、2回目のプレスで歩留りが48%に低下した。一方、保護膜有りのモールドを用いた場合は、5回のプレスを繰り返しても、歩留りが90%以上であった。保護膜有りのモールドは、低い表面自由エネルギーにより、レジスト材料の付着が抑制されて、繰り返しプレスを行っても良好なパターン形成が行えたと考えられる。   When a mold without a protective film was used, the yield decreased to 48% by the second press. On the other hand, when a mold with a protective film was used, the yield was 90% or more even when the press was repeated five times. It is considered that the mold with the protective film can suppress the adhesion of the resist material due to the low surface free energy and can form a good pattern even after repeated pressing.

このように、第1実施例の保護膜形成材料は、コンタクト露光のフォトマスク保護膜に限らず、ナノインプリンティングのモールド保護膜の形成にも用いることができる。モールドは、例えば石英で形成され表面にシリコン酸化物を含み、第1実施例の両親媒性分子は、末端の水酸基がモールドの酸化物表面(の酸素)に水素結合して、密着性の高い保護膜を形成すると考えられる。なお、第2実施例の保護膜形成材料も同様にして、ナノインプリンティングのモールド保護膜形成にも用いることができよう。   Thus, the protective film forming material of the first embodiment is not limited to the contact exposure photomask protective film, but can also be used to form a nanoimprinting mold protective film. The mold is made of, for example, quartz and contains silicon oxide on the surface. The amphiphilic molecule of the first embodiment has high adhesion because the terminal hydroxyl group is hydrogen-bonded to the oxide surface (oxygen) of the mold. It is thought that a protective film is formed. The protective film forming material of the second embodiment can be used in the same way for forming a mold protective film for nanoimprinting.

コンタクト露光のフォトマスクと、ナノインプリントのモールドは、まとめて、レジストパターン形成のためレジスト膜に密着して用いられるレジストパターン形成用部材として捉えることができる。上記実施例の保護膜は、このようなレジストパターン形成用部材の保護膜として好適である。   The contact exposure photomask and the nanoimprint mold can be collectively regarded as a resist pattern forming member used in close contact with the resist film for forming a resist pattern. The protective film of the above embodiment is suitable as a protective film for such a resist pattern forming member.

なお、保護膜形成材料を形成する溶剤は、直鎖状で主鎖がパーフルオロポリエーテルを含み末端基に水酸基を含む両親媒性分子を溶解するとともに、塗布するレジストパターン形成用部材に反応しない材料であれば限定されないが、フッ素を含む溶剤が特に好ましい。また、保護膜形成材料には、必要に応じて添加剤や界面活性剤を添加することができる。   In addition, the solvent for forming the protective film forming material dissolves amphiphilic molecules having a straight chain, a main chain containing perfluoropolyether and a hydroxyl group in the terminal group, and does not react with the resist pattern forming member to be applied. Although it will not be limited if it is a material, the solvent containing a fluorine is especially preferable. Moreover, an additive and a surfactant can be added to the protective film forming material as necessary.

なお、保護膜形成材料のレジストパターン形成用部材への塗布方法は、特に限定されず、ディップコート、スピンコート、スプレーコート、蒸気コート等の方法を用いることができるが、薄膜の均一な形成の観点から、ディップコートが特に好ましい。保護膜形成材料の塗布装置を、露光装置や現像装置、マスク洗浄装置等に組み合わせることで、利便性を向上させることができる。   Note that the method for applying the protective film forming material to the resist pattern forming member is not particularly limited, and methods such as dip coating, spin coating, spray coating, and vapor coating can be used. From the viewpoint, dip coating is particularly preferable. Convenience can be improved by combining the coating device for the protective film forming material with an exposure device, a developing device, a mask cleaning device, or the like.

以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。   Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

以上説明した第1〜第3の実施例を含む実施形態に関し、さらに以下の付記を開示する。
(付記1)
酸化物を含む表面を有し、レジストパターン形成のためレジスト膜に密着して用いられるレジストパターン形成用部材と、
前記レジストパターン形成用部材上に形成され、直鎖状で主鎖がパーフルオロポリエーテルを含み末端基に水酸基を含む両親媒性分子を含む保護膜と
を有する保護膜付きレジストパターン形成用部材。
(付記2)
前記保護膜の厚さは、10nm以下である付記1に記載の保護膜付きレジストパターン形成用部材。
(付記3)
前記レジストパターン形成用部材は、表面にシリコン酸化物を含む透光部と、表面にクロム酸化物を含む遮光部とを有するコンタクト露光用フォトマスクであり、前記保護膜は、前記透光部上及び前記遮光部上に形成されている付記1または2に記載の保護膜付きレジストパターン形成用部材。
(付記4)
前記レジストパターン形成用部材は、表面にシリコン酸化物を含むナノインプリント用のモールドである付記1または2に記載の保護膜付きレジストパターン形成用部材。
(付記5)
直鎖状で主鎖がパーフルオロポリエーテルを含み末端基に水酸基を含む両親媒性分子の溶液を準備する工程と、
前記溶液を、酸化物を含む表面を有し、レジストパターン形成のためレジスト材料に密着して用いられるレジストパターン形成用部材上に塗布する工程と
を有する保護膜付きレジストパターン形成用部材の製造方法。
(付記6)
前記両親媒性分子を含む溶液を準備する工程は、分散度が1.4以下で、平均分子量が1000以上5000以下の前記両親媒性分子の溶液を準備する付記5に記載の保護膜付きレジストパターン形成用部材の製造方法。
(付記7)
前記両親媒性分子を含む溶液を準備する工程は、1%以下の濃度で前記両親媒性分子を溶解した溶液を準備する付記5または6に記載の保護膜付きレジストパターン形成用部材の製造方法。
(付記8)
酸化物を含む表面を有し、レジストパターン形成のためレジスト材料に密着して用いられるレジストパターン形成用部材、及び、前記レジストパターン形成用部材上に形成され、直鎖状で主鎖がパーフルオロポリエーテルを含み末端基に水酸基を含む両親媒性分子を含む保護膜、を有する保護膜付きレジストパターン形成用部材を準備する工程と、
レジスト膜が形成された基板を準備する工程と、
前記保護膜付きレジストパターン形成用部材を、前記レジスト膜に密着させる工程と
を有するレジストパターンの製造方法。
(付記9)
前記レジストパターン形成用部材は、コンタクト露光用フォトマスクであり、
さらに、
前記保護膜付きコンタクト露光用フォトマスクを前記レジスト膜に密着させた状態で前記レジスト膜に露光を行う工程と、
前記レジスト膜から前記保護膜付きコンタクト露光用フォトマスクを引き離し、前記レジスト膜を現像する工程と
を有する付記8に記載のレジストパターンの製造方法。
(付記10)
前記レジストパターン形成用部材は、ナノインプリント用モールドであり、
さらに、
前記保護膜付きナノインプリント用モールドを前記レジスト膜に密着させた状態で前記レジスト膜を硬化させる工程と、
前記レジスト膜から前記保護膜付きナノインプリント用モールドを引き離す工程と
を有する付記8に記載のレジストパターンの製造方法。
The following additional notes are further disclosed regarding the embodiment including the first to third examples described above.
(Appendix 1)
A resist pattern forming member having a surface containing an oxide and used in close contact with the resist film for forming a resist pattern;
A resist pattern forming member with a protective film, which is formed on the resist pattern forming member, and has a protective film that is linear and has a main chain containing perfluoropolyether and an amphiphilic molecule containing a hydroxyl group at a terminal group.
(Appendix 2)
The member for forming a resist pattern with a protective film according to supplementary note 1, wherein the thickness of the protective film is 10 nm or less.
(Appendix 3)
The resist pattern forming member is a contact exposure photomask having a light-transmitting portion containing silicon oxide on the surface and a light-shielding portion containing chromium oxide on the surface, and the protective film is on the light-transmitting portion The member for forming a resist pattern with a protective film according to Supplementary Note 1 or 2, which is formed on the light shielding portion.
(Appendix 4)
The resist pattern forming member according to appendix 1 or 2, wherein the resist pattern forming member is a nanoimprint mold including silicon oxide on a surface thereof.
(Appendix 5)
Preparing a solution of an amphiphilic molecule which is linear and has a main chain containing perfluoropolyether and a terminal group containing a hydroxyl group;
Applying the solution onto a resist pattern forming member having a surface containing an oxide and used in close contact with a resist material for forming a resist pattern. .
(Appendix 6)
The resist film-coated resist according to appendix 5, wherein the step of preparing the solution containing the amphiphilic molecule prepares a solution of the amphiphilic molecule having a dispersity of 1.4 or less and an average molecular weight of 1000 or more and 5000 or less. A method for producing a pattern forming member.
(Appendix 7)
The method for preparing a resist pattern-forming member with a protective film according to appendix 5 or 6, wherein the step of preparing the solution containing the amphiphilic molecule prepares a solution in which the amphiphilic molecule is dissolved at a concentration of 1% or less. .
(Appendix 8)
A resist pattern forming member that has an oxide-containing surface and is used in close contact with a resist material for forming a resist pattern, and is formed on the resist pattern forming member. Preparing a resist pattern forming member with a protective film having a protective film containing an amphiphilic molecule containing a polyether and containing a hydroxyl group at a terminal group;
Preparing a substrate on which a resist film is formed;
A method for producing a resist pattern, comprising: adhering the member for forming a resist pattern with a protective film to the resist film.
(Appendix 9)
The resist pattern forming member is a contact exposure photomask,
further,
Exposing the resist film in a state where the contact exposure photomask with a protective film is in close contact with the resist film;
The method for producing a resist pattern according to appendix 8, further comprising a step of separating the photomask for contact exposure with a protective film from the resist film and developing the resist film.
(Appendix 10)
The resist pattern forming member is a nanoimprint mold,
further,
Curing the resist film in a state where the mold for imprint with a protective film is in close contact with the resist film;
The method for producing a resist pattern according to appendix 8, further comprising a step of separating the nanoimprint mold with a protective film from the resist film.

1 基板
2 レジスト膜
3 フォトマスク
3a 透光性基板
3b 遮光膜
Pa 透光部
Pb 遮光部
4 保護膜
L 光
RP1 レジストパターン
11 基板
12 レジスト膜
13 モールド
14 保護膜
RP11 レジストパターン
DESCRIPTION OF SYMBOLS 1 Substrate 2 Resist film 3 Photomask 3a Translucent substrate 3b Light-shielding film Pa Light-transmitting part Pb Light-shielding part 4 Protective film L Light RP1 Resist pattern 11 Substrate 12 Resist film 13 Mold 14 Protective film RP11 Resist pattern

Claims (5)

酸化物を含む表面を有し、レジストパターン形成のためレジスト膜に密着して用いられるレジストパターン形成用部材と、
前記レジストパターン形成用部材上に形成され、直鎖状で主鎖がパーフルオロポリエーテルを含み末端基に水酸基を含む両親媒性分子を含む保護膜と
を有する保護膜付きレジストパターン形成用部材。
A resist pattern forming member having a surface containing an oxide and used in close contact with the resist film for forming a resist pattern;
A resist pattern forming member with a protective film, which is formed on the resist pattern forming member, and has a protective film that is linear and has a main chain containing perfluoropolyether and an amphiphilic molecule containing a hydroxyl group at a terminal group.
前記レジストパターン形成用部材は、表面にシリコン酸化物を含む透光部と、表面にクロム酸化物を含む遮光部とを有するコンタクト露光用フォトマスクであり、前記保護膜は、前記透光部上及び前記遮光部上に形成されている請求項1に記載の保護膜付きレジストパターン形成用部材。   The resist pattern forming member is a contact exposure photomask having a light-transmitting portion containing silicon oxide on the surface and a light-shielding portion containing chromium oxide on the surface, and the protective film is on the light-transmitting portion The member for forming a resist pattern with a protective film according to claim 1, which is formed on the light shielding portion. 直鎖状で主鎖がパーフルオロポリエーテルを含み末端基に水酸基を含む両親媒性分子の溶液を準備する工程と、
前記溶液を、酸化物を含む表面を有し、レジストパターン形成のためレジスト材料に密着して用いられるレジストパターン形成用部材上に塗布する工程と
を有する保護膜付きレジストパターン形成用部材の製造方法。
Preparing a solution of an amphiphilic molecule which is linear and has a main chain containing perfluoropolyether and a terminal group containing a hydroxyl group;
Applying the solution onto a resist pattern forming member having a surface containing an oxide and used in close contact with a resist material for forming a resist pattern. .
前記両親媒性分子を含む溶液を準備する工程は、分散度が1.4以下で、平均分子量が1000以上5000以下の前記両親媒性分子の溶液を準備する請求項3に記載の保護膜付きレジストパターン形成用部材の製造方法。   The step of preparing the solution containing the amphiphilic molecule prepares a solution of the amphiphilic molecule having a dispersity of 1.4 or less and an average molecular weight of 1000 or more and 5000 or less. A method for producing a resist pattern forming member. 酸化物を含む表面を有し、レジストパターン形成のためレジスト材料に密着して用いられるレジストパターン形成用部材、及び、前記レジストパターン形成用部材上に形成され、直鎖状で主鎖がパーフルオロポリエーテルを含み末端基に水酸基を含む両親媒性分子を含む保護膜、を有する保護膜付きレジストパターン形成用部材を準備する工程と、
レジスト膜が形成された基板を準備する工程と、
前記保護膜付きレジストパターン形成用部材を、前記レジスト膜に密着させる工程と
を有するレジストパターンの製造方法。
A resist pattern forming member that has an oxide-containing surface and is used in close contact with a resist material for forming a resist pattern, and is formed on the resist pattern forming member. Preparing a resist pattern forming member with a protective film having a protective film containing an amphiphilic molecule containing a polyether and containing a hydroxyl group at a terminal group;
Preparing a substrate on which a resist film is formed;
A method for producing a resist pattern, comprising: adhering the member for forming a resist pattern with a protective film to the resist film.
JP2009294532A 2009-12-25 2009-12-25 Member for forming resist pattern with protective film, method for producing the same, and method for producing resist pattern Active JP5617239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009294532A JP5617239B2 (en) 2009-12-25 2009-12-25 Member for forming resist pattern with protective film, method for producing the same, and method for producing resist pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009294532A JP5617239B2 (en) 2009-12-25 2009-12-25 Member for forming resist pattern with protective film, method for producing the same, and method for producing resist pattern

Publications (2)

Publication Number Publication Date
JP2011133750A true JP2011133750A (en) 2011-07-07
JP5617239B2 JP5617239B2 (en) 2014-11-05

Family

ID=44346536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009294532A Active JP5617239B2 (en) 2009-12-25 2009-12-25 Member for forming resist pattern with protective film, method for producing the same, and method for producing resist pattern

Country Status (1)

Country Link
JP (1) JP5617239B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110205A (en) * 2011-11-18 2013-06-06 Toshiba Corp Template treatment method
JP2015038981A (en) * 2013-07-18 2015-02-26 Nskテクノロジー株式会社 Contact exposure device
JP2016028442A (en) * 2015-10-08 2016-02-25 大日本印刷株式会社 Template
WO2016159312A1 (en) * 2015-03-31 2016-10-06 芝浦メカトロニクス株式会社 Imprinting template production device
JP2016195228A (en) * 2015-03-31 2016-11-17 芝浦メカトロニクス株式会社 Device for manufacturing template for imprint
WO2017010540A1 (en) * 2015-07-14 2017-01-19 芝浦メカトロニクス株式会社 Imprinting template manufacturing device and method
WO2018047608A1 (en) * 2016-09-08 2018-03-15 富士フイルム株式会社 Conductive film production method, conductive film, touch panel sensor, antenna, fingerprint authentication, and touch panel
CN108351603A (en) * 2016-01-27 2018-07-31 株式会社Lg化学 Film mask, preparation method and the pattern forming method using film mask
US10969686B2 (en) 2016-01-27 2021-04-06 Lg Chem, Ltd. Film mask, method for manufacturing same, and method for forming pattern using film mask and pattern formed thereby
US11029596B2 (en) 2016-01-27 2021-06-08 Lg Chem, Ltd. Film mask, method for manufacturing same, and method for forming pattern using film mask and pattern formed thereby

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444041A (en) * 1990-06-12 1992-02-13 Seiko Epson Corp Exposure mask
JP2002283354A (en) * 2001-03-27 2002-10-03 Daikin Ind Ltd Mold for imprint processing and method for manufacturing the same
JP2004351693A (en) * 2003-05-28 2004-12-16 Daikin Ind Ltd Imprint processing die and its manufacturing method
JP2007503016A (en) * 2003-08-21 2007-02-15 スリーエム イノベイティブ プロパティズ カンパニー Photo tool coating
JP2007329276A (en) * 2006-06-07 2007-12-20 Tokyo Ohka Kogyo Co Ltd Method for forming resist pattern by nanoimprint lithography
JP2008178984A (en) * 2007-01-23 2008-08-07 Hitachi Ltd Nano-imprinting stamper, its manufacturing method and surface treatment agent of nano-imprinting stamper
JP2008292929A (en) * 2007-05-28 2008-12-04 Nikon Corp Manufacturing method for light-shield pattern
JP2010214859A (en) * 2009-03-18 2010-09-30 Dainippon Printing Co Ltd Mold for nanoimprinting and manufacturing method for the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444041A (en) * 1990-06-12 1992-02-13 Seiko Epson Corp Exposure mask
JP2002283354A (en) * 2001-03-27 2002-10-03 Daikin Ind Ltd Mold for imprint processing and method for manufacturing the same
JP2004351693A (en) * 2003-05-28 2004-12-16 Daikin Ind Ltd Imprint processing die and its manufacturing method
JP2007503016A (en) * 2003-08-21 2007-02-15 スリーエム イノベイティブ プロパティズ カンパニー Photo tool coating
JP2007329276A (en) * 2006-06-07 2007-12-20 Tokyo Ohka Kogyo Co Ltd Method for forming resist pattern by nanoimprint lithography
JP2008178984A (en) * 2007-01-23 2008-08-07 Hitachi Ltd Nano-imprinting stamper, its manufacturing method and surface treatment agent of nano-imprinting stamper
JP2008292929A (en) * 2007-05-28 2008-12-04 Nikon Corp Manufacturing method for light-shield pattern
JP2010214859A (en) * 2009-03-18 2010-09-30 Dainippon Printing Co Ltd Mold for nanoimprinting and manufacturing method for the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110205A (en) * 2011-11-18 2013-06-06 Toshiba Corp Template treatment method
JP2015038981A (en) * 2013-07-18 2015-02-26 Nskテクノロジー株式会社 Contact exposure device
KR101990726B1 (en) 2015-03-31 2019-06-18 시바우라 메카트로닉스 가부시끼가이샤 Template manufacturing equipment for imprints
WO2016159312A1 (en) * 2015-03-31 2016-10-06 芝浦メカトロニクス株式会社 Imprinting template production device
JP2016195228A (en) * 2015-03-31 2016-11-17 芝浦メカトロニクス株式会社 Device for manufacturing template for imprint
US10668496B2 (en) 2015-03-31 2020-06-02 Shibaura Mechatronics Corporation Imprint template treatment apparatus
KR20170134555A (en) * 2015-03-31 2017-12-06 시바우라 메카트로닉스 가부시끼가이샤 Template manufacturing equipment for imprints
US10773425B2 (en) 2015-07-14 2020-09-15 Shibaura Mechatronics Corporation Imprint template manufacturing apparatus and imprint template manufacturing method
WO2017010540A1 (en) * 2015-07-14 2017-01-19 芝浦メカトロニクス株式会社 Imprinting template manufacturing device and method
JP2016028442A (en) * 2015-10-08 2016-02-25 大日本印刷株式会社 Template
CN108351603A (en) * 2016-01-27 2018-07-31 株式会社Lg化学 Film mask, preparation method and the pattern forming method using film mask
JP2018535446A (en) * 2016-01-27 2018-11-29 エルジー・ケム・リミテッド Film mask, manufacturing method thereof, and pattern forming method using the same
US10969686B2 (en) 2016-01-27 2021-04-06 Lg Chem, Ltd. Film mask, method for manufacturing same, and method for forming pattern using film mask and pattern formed thereby
US10969677B2 (en) 2016-01-27 2021-04-06 Lg Chem, Ltd. Film mask, method for manufacturing same, and method for forming pattern using film mask
US11029596B2 (en) 2016-01-27 2021-06-08 Lg Chem, Ltd. Film mask, method for manufacturing same, and method for forming pattern using film mask and pattern formed thereby
WO2018047608A1 (en) * 2016-09-08 2018-03-15 富士フイルム株式会社 Conductive film production method, conductive film, touch panel sensor, antenna, fingerprint authentication, and touch panel

Also Published As

Publication number Publication date
JP5617239B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5617239B2 (en) Member for forming resist pattern with protective film, method for producing the same, and method for producing resist pattern
JP5542766B2 (en) Pattern formation method
KR101667132B1 (en) Method for manufacturing photo cured material
US7279113B2 (en) Method of forming a compliant template for UV imprinting
US8728711B2 (en) Cleaning reticle, method for cleaning reticle stage, and method for manufacturing semiconductor device
US20050160934A1 (en) Materials and methods for imprint lithography
US20110183027A1 (en) Micro-Conformal Templates for Nanoimprint Lithography
US20080131822A1 (en) Method of fabricating imprint lithography template
US20110195189A1 (en) Pattern formation method
US9000064B2 (en) Composition for forming pattern and in-plane printing method using the same
TW201410442A (en) Method for manufacturing article having fine pattern on surface thereof
JP6470079B2 (en) Pattern formation method
Resnick et al. Improved step and flash imprint lithography templates for nanofabrication
KR101789921B1 (en) Method of manufacturing a nano thin-layer pattern structure
JP2007235112A (en) Exposure apparatus, and device manufacturing method
US20220212371A1 (en) Imprint mold, imprint method, and manufacturing method of article
JP2012005939A (en) Pattern forming method
Hamaya et al. High volume semiconductor manufacturing using nanoimprint lithography
US20090208852A1 (en) Pattern forming method, semiconductor device manufacturing method and semiconductor device manufacturing apparatus
US8383323B2 (en) Selective imaging through dual photoresist layers
Francone Materials and anti-adhesive issues in UV-NIL
CN110737171A (en) Nano graph and preparation method thereof, and preparation method of nano structure
Kreindl et al. Soft UV-NIL at the 12.5 nm Scale
Matsuoka et al. Nanoimprint wafer and mask tool progress and status for high volume semiconductor manufacturing
Hiura et al. Nanoimprint system development and status for high volume semiconductor manufacturing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140901

R150 Certificate of patent or registration of utility model

Ref document number: 5617239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150