JP2011133485A - Rotating type weighing apparatus - Google Patents

Rotating type weighing apparatus Download PDF

Info

Publication number
JP2011133485A
JP2011133485A JP2011029586A JP2011029586A JP2011133485A JP 2011133485 A JP2011133485 A JP 2011133485A JP 2011029586 A JP2011029586 A JP 2011029586A JP 2011029586 A JP2011029586 A JP 2011029586A JP 2011133485 A JP2011133485 A JP 2011133485A
Authority
JP
Japan
Prior art keywords
load
zero
detection means
load detection
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011029586A
Other languages
Japanese (ja)
Other versions
JP5148721B2 (en
Inventor
Toru Takahashi
孝橋  徹
Toshiyuki Hirata
年幸 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamato Scale Co Ltd
Original Assignee
Yamato Scale Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamato Scale Co Ltd filed Critical Yamato Scale Co Ltd
Priority to JP2011029586A priority Critical patent/JP5148721B2/en
Publication of JP2011133485A publication Critical patent/JP2011133485A/en
Application granted granted Critical
Publication of JP5148721B2 publication Critical patent/JP5148721B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Weight Measurement For Supplying Or Discharging Of Specified Amounts Of Material (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotating type weighing apparatus frequently acquiring a sufficiently stable zero point signal. <P>SOLUTION: A plurality of measuring devices 2-1 through 2-n are disposed rotatably around the rotation center. A carrying-in position A where articles are sequentially carried into the measuring devices 2-1 through 2-n and a carrying-out position B where articles are sequentially carried out of the measuring devices 2-1 through 2-n are disposed at a distance in a predetermined direction on a rotation trajectory drawn by rotation of the measuring devices 2-1 through 2-n in the predetermined direction. A zero point weight signal is compensated based on the deviation of output acquired by each of the measuring devices 2-1 through 2-n whenever each of the measuring devices 2-1 through 2-n rotates a plurality of times from a carrying out position B to carrying in position A. The compensation is performed while the amount of deviation is reduced. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、荷重検出手段が回転しながら、載荷された物品を計重する回転式計重装置に関し、特に、零点調整に関する。   The present invention relates to a rotary weighing device that weighs a loaded article while a load detection means rotates, and more particularly to zero point adjustment.

従来、回転式計重装置における零点調整技術としては、例えば特許文献1、2に開示されているようなものがある。   Conventionally, as zero-point adjustment technology in a rotary weighing device, for example, there are those disclosed in Patent Documents 1 and 2.

特許文献1の技術は、複数台の荷重検出手段を回転中心の回りに回転可能に設け、各荷重検出手段が回転することによって描く回転軌跡上に各荷重検出手段に物品を順次搬入する搬入位置と、各荷重検出手段から物品を順次排出する搬出位置とを設け、物品が載荷されずに搬出位置から搬入位置まで荷重検出手段が通過するときの荷重検出手段の出力を零点信号として使用するものである。   In the technique of Patent Document 1, a plurality of load detection means are provided so as to be rotatable around the center of rotation, and a carry-in position for sequentially carrying articles to each load detection means on a rotation locus drawn by the rotation of each load detection means. And an unloading position for sequentially discharging articles from each load detecting means, and the output of the load detecting means when the article passes from the unloading position to the loading position without being loaded is used as a zero point signal. It is.

特許文献2の技術は、回転体の円周方向に沿って荷重検出手段を設け、これら荷重検出手段全てに物品が載荷されていない状態のときの荷重検出手段の出力を零点信号として使用するものである。   In the technique of Patent Document 2, load detection means is provided along the circumferential direction of the rotating body, and the output of the load detection means when no article is loaded on all of the load detection means is used as a zero signal. It is.

特許第2756849号Japanese Patent No. 2756849 特開2004−189248号公報JP 2004-189248 A

特許文献1の技術では、各荷重検出手段が高速で回転する場合、搬出位置から搬入位置までを荷重検出手段が通過する時間が短いので、荷重検出手段の出力が充分に安定せず、零点信号がばらつく可能性がある。また、特許文献2の技術では、安定な零点信号を得ることは可能である。しかし、全荷重検出手段に物品が載荷されていない状態としては、例えば特許文献2の技術を用いた装置による物品の生産の開始前程度しかない。荷重検出手段は、周囲温度や湿度の変化を受けて零点信号がドリフトする。また、荷重検出手段に載荷される物品が濡れていたりすると、物品が載荷されるごとに水分が荷重検出手段に滞留し、やはり零点信号がドリフトする。従って、生産開始前に一度だけ零点信号を取得しただけで、その零点信号をそのまま使用し続けると、正確な重量測定を行うことができなくなる。生産の途中で全荷重検出手段を物品不載荷の状態にしようとすると、強制的に生産を中止しなければならず、生産能率が低下する。   In the technique of Patent Document 1, when each load detection means rotates at high speed, the time for the load detection means to pass from the carry-out position to the carry-in position is short, so the output of the load detection means is not sufficiently stable, and the zero signal May vary. Also, with the technique of Patent Document 2, it is possible to obtain a stable zero signal. However, the state in which the article is not loaded on the total load detecting means is, for example, only before the start of the production of the article by the apparatus using the technique of Patent Document 2. The load detection means drifts in response to changes in ambient temperature and humidity. In addition, if an article loaded on the load detection means is wet, water will stay in the load detection means every time an article is loaded, and the zero signal will also drift. Therefore, if the zero point signal is acquired only once before the start of production and the zero point signal is continuously used as it is, accurate weight measurement cannot be performed. If an attempt is made to put the full load detection means in the state of no article loading during production, production must be forcibly stopped, resulting in a reduction in production efficiency.

本発明は、充分に安定した零点信号を頻繁に得られる回転式計重装置を提供することを目的とする。   An object of the present invention is to provide a rotary weighing device capable of frequently obtaining a sufficiently stable zero signal.

本発明の一態様の回転式計重装置は、複数台の荷重検出手段を回転中心の回りに回転可能に設け、前記各荷重検出手段が所定の方向に回転することによって描く回転軌跡上に、前記各荷重検出手段に順次物品を搬入する搬入位置と、前記各荷重検出手段から順次前記物品を搬出する搬出位置とを前記所定方向に間隔をおいて設けてある。更に、前記各荷重検出手段が無負荷であるか否かを無負荷状態判定手段が判定する。回転中に前記無負荷状態判定手段によって無負荷であると判定された前記荷重検出手段に対して零点調整手段が零点調整を行う。前記零点調整手段は、前記無負荷状態判定手段によって無負荷と判定された前記荷重検出手段である無負荷荷重検出手段が前記搬入位置から前記搬出位置まで回転する間に前記無負荷荷重検出手段が発生する出力信号の少なくとも一部を零点重量信号とする。前記荷重検出手段が前記搬出位置から前記搬入位置まで無負荷で複数回にわたって回転するときに、異なる回に前記荷重検出手段から得られる荷重検出手段の出力の偏差に基づいて、対応する前記零点重量信号を零点重量信号補正手段が。補正する。この零点重量信号補正手段は、前記偏差を縮小して前記零点重量信号を補正する。   In the rotary weighing device of one aspect of the present invention, a plurality of load detection means are provided so as to be rotatable around the rotation center, and each load detection means rotates on a rotation locus drawn by rotating in a predetermined direction. A loading position for sequentially loading articles into the load detecting means and a loading position for sequentially unloading the articles from the load detecting means are provided at intervals in the predetermined direction. Further, the no-load state determination means determines whether or not each load detection means is unloaded. Zero point adjustment means performs zero adjustment on the load detection means determined to be unloaded by the no load state determination means during rotation. The zero-point adjusting means is configured such that the no-load load detecting means is operated while the no-load load detecting means, which is the load detecting means determined as no load by the no-load state determining means, rotates from the loading position to the unloading position. At least a part of the generated output signal is a zero point weight signal. When the load detection means rotates a plurality of times without load from the carry-out position to the carry-in position, the corresponding zero point weight is based on the deviation of the output of the load detection means obtained from the load detection means at different times. The signal is zero point weight signal correction means. to correct. The zero-point weight signal correcting means corrects the zero-point weight signal by reducing the deviation.

荷重検出手段に容器が積載されていない場合、荷重検出手段の出力によって零点重量値の記憶を更新すればよい。しかし、充填容器があると、これはできない。ところで、荷重検出手段は、搬出位置から搬入位置まで回転する間には無負荷である。この間には必ず充填ずみ容器は排出されている。この場合の荷重検出手段の信号を用いて、記憶されている零点信号の補正を行うことが考えられる。しかし、搬出位置から搬入位置までの区間は短いので、搬出位置から搬入位置まで1度回転する間の荷重検出手段の出力には、容器搬出による振動信号成分が含まれている。そこで、搬出位置から搬入位置までの回転が複数回にわたって行われたとき、この複数回において得た荷重検出手段の出力の偏差を求める。充填ずみ容器搬出による振動ノイズの量は同じであるので、この偏差は振動信号成分が相殺されて、温度変化や水滴付着による荷重検出手段の出力のドリフトのみを含んでいる。従って、この偏差に基づいて零点信号を補正し、ドリフトの影響を除去する。   If no container is loaded on the load detection means, the zero point weight value storage may be updated by the output of the load detection means. However, this is not possible with a filled container. By the way, the load detection means is unloaded while rotating from the carry-out position to the carry-in position. During this time, the filled container is always discharged. It is conceivable to correct the stored zero signal using the signal of the load detection means in this case. However, since the section from the carry-out position to the carry-in position is short, the output of the load detection means during one rotation from the carry-out position to the carry-in position includes a vibration signal component due to container carry-out. Therefore, when the rotation from the carry-out position to the carry-in position is performed a plurality of times, the deviation of the output of the load detection means obtained at the plurality of times is obtained. Since the amount of vibration noise caused by carrying out the filled container is the same, this deviation cancels out the vibration signal component and includes only the drift of the output of the load detection means due to temperature change and water droplet adhesion. Therefore, the zero point signal is corrected based on this deviation, and the influence of drift is removed.

搬出位置から搬入位置までの間に荷重検出手段の出力に含まれる振動信号成分は値のばらつく可能性があり、この間を荷重検出手段が複数回にわたって通過するごとに得た荷重検出手段の出力の偏差にも、ばらつきが生じている可能性がある。そこで、この偏差を縮小した値によって零点信号を補正することによって過度に零点信号が補正されることを防止している。   The vibration signal component included in the output of the load detection means between the carry-out position and the carry-in position may vary in value, and the output of the load detection means obtained each time the load detection means passes a plurality of times during this period. There may be variations in the deviation. Therefore, the zero signal is prevented from being excessively corrected by correcting the zero signal with the reduced value of the deviation.

例えば、上記のようにして求めた偏差を予め定めた値と比較し、この値よりも偏差が小さい場合には、この偏差によって零点信号を補正し、偏差が上記予め定めた値よりも大きい場合には、上記予め定めた値によって零点信号を補正したり、求めた偏差に予め定めた1よりも小さい係数を乗算し、その乗算値によって零点信号を補正したりすることができる。   For example, when the deviation obtained as described above is compared with a predetermined value and the deviation is smaller than this value, the zero signal is corrected by this deviation, and the deviation is larger than the predetermined value The zero point signal can be corrected by the predetermined value, or the obtained deviation can be multiplied by a coefficient smaller than 1 and the zero point signal can be corrected by the multiplication value.

以上のように、本発明によれば、頻繁に零点信号の調整を行うことができ、ドリフトの影響を除去することができる。   As described above, according to the present invention, the zero signal can be frequently adjusted, and the influence of drift can be eliminated.

本発明の1実施形態の回転式計重装置の概略平面図である。1 is a schematic plan view of a rotary weighing device according to an embodiment of the present invention. 図1の回転式計重装置における計量器の回転状態の説明図である。It is explanatory drawing of the rotation state of the measuring instrument in the rotary type weighing device of FIG. 図1の回転式計重装置のブロック図である。It is a block diagram of the rotary weighing device of FIG. 図1の回転式計重装置における零点調整のフローチャートである。It is a flowchart of the zero point adjustment in the rotary weighing device of FIG. 図1の回転式計重装置における零点補正のフローチャートである。It is a flowchart of the zero point correction | amendment in the rotary weighing device of FIG. 本発明の他の実施形態の回転式計重装置における計量器の回転状態の説明図である。It is explanatory drawing of the rotation state of the measuring instrument in the rotary weighing device of other embodiment of this invention.

本発明の1実施形態の回転式計重装置は、例えば重量式充填装置に実施されたもので、図1に示すように複数の計量装置2−1乃至2−nを有している。これら計量装置2−1乃至2−nは、物品が負荷される載台4−1乃至4−nを有し、さらに、これら載台4−1乃至4−nに負荷された物品を計重する荷重検出手段、例えばロードセル6−1乃至6−nを有している。これら計量装置2−1乃至2−nは、或る回転中心の回りに描くことができる円周上に所定角度ごとに配置され、上記回転中心の回りに回転するように配置されている。例えば図示しない円板状の回転体の円周に沿って配置されている。この回転体は、図示しない駆動手段、例えばモータによって、例えば等速度で駆動される。   A rotary weighing device according to an embodiment of the present invention is implemented, for example, in a weight-type filling device, and includes a plurality of weighing devices 2-1 to 2-n as shown in FIG. These weighing devices 2-1 to 2-n have platforms 4-1 to 4-n on which articles are loaded, and weigh the articles loaded on these platforms 4-1 to 4-n. Load detecting means, for example, load cells 6-1 to 6-n. These weighing devices 2-1 to 2-n are arranged at predetermined angles on a circumference that can be drawn around a certain rotation center, and are arranged so as to rotate around the rotation center. For example, it arrange | positions along the periphery of the disk-shaped rotary body which is not shown in figure. This rotating body is driven at a constant speed, for example, by a driving means (not shown) such as a motor.

上記円周上の1箇所には、各載台4−1乃至4−nがその位置に到達するごとに容器8を搬入する搬入位置Aがある。この搬入位置には、搬入装置、例えばスターホイール10が配置されている。また、上記搬入位置から上記円周に沿って計量装置2−1乃至2−nの回転方向と反対方向に所定角度だけ離れた位置に搬出位置Bがある。この搬出位置Bには、搬出装置例えばスターホイール12が配置されている。   At one place on the circumference, there is a loading position A where the container 8 is loaded every time each of the platforms 4-1 to 4-n reaches the position. A carry-in device, for example, a star wheel 10 is arranged at this carry-in position. Further, there is a carry-out position B at a position away from the carry-in position by a predetermined angle along the circumference in the direction opposite to the rotation direction of the weighing devices 2-1 to 2-n. In the carry-out position B, a carry-out device such as a star wheel 12 is arranged.

搬入位置Aから載台4−1乃至4−nのいずれかに載荷された容器8は、図1に矢印で示す所定方向に回転しながら、容器8に物品が図示しない充填装置によって充填が行われ、その充填重量が予め定めた重量となると充填が終了し、搬出位置Bから搬出される。搬出位置Bから搬入位置まで各載台4−1乃至4−nが回転する間には、各載台4−1乃至4−nは無負荷の状態である。   The container 8 loaded on any of the platforms 4-1 to 4-n from the loading position A is filled in the container 8 with a filling device (not shown) while rotating in a predetermined direction indicated by an arrow in FIG. 1. When the filling weight reaches a predetermined weight, the filling is finished and the material is unloaded from the unloading position B. While the platforms 4-1 to 4-n rotate from the carry-out position B to the carry-in position, the platforms 4-1 to 4-n are in an unloaded state.

具体的には、図2に示すように搬入位置Aからの区間d1は、容器8が載台4−1乃至4−8に乗り込んだ際にロードセル6−1乃至6−nの計量信号の過渡応答が収束するのを待つ時間t1の間、容器8が移動する区間である。区間d2は容器8の重量を求めるための容器重量計測時間t2の間、容器8が移動する区間である。d3は容器8に物品を充填しつつその重量を計測し、その重量が所定重量になったときに充填を終了する充填・重量計測時間t3の間に容器8が移動する区間である。d4は充填終了時に発生する各ロードセル6−1乃至6−nの計量信号の過渡応答が収束するのを待つ時間t4の間に容器8が移動する距離である。d5は充填済みの容器8の重量を計測する充填済み重量計測時間t5の間に容器8が移動する区間である。d6は充填済み容器が載台4−1乃至4−nから搬出されたときに各ロードセル6−1乃至6−nの計量信号に発生した過渡応答が収束するのを待つ時間t6の間に、容器8が移動する区間である。d7は無負荷時間t7の間に容器8が移動する区間である。   Specifically, as shown in FIG. 2, the section d1 from the loading position A is a transition of the weighing signal of the load cells 6-1 to 6-n when the container 8 gets on the platforms 4-1 to 4-8. This is a section in which the container 8 moves during the time t1 for waiting for the response to converge. The section d2 is a section in which the container 8 moves during the container weight measurement time t2 for obtaining the weight of the container 8. d3 is a section in which the container 8 moves during the filling / weight measurement time t3 when the weight is measured while filling the article into the container 8 and the filling is finished when the weight reaches a predetermined weight. d4 is the distance that the container 8 moves during the time t4 waiting for the transient response of the weighing signals of the load cells 6-1 to 6-n generated at the end of filling to converge. d5 is a section in which the container 8 moves during the filled weight measurement time t5 in which the weight of the filled container 8 is measured. d6 is a time period t6 for waiting for the transient response generated in the weighing signal of each load cell 6-1 to 6-n to converge when the filled container is unloaded from the platforms 4-1 to 4-n. This is a section in which the container 8 moves. d7 is a section in which the container 8 moves during the no-load time t7.

図3に示すように、各ロードセル6−1乃至6−nの計量信号は、それぞれフィルタ手段、例えばローパスフィルタ14−1乃至14−nに供給され、増幅手段、例えば増幅器16−1乃至16−nを介してA/D変換手段、例えばA/D変換器18−1乃至18−nに供給されている。これらA/D変換器18−1乃至18−nのデジタル計量信号は、I/O回路20を介して演算回路、例えばCPU22に供給される。なお、上述した容器重量計測時間、充填・重量計測時間、充填済み重量計測時間それぞれにおいて、所定回数にわたってデジタル計量信号が得られるようにA/D変換器18−1乃至18−nは、所定サンプリング期間ごとにデジタル変換を継続して行っている。   As shown in FIG. 3, the weighing signals of the load cells 6-1 to 6-n are respectively supplied to filter means, for example, low-pass filters 14-1 to 14-n, and amplifying means, for example, amplifiers 16-1 to 16-n. n is supplied to A / D conversion means, for example, A / D converters 18-1 to 18-n. The digital measurement signals of the A / D converters 18-1 to 18-n are supplied to an arithmetic circuit, for example, the CPU 22 via the I / O circuit 20. The A / D converters 18-1 to 18-n perform predetermined sampling so that a digital weighing signal can be obtained a predetermined number of times in each of the container weight measurement time, the filling / weight measurement time, and the filled weight measurement time. Digital conversion is continued every period.

CPU22は、ROM24に記憶されたプログラムに従ってRAM24をワーキングエリアとして使用しながら、各デジタル計量信号に基づいて各容器8の重量測定、各容器8への所定重量の物品の充填の開始及び終了の制御、充填完了後の容器の重量測定、零点調整を行う。   The CPU 22 uses the RAM 24 as a working area in accordance with a program stored in the ROM 24, and controls the weight measurement of each container 8 based on each digital weighing signal and the start and end of filling of each container 8 with a predetermined weight of an article. Measure the weight of the container after filling and adjust the zero point.

このような制御には、各計量器2−1乃至2−nの回転位置を知る必要があるので、所定の計量器、例えば計量器2−1が所定位置、例えば搬入位置Aに到達するごとに初期パルス信号を発生し、かつ各計量器2−1乃至2−nが所定の位置、例えば搬入位置Aに到達するごとに所定角度回転パルス信号を発生するパルス発生器28が設けられている。これら初期パルス信号と所定角度回転パルス信号とは、I/O回路20を介してCPU22に供給され、CPU22は、プログラムによってカウンタを構成し、このカウンタは初期パルス信号が供給されるごとにリセットされながら、所定角度回転パルス信号をカウントする。このカウンタのカウント値を利用することによって各計量装置2−1乃至2−nの位置を取得する。   Such control requires knowing the rotational position of each of the measuring devices 2-1 to 2 -n, so that every time a predetermined measuring device, for example, the measuring device 2-1 reaches a predetermined position, for example, the loading position A. Is provided with a pulse generator 28 for generating an initial pulse signal and generating a rotation pulse signal at a predetermined angle each time each of the measuring devices 2-1 to 2-n reaches a predetermined position, for example, the carry-in position A. . The initial pulse signal and the predetermined angle rotation pulse signal are supplied to the CPU 22 via the I / O circuit 20, and the CPU 22 constitutes a counter by a program, and this counter is reset every time the initial pulse signal is supplied. The predetermined angle rotation pulse signal is counted. The position of each weighing device 2-1 to 2-n is acquired by using the count value of this counter.

なお、以下の説明では、説明が錯綜することを避けるために、1台の計量器に注目して、CPU22が行う零点計測及び零点補正処理を説明するが、他の計量器に対しても同一の処理をCPU22が行う。   In the following description, the zero point measurement and zero point correction processing performed by the CPU 22 will be described focusing on one weighing instrument in order to avoid confusion with the explanation, but the same applies to other weighing instruments. The CPU 22 performs this process.

零点の調整時点または生産運転の開始前の各計量器2−1乃至2−nが停止している状態において、調整対象とする計量器、例えば計量器2−1の載台4−1を無負荷にして、作業者が図示していない零点調整用の零点記憶キーを操作して、そのときのロードセル6−1の計量信号をデジタル化したデジタル計量信号を零点重量値WziとしてRAM26に記憶させる。或いは各計量器2−1乃至2−nが無負荷である状態において各計量器2−1乃至2−nを所定回数回転させ、各ロードセル6−1乃至6−nの計量信号をデジタル化したデジタル計量信号の平均値をそれぞれ求め、これら平均値を各計量器2−1乃至2−nの零点重量値とする。   In the state where each measuring device 2-1 to 2-n is stopped at the time of zero adjustment or before the start of production operation, the measuring device to be adjusted, for example, the platform 4-1 of the measuring device 2-1, is not used. A load is applied, and the operator operates a zero-point storing key for zero-point adjustment (not shown), and the digital weighing signal obtained by digitizing the weighing signal of the load cell 6-1 is stored in the RAM 26 as the zero-point weight value Wzi. . Alternatively, each weighing device 2-1 to 2-n is rotated a predetermined number of times in a state where each weighing device 2-1 to 2-n is unloaded, and the weighing signal of each load cell 6-1 to 6-n is digitized. The average values of the digital weighing signals are obtained, and these average values are set as the zero point weight values of the weighing devices 2-1 to 2-n.

各計量器2ー1乃至2−nを回転させて、生産運転している状態において、注目している計量器、例えば計量器2−1が容器重量計測時間t2にある場合、そのときに計量器2−1に容器8が載荷されていると、計量器2−1から得られたデジタル計量信号Wx(これは、容器重量計測時間t2において複数回にわたってA/D変換器18−1から得られたデジタル計量信号をフィルタリング処理等を行って求めたものである)は、容器8の重量と零点重量値Wz(初期状態では上述したWzi)とを合わせた値である。従って、WxからWzを減算することによって容器8の重量Wnを求めることができる。   In the state where the measuring devices 2-1 to 2-n are rotated and in production, when the measuring device of interest, for example, the measuring device 2-1, is at the container weight measuring time t2, the measurement is performed at that time. When the container 8 is loaded on the container 2-1, the digital weighing signal Wx obtained from the weighing instrument 2-1 (this is obtained from the A / D converter 18-1 a plurality of times at the container weight measurement time t2. The obtained digital weighing signal is obtained by performing a filtering process or the like) is a value obtained by combining the weight of the container 8 and the zero point weight value Wz (Wzi described above in the initial state). Therefore, the weight Wn of the container 8 can be obtained by subtracting Wz from Wx.

従って、容器重量計測時間t2において求められたWnを使用して、計量器2−1が無負荷であるか否かを判定することができる。例えば、容器8の重量は予め判明しているので、その重量よりも小さく予め定めた無負荷判定基準値WtとWnとを比較し、Wnが無負荷判定基準値Wtよりも小さいと、載台4−1上には容器8は存在せず、無負荷であると判定する。Wnが無負荷判定基準値以上の時には容器8が載台4−1上に載荷されていると判定する。このようにして無負荷判定手段が実現されている。   Therefore, it is possible to determine whether or not the weighing device 2-1 is unloaded using Wn obtained at the container weight measurement time t2. For example, since the weight of the container 8 is known in advance, the no-load determination reference value Wt and Wn that are smaller than the weight are compared with each other, and if Wn is smaller than the no-load determination reference value Wt, It is determined that there is no container 8 on 4-1 and there is no load. When Wn is equal to or greater than the no-load determination reference value, it is determined that the container 8 is loaded on the platform 4-1. In this way, no-load determination means is realized.

計量器2−1が無負荷であると判定されると、搬入位置Aから容器8は搬入されていないと判断できるので、時間t2からt7までの間、所定サンプリング時間が経過するごとにデジタル計量信号をRAM26に記憶させ、これらデジタル計量信号に基づいて新たな零点重量信号、例えば零点重量値Wzを決定する。例えばこれら各デジタル計量信号の平均値を新たな零点重量値Wzとする。これら時間t2からt7までの期間は、各計量器2−1乃至2−nが必ず無負荷となる時間t7の期間よりも充分に長いので、これら期間に得られた各デジタル計量信号の平均値を取ると、たとえ周期の長い振動が含まれていても、これら振動の影響を除去することができ、安定で正確な零点重量値Wzを確定できる。なお、単なる平均ではなく、デジタルフィルタリングによってこれら振動成分を除去することもできる。   If it is determined that the weighing device 2-1 is unloaded, it can be determined that the container 8 has not been loaded from the loading position A. Therefore, the digital weighing is performed every time a predetermined sampling time elapses from time t2 to t7. The signal is stored in the RAM 26, and a new zero weight signal, for example, a zero weight value Wz is determined based on these digital weighing signals. For example, an average value of these digital weighing signals is set as a new zero point weight value Wz. Since the period from the time t2 to the time t7 is sufficiently longer than the period of the time t7 in which each of the measuring devices 2-1 to 2-n is always unloaded, the average value of each digital weighing signal obtained in these periods In this case, even if vibrations with a long period are included, the influence of these vibrations can be eliminated, and a stable and accurate zero weight value Wz can be determined. Note that these vibration components can also be removed by digital filtering, rather than simply averaging.

図4は、上述した処理(自動零点調整処理)をCPU22が行う際の詳細なステップをフローチャートを示したもので、この処理は、いずれかの計量器が区間d2に到達するごとに実行される。まず区間d2に位置する計量器がいずれの計量器であるかを決定する(ステップS2)。今、この計量器が計量器2−1であるとする。次に、この計量器に対応するA/D変換器からのデジタル計量信号に基づいてこの計量器における上述したWxを取得する(ステップS4)。その後、Wxからこの計量器におけるWzを減算して、Wnを算出する(ステップS6)。WnがWtよりも小さいか判断し(ステップS8)、その判断の答えがノーの場合には、容器8が計量器上に載荷されているので他の処理を行う。この判断の答えがイエスの場合には、容器8が計量器上に載荷されていないので、デジタル計量信号Wxを取得し(ステップS10)、この計量器が区間d7の終点に到達したか判断する(ステップS12)。この判断の答えがノーの場合には、判断の答えがイエスになるまでステップS10、S12を繰り返す。ステップS12の判断の答えがイエスになると、今まで取得してきた各Wxの値を用いてこの計量器用の新たなWzを決定する(ステップS14)。   FIG. 4 is a flowchart showing detailed steps when the CPU 22 performs the above-described processing (automatic zero adjustment processing). This processing is executed every time one of the measuring instruments reaches the section d2. . First, it is determined which measuring instrument is the measuring instrument located in the section d2 (step S2). Assume that this measuring instrument is a measuring instrument 2-1. Next, based on the digital weighing signal from the A / D converter corresponding to the weighing instrument, the above-described Wx in the weighing instrument is acquired (step S4). Thereafter, Wn in this measuring instrument is subtracted from Wx to calculate Wn (step S6). It is determined whether Wn is smaller than Wt (step S8). If the answer to the determination is no, the container 8 is loaded on the measuring instrument, and other processing is performed. If the answer to this determination is yes, since the container 8 is not loaded on the measuring instrument, the digital measuring signal Wx is acquired (step S10), and it is determined whether this measuring instrument has reached the end point of the section d7. (Step S12). If the answer to this determination is no, steps S10 and S12 are repeated until the answer to the determination is yes. If the answer to the determination in step S12 is yes, a new Wz for this measuring instrument is determined using the values of Wx acquired so far (step S14).

このように計量器2−1乃至2−nが回転している最中であっても、計量器2−1が無負荷で搬入位置Aから搬出位置Bに向かって回転するときには、その間に新たな零点重量値Wzが取得され、零点調整が行われる。生産中には、全計量器2−1乃至2−nが無負荷になる可能性よりも、計量器2−1乃至2−nが別々の機会に無負荷となる可能性の方がはるかに高い。従って、このような機会があるごとに、無負荷となった計量器について新たな零点重量値Wzを取得して零点調整をすることによって、ドリフトの影響を除去することができる。   Thus, even when the measuring devices 2-1 to 2-n are rotating, when the measuring device 2-1 rotates from the loading position A toward the unloading position B with no load, a new one is generated during that time. A zero point weight value Wz is acquired, and zero point adjustment is performed. During production, it is much more likely that the scales 2-1 to 2-n are unloaded on separate occasions than the total scales 2-1 to 2-n are unloaded. high. Therefore, every time there is such an opportunity, the influence of drift can be eliminated by acquiring a new zero point weight value Wz and adjusting the zero point for the weighing instrument that has become unloaded.

なお、上記の例では、区間d2から区間d7の間でのデジタル計量信号を用いて、零点重量値Wzを決定したが、区間d1におけるデジタル計量信号もRAM26に予め記憶させておき、無負荷と判断されたときには、区間d1におけるデジタル計量信号と区間d2乃至d7の間に得られた各デジタル計量信号とを用いて新たな零点重量値Wzを決定することもできる。   In the above example, the zero weight value Wz is determined using the digital weighing signal between the section d2 and the section d7. However, the digital weighing signal in the section d1 is also stored in the RAM 26 in advance, When it is determined, a new zero-point weight value Wz can be determined using the digital weighing signal in the section d1 and the digital weighing signals obtained during the sections d2 to d7.

生産過程では、なかなか無負荷状態とならない計量器が生じることがある。そこで、搬出位置Bから搬入位置Aまでは各計量器2−1乃至2−nは確実に無負荷であるので、この区間に含まれる区間d7で得たデジタル計量信号を用いて零点重量値を補正することが考えられる。   In the production process, there may be a measuring instrument that does not easily become unloaded. Therefore, since each of the weighing devices 2-1 to 2-n is surely unloaded from the carry-out position B to the carry-in position A, the zero point weight value is obtained using the digital weighing signal obtained in the section d7 included in this section. It is possible to correct.

しかし、区間d7は充填ずみ容器が搬出された直後であるので、振動信号成分が残っている。従って、区間d2から区間d7の間に求めた零点重量値と、区間d7のみで求めた零点重量値とは異なっている。また、区間d2から区間d7の間に得られるデジタル計量信号のサンプル数よりも、区間d7のみで得られたデジタル計量信号のサンプル数は格段に少ない。従って、区間d7でのデジタル計量信号のみでは、各計量装置2−1乃至2−nを回転させる回転体の振動によるノイズ信号の影響も充分に除去できない可能性がある。従って、区間d7のみのデジタル計量信号を用いて得た零点重量値で、区間d2乃至d7で求めた零点重量値を置換しても、却って零点の精度が低下する。   However, since the section d7 is immediately after the filled container is carried out, the vibration signal component remains. Therefore, the zero weight value obtained during the section d2 to the section d7 is different from the zero weight value obtained only in the section d7. Further, the number of samples of the digital weighing signal obtained only in the section d7 is much smaller than the number of samples of the digital weighing signal obtained in the section d2 to the section d7. Therefore, there is a possibility that the influence of the noise signal due to the vibration of the rotating body that rotates each weighing device 2-1 to 2 -n cannot be sufficiently removed only by the digital weighing signal in the section d 7. Therefore, even if the zero-point weight value obtained in the sections d2 to d7 is replaced with the zero-point weight value obtained using the digital weighing signal only in the section d7, the zero-point accuracy is lowered.

この対策として、区間d7に至る前に容器に充填が行われたということを条件に、計量器が区間d7を通過する際(このときは無負荷の状態で通過する)に、デジタル計重信号を取得して無負荷区間重量値Wy1を求め、別の機会、例えばWy1を取得したときの次に、同じ計量器が区間d7を通過する際に、デジタル計重信号を取得して無負荷区間重量値Wy2を求め、Wy1とWy2との偏差を零点重量値の変化量として検出し、これによって区間d2から区間d7の間に求められたデジタル計量信号に基づく零点重量値Wzを補正している。上記偏差は、同じ計量器が異なる時期に区間d7を通過したとき、ほぼ同じ重量の被計量物が荷重検出手段から除去された直後の零点重量値の変化量を表しているので、この計量器においてこれとは別の要因にてドリフトが生じていれば、そのドリフトによる変化量を表している。従って、この計量器に搬入位置Aで容器8が搬入されることが連続して生じていても、零点のドリフトの影響を除去することができる。   As a countermeasure, the digital weighing signal is passed when the measuring instrument passes through the section d7 (in this case, it passes in an unloaded state) on the condition that the container is filled before reaching the section d7. To obtain the unloaded section weight value Wy1, and when another weighing machine, for example, Wy1 is acquired, when the same measuring instrument passes the section d7, the digital weighing signal is obtained and the unloaded section is obtained. The weight value Wy2 is obtained, and the deviation between Wy1 and Wy2 is detected as the change amount of the zero point weight value, thereby correcting the zero point weight value Wz based on the digital weighing signal obtained between the section d2 and the section d7. . The above deviation represents the amount of change in the zero point weight value immediately after the object to be weighed is removed from the load detecting means when the same weighing instrument passes through the section d7 at different times. If drift occurs due to a factor other than this, the amount of change due to the drift is indicated. Therefore, even if the container 8 is continuously carried into the weighing instrument at the carrying-in position A, the influence of the zero point drift can be eliminated.

図5は、このような処理(自動零点補正)をCPU22が行う際の各ステップをフローチャートで示したもので、この処理は、いずれかの計量器が区間d7に到達するごとに実行される。まず、区間d7に到達した計量器がいずれの計量器であるか確定する(ステップS16)。そして、初期状態において0にセットされている、上記確定された計量器に対応するカウンタCの値が0であるか1であるか判断する(ステップS18)。カウンタCの値が0であるなら、確定された計量器の無負荷区間重量値Wy1は未だ取得されていないので、無負荷区間重量値Wy1を取得する(ステップS20)。そしてカウンタCの値を1つ増加させて(ステップS22)、この処理を終了する。   FIG. 5 is a flowchart showing each step when the CPU 22 performs such processing (automatic zero correction). This processing is executed every time one of the measuring instruments reaches the section d7. First, it is determined which measuring instrument is the measuring instrument that has reached the section d7 (step S16). Then, it is determined whether the value of the counter C that is set to 0 in the initial state and corresponds to the determined measuring instrument is 0 or 1 (step S18). If the value of the counter C is 0, since the determined no-load section weight value Wy1 of the measuring instrument has not yet been acquired, the no-load section weight value Wy1 is acquired (step S20). Then, the value of the counter C is incremented by 1 (step S22), and this process ends.

次に、再び同じ計量器が区間d7に到達したとき、ステップS18において先にWy1が取得された計量器であると確定されると、ステップS18においてカウンタCの値が1であるか0であるか判断される。今回にはカウンタCの値は1であるので、この計量器の無負荷区間重量値Wy2が取得され(ステップS24)、カウンタCが0とされる(ステップS26)。   Next, when the same measuring instrument reaches the section d7 again, if it is determined in step S18 that Wy1 has been acquired first, the value of the counter C is 1 or 0 in step S18. Is judged. Since the value of the counter C is 1 this time, the no-load section weight value Wy2 of this measuring instrument is acquired (step S24), and the counter C is set to 0 (step S26).

そして、Wy2とWy1との偏差Wdが算出され、この偏差Wdで現在の零点重量値Wzが補正される(ステップS26)。例えばWzにWdが加算または減算される。   Then, a deviation Wd between Wy2 and Wy1 is calculated, and the current zero point weight value Wz is corrected with this deviation Wd (step S26). For example, Wd is added to or subtracted from Wz.

このようにして、区間d2から区間d7まで計量器が無負荷状態で回転しない場合でも、零点のドリフトの影響を除去することができる。   In this way, even when the measuring instrument does not rotate in the no-load state from the section d2 to the section d7, the influence of the zero point drift can be eliminated.

上記の例では、無負荷区間d7を通過する時間t7が短いので、Wy1やWy2には、各種ノイズによるばらつきがある可能性がある。そこで、或る計量器が無負荷区間d7を所定回数、例えばM回通過する間に得られたM個の無負荷区間重量値の平均値をWya1とし、その後M回にわたって同じ計量器が無負荷区間d7を通過する間に得られたM個の無負荷区間重量値の平均値をWya2とし、これらの偏差Wdaを求める。この偏差Wdaは平均ドリフト量を表すので、これを用いて当該計量器の零点重量値Wzを補正してもよい。   In the above example, since the time t7 passing through the no-load section d7 is short, there is a possibility that Wy1 and Wy2 have variations due to various noises. Therefore, an average value of M unloaded section weight values obtained while a certain measuring instrument passes through the unloaded section d7 a predetermined number of times, for example, M times is set to Wya1, and then the same measuring instrument is unloaded over M times. The average value of the M unloaded section weight values obtained while passing through the section d7 is defined as Wya2, and the deviation Wda is obtained. Since this deviation Wda represents the average drift amount, it may be used to correct the zero point weight value Wz of the measuring instrument.

この零点重量値Wzの補正は、当該計量器がM回回転するごとに、今回のM回で求めた平均値をWya2とし、前回のM回に求めた平均値をWya1として、零点補正を行ってもよい。   The zero point weight value Wz is corrected every time the measuring instrument rotates M times, with the average value obtained in the current M times as Wya2 and the average value obtained in the previous M times as Wya1. May be.

なお、このようにM回の平均値同士の偏差を用いて零点重量値を補正しても、無負荷区間d7を計量器が通過する時間t7は短いので、回転体の回転によるノイズを充分に減衰することができない場合もある。この場合には、Wdaによって直接に零点重量値Wzを補正するのではなく、補正の最大量を予め定めた値Wdとし、Wdaの絶対値がWdよりも大きい場合には零点補正量WfをWdに制限し、Wdaの絶対値がWd以下の場合には、Wdaを零点補正量Wfとして、零点重量値Wzを零点補正量Wfで補正してもよい。例えばWz−Wf=WxまたはWz+Wf=Wzの演算を行えばよい。   Even if the zero point weight value is corrected using the deviation between the M average values in this way, the time t7 for the measuring instrument to pass through the no-load section d7 is short. In some cases, it cannot be attenuated. In this case, the zero point weight value Wz is not directly corrected by Wda, but the maximum correction amount is set to a predetermined value Wd. If the absolute value of Wda is larger than Wd, the zero point correction amount Wf is set to Wd. If the absolute value of Wda is equal to or less than Wd, Wda may be corrected as the zero point correction amount Wf, and the zero point weight value Wz may be corrected as the zero point correction amount Wf. For example, the calculation of Wz−Wf = Wx or Wz + Wf = Wz may be performed.

このように補正量を縮小する方法としては、この他にWdaの値に1よりも小さい係数rを乗算してWf=r*Wdaとすることも考えられる。係数rとしては、例えば得られたWdaのうちの1σがドリフト成分であると見なし、r=0.65と設定することができる。   As another method for reducing the correction amount in this way, Wf = r * Wda can also be considered by multiplying the value of Wda by a coefficient r smaller than 1. As the coefficient r, for example, 1σ of the obtained Wda is regarded as a drift component, and r = 0.65 can be set.

上記の例では、M回ずつ合計2回に分けて求めた平均値Way1、Way2に基づいてWdaを求め、Wdaまたはこれを修正した零点補正量Wfによって、零点重量値Wzを補正した。しかし、例えば3回目もM個の無負荷区間重量値を求めて無負荷区間重量Way3を求め、Wya1にWfまたはWdaを加算して、縮小された縮小無負荷区間重量Wya2’を求め、Wya3−Wya2’の演算を行って偏差量Wda’を求め、この偏差量Wda’によって、零点重量値Wzを補正してもよい。   In the above example, Wda is obtained based on the average values Way1 and Way2 obtained by dividing M times into a total of two times, and the zero point weight value Wz is corrected by Wda or a zero point correction amount Wf obtained by correcting Wda. However, for the third time, for example, M unloaded section weight values are determined to determine the unloaded section weight Way3, Wf1 or Wda is added to Wya1, and the reduced reduced unloaded section weight Wya2 ′ is determined. The calculation of Wya2 ′ may be performed to obtain the deviation amount Wda ′, and the zero point weight value Wz may be corrected by the deviation amount Wda ′.

これらいずれも、算出された偏差の全量で零点重量値Wzを補正するのではなく、補正量を縮小しているので、過補償を可能な限り避けることができる。   In either case, the zero point weight value Wz is not corrected by the total amount of deviation calculated, but the correction amount is reduced, so that overcompensation can be avoided as much as possible.

なお、M回にわたって無負荷区間重量値を求めている途中に、当該計量器に容器8が搬入されない場合が生じると、零点補正は中止し、上述したように区間d2から区間d7の間でのデジタル計量信号に基づく最新の零点重量値によって零点調整を行う。   In addition, when the case where the container 8 is not carried into the measuring instrument in the middle of calculating the unloaded section weight value over M times, the zero point correction is stopped and, as described above, between the section d2 and the section d7. Zero adjustment is performed using the latest zero weight value based on the digital weighing signal.

以上のように、この実施形態によれば、生産ラインにおいて生産中であっても、各計量器2−1乃至2−nのいずれかに生じるd2区間からd7区間までの長い区間の無負荷状態において得られる当該計量器の複数のデジタル計量信号に基づいて安定した零点重量値を求めて、零点を自動調整し、さらに長期にわたって無負荷状態にならない計量器が出現することに備えて、無負荷区間d7におけるデジタル計量信号に基づいて零点のドリフト補正を過補償とならないように行っているので、常に正確で安定した零点重量値が得られる。   As described above, according to this embodiment, even during production on the production line, a no-load state in a long section from the d2 section to the d7 section that occurs in any of the measuring devices 2-1 to 2-n. A stable zero-point weight value is obtained based on a plurality of digital weighing signals of the measuring instrument obtained in Step 1, the zero is automatically adjusted, and in preparation for the emergence of a measuring instrument that does not become unloaded for a long period of time. Since the zero point drift correction is performed so as not to be overcompensated based on the digital weighing signal in the section d7, an accurate and stable zero point weight value can always be obtained.

上記の実施の形態では、上述したように零点調整を行う場合について説明したが、生産を開始する前に予め零点を上述したように決定した後、零点調整を行わずに、上述したように零点補正のみを行うようにすることもできる。この場合、零点のドリフトを補正することができる。   In the above embodiment, the case where the zero point adjustment is performed as described above has been described. However, after the zero point is determined in advance as described above before starting the production, the zero point is not adjusted and then the zero point is adjusted as described above. It is also possible to perform only correction. In this case, the zero point drift can be corrected.

上記の実施の形態では、容器を搬入し、その容器に物品を充填する重量式充填装置に本発明を実施したが、これに限ったものではなく、搬入位置から物品を搬入し、回転しながらその重量を測定し、その重量に基づいて物品を選別する回転式重量選別機にも本発明を実施することができる。   In the above embodiment, the present invention is implemented in a weight-type filling device that carries a container and fills the container with the article. However, the present invention is not limited to this, while carrying the article from the loading position and rotating it. The present invention can also be implemented in a rotary weight sorter that measures the weight and sorts articles based on the weight.

この場合、図6に示すように搬入位置Aから始まる区間D1を物品が通過する間に、搬入位置Aで物品が搬入されたことによりロードセルの計量信号に生じた振動が収束する。区間D1に続く区間D2を物品が通過している間に物品の重量が計測される。これに続く区間D3(搬出位置Bから始まる区間)では物品が搬出位置Bから搬出されたときにロードセルの計量信号に生じた振動が収束する。これに続く区間D4がロードセルの計量信号がほぼ安定した上に無負荷である無負荷区間である。D1に対応する時間T1が過渡応答収束時間、D2に対応する時間が物品計測時間、D3に対応する時間T3が過渡応答収束時間、D4に対応する時間T4が無負荷時間である。そして上述した零点調整は、区間D2、D3、D4を計量器が通過している間の各デジタル計量信号に基づいて行われる。無論、予め記憶させておけば区間D1のデジタル計量信号も零点調整に使用することができる。   In this case, as shown in FIG. 6, while the article passes through the section D1 starting from the carry-in position A, the vibration generated in the weighing signal of the load cell is converged when the article is carried in at the carry-in position A. While the article passes through the section D2 following the section D1, the weight of the article is measured. In the subsequent section D3 (section starting from the unloading position B), the vibration generated in the weighing signal of the load cell converges when the article is unloaded from the unloading position B. A subsequent section D4 is a no-load section in which the load cell weighing signal is substantially stabilized and no load is applied. A time T1 corresponding to D1 is a transient response convergence time, a time corresponding to D2 is an article measurement time, a time T3 corresponding to D3 is a transient response convergence time, and a time T4 corresponding to D4 is a no-load time. The zero adjustment described above is performed based on each digital weighing signal while the weighing instrument passes through the sections D2, D3, and D4. Of course, if stored in advance, the digital weighing signal in the section D1 can also be used for zero adjustment.

上記の実施の形態では、計量器が無負荷であるか否かを判定するために、区間d2における計量値Wnと無負荷判定基準値Wtとの比較を行ったが、これに限ったものではなく、例えば搬入位置Aにセンサを設けて、このセンサが容器を検出するか否かによって無負荷か否かを判定することもできる。   In the above embodiment, the weighing value Wn in the section d2 is compared with the no-load determination reference value Wt in order to determine whether or not the weighing instrument is unloaded. However, the present invention is not limited to this. Alternatively, for example, a sensor may be provided at the carry-in position A, and it may be determined whether there is no load depending on whether the sensor detects the container.

2−1乃至2−n 計量装置
4−1乃至4−n 載台
6−1乃至6−n ロードセル(荷重検出手段)
22 CPU(零点調整手段、零点補正手段)
2-1 to 2-n weighing device 4-1 to 4-n platform 6-1 to 6-n load cell (load detection means)
22 CPU (zero adjustment means, zero correction means)

Claims (2)

複数台の荷重検出手段を回転中心の回りに回転可能に設け、前記各荷重検出手段が所定の方向に回転することによって描く回転軌跡上に、前記各荷重検出手段に順次物品を搬入する搬入位置と、前記各荷重検出手段から順次前記物品を搬出する搬出位置とを前記所定方向に間隔をおいて設けた回転式計重装置において、
前記各荷重検出手段が無負荷であるか否かを判定する無負荷状態判定手段と、
回転中に前記無負荷状態判定手段によって無負荷であると判定された前記荷重検出手段に対して零点調整を行う零点調整手段とを、
具備し、
前記零点調整手段は、前記無負荷状態判定手段によって無負荷と判定された前記荷重検出手段である無負荷荷重検出手段が前記搬入位置から前記搬出位置まで回転する間に前記無負荷荷重検出手段が発生する出力信号の少なくとも一部を零点重量信号とし、
前記荷重検出手段が前記搬出位置から前記搬入位置まで無負荷で複数回にわたって回転するときに、異なる回に前記荷重検出手段から得られる荷重検出手段の出力の偏差に基づいて、対応する前記零点重量信号を補正する零点重量信号補正手段を有し、
前記零点重量信号補正手段は、前記偏差を縮小して前記零点重量信号を補正する回転式計重装置。
A plurality of load detection means are provided so as to be rotatable around the center of rotation, and on the rotation trajectory drawn by the rotation of each load detection means in a predetermined direction, a carry-in position for sequentially carrying articles into the respective load detection means And a rotary weighing device provided with an unloading position for sequentially unloading the article from each load detecting means with an interval in the predetermined direction,
No-load state determination means for determining whether or not each load detection means is unloaded;
Zero-point adjusting means for performing zero-point adjustment on the load detecting means determined to be unloaded by the no-load state determining means during rotation,
Equipped,
The zero-point adjusting means is configured such that the no-load load detecting means is operated while the no-load load detecting means, which is the load detecting means determined as no load by the no-load state determining means, rotates from the loading position to the unloading position. At least part of the generated output signal is a zero weight signal,
When the load detection means rotates a plurality of times without load from the carry-out position to the carry-in position, the corresponding zero point weight is based on the deviation of the output of the load detection means obtained from the load detection means at different times. Having zero point weight signal correction means for correcting the signal;
The zero-point weight signal correcting means is a rotary weighing device that corrects the zero-point weight signal by reducing the deviation.
複数台の荷重検出手段を回転中心の回りに回転可能に設け、前記各荷重検出手段が所定の方向に回転することによって描く回転軌跡上に、前記各荷重検出手段に順次物品を搬入する搬入位置と、前記各荷重検出手段から順次前記物品を搬出する搬出位置とを前記所定方向に間隔をおいて設けた回転式計重装置において、
前記荷重検出手段が前記搬出位置から前記搬入位置まで無負荷で複数回にわたって回転したとき、異なる回に前記荷重検出手段から得られる荷重検出手段の出力の偏差に基づいて、対応する零点重量信号を補正する零点重量信号補正手段を設け、
前記零点重量信号補正手段は、前記偏差量を縮小して前記零点重量信号を補正する回転式計重装置。
A plurality of load detection means are provided so as to be rotatable around the center of rotation, and on the rotation trajectory drawn by the rotation of each load detection means in a predetermined direction, a carry-in position for sequentially carrying articles into the respective load detection means And a rotary weighing device provided with an unloading position for sequentially unloading the article from each load detecting means with an interval in the predetermined direction,
When the load detecting means rotates a plurality of times without load from the carry-out position to the carry-in position, a corresponding zero-point weight signal is obtained based on the deviation of the output of the load detection means obtained from the load detection means at different times. Provide zero point weight signal correction means to correct,
The zero-point weight signal correction means is a rotary weighing device that corrects the zero-point weight signal by reducing the deviation amount.
JP2011029586A 2011-02-15 2011-02-15 Rotary weigher Active JP5148721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011029586A JP5148721B2 (en) 2011-02-15 2011-02-15 Rotary weigher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011029586A JP5148721B2 (en) 2011-02-15 2011-02-15 Rotary weigher

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004364664A Division JP5095078B2 (en) 2004-12-16 2004-12-16 Rotary weigher

Publications (2)

Publication Number Publication Date
JP2011133485A true JP2011133485A (en) 2011-07-07
JP5148721B2 JP5148721B2 (en) 2013-02-20

Family

ID=44346335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011029586A Active JP5148721B2 (en) 2011-02-15 2011-02-15 Rotary weigher

Country Status (1)

Country Link
JP (1) JP5148721B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172737A1 (en) 2011-06-15 2012-12-20 Canon Kabushiki Kaisha Organic-inorganic composite molded product and optical element
JP2016156784A (en) * 2015-02-26 2016-09-01 大和製衡株式会社 Conveyance measuring system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130230A (en) * 1990-09-21 1992-05-01 Anritsu Corp Measuring apparatus
JP2756849B2 (en) * 1990-02-21 1998-05-25 大和製衡株式会社 Zero measurement method of weighing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2756849B2 (en) * 1990-02-21 1998-05-25 大和製衡株式会社 Zero measurement method of weighing device
JPH04130230A (en) * 1990-09-21 1992-05-01 Anritsu Corp Measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172737A1 (en) 2011-06-15 2012-12-20 Canon Kabushiki Kaisha Organic-inorganic composite molded product and optical element
JP2016156784A (en) * 2015-02-26 2016-09-01 大和製衡株式会社 Conveyance measuring system

Also Published As

Publication number Publication date
JP5148721B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP4781982B2 (en) Weighing device
EP3121570B1 (en) Weighing device
JP5148721B2 (en) Rotary weigher
JP4916373B2 (en) Weighing device
JP4930919B2 (en) Rotational position signal processor
JP2002526747A (en) Circuit device and method for adjusting a switching point of a determiner
JP5095078B2 (en) Rotary weigher
JP2013101061A (en) Measuring device
JP5890140B2 (en) Weighing device
JP3779443B2 (en) Dynamic weighing value correction device
JP4245230B2 (en) Metering device
JP2015169631A (en) resolver error correction structure, resolver and resolver error correction method
JP2011012993A (en) Metering instrument
JP2007170837A (en) Filter for weighing apparatus and filtering method for weighing apparatus
JP2006300751A (en) Weight measuring method
JP2794472B2 (en) Rotary weighing method
JP2021148659A (en) Measurement device
JP2008209967A (en) Feedback controller and feedback control method
US10145725B2 (en) Method of calibration of weighing systems
JP4585922B2 (en) Weighing device
JP4163824B2 (en) Weighing device
JPH0695034B2 (en) Weight sorter
JPH0695035B2 (en) Weight sorter
JP4680497B2 (en) Weight measurement value correction method and weighing device
JP2000321119A (en) Metering apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5148721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250