JP2011133191A - Refrigerant adsorbent charging container, and bleed air recovering device for turbo refrigerating machine, turbo refrigerating machine and refrigerant recovering device, including the same - Google Patents

Refrigerant adsorbent charging container, and bleed air recovering device for turbo refrigerating machine, turbo refrigerating machine and refrigerant recovering device, including the same Download PDF

Info

Publication number
JP2011133191A
JP2011133191A JP2009294519A JP2009294519A JP2011133191A JP 2011133191 A JP2011133191 A JP 2011133191A JP 2009294519 A JP2009294519 A JP 2009294519A JP 2009294519 A JP2009294519 A JP 2009294519A JP 2011133191 A JP2011133191 A JP 2011133191A
Authority
JP
Japan
Prior art keywords
refrigerant
adsorbent
gas
outer peripheral
filling container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009294519A
Other languages
Japanese (ja)
Other versions
JP5796878B2 (en
Inventor
英明 ▲柳▼下
Hideaki Yagishita
Yuichi Sato
裕一 佐藤
Akiyoshi Suzuki
晃好 鈴木
Ken Ishiyama
健 石山
Takukan Senda
卓寛 仙田
Tetsuya Nagaoka
徹也 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Refrigeration Equipment and Systems Co Ltd
Original Assignee
Ebara Refrigeration Equipment and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Refrigeration Equipment and Systems Co Ltd filed Critical Ebara Refrigeration Equipment and Systems Co Ltd
Priority to JP2009294519A priority Critical patent/JP5796878B2/en
Publication of JP2011133191A publication Critical patent/JP2011133191A/en
Application granted granted Critical
Publication of JP5796878B2 publication Critical patent/JP5796878B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerant adsorbent charging container capable of being heated or cooled to a uniform temperature with small energy, and to provide a bleed air recovering device for a turbo refrigerating machine, the turbo refrigerating machine, and a refrigerant recovering device, including the same. <P>SOLUTION: In the refrigerant adsorbent charging container including a central member 10 forming a central section, an outer peripheral member 1 forming an outer peripheral section, and plate-shaped fins 2 connecting the central member 10 and the outer peripheral member 1 to each other, the charging container has a refrigerant adsorbent storage space 6 defined by the central member 10, the outer peripheral member 1 and the plate-shaped fins 2 inside thereof, and further has a gas inlet and a gas outlet, the inlet and the outlet are communicated with each other by a gas passage used also as the refrigerant adsorbent storage space 6, a gas can flow from the inlet toward the outlet, and the charging container can be heated and cooled from the external of the outer peripheral member 1. The outer peripheral member 1 may include plate-shaped fins 5 at its outer part, and the central member 10 and the outer peripheral member 1 may include plate-shaped fins 3, 4 extending from one side toward the other side. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱伝導率が低く流動性に乏しい物質である冷媒吸着材を内部に密閉保持し、該物質を短時間で繰り返し加熱及び/又は冷却して使用するための冷媒吸着材充填容器、例えば、冷凍機の作動媒体として使用するフルオロカーボン等の揮発性ガスを、該容器内部に保持する冷媒吸着材に繰り返し吸着及び脱着させるために用いる冷媒吸着材充填容器、それを備えたターボ冷凍機用抽気回収装置とターボ冷凍機及び冷媒回収装置に関するものである。   The present invention relates to a refrigerant adsorbent filling container for holding a refrigerant adsorbent, which is a substance having low thermal conductivity and poor fluidity, in a sealed state, and repeatedly heating and / or cooling the substance in a short time, For example, a refrigerant adsorbent filling container used for repeatedly adsorbing and desorbing a volatile gas such as fluorocarbon used as a working medium of a refrigerator to a refrigerant adsorbent held inside the container, and for a turbo refrigerator equipped with the same The present invention relates to an extraction recovery device, a turbo refrigerator, and a refrigerant recovery device.

いわゆる低圧冷媒を使用するターボ冷凍機においては、通常、冷凍機停止中には冷凍機全体の圧力が、冷凍機運転中には蒸発器側圧力が、それぞれ大気圧以下の値に低下する。前記ターボ冷凍機においては、事実上大気中から冷凍機内部への空気等の漏れこみを完全に阻止することは困難であり、漏れ込んだ空気は、さまざまな不具合を冷凍機に対して及ぼすので、漏入した空気を機外に排出しなければならない。このために、この種のターボ冷凍機は、通常抽気回収装置を備えている。
本発明者らは、先に出願した「抽気回収装置とその運転方法及びそれを備えたターボ冷凍機(特願2009−227165)」において、冷媒の大気中への排出量を抑制するために冷媒吸着材を用いて、ターボ冷凍機の抽気回収装置から大気中に漏れ出る冷媒量を、極限まで減少でき、冷媒を回収できる抽気回収装置とその運転方法を提案をした。
In a turbo chiller using a so-called low-pressure refrigerant, the pressure of the entire chiller generally decreases to a value equal to or lower than the atmospheric pressure while the refrigerator is stopped, and the evaporator-side pressure decreases during operation of the refrigerator. In the turbo chiller, it is practically difficult to completely prevent leakage of air and the like from the atmosphere into the refrigerator, and the leaked air has various problems on the chiller. The leaked air must be discharged outside the machine. For this reason, this kind of turbo refrigerator is usually provided with a bleed recovery device.
In order to suppress the discharge amount of the refrigerant into the atmosphere in the “extracted air recovery device, its operating method, and the turbo refrigeration machine equipped with it (Japanese Patent Application No. 2009-227165)” previously filed by the present inventors, Using an adsorbent, we proposed a bleed air recovery device that can reduce the amount of refrigerant leaking from the bleed air recovery device of a turbo chiller into the atmosphere to the limit, and a method for operating the same.

しかし、冷媒吸着材は、例えば活性炭やゼオライトに代表されるように、多孔質材であることから一般的に熱伝導率が低く、加熱や冷却を速やかにかつ均一に実施することが難しく、このことが抽気回収装置や冷媒回収装置の好適な運転を困難にする一因となっている。即ち、冷媒が冷媒吸着材に対してある一定程度吸着されると、その冷媒吸着材は事実上冷媒吸着能力が無くなるので、再び冷媒吸着材として活用するためには冷媒を脱着する必要がある。しかし、一旦吸着された冷媒は、その状態のままでは冷媒を脱着させることができないから、例えば冷媒吸着材自体を加熱して昇温したり、環境圧力を下げて低圧状態下に暴露したりする必要があり、両方法を併用するのが効果的である。そして、このようにして冷媒を脱着してもそれだけでは冷媒吸着力を回復させることができず、そのあと冷媒吸着材を冷却して冷媒吸着材自体の温度を低下させる必要がある。このように、同一の冷媒吸着材を反復して使用するためには、冷媒吸着材充填容器中の冷媒吸着材を反復して加熱・冷却を繰り返す必要がある。従って、当然ながら冷媒吸着材を効果的に利用するためには、加熱及び冷却に要する時間を実用に適する程度にまで短縮する必要がある。   However, since the refrigerant adsorbent is a porous material, as represented by activated carbon and zeolite, for example, it generally has low thermal conductivity, and it is difficult to perform heating and cooling quickly and uniformly. This contributes to the difficulty of suitable operation of the extraction recovery device and the refrigerant recovery device. That is, when the refrigerant is adsorbed to a certain degree by the refrigerant adsorbing material, the refrigerant adsorbing material practically loses the refrigerant adsorbing capacity. Therefore, it is necessary to desorb the refrigerant in order to use it again as the refrigerant adsorbing material. However, since the refrigerant once adsorbed cannot be desorbed as it is, for example, the refrigerant adsorbent itself is heated to raise the temperature, or the environmental pressure is lowered to be exposed to a low pressure state. It is necessary to use both methods together. And even if the refrigerant is desorbed in this way, the refrigerant adsorbing power cannot be recovered by itself, and after that, it is necessary to cool the refrigerant adsorbing material to lower the temperature of the refrigerant adsorbing material itself. Thus, in order to repeatedly use the same refrigerant adsorbent, it is necessary to repeatedly heat and cool the refrigerant adsorbent in the refrigerant adsorbent filling container. Therefore, of course, in order to effectively use the refrigerant adsorbent, it is necessary to shorten the time required for heating and cooling to a level suitable for practical use.

しかし、上記のように一般に冷媒吸着材は熱伝導率が小さいので、加熱や冷却のために長時間を要するとか、又は、加熱・冷却時間を短時間とすれば十分な吸着能力を発揮させることができないなどの問題があった。さらに、冷媒吸着材自体の加熱後の温度及び冷却後の温度は、冷媒吸着材充填容器中でのそれぞれの場所によらず均一であることが好ましい。即ち、場所により相当程度温度差が生じてしまう場合には、加熱時においては、冷媒吸着材の平均温度を冷媒脱着のために好適な温度まで昇温することになるので、冷媒吸着材の中でも相対的に高温になる部分では冷媒吸着材自体が過度に昇温される結果、劣化を促進させたり、低温部分では冷媒の十分な脱着が達成できないという不具合を生じるし、冷却時には、冷却不十分な場所にある冷媒吸着材は吸着能力が十分に回復しないなどの不具合がある。また、加熱の場合には平均温度を適当な値にするために、例えば冷媒吸着材の最高到達温度を高くする必要があるから、ヒータ等の所要エネルギーが大きくなり、冷却の場合には、例えば冷媒吸着材充填容器をファン等で長時間冷却する必要があるから、この場合にもまた所要エネルギーが大きくなってしまうという問題がある。   However, as described above, the refrigerant adsorbent generally has a low thermal conductivity, so that it takes a long time for heating and cooling, or if the heating / cooling time is short, it can exhibit sufficient adsorption capacity. There were problems such as being unable to. Furthermore, it is preferable that the temperature after heating of the refrigerant adsorbent itself and the temperature after cooling are uniform irrespective of the respective locations in the refrigerant adsorbent filled container. That is, when a considerable temperature difference occurs depending on the location, during heating, the average temperature of the refrigerant adsorbent is raised to a temperature suitable for refrigerant desorption. As a result of excessive temperature rise of the refrigerant adsorbent material at the relatively high temperature, the deterioration is promoted, and there is a problem that sufficient desorption of the refrigerant cannot be achieved at the low temperature. The refrigerant adsorbents in various locations have problems such as insufficient adsorption capacity. Also, in the case of heating, in order to set the average temperature to an appropriate value, for example, it is necessary to increase the maximum temperature reached by the refrigerant adsorbent, so that the required energy of the heater or the like increases, and in the case of cooling, for example, Since it is necessary to cool the refrigerant adsorbent filling container with a fan or the like for a long time, there is also a problem that the required energy is increased in this case.

冷媒吸着材充填容器の構造の参考になる例として、従来技術を検討してみると、例えば特開2008―270297号公報に示されるように、平行に向かい合った平板部で構成された容器内に、複数のフィンを有する放熱容器が開示されている。この公開公報は、半導体チップを備えるパワーユニットに関するものであるが、この態様を冷媒吸着材充填容器に応用しようとするとき、平板状の容器形状では耐圧性、気密性を保持したまま大型化することになるが、そのことは容器の内圧と外圧とに一定程度以上の圧力差を見込む必要がある。冷媒吸着材充填容器にとって、例えば構成部材に印加される応力やその結果生じる歪の大きさ等を考慮すると設計上不利である。
さらに、内部に冷媒吸着材等の流動性に乏しい物体を収容しつつ、繰り返しの加熱と冷却サイクルを受ける容器にあっては、外周部即ち外形を構成する部材が平板で構成されている場合、例えば直方体形状などでは、角(かど)の部分と平板部中央とでは温度差が発生しやすく、従って熱膨張量や熱収縮量が均一ではなくなり、内部に収容された冷媒吸着材との接触による熱応力や歪も発生し易いから、結果として実用に耐えうるような容器を実現することは困難である。
As a reference example of the structure of the refrigerant adsorbent filled container, when considering the prior art, for example, as shown in Japanese Patent Application Laid-Open No. 2008-270297, a container composed of flat plate portions facing in parallel is provided. A heat radiating container having a plurality of fins is disclosed. This publication relates to a power unit including a semiconductor chip. When this mode is applied to a refrigerant adsorbent-filled container, the flat container shape must be enlarged while maintaining pressure resistance and airtightness. However, it is necessary to allow a certain pressure difference between the internal pressure and the external pressure of the container. For the refrigerant adsorbent-filled container, for example, considering the stress applied to the constituent members and the magnitude of the resulting strain, it is disadvantageous in design.
Furthermore, in a container that receives repeated heating and cooling cycles while containing an object with poor fluidity such as a refrigerant adsorbent inside, when the outer peripheral part, i.e., the member constituting the outer shape is formed of a flat plate, For example, in a rectangular parallelepiped shape, a temperature difference is likely to occur between the corner portion and the center of the flat plate portion. Therefore, the amount of thermal expansion and contraction is not uniform, and is caused by contact with the refrigerant adsorbent housed inside. Since thermal stress and strain are also likely to occur, it is difficult to realize a container that can withstand practical use as a result.

以上において、低圧冷媒を使用したターボ冷凍機の例について説明したが、前記低圧冷媒に限らず、いわゆる高圧冷媒を使用する冷凍機においても、例えば分解整備時などの冷媒充填時に混入した不凝縮ガスは、冷凍機の運転に際して効率の低下や材料の腐食など様々な不都合をもたらすため、機外に抽出する必要がある。一旦冷凍機内に混入した不凝縮ガスを機外に抽出する際には、高圧冷媒使用冷凍機においては、例えば冷媒回収装置を用いて冷媒ガスを凝縮させ、冷媒ガスから前記不凝縮ガスのみを分離して大気に放出するのが一般的である。従って、冷媒からの不凝縮ガスの分離をできるだけ短時間で行い、且つ分離した不凝縮ガス中に残留する冷媒成分を可能な限り微少量に抑えることは、低圧冷媒、高圧冷媒に関わらず共通の問題であった。
特開2008―270297号公報
In the above, an example of a turbo refrigerator using a low-pressure refrigerant has been described. However, not only the low-pressure refrigerant but also a refrigerator using a so-called high-pressure refrigerant, for example, a non-condensable gas mixed at the time of refrigerant charging such as during decomposition and maintenance This causes various inconveniences such as a decrease in efficiency and corrosion of materials during operation of the refrigerator, so that it needs to be extracted outside the apparatus. When extracting the non-condensable gas once mixed inside the refrigerator, in the refrigerator using a high-pressure refrigerant, for example, the refrigerant gas is condensed using a refrigerant recovery device, and only the non-condensable gas is separated from the refrigerant gas. It is generally released to the atmosphere. Therefore, it is common for low-pressure refrigerants and high-pressure refrigerants to separate the non-condensable gas from the refrigerant in the shortest possible time and to keep the refrigerant component remaining in the separated non-condensable gas as small as possible. It was a problem.
JP 2008-270297 A

本発明は、上記の背景技術に鑑み、少なくともその外部からの加熱又は冷却により、その内部の充填物質が、熱伝導率の小さい冷媒吸着材であっても、速やかに、当該冷媒吸着材自体を前記充填容器の場所によらず、均一な温度に、且つ少ないエネルギーで、加熱又は冷却できると共に、繰り返しの温度上昇及び温度下降のサイクルに耐えうる冷媒吸着材充填容器、それを備えたターボ冷凍機用抽気回収装置とターボ冷凍機及び冷媒回収装置を提供することを課題とする。   In view of the above-mentioned background art, the present invention promptly removes the refrigerant adsorbent itself even if the internal filling material is a refrigerant adsorbent having a low thermal conductivity by at least heating or cooling from the outside. Regardless of the location of the filling container, a refrigerant adsorbent filling container that can be heated or cooled to a uniform temperature and with a small amount of energy and can withstand repeated temperature rise and fall cycles, and a turbo refrigerator equipped with the same It is an object to provide a bleed air recovery device, a turbo refrigerator, and a refrigerant recovery device.

上記課題を解決するために、本発明では、中心部を形成する中心部材と、外周部を形成する外周部材と、前記中心部材と外周部材とを相互に連結する板状のフィンとを備えた冷媒吸着材充填容器であって、該充填容器は、内部に前記中心部材と外周部材と板状のフィンとにより冷媒吸着材収納スペースが形成されると共に、さらに気体の入口と出口とを有し、該入口と出口とが、前記冷媒吸着材収納スペースを兼ねた気体通路により相互に連絡され、該入口から出口に向かって気体が流動でき、且つ前記外周部材の外部から該充填容器を加熱及び冷却可能に構成したことを特徴とする冷媒吸着材充填容器としたものである。
前記冷媒吸着材充填容器において、外周部材は、外部に板状のフィンをさらに備えることができ、前記中心部材と外周部材と板状フィンは、それらのうち少なくとも2つを一体に形成することができ、また、前記中心部材及び外周部材は、いずれか一方側から他方側に向かって延伸する板状のフィンを備え、該フィンは他のいずれかのフィンと互いに平行に形成することができる。
In order to solve the above problems, the present invention includes a central member that forms a central portion, an outer peripheral member that forms an outer peripheral portion, and plate-like fins that interconnect the central member and the outer peripheral member. A refrigerant adsorbent-filled container, in which the refrigerant adsorbent storage space is formed by the central member, the outer peripheral member, and the plate-like fins, and further includes a gas inlet and an outlet. The inlet and the outlet are connected to each other by a gas passage also serving as the refrigerant adsorbing material storage space, the gas can flow from the inlet to the outlet, and the filling container is heated from the outside of the outer peripheral member. The refrigerant adsorbent-filled container is characterized in that it can be cooled.
In the refrigerant adsorbent filling container, the outer peripheral member may further include a plate-shaped fin on the outside, and the central member, the outer peripheral member, and the plate-shaped fin may be formed integrally with at least two of them. In addition, the central member and the outer peripheral member include plate-like fins extending from one side to the other side, and the fins can be formed in parallel to any other fin.

また、本発明では、ターボ冷凍機中から冷媒ガスと共に抽出された不凝縮ガスを、該冷媒ガスと分離して大気中に排出するための冷媒ガス分離手段と冷媒吸着材を充填した冷媒吸着材充填容器とを備えた抽気回収装置であって、該冷媒吸着材充填容器が、前記した本発明の冷媒吸着材充填容器としたターボ冷凍機用抽気回収装置としたものであり、また、抽気回収装置を備えたターボ冷凍機において、抽気回収装置として前記したターボ冷凍機用の抽気回収装置を用いたターボ冷凍機としたものである。
さらに、本発明では、不凝縮ガスを含有する冷媒ガスから冷媒ガスのみを吸着して回収するし、不凝縮ガスを大気中に排出するための冷媒回収装置が、前記した本発明の冷媒吸着材充填容器に冷媒吸着材を充填したものであることを特徴とする冷媒回収装置としたものである。
In the present invention, the refrigerant adsorbent filled with the refrigerant adsorbent and the refrigerant gas separation means for separating the noncondensable gas extracted from the turbo refrigerator together with the refrigerant gas from the refrigerant gas and discharging it into the atmosphere. A bleed air recovery apparatus comprising a filling container, wherein the refrigerant adsorbent filling container is a bleed air recovery apparatus for a turbo chiller as the refrigerant adsorbent filling container of the present invention described above. The turbo chiller provided with the apparatus is a turbo chiller using the above-described extraction recovery device for a turbo refrigeration unit as an extraction recovery device.
Furthermore, in the present invention, the refrigerant recovery device for adsorbing and recovering only the refrigerant gas from the refrigerant gas containing the non-condensable gas and discharging the non-condensable gas into the atmosphere is the refrigerant adsorbent of the present invention described above. The refrigerant recovery device is characterized in that a filling container is filled with a refrigerant adsorbent.

冷媒吸着材充填容器を本発明のように構成することにより、一般に熱伝導率が低く加熱・冷却が行いにくい冷媒吸着材でも、速やかで且つ均一な加熱・冷却を行うことができるから、少ないエネルギーで冷媒を冷媒吸着材から必要十分に脱着でき、吸着材の冷媒吸着力を常に高いレベルに維持できる。加えて、冷媒吸着材充填容器の加熱や冷却に伴う熱応力や、該充填容器内外圧力差による応力、歪を小さく且つ均一化することができるから、温度の上昇や下降の繰り返しサイクルに強く、且つ該充填容器の気密性を好適に維持できる。従って、本発明による冷媒吸着材充填容器を用いれば、環境特性に優れた抽気回収装置、冷媒回収装置さらにターボ冷凍機及び冷媒回収装置を提供することができる。   By configuring the refrigerant adsorbent-filled container as in the present invention, it is possible to perform heating and cooling quickly and uniformly even with a refrigerant adsorbent that generally has low thermal conductivity and is difficult to heat and cool. Thus, the refrigerant can be desorbed and sufficiently removed from the refrigerant adsorbing material, and the adsorbing power of the adsorbing material can always be maintained at a high level. In addition, since the heat stress accompanying heating and cooling of the refrigerant adsorbent filling container, and the stress and strain due to the pressure difference inside and outside the filling container can be made small and uniform, it is resistant to repeated cycles of temperature rise and fall, And the airtightness of this filling container can be maintained suitably. Therefore, by using the refrigerant adsorbent filled container according to the present invention, it is possible to provide an extraction recovery device, a refrigerant recovery device, a turbo chiller, and a refrigerant recovery device that are excellent in environmental characteristics.

以下、本発明を詳細に説明する。
冷媒吸着材は、一般的に熱伝導率が低く、事実上流動性が無く、加熱時及び冷却時に速やかにかつ均一に温度を上昇又は下降させることが難しい。そこで、本発明では、冷媒吸着材を収容すると共にこれを加熱又は冷却する役割を兼ねた冷媒吸着材充填容器において、冷媒吸着材の単位体積あたりの冷媒吸着材充填容器表面と冷媒吸着材とが、相互に接触する面積即ち伝熱面積を増大すると共に、冷媒吸着材の積層厚さ、即ち冷媒吸着材と充填容器表面とのあるひとつの接触面と、その接触面に隣り合う接触面との間の距離を小さくすることにより、冷媒吸着材中の伝熱抵抗を減少させて、冷媒吸着材と充填容器表面との平均温度差を小さくでき、当該充填容器を加熱又は冷却することで、より少ない加熱又は冷却エネルギーにより、冷媒吸着材を所望の温度に且つ均一に加熱又は冷却できる。
Hereinafter, the present invention will be described in detail.
Refrigerant adsorbents generally have low thermal conductivity, virtually no fluidity, and it is difficult to raise or lower the temperature quickly and uniformly during heating and cooling. Therefore, in the present invention, in the refrigerant adsorbent filling container that also serves to heat and cool the refrigerant adsorbent, the refrigerant adsorbent filling container surface and the refrigerant adsorbent per unit volume of the refrigerant adsorbent , While increasing the mutual contact area, that is, the heat transfer area, the stack thickness of the refrigerant adsorbent, that is, one contact surface between the refrigerant adsorbent and the filling container surface, and the contact surface adjacent to the contact surface By reducing the distance between them, the heat transfer resistance in the refrigerant adsorbent can be reduced, the average temperature difference between the refrigerant adsorbent and the filling container surface can be reduced, and by heating or cooling the filling container, The refrigerant adsorbent can be heated or cooled uniformly to a desired temperature with less heating or cooling energy.

このため、本発明の冷媒吸着材充填容器の断面の態様としては、容器内部を外部と気密性を持って仕切ると共に、容器としての強度を保持する外周部材を設けた。そして、冷媒吸着材収容スペースを兼ねた気体の通路を構成すると共に、充填容器表面積を拡大するための手段として充填容器中央部に中心部材を配設し、且つ前記外周部材と中心部材との間に複数のフィンを設け、これらのフィンにより前記外周部材と中心部材とを接続した。
このように充填容器断面を構成することにより、中心部材やフィンの無い従来型の充填容器に比べて、充填容器表面と冷媒吸着材との接触面積、即ち伝熱面積を飛躍的に増大させることができ、冷媒吸着材の積層厚さも画期的に減少できる。
For this reason, as the aspect of the cross section of the refrigerant adsorbent-filled container of the present invention, an outer peripheral member for partitioning the inside of the container from the outside with airtightness and maintaining strength as the container is provided. A gas passage also serving as a refrigerant adsorbing material storage space is formed, a central member is disposed in the central portion of the filling container as a means for increasing the surface area of the filling container, and between the outer peripheral member and the central member. A plurality of fins were provided, and the outer peripheral member and the central member were connected by these fins.
By configuring the cross section of the filling container in this way, the contact area between the filling container surface and the refrigerant adsorbent, that is, the heat transfer area can be dramatically increased as compared with a conventional filling container having no central member or fins. And the thickness of the refrigerant adsorbent stack can also be dramatically reduced.

なお、このような断面形状を備える冷媒吸着材充填容器の全体形状は、例えば前記断面形状を有する円筒形の容器構成部材を充填容器本体として有し、該円筒形充填容器本体の両端の開口部をそれぞれ覆うと共に、気体の入口又は出口を有する円板状カバーとを備え、充填容器本体内に形成された気体通路を兼ねた冷媒吸着材収納スペースに冷媒吸着材を充填したのち、冷媒吸着材が脱落しないように保持するための適当な大きさのメッシュを有する金網を、充填容器本体の両開口部と円板状カバーとの間に備えるようにしても良い。因みに、この場合には気体を入口部から充填容器本体内の気体通路に導くため、又は充填容器本体の気体通路から出口部に導くために、円板状カバーの内面側は凹形状に加工するのが好ましい。また、円板状カバーに代えて、鏡板や半球形状体などを用いることができるのは言うまでも無い。また、上記のような冷媒吸着材充填容器の形態ならば、例えば該充填容器加熱用ヒータを、該充填容器に加工されたヒータ挿入用穴に挿入して取り付けることや、該充填容器表面の所要の位置に接するように設けることなどに特段の支障は無く、また同様に、該充填容器表面から、例えば環境空気の自然対流やファン等による強制空気流と接触させることにより、放熱させることにも支障はないから、該冷媒吸着材充填容器の外周部材の外部から、該充填容器を加熱、冷却することができる。   The overall shape of the refrigerant adsorbent filling container having such a cross-sectional shape has, for example, a cylindrical container constituent member having the cross-sectional shape as a filling container body, and openings at both ends of the cylindrical filling container body. And a refrigerant adsorbent after filling the refrigerant adsorbent storage space also serving as a gas passage formed in the main body of the filling container with a disc-shaped cover having a gas inlet or outlet. You may make it equip between the both opening parts of a filling container main body, and a disk-shaped cover with the metal mesh which has a mesh of a suitable magnitude | size for hold | maintaining so that it may not drop. Incidentally, in this case, in order to guide the gas from the inlet to the gas passage in the filling container main body, or to guide the gas from the gas passage of the filling container main body to the outlet, the inner surface side of the disk-shaped cover is processed into a concave shape. Is preferred. Needless to say, an end plate or a hemispherical body can be used instead of the disc-shaped cover. In the case of the refrigerant adsorbent-filled container as described above, for example, the heater for heating the filling container is inserted into a heater insertion hole formed in the filling container, or the surface of the filling container is required. There is no particular hindrance to the contact with the position, and similarly, heat can be released from the surface of the filled container, for example, by contacting with natural air convection of ambient air or forced air flow by a fan or the like. Since there is no hindrance, the filling container can be heated and cooled from the outside of the outer peripheral member of the refrigerant adsorbent filling container.

前記で述べた伝熱という側面からの評価の他に、冷媒吸着材充填容器の強度的側面においても、本発明によれば優れた効果を奏する。即ち前述の通り、冷媒吸着材に冷媒を吸着させ又は脱着させるために、冷媒吸着材自体を加熱又は冷却する必要があり、そのために冷媒吸着材充填容器を加熱又は冷却する。この場合、充填容器内収容物である冷媒吸着材と充填容器とでは、熱膨張率が異なるのが普通で、通常充填容器の値のほうが大きいから、冷却の都度両者の接触部分において熱応力が発生する可能性がある。ここで、例えば充填容器が直方体形状であった場合には、角(かど)部分と平面部分とで、変位が一様ではなく熱応力も不均一で、局所的に過大な値も生じうるが、前記のように断面形状が円形ならば発生する熱応力に大きな偏りが無くなり、過大な応力や不均一な歪の発生を回避しやすく、結果として充填容器の気密性を保持しやすくなる。   In addition to the above-described evaluation from the aspect of heat transfer, the present invention also provides an excellent effect in terms of the strength of the refrigerant adsorbent-filled container. That is, as described above, in order to cause the refrigerant adsorbent to adsorb or desorb the refrigerant, it is necessary to heat or cool the refrigerant adsorbent itself, and for this purpose, the refrigerant adsorbent filling container is heated or cooled. In this case, the refrigerant adsorbent that is contained in the filling container and the filling container usually have different coefficients of thermal expansion, and the value of the normal filling container is usually larger. May occur. Here, for example, when the filling container has a rectangular parallelepiped shape, the displacement is not uniform and the thermal stress is not uniform between the corner portion and the plane portion, and an excessively large value may occur locally. As described above, if the cross-sectional shape is circular, the generated thermal stress is not largely biased, and it is easy to avoid the generation of excessive stress and non-uniform strain, and as a result, it is easy to maintain the airtightness of the filling container.

また、中心部材や板状フィンは、例えば円形の中心点に対して、点対称又は直径若しくは半径に対して線対称に形成することにより、上記と同様に熱応力や歪発生の均一性を維持できる。さらに、熱応力のほかに、充填容器の内外圧力差によって発生する応力及び歪に対しても均一化しやすく、過大な値を避けることができる。なお、断面形状については、前記の通り外周部材は円形がもっとも好ましく、中心部材や板状フィンは、前記円形の中心点に対して点対称又は直径若しくは半径に対して線対称であることが好ましい。なお、外周部材については多角形でも良く、特に角の多い正多角形が好ましい。なお、冷媒吸着材充填容器の全体形状は、球形状や回転楕円体形状などであっても良いが、製作の容易さなど実用性を考慮すると前記の形状が好ましい。   In addition, the central member and the plate-like fins are formed with point symmetry or line symmetry with respect to the diameter or radius, for example, with respect to a circular center point, thereby maintaining the uniformity of thermal stress and strain generation as described above. it can. Furthermore, in addition to thermal stress, it is easy to equalize stress and strain generated by the pressure difference between the inside and outside of the filled container, and an excessive value can be avoided. Regarding the cross-sectional shape, the outer peripheral member is most preferably circular as described above, and the central member and the plate-like fin are preferably point-symmetric with respect to the center point of the circular shape or line-symmetric with respect to the diameter or radius. . The outer peripheral member may be a polygon, and a regular polygon having many corners is particularly preferable. The overall shape of the refrigerant adsorbent filling container may be a spherical shape or a spheroid shape, but the above shape is preferable in consideration of practicality such as ease of manufacture.

また、前記冷媒吸着材充填容器の材質は、熱伝導率が高く、内部に収容する冷媒吸着材や冷媒等と化学反応を生じないものを選定する必要があり、一般的には、アルミ製さらにはアルミ鋳物製とすることが好ましい。これにより、フィン効率の向上、軽量化及び効果的なフィン形状及び配置の実現が容易となり、一体で製作可能となるから経済的にも有利となる。ただし、例えば高圧ガス保安法の冷凍保安規則関係例示基準においては、フルオロカーボンに対しては2%を超えるマグネシウムを含有したアルミニウム合金の使用が禁止されているため、特にフルオロカーボンを冷媒として使用する冷凍装置に使用する場合には、高圧ガスに該当する冷媒に限らずこれに準拠することが好ましい。なぜならば、フルオロカーボン冷媒は、マグネシウムを含むアルミニウム合金に対しては腐食性を生ずるからであり、マグネシウムは含まないことが最も好ましく、マグネシウム含有率が多くても2%以下のアルミニウムであることが好ましいからである。   In addition, the material for the refrigerant adsorbent filled container must be selected so that it has high thermal conductivity and does not cause a chemical reaction with the refrigerant adsorbent or refrigerant contained therein. Is preferably made of cast aluminum. Thereby, improvement of fin efficiency, weight reduction, and realization of an effective fin shape and arrangement become easy, and since it can be manufactured integrally, it is economically advantageous. However, for example, the refrigeration apparatus using fluorocarbon as a refrigerant, since the use of aluminum alloy containing magnesium exceeding 2% is prohibited for fluorocarbon in the refrigeration safety regulation related illustration standard of the High Pressure Gas Safety Law, for example. In the case of using for the above, it is preferable to comply with this without being limited to the refrigerant corresponding to the high-pressure gas. This is because the fluorocarbon refrigerant is corrosive to an aluminum alloy containing magnesium, and is most preferably free of magnesium, and is preferably aluminum having a magnesium content of at most 2%. Because.

また、本発明は、前記冷媒吸着材充填容器の前記外周部材は、外部に板状のフィンをさらに備えた冷媒吸着材充填容器とすることができる。
冷媒吸着材を加熱して冷媒を脱着した後、再び冷媒吸着能力を回復させるために冷媒吸着材を冷却する必要があり、このため冷媒吸着材充填容器の外部を、例えば冷却用ファンなどを用いて周囲の大気の強制流を当て、速やかに冷却することが好ましい。なお、微細な水滴を充填容器外部に直接吹き付けて、水の蒸発潜熱を併用するなどの方法も考えられるが、水分は材料の腐食、電気配線のショート等の原因となるため用いないほうが好ましい。また、容器外周部もしくは内部に流通経路を設けて、水などの冷却媒体を流して冷却する方法も考えられるが、例えば容器の加熱時には冷却媒体も同時に加熱されるために、冷却媒体の加熱に要する余分なエネルギーを消費するだけでなく、加熱温度が100℃を超えるような場合には例えば水では沸騰が起こり、冷却時に流路に通水できなくなる事態が想定されるため好ましくない。 充填容器の外表面からの冷却のためには、表面積が大きいほうが有利であることから、充填容器の外周部材にはフィンを備えることが好ましいが、熱的効果と製作の容易性及び機械的強度を考慮すると、その形状は板状のフィンを備えることが好ましい。
Moreover, this invention can use the said outer peripheral member of the said refrigerant | coolant adsorbent filling container as a refrigerant | coolant adsorbent filling container further provided with the plate-shaped fin outside.
After the refrigerant adsorbent is heated and desorbed, it is necessary to cool the refrigerant adsorbent again in order to restore the refrigerant adsorption capacity. For this reason, the outside of the refrigerant adsorbent filling container is used, for example, a cooling fan or the like. It is preferable to apply a forced flow of the surrounding air and cool it quickly. Although a method of spraying fine water droplets directly on the outside of the filling container and using the latent heat of vaporization of water is also conceivable, it is preferable not to use moisture because it causes corrosion of the material, short-circuiting of electric wiring, and the like. In addition, there may be a method of cooling by flowing a cooling medium such as water by providing a flow path on the outer periphery or inside of the container. For example, when the container is heated, the cooling medium is also heated at the same time. Not only is it necessary to consume the extra energy required, but also when the heating temperature exceeds 100 ° C., for example, boiling occurs in water, and it is assumed that a situation where water cannot be passed through the flow path during cooling is not preferable. Since a larger surface area is advantageous for cooling from the outer surface of the filling container, it is preferable to provide fins on the outer peripheral member of the filling container, but the thermal effect, ease of manufacture, and mechanical strength In view of the above, the shape preferably includes a plate-like fin.

充填容器中の冷媒吸着材が保有している熱は、直接外周部材を経由して周囲環境に放熱されるだけでなく、特に充填容器の中心部付近の冷媒吸着材からの熱は、冷媒吸着材から中心部材や板状フィンを経由して外周部材に伝熱されて放熱されるから、中心部材や板状フィンは、放熱経路を形成しているということもでき、外周部材に板状フィンを備えることで、充填容器の内部・外部共に効果的に冷却することができる。
因みに、冷媒吸着材の加熱時には、例えばヒータ等を外部の板状フィンを含む外周部材の外表面に接触させるように設けて外周部材を加熱することで、伝熱により中心部材や該中心部材と外周部材とを連結する板状フィンによって、充填容器の中心部等容器内部側からも加熱することができるから、中心部材や前記板状フィンは給熱経路を形成するということもできる。さらに、加熱の際には、ヒータ等の発熱体が外周部材だけでなく、中心部材や該中心部材と外周部材とを連結する板状フィンを直接加熱できるように、例えば棒状ヒータを、前記板状フィンを経由して中心部材まで届くような穴に差し込むように充填容器を構成すれば、更に好ましい加熱が実現できる。
The heat possessed by the refrigerant adsorbent in the filled container is not only radiated to the surrounding environment directly via the outer peripheral member, but especially the heat from the refrigerant adsorbent near the center of the filled container is absorbed by the refrigerant. Since heat is transferred from the material to the outer peripheral member via the central member and the plate-like fins to be dissipated, it can be said that the central member and the plate-like fins form a heat dissipation path. By providing this, both inside and outside of the filling container can be effectively cooled.
Incidentally, at the time of heating the refrigerant adsorbent, for example, by providing a heater or the like so as to contact the outer surface of the outer peripheral member including the external plate-like fins and heating the outer peripheral member, the central member and the central member Since the plate-like fins connecting the outer peripheral member can also be heated from the inside of the container such as the center of the filling container, it can be said that the center member and the plate-like fins form a heat supply path. Further, when heating, for example, a rod-shaped heater is used to heat the heating element such as a heater directly to not only the outer peripheral member but also the central member and the plate-like fins connecting the central member and the outer peripheral member. If the filling container is configured so as to be inserted into the hole that reaches the central member via the fins, more preferable heating can be realized.

また、本発明は、前記冷媒吸着材充填容器は、前記中心部材、外周部材、前記二者を連結する板状フィン及び外周部材外部の板状フィンのうちの少なくとも2つを一体に形成することができる。
中心部材、外周部材、中心部材と外周部材とを連結する板状フィンや、さらには外周部材に板状フィンが備えられる時には該板状フィンを、例えばアルミニウム鋳物製として一体に構成すれば、上記部材相互間でそれらが別体で構成されるときに比べ伝熱抵抗を低く抑えることができ、冷媒吸着材の効果的な加熱や冷却ができる。さらに、製造コストの低減や充填容器としての強度の向上を図ることができる。
なお言うまでもなく、上記部材の全てを一体に形成しなくても良く、また例えば中心部材と、中心部材と外周部材とを連絡する板状フィンとを一体として形成し、外周部材とは、ろう付けなどで接続しても良いが、少なくとも伝熱の面から上記部材の全てを一体に形成するのが最も好ましい。
Further, according to the present invention, the refrigerant adsorbent filling container is integrally formed with at least two of the center member, the outer peripheral member, the plate-like fin connecting the two members, and the plate-like fin outside the outer peripheral member. Can do.
The central member, the outer peripheral member, the plate-like fin connecting the central member and the outer peripheral member, and further, when the outer peripheral member is provided with a plate-like fin, if the plate-like fin is integrally formed, for example, made of aluminum casting, the above The heat transfer resistance can be suppressed lower than when they are configured separately between members, and the refrigerant adsorbent can be effectively heated and cooled. Furthermore, the manufacturing cost can be reduced and the strength as a filling container can be improved.
Needless to say, all of the above members need not be integrally formed. For example, a central member and a plate-like fin connecting the central member and the outer peripheral member are integrally formed, and the outer peripheral member is brazed. However, it is most preferable that all of the members are integrally formed from at least a heat transfer surface.

さらに、本発明は、前記冷媒吸着材充填容器は、前記中心部材及び外周部材のいずれか一方側から他方側に向かって延伸する板状のフィンを備え、前記フィンは他のいずれかのフィンと互いに平行に形成することができる。
本発明のように、冷媒吸着材充填容器の断面形状を、代表的には外周部材を円形に形成し、中心部材とそれらを連結する複数の板状フィンを備え、さらに外周部材側及び中心部材側の少なくともいずれか一方から他方に向かって延伸した板状フィンを備えて、該板状フィンが他のいずれかの板状フィンと平行に形成させると、互いに向かい合った板状フィン相互間にはさまれた冷媒吸着材は、双方のフィン表面から加熱時には均一に給熱され、冷却時には双方のフィン表面に均一に放熱することができるので、冷媒吸着材充填容器内部の冷媒吸着材温度を全体的に均一に変化させることができる。
Further, according to the present invention, the refrigerant adsorbent filling container includes a plate-like fin extending from one side of the central member or the outer peripheral member toward the other side, and the fin is connected to any one of the other fins. They can be formed parallel to each other.
As in the present invention, the cross-sectional shape of the refrigerant adsorbent filling container is typically provided with a circular outer peripheral member, a central member and a plurality of plate-like fins that connect them, and the outer peripheral member side and the central member. A plate-like fin extending from at least one of the sides toward the other, and when the plate-like fin is formed in parallel with any other plate-like fin, between the plate-like fins facing each other, The sandwiched refrigerant adsorbent is heated uniformly from both fin surfaces when heated, and can be dissipated uniformly to both fin surfaces during cooling, so the refrigerant adsorbent temperature inside the refrigerant adsorbent filling container Can be changed uniformly.

なお、上記板状フィンは、必ずしも相互に完全に平行で無くても良く、例えば互いに斜めの位置関係にあっても互いに向き合っていれば、上記のように給熱や放熱に寄与するから、冷媒吸着材全体の温度の均一化に貢献することができる。したがって、本発明で「平行」とは、完全なる平行のほか、経験則に基づき上記の給熱や放熱に対する実質的効果が認められる程度の大よその平行という意味をも含むものである。
ところで、平行に向かい合った平板部で構成された放熱容器内に複数のフィンを密に配すること自体は容易であるが、冷媒吸着材は、例えば粉末状固体、顆粒状固体、繊維状固体、ゲル等であり、一般的に流動性に乏しい物質であるから、上記のような放熱容器に充填することは困難である。しかし、本発明のように冷媒充填容器を構成すれば、十分で且つ効果的な伝熱フィンを備え、しかも例えば円筒状冷媒充填容器の開口端から容易に冷媒吸着材を充填することができる。
The plate-like fins do not necessarily have to be completely parallel to each other. For example, as long as they face each other even if they are in an oblique positional relationship, they contribute to heat supply and heat dissipation as described above. This can contribute to uniform temperature throughout the adsorbent. Therefore, the term “parallel” in the present invention includes not only perfect parallelism but also the meaning of “parallel” to the extent that a substantial effect on the above-described heat supply and heat dissipation is recognized based on empirical rules.
By the way, although it is easy to densely arrange a plurality of fins in a heat radiation container composed of flat plate portions facing in parallel, the refrigerant adsorbent is, for example, a powdery solid, a granular solid, a fibrous solid, Since it is a gel or the like and is generally a substance having poor fluidity, it is difficult to fill the heat radiating container as described above. However, if the refrigerant filling container is configured as in the present invention, sufficient and effective heat transfer fins are provided, and for example, the refrigerant adsorbing material can be easily filled from the open end of the cylindrical refrigerant filling container.

また、本発明は、ターボ冷凍機中から冷媒ガスと共に抽出されたのち、該冷媒ガスと分離された不凝縮ガスを、冷媒吸着材を充填した冷媒吸着材充填容器中を通過させた後に大気中に排出するように構成されたターボ冷凍機用抽気回収装置において、前記冷媒吸着材充填容器として、前記した本発明の冷媒吸着材充填容器を用いている。
いわゆる低圧冷媒を使用するターボ冷凍機においては、該冷凍機内部に漏入した空気等の不凝縮ガスを機外に排出するために、通常抽気回収装置を備えている。この抽気回収装置により、冷凍機内の不凝縮ガスを冷媒ガスと共に抽出し、該抽出したガスを、例えば冷却することで冷媒ガスと不凝縮ガスとに分離し、分離した冷媒を冷凍機に回収すると共に不凝縮ガスを機外に排出する。ここで、上記のように冷却によりガス分離を行った場合には、不凝縮ガスの中に、前記冷却時の温度の飽和圧力に相当する分圧で冷媒ガスも含まれているのが通常であり、この時点での不凝縮ガスは、言わば混合ガスの状態にある。そこで、第2段階のガス分離を行い、前記混合ガスからさらに大部分の冷媒ガスを除去したのち、冷媒ガスを殆ど同伴することなく、ほぼ完全な不凝縮ガスだけを機外、即ち通常は大気中に排出することが、特に環境対策として求められている。なお、前記第2段階で混合ガスから分離、除去された冷媒ガスも、通常は該冷凍機に回収される。
The present invention also provides a non-condensable gas extracted from the turbo refrigerator together with the refrigerant gas and then separated from the refrigerant gas through the refrigerant adsorbent-filled container filled with the refrigerant adsorbent and then into the atmosphere. In the bleed air recovery apparatus for a turbo chiller configured to be discharged at the same time, the refrigerant adsorbent filling container of the present invention described above is used as the refrigerant adsorbent filling container.
A turbo refrigerator using a so-called low-pressure refrigerant is usually provided with a bleed gas recovery device in order to discharge non-condensable gas such as air leaked into the refrigerator to the outside of the apparatus. With this extraction air recovery device, the non-condensable gas in the refrigerator is extracted together with the refrigerant gas, and the extracted gas is separated into, for example, refrigerant gas and non-condensable gas by cooling, and the separated refrigerant is recovered in the refrigerator. At the same time, non-condensable gas is discharged outside the machine. Here, when gas separation is performed by cooling as described above, it is normal that refrigerant gas is also included in the non-condensable gas at a partial pressure corresponding to the saturation pressure of the temperature at the time of cooling. Yes, the non-condensable gas at this point is in the state of a mixed gas. Therefore, after performing the second stage gas separation and removing most of the refrigerant gas from the mixed gas, almost completely non-condensable gas is removed outside the aircraft, that is, usually in the atmosphere, with little accompanying refrigerant gas. It is especially required as an environmental measure. Note that the refrigerant gas separated and removed from the mixed gas in the second stage is also usually recovered by the refrigerator.

前記第2段階の冷媒ガスと不凝縮ガスとの分離のために、前記混合ガスを冷媒吸着材を充填した冷媒吸着材充填容器の中を通過させることにより、該混合ガス中から冷媒ガスを吸着して除去し、残留した不凝縮ガスだけを機外へ排出するように構成された抽気回収装置において、冷媒吸着材充填容器として本発明による充填容器を使用すれば、冷媒吸着材の必要十分な加熱及び冷却が速やかにできるから、冷媒を吸着した冷媒吸着材から冷媒を速やかに且つ十分に脱着でき、冷媒吸着材が好適に再生できるので、同一の冷媒吸着材を繰り返し使用でき、冷媒吸着材交換などの手間がかからず経済的で、さらに冷媒の機外への放出を極めて減少できる優れた抽気回収装置を実現できる。   In order to separate the second stage refrigerant gas from the non-condensable gas, the refrigerant gas is adsorbed from the mixed gas by passing the mixed gas through a refrigerant adsorbent filling container filled with a refrigerant adsorbent. If the filling container according to the present invention is used as a refrigerant adsorbent filling container in a bleed air recovery apparatus configured to remove only the remaining non-condensable gas outside the apparatus, the refrigerant adsorbent is necessary and sufficient. Since the heating and cooling can be performed quickly, the refrigerant can be quickly and sufficiently desorbed from the refrigerant adsorbing material that has adsorbed the refrigerant, and the refrigerant adsorbing material can be suitably regenerated. An excellent extraction / recovery device can be realized that is economical without requiring time and effort for replacement, and that can significantly reduce the release of refrigerant to the outside of the apparatus.

また、本発明は、抽気回収装置を備えたターボ冷凍機において、抽気回収装置として、前記した本発明の抽気回収装置を備えることとした。
前記の抽気回収装置を備えたターボ冷凍機においては、仮に空気等の不凝縮ガスが機内に漏入したとしても、該抽気回収装置により不凝縮ガスは抽気により除去され、しかも不凝縮ガスと共に抽気された冷媒ガスは、冷凍機に回収することも可能であるから、冷媒充填量の減少が極めて僅かである。即ち、不凝縮ガスが例え漏入したとしても、事実上該不凝縮ガスだけを機内から除去でき、冷媒量の減少が極めてわずかで、事実上大気中に冷媒を排出することのない、環境対策に優れたターボ冷凍機を提供することができる。
Further, according to the present invention, in the turbo refrigerator equipped with the extraction recovery device, the extraction recovery device of the present invention described above is provided as the extraction recovery device.
In the turbo chiller equipped with the extraction recovery device, even if non-condensable gas such as air leaks into the apparatus, the non-condensable gas is removed by extraction with the extraction recovery device, and the extraction is performed together with the non-condensation gas. Since the refrigerant gas thus obtained can be recovered by the refrigerator, the refrigerant filling amount is extremely small. In other words, even if non-condensable gas leaks, it is possible to remove only the non-condensable gas from the inside of the machine, and the decrease in the amount of refrigerant is extremely small, and virtually no refrigerant is discharged into the atmosphere. An excellent turbo refrigerator can be provided.

さらに、本発明は、不凝縮ガスを含有する冷媒ガスから冷媒ガスのみを吸着して回収し、不凝縮ガスを大気中に排出する冷媒回収装置として、前記した本発明の冷媒吸着材充填容器に冷媒吸着材を充填して用いている。
冷凍機から冷媒を回収する冷媒回収装置においては、該冷凍機内部に漏入していたり、又は冷媒回収作業中に漏入した空気等の不凝縮ガスも、同時に該冷媒回収装置に一旦回収してしまう場合がある。この場合、冷媒回収装置に一旦取り込まれた不凝縮ガスを該冷媒回収装置外に排出するために、冷凍機から取り込んだ不凝縮ガスを含む全ての冷媒ガスを、例えば冷却することで冷媒ガスと不凝縮ガスとに分離し、分離した冷媒だけを冷媒充填容器に移送し保存すると共に、不凝縮ガスを冷媒回収装置外に排出する。ここで、例えば上記のように冷却によりガス分離を行った場合には、不凝縮ガスの中に前記冷却時の温度の飽和圧力に相当する分圧で冷媒ガスも含まれているのが通常であり、この時点での不凝縮ガスは、言わば混合ガスの状態にある。そこで、第2段階のガス分離を行い、前記混合ガスからさらに大部分の冷媒ガスを除去したのち、冷媒ガスを殆ど同伴することなく、ほぼ完全な不凝縮ガスだけを冷媒回収装置外、即ち通常は大気中に排出することが特に環境対策として求められている。
Furthermore, the present invention provides a refrigerant adsorbent-filled container according to the present invention as a refrigerant recovery device for adsorbing and recovering only refrigerant gas from refrigerant gas containing non-condensable gas and discharging the non-condensable gas into the atmosphere. Filled with refrigerant adsorbent.
In the refrigerant recovery device that recovers the refrigerant from the refrigerator, non-condensable gas such as air that leaks into the refrigerator or leaks during the refrigerant recovery operation is also temporarily recovered in the refrigerant recovery device. May end up. In this case, in order to discharge the non-condensable gas once taken into the refrigerant recovery apparatus to the outside of the refrigerant recovery apparatus, all the refrigerant gases including the non-condensable gas taken from the refrigerator are cooled, for example, by cooling the refrigerant gas. The refrigerant is separated into non-condensable gas, and only the separated refrigerant is transferred and stored in the refrigerant-filled container, and the non-condensable gas is discharged out of the refrigerant recovery device. Here, for example, when gas separation is performed by cooling as described above, refrigerant gas is usually included in the non-condensable gas at a partial pressure corresponding to the saturation pressure of the temperature at the time of cooling. Yes, the non-condensable gas at this point is in the state of a mixed gas. Therefore, after the second stage gas separation is performed and most of the refrigerant gas is further removed from the mixed gas, almost completely non-condensable gas is removed from the refrigerant recovery apparatus, that is, usually without any accompanying refrigerant gas. Is required to be released into the atmosphere as an environmental measure.

前記第2段階の冷媒ガスと不凝縮ガスとの分離のために、上記混合ガスを冷媒吸着材を充填した冷媒吸着材充填容器の中を通過させることにより、該混合ガス中から冷媒ガスを吸着して除去し、残留した不凝縮ガスだけを冷媒回収装置外へ排出するように構成された冷媒回収装置において、冷媒吸着材充填容器として本発明による充填容器を使用すれば、冷媒吸着材の必要十分な加熱及び冷却が速やかにできるから、冷媒を吸着した冷媒吸着材から冷媒を速やか且つ十分に脱着でき、冷媒吸着材が好適に再生できるので同一の冷媒吸着材を繰り返し使用でき、冷媒吸着材交換などの手間がかからず経済的で、さらに冷媒の冷媒回収装置外への放出を極めて減少できる優れた冷媒回収装置を実現できる。また、本発明による冷媒回収装置の適用範囲はターボ冷凍機に限られることなく、他の蒸気圧縮式冷凍機にも当然に適用可能である。   In order to separate the second stage refrigerant gas from the non-condensable gas, the refrigerant gas is adsorbed from the mixed gas by passing the mixed gas through a refrigerant adsorbent filling container filled with a refrigerant adsorbent. If the filling container according to the present invention is used as the refrigerant adsorbent filling container in the refrigerant recovery apparatus configured to discharge only the remaining non-condensable gas to the outside of the refrigerant recovery apparatus, the refrigerant adsorbent is necessary. Sufficient heating and cooling can be performed quickly, so that the refrigerant can be quickly and sufficiently desorbed from the refrigerant adsorbing material that has adsorbed the refrigerant, and the refrigerant adsorbing material can be suitably regenerated, so that the same refrigerant adsorbing material can be used repeatedly. An excellent refrigerant recovery apparatus can be realized that is economical without requiring troubles such as replacement and that can significantly reduce the release of the refrigerant to the outside of the refrigerant recovery apparatus. Further, the application range of the refrigerant recovery apparatus according to the present invention is not limited to the turbo refrigerator, but can naturally be applied to other vapor compression refrigerators.

以下、本発明を図面に基づいて説明する。
図1は、本発明にかかる代表的な冷媒吸着材充填容器の一例を示す断面構成図である。図1において、円筒状の外周部材である壁面1により容器を形成し、内部に冷媒吸着材等を収容可能なスペース6を形成しつつ、一体に形成された内部フィン2ないし4により、内部空間距離を短縮しかつ伝熱面積を拡大させ、内部の収納スペース6に収容した冷媒吸着材等の加熱及び冷却に際して、温度むらを低減しかつ伝熱に要する時間を短縮することができる。
冷媒吸着材の粉末や顆粒・ゲルの代表的粒子径は、2メッシュないし200メッシュ(約0.1mmないし約10mm)程度であり、繊維状固体は数mm角程度のチップが使用できる。このとき、前記内部フィン2ないし4の距離は、内部に充填する冷媒吸着材等の粒子径よりも大きいことが必要であり、冷媒吸着材等の粒子径の5倍以下、好ましくは2〜5倍とすることができる。フィン間の距離がこれよりも狭い場合には、冷媒吸着材等の粒子を内部に密に充填することが困難となり、冷媒吸着材等の充填率が減少するために、相対的に冷媒吸着材充填容器を大きくする必要が生じ、一方これより広い場合には、前記フィンに接しない粒子の割合が大半を占めるために伝熱促進効果が減少するからである。
Hereinafter, the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional configuration diagram showing an example of a typical refrigerant adsorbent filling container according to the present invention. In FIG. 1, a container is formed by a wall surface 1 which is a cylindrical outer peripheral member, and an internal space is formed by integrally formed internal fins 2 to 4 while forming a space 6 in which a refrigerant adsorbing material and the like can be accommodated. When the distance is shortened and the heat transfer area is expanded, the temperature unevenness and the time required for heat transfer can be reduced when heating and cooling the refrigerant adsorbent and the like stored in the internal storage space 6.
The typical particle size of the refrigerant adsorbent powder, granule or gel is about 2 mesh to 200 mesh (about 0.1 mm to about 10 mm), and a chip of about several mm square can be used for the fibrous solid. At this time, the distance between the internal fins 2 to 4 needs to be larger than the particle diameter of the refrigerant adsorbent or the like to be filled therein, and is 5 times or less, preferably 2 to 5 times the particle diameter of the refrigerant adsorbent or the like. Can be doubled. When the distance between the fins is narrower than this, it is difficult to densely fill the inside with particles such as the refrigerant adsorbent, and the filling rate of the refrigerant adsorbent etc. decreases, so the refrigerant adsorbent is relatively This is because it is necessary to enlarge the filling container. On the other hand, if the filling container is wider than this, the ratio of the particles not in contact with the fins occupies the majority, so that the heat transfer promoting effect is reduced.

内部フィン2は、中心部材10と外周部材1との間を連携し、全体の形状の保持及び伝熱の均一化を高める効果があり、内部フィン3は外周部の伝熱の均一化を、内部フィン4は中心部の伝熱の均一化を各々高める効果がある。内部フィン3表面と内部フィン4表面及び内部フィン2表面が、各々平行するように配置することにより、内部の収納スペース6に充填した冷媒吸着材等の各部の伝熱距離を均一とし、速やかにかつ均一に(大きさにもよるが冷媒吸着材内の温度差として、例えば10℃以下程度)加熱及び冷却が可能となる。このとき、放射状フィン2の枚数は8ないし12枚が好ましい。なお、図には示さないが、内部フィン3又は4の数は放射状フィン2と必ずしも同数である必要はなく、内部の収納スペース6に充填する粒子径との相対的関係により、適切な伝熱距離が確保できる範囲で適宜選択することができ、例えば一組のフィン2と中心部材10及び外周部材1とで構成される一区画の冷媒吸着材収納スペース内に、複数のフィン3又はフィン4を交互に平行に互いの距離が適切な伝熱距離となるように配置することもできる。ただし、鋳造により冷媒吸着材充填容器を製造する場合には、製作の容易さを考慮すると、各区画の冷媒吸着材収納スペース6及びフィンの形状・寸法は同一であることが好ましく、このようにすることで鋳物の中子を同一形状で製作できるため、製作コストの削減を図ることができる。   The internal fin 2 has an effect of improving the maintenance of the overall shape and the uniform heat transfer in cooperation between the central member 10 and the outer peripheral member 1, and the internal fin 3 provides the uniform heat transfer of the outer peripheral portion. The internal fins 4 have the effect of increasing the uniform heat transfer at the center. By arranging the surface of the internal fin 3, the surface of the internal fin 4 and the surface of the internal fin 2 to be parallel to each other, the heat transfer distance of each part such as the refrigerant adsorbent filled in the internal storage space 6 can be made uniform and promptly Moreover, heating and cooling can be performed uniformly (depending on the size, the temperature difference in the refrigerant adsorbent is, for example, about 10 ° C. or less). At this time, the number of the radial fins 2 is preferably 8 to 12. Although not shown in the drawing, the number of the internal fins 3 or 4 is not necessarily the same as that of the radial fins 2, and an appropriate heat transfer is possible depending on the relative relationship with the particle diameter filled in the internal storage space 6. For example, a plurality of fins 3 or fins 4 can be selected within a compartment of the refrigerant adsorbent storage space composed of a pair of fins 2, the central member 10, and the outer peripheral member 1. Can be arranged alternately in parallel so that the distance between them becomes an appropriate heat transfer distance. However, in the case of manufacturing the refrigerant adsorbent filled container by casting, it is preferable that the shape and size of the refrigerant adsorbent storage space 6 and the fins in each section are the same in consideration of ease of manufacture. By doing so, the core of the casting can be manufactured in the same shape, so that the manufacturing cost can be reduced.

加熱手段として、例えばカートリッジ型のヒータ等を用いる場合には、フィン2に厚肉部を予め設け、ここに取り付け用穴8を設けておくことにより、容易に取り付けができる。なお、図には示さないが、ヒータを中心部材10の中央に紙面の垂直方向から挿入する方法でもよいが、この場合には後に述べるカバー及び金網を貫通して取り付け、かつカバー貫通部の気密を保持する必要があるため、注意が必要である。また、シート状のヒータを容器壁面1の外周面に貼り付ける方法でもよいが、この場合には、冷却時にヒータ自体が熱抵抗となりうるので冷却時間が長くなることに注意が必要である。
冷媒吸着材充填容器の材料としては、極力熱伝導率の高いことが好ましく、例えばアルミ合金鋳物を用いることにより、大きさにもよるが容器自体の温度むらは数℃以内の最小限に留めることができる。
また、容器外面の外周部材1にはフィン5を設けることにより、冷却時に速やかに外部へ放熱する効果を高めることができる。
なお、外部フィン5の前後両端部に連なるフランジの張り出し部7に設けたビス穴9を用いて、両端にカバーを設置する。カバーの形状については、後述する図5を用いて説明する。
For example, when a cartridge type heater or the like is used as the heating means, it is possible to easily attach the fin 2 by providing a thick portion in advance and providing the attachment hole 8 therein. Although not shown in the drawing, a method of inserting the heater into the center of the center member 10 from the direction perpendicular to the paper surface may be used. It is necessary to be careful because it is necessary to hold. In addition, a method of sticking a sheet-like heater to the outer peripheral surface of the container wall surface 1 may be used, but in this case, care must be taken that the cooling time becomes long because the heater itself can become a thermal resistance during cooling.
As a material for the refrigerant adsorbent-filled container, it is preferable that the heat conductivity is as high as possible. For example, by using an aluminum alloy casting, the temperature unevenness of the container itself is kept to a minimum within several degrees Celsius depending on the size. Can do.
Further, by providing the fin 5 on the outer peripheral member 1 on the outer surface of the container, it is possible to enhance the effect of quickly radiating heat to the outside during cooling.
In addition, a cover is installed in both ends using the screw hole 9 provided in the overhang | projection part 7 of the flange connected to the front and rear both ends of the external fin 5. The shape of the cover will be described with reference to FIG.

図2〜4は、本発明にかかる冷媒吸着材充填容器の断面の他の一例を示す断面構成図である。
図2は、放射状に内部フィン2を配置した例であり、放射状のフィン枚数は12ないし16枚以内が好ましい。これよりフィンの枚数が少ないと、相対的にフィンによる伝熱促進効果が減少するため、適切な伝熱距離を保持したままでの大容量化を図ることが困難となる。
一方、適切な伝熱距離を保持したまま大容量化を図るべく、図2のフィンの数を相対的に増やした例(好ましくない例)が図3である。図3のように、内部空間の距離を短縮するためにフィンの枚数を極度に増やすと、相対的に中心部の無駄な体積が増大し、吸着材等を充填するための有効空間がかえって減少するため好ましくない。
2-4 is a cross-sectional block diagram which shows another example of the cross section of the refrigerant | coolant adsorbent filling container concerning this invention.
FIG. 2 shows an example in which the internal fins 2 are arranged radially, and the number of radial fins is preferably 12 to 16 or less. If the number of fins is smaller than this, the heat transfer promoting effect by the fins is relatively reduced, and it is difficult to increase the capacity while maintaining an appropriate heat transfer distance.
On the other hand, FIG. 3 shows an example (unfavorable example) in which the number of fins in FIG. 2 is relatively increased in order to increase the capacity while maintaining an appropriate heat transfer distance. As shown in FIG. 3, when the number of fins is extremely increased in order to shorten the distance of the internal space, the wasteful volume of the central portion is relatively increased, and the effective space for filling the adsorbent is decreased. Therefore, it is not preferable.

図4は、放射状のフィン2で構成された空間内に、外周部材1の内面から中心に向かってさらにフィン3を設けることにより、図2より大容量化と内部空間距離の短縮及び伝熱面積の拡大を図った例である。特に、容器壁面外周から加熱しかつ外周へ放熱させる場合には、このように外周側に重点的に内部フィンを配置することにより、速やかに加熱及び冷却が可能となる。このとき、放射状フィン2の枚数は8ないし16枚が好ましい。適切な伝熱距離を保持したままこれよりさらに大容量化を図る場合には、さらにフィンの枚数を増やす必要が生じ、図3の場合と同様の問題が生じるため、図4のようなフィンの構成、即ちフィン2及びフィン3のみによる構成では、対応が困難となる。そのため、前記図1に示すようなフィン4をさらに加えた配置が好適となる訳である。以上のことからわかるように、冷媒吸着材の粒子径及び充填量により、最適な内部フィンの構成配置は変化しうる。   FIG. 4 shows that the fin 3 is further provided from the inner surface of the outer peripheral member 1 toward the center in the space constituted by the radial fins 2, thereby increasing the capacity, reducing the internal space distance, and the heat transfer area compared to FIG. It is an example which aimed at expansion. In particular, when heating from the outer peripheral surface of the container and dissipating heat to the outer periphery, heating and cooling can be quickly performed by placing the internal fins on the outer peripheral side in this manner. At this time, the number of the radial fins 2 is preferably 8 to 16. When the capacity is further increased while maintaining an appropriate heat transfer distance, it is necessary to further increase the number of fins, and the same problem as in FIG. 3 arises. In the configuration, that is, the configuration using only the fins 2 and 3, it becomes difficult to cope with the problem. Therefore, an arrangement in which fins 4 as shown in FIG. 1 are further added is preferable. As can be seen from the above, the optimum arrangement of the internal fins can be changed depending on the particle diameter and the filling amount of the refrigerant adsorbent.

図5は、冷媒吸着材充填容器の全体形状の一例を示す縦断面構成図である。冷媒吸着材等を内部に充填し密閉容器として用いる際には、まず前記図1に示すような断面形状を有する円筒形の容器を構成する冷媒吸着材充填容器本体18、該円筒形充填容器本体の片端の開口部を覆うように、冷媒吸着材が脱落しないように保持するための適当な大きさのメッシュ(当然ながら冷媒吸着材粒子自体のメッシュ径よりも細かいことが必要である)を有する金網13を、その平面を維持しつつ吸着材の質量を保持可能な補強板及び/又は金網と共にあてがい、さらにこれを覆い収納しつつ支え、かつ内面中央が凹形状に気体通路を形成し、これに連通する気体の入口または出口を有する円板状カバー12を設置する。フランジ面には、気密のため例えばOリングなどのシール材14を設置する。これにより、片側のみが開放された充填容器本体内に形成された気体通路を兼ねた冷媒吸着材収納スペースに、冷媒吸着材を充填したのち、もう一端も前記同様に金網13、シール材14、カバー11を設置して密閉する。   FIG. 5 is a longitudinal sectional configuration diagram showing an example of the overall shape of the refrigerant adsorbent filling container. When the refrigerant adsorbent or the like is filled inside and used as a sealed container, first, the refrigerant adsorbent-filled container main body 18 constituting the cylindrical container having the cross-sectional shape as shown in FIG. A mesh of an appropriate size for holding the refrigerant adsorbent so as not to drop off so as to cover the opening at one end of the medium (of course, it is necessary to be smaller than the mesh diameter of the refrigerant adsorbent particles themselves) The metal mesh 13 is attached together with a reinforcing plate and / or a metal mesh that can maintain the mass of the adsorbent while maintaining its flat surface, and further supports the metal mesh 13 while covering and storing it, and a gas passage is formed in a concave shape at the center of the inner surface. A disk-shaped cover 12 having a gas inlet or outlet communicating with the gas is installed. A sealing material 14 such as an O-ring is installed on the flange surface for airtightness. Thereby, after filling the refrigerant adsorbent into the refrigerant adsorbent storage space that also serves as the gas passage formed in the filling container main body that is open only on one side, the other end also has the metal mesh 13, the sealing material 14, Cover 11 is installed and sealed.

このようにして、カバー12及びカバー11には、各々入口19及び出口20を設け、入口19から導入した冷媒ガスを含む不凝縮ガスを、冷媒吸着材充填容器本体18内に充填した冷媒吸着材に全量通過させることにより冷媒ガスを冷媒吸着材に吸着させ、残りの殆ど冷媒ガスを含まない、主に不凝縮ガスのみを出口20から排出することができる。さらに、冷媒吸着材充填容器本体18には、ヒータ取付穴17を用いて所定の発熱容量のカートリッジヒータを取り付け可能であり、また、温度センサ取付穴16にはサーミスタなどの温度センサを取り付け可能であるから、冷媒吸着材に吸着された冷媒を脱着再生させるのに適する温度まで均一にかつ速やかに昇温し、所定の時間保持して脱着した冷媒ガスを再生回収することができる。また、再び冷却することにより冷媒吸着材の吸着性が復活するが、この際にも冷媒吸着材充填容器の内部まで均一にかつ速やかに冷却することができる。なお、下側のカバー12には、脚15を取り付けることで自立するから、所定の位置に設置固定することも可能である。また、外部(ここでは下部)に冷却ファン62を設置し、冷却時のみ運転することで冷却時間の短縮が可能である。さらに、外周には、ダクト61を設置することで加熱時間及び冷却時間の短縮と投入エネルギーの削減が可能である。   In this way, the cover 12 and the cover 11 are each provided with the inlet 19 and the outlet 20, and the refrigerant adsorbent in which the non-condensable gas containing the refrigerant gas introduced from the inlet 19 is filled in the refrigerant adsorbent filling container main body 18. The refrigerant gas can be adsorbed by the refrigerant adsorbent by passing the entire amount through, and only the non-condensable gas containing almost no remaining refrigerant gas can be discharged from the outlet 20. Further, a cartridge heater having a predetermined heat generation capacity can be attached to the refrigerant adsorbent filling container body 18 using the heater attachment hole 17, and a temperature sensor such as a thermistor can be attached to the temperature sensor attachment hole 16. Therefore, the temperature of the refrigerant adsorbed by the refrigerant adsorbent can be increased uniformly and quickly to a temperature suitable for desorption and regeneration, and the desorbed refrigerant gas can be regenerated and recovered by holding for a predetermined time. Moreover, although the adsorptivity of the refrigerant adsorbent is restored by cooling again, the inside of the refrigerant adsorbent filled container can be uniformly and quickly cooled at this time as well. Since the lower cover 12 is self-supporting by attaching the legs 15, it can be installed and fixed at a predetermined position. In addition, the cooling time can be shortened by installing the cooling fan 62 outside (here, the lower part) and operating only during cooling. Further, by installing the duct 61 on the outer periphery, it is possible to shorten the heating time and the cooling time and reduce the input energy.

図6は、本発明にかかる冷媒吸着材充填容器を用いた抽気回収装置を有するターボ冷凍機の概略構成図であり、抽気回収装置の詳細については図7による。図7は、本発明にかかる抽気回収装置の一例を示す全体構成図である。図6及び図7に記載の記号イ、ロ、ハ、ニ、ホは、同一の記号が付されている部分が相互に接続される部分であることを示している。
ターボ冷凍機と抽気回収装置との相互連絡部分から関連するバルブの開閉も含めて説明する。
FIG. 6 is a schematic configuration diagram of a turbo chiller having an extraction recovery device using a refrigerant adsorbent filling container according to the present invention. The details of the extraction recovery device are as shown in FIG. FIG. 7 is an overall configuration diagram showing an example of a bleed air recovery device according to the present invention. Symbols a, b, c, d, and ho described in FIGS. 6 and 7 indicate that the portions to which the same symbol is attached are connected to each other.
A description will be given including the opening and closing of related valves from the mutual connection portion between the turbo refrigerator and the extraction device.

図7において、抽気回収装置50のパージコンデンサ31は、ターボ冷凍機の冷媒サイクルを構成する冷媒の一部を用いて冷却される。即ちターボ冷凍機の凝縮器41から液冷媒の一部を配管を用いて取り出し、この配管を蒸発器42の内部に引き回して、前記液冷媒を過冷却した後に、冷媒ポンプ43により冷媒フィルタ44を経由して、パージコンデンサ31内に設置された熱交換器である冷却コイル32に向けて圧送される(ロの経路である)。熱交換器である冷却コイル32のパージコンデンサ31入口部には、オリフィス45が配置されており、冷却コイル32の下流側は冷凍機の蒸発器に接続されているので、パージコンデンサ31内部は、ほぼ冷凍機の蒸発器と等しい程度の低温にまで液冷媒の気化潜熱によって冷却される。パージコンデンサを冷却したのち、前記冷媒は蒸発器42に戻る(ニの経路である)。前記パージコンデンサ冷却用冷媒は、冷凍機運転中常時流れているので、これによりパージコンデンサ31の圧力は凝縮器41の圧力よりも低く保たれる。   In FIG. 7, the purge condenser 31 of the extraction recovery device 50 is cooled by using a part of the refrigerant constituting the refrigerant cycle of the turbo chiller. That is, a part of the liquid refrigerant is taken out from the condenser 41 of the turbo chiller using a pipe, and the pipe is routed inside the evaporator 42 to supercool the liquid refrigerant, and then the refrigerant filter 44 is installed by the refrigerant pump 43. Via, it is pumped toward the cooling coil 32 which is a heat exchanger installed in the purge condenser 31 (this is the second path). An orifice 45 is disposed at the inlet of the purge condenser 31 of the cooling coil 32 that is a heat exchanger, and the downstream side of the cooling coil 32 is connected to the evaporator of the refrigerator. It is cooled by the latent heat of vaporization of the liquid refrigerant to a low temperature that is almost equal to the evaporator of the refrigerator. After cooling the purge condenser, the refrigerant returns to the evaporator 42 (this is the second path). Since the purge condenser cooling refrigerant always flows during the operation of the refrigerator, the pressure of the purge condenser 31 is thereby kept lower than the pressure of the condenser 41.

凝縮器41とパージコンデンサ31との前記圧力差によって、凝縮器41から不凝縮ガスを含む冷媒ガスが、連絡配管37を通りオリフィス39を経由してパージコンデンサ31内に流入する(イの経路である)。コンデンサ室31aで、冷媒ガスは凝縮液化したのち、フロート弁室31bに流れる。該フロート弁室31bに、一定量以上の液冷媒が溜まるとフロート弁33が開いて、冷媒は冷凍機(蒸発器42)に戻る(ホの経路である)。一方、不凝縮ガスは、パージコンデンサ室31内に滞留し、次第に蓄積していく。
なお、凝縮器41の圧力とパージコンデンサ31の圧力との圧力差を検出するための導圧配管が凝縮器41から取り出されて差圧検出器34に接続されている(ハの経路である)。
Due to the pressure difference between the condenser 41 and the purge condenser 31, refrigerant gas containing non-condensable gas flows from the condenser 41 through the connecting pipe 37 into the purge condenser 31 via the orifice 39 (in the path a). is there). In the condenser chamber 31a, the refrigerant gas condenses and then flows into the float valve chamber 31b. When a certain amount or more of liquid refrigerant accumulates in the float valve chamber 31b, the float valve 33 is opened, and the refrigerant returns to the refrigerator (evaporator 42) (this is the path of E). On the other hand, the non-condensable gas stays in the purge condenser chamber 31 and gradually accumulates.
A pressure guiding pipe for detecting the pressure difference between the pressure of the condenser 41 and the pressure of the purge condenser 31 is taken out of the condenser 41 and connected to the differential pressure detector 34 (this is a path C). .

次に、本発明に係る抽気回収装置の構成と作用・効果等に関し順次説明する。
上述した通りターボ冷凍機運転中には、凝縮器41から連絡配管37とオリフィス39を経由して不凝縮ガスを含む冷媒ガスがパージコンデンサ31に流入し、その内の冷媒ガスは、コンデンサ室31aにおいて冷却コイル32により冷却・液化され、フロート弁室31bを経由して蒸発器42に戻る。一方、不凝縮ガスは、コンデンサ室31a内に次第に蓄積し、パージコンデンサの内圧が徐々に上昇する。
次に、不凝縮ガスの大気中への排出運転に関し、説明する。
パージコンデンサ31のコンデンサ室31aに不凝縮ガスが蓄積された結果、冷凍機の凝縮器41とパージコンデンサ31との圧力差が、所定の値以下になると差圧検出器34が作動し、制御部40へ信号が伝送される。その後、制御部40は電磁弁51を開く。これにより、パージコンデンサ31内部に蓄積された不凝縮ガスは、冷媒ガスと共に接続配管54とその途中に配置されたオリフィス57、電磁弁51を経由して、吸着タンク63に導入される。吸着タンク63の内部には、冷媒吸着材60が充填されており、冷媒ガスはその大部分がこの吸着材60に吸着される。
Next, the configuration, operation and effect of the bleed air recovery apparatus according to the present invention will be described in order.
As described above, during the operation of the centrifugal chiller, the refrigerant gas containing the non-condensable gas flows from the condenser 41 through the connection pipe 37 and the orifice 39 into the purge condenser 31, and the refrigerant gas in the refrigerant gas is contained in the condenser chamber 31 a. Then, it is cooled and liquefied by the cooling coil 32 and returns to the evaporator 42 via the float valve chamber 31b. On the other hand, the non-condensable gas gradually accumulates in the capacitor chamber 31a, and the internal pressure of the purge capacitor gradually increases.
Next, the operation of discharging non-condensable gas into the atmosphere will be described.
When the non-condensable gas is accumulated in the condenser chamber 31a of the purge condenser 31 and the pressure difference between the condenser 41 and the purge condenser 31 of the refrigerator becomes equal to or less than a predetermined value, the differential pressure detector 34 is activated and the control unit A signal is transmitted to 40. Thereafter, the control unit 40 opens the electromagnetic valve 51. Thereby, the non-condensable gas accumulated in the purge condenser 31 is introduced into the adsorption tank 63 together with the refrigerant gas via the connection pipe 54, the orifice 57 disposed in the middle thereof, and the electromagnetic valve 51. The adsorption tank 63 is filled with a refrigerant adsorbent 60, and most of the refrigerant gas is adsorbed by the adsorbent 60.

こうして冷媒ガスを含む不凝縮ガスが、パージコンデンサ31から吸着タンク63へ移動すると、パージコンデンサ31の内圧が低下するから、冷凍機の凝縮器41との間の圧力差が再び所定の値を超えて増大するので、前記差圧検出器34が切れる。これにより電磁弁51が閉じられ、パージコンデンサ31内に蓄積された不凝縮ガスの排出が完了する。ところで、前記差圧検出器34が作動し、電磁弁51を開くことにより、冷媒ガスを含む不凝縮ガスが冷媒吸着材60の充填された吸着タンク63内に導入されてから、冷媒ガスが冷媒吸着材60に吸着されて再び前記差圧検出器34が切れ、電磁弁51が閉じられ、パージコンデンサ31内に蓄積された不凝縮ガスの排出が完了するに要する時間(以降、“吸着時間”と称する)は、パージコンデンサ31及び吸着タンク63の大きさにもよるが概ね50秒ないし70秒あれば十分であることを確認した。従って、例えば前記吸着時間以上の値を予め設定した吸着完了確認タイマーなどを制御部40内に設けることにより、前記吸着動作の完了を検出できるから、前記吸着時間が経過してもなお前記差圧検出器34が切れない場合、即ち冷凍機の凝縮器41とパージコンデンサ31との圧力差が前記所定の値以下を維持したままである場合には、吸着タンク63内に相当量の不凝縮ガスが蓄積されたことを意味するため、パージポンプ36を起動すると共に電磁弁52を開く。このようにして、冷媒ガスが吸着材に吸着された結果、殆ど不凝縮ガスだけがパージポンプ36により吸引・吐出されて電磁弁52を経由して大気中に排出される。 When the non-condensable gas including the refrigerant gas moves from the purge condenser 31 to the adsorption tank 63 in this way, the internal pressure of the purge condenser 31 decreases, so that the pressure difference with the condenser 41 of the refrigerator exceeds the predetermined value again. Therefore, the differential pressure detector 34 is cut off. As a result, the electromagnetic valve 51 is closed, and the discharge of the non-condensable gas accumulated in the purge condenser 31 is completed. By the way, when the differential pressure detector 34 is activated and the electromagnetic valve 51 is opened, the non-condensable gas containing the refrigerant gas is introduced into the adsorption tank 63 filled with the refrigerant adsorbent 60, and then the refrigerant gas becomes the refrigerant. The time required to complete the discharge of the non-condensable gas accumulated in the purge condenser 31 after the differential pressure detector 34 is cut off again by being adsorbed by the adsorbent 60 and the electromagnetic valve 51 is closed (hereinafter referred to as “adsorption time”). It has been confirmed that approximately 50 seconds to 70 seconds is sufficient although it depends on the size of the purge condenser 31 and the adsorption tank 63. Thus, for example, by providing such the suction completion confirmation timer is set a value equal to or greater than the adsorption time in advance in control unit 40, because it detects the completion of the adsorbing operation, still the differential pressure the adsorption time has elapsed If the detector 34 is not cut off, that is, if the pressure difference between the condenser 41 and the purge condenser 31 of the refrigerator remains below the predetermined value, a considerable amount of non-condensable gas in the adsorption tank 63. Means that the purge pump 36 is activated and the solenoid valve 52 is opened. In this way, as a result of the refrigerant gas being adsorbed by the adsorbent, almost only non-condensable gas is sucked and discharged by the purge pump 36 and is discharged to the atmosphere via the electromagnetic valve 52.

以上に説明したように、凝縮器41とパージコンデンサ31との差圧が所定の値以下になった時に、パージコンデンサ31から吸着タンク63へ冷媒ガスを含む不凝縮ガスを移送する。移送後には、上記差圧は再び所定の値を超え、電磁弁51は閉じられるので、パージコンデンサ31には再び不凝縮ガスの蓄積が始まる。このように、凝縮器41とパージコンデンサ31との差圧を検出することにより、パージコンデンサ31から吸着タンク63への冷媒ガスを含む不凝縮ガスの移送を繰り返す。そして、これを複数回繰り返すと、やがて吸着タンク63内の不凝縮ガス量が増大するので、前記の予め設定した吸着時間以内に前記差圧の値が所定値を超える値にまで回復しなくなる。このときは、相当量の不凝縮ガスが吸着タンク63内に蓄積されたことになるから、パージポンプ36を運転して電磁弁52を開いて不凝縮ガスを外部に排出するわけである。   As described above, when the pressure difference between the condenser 41 and the purge condenser 31 becomes a predetermined value or less, the noncondensable gas including the refrigerant gas is transferred from the purge condenser 31 to the adsorption tank 63. After the transfer, the differential pressure again exceeds a predetermined value, and the solenoid valve 51 is closed. Therefore, accumulation of non-condensable gas in the purge condenser 31 starts again. Thus, by detecting the differential pressure between the condenser 41 and the purge condenser 31, the transfer of the non-condensable gas including the refrigerant gas from the purge condenser 31 to the adsorption tank 63 is repeated. If this is repeated a plurality of times, the amount of non-condensable gas in the adsorption tank 63 will eventually increase, so that the value of the differential pressure will not recover to a value exceeding a predetermined value within the preset adsorption time. At this time, since a considerable amount of non-condensable gas has accumulated in the adsorption tank 63, the purge pump 36 is operated to open the electromagnetic valve 52 and discharge the non-condensable gas to the outside.

因みに、次に説明する冷媒脱着とも関係するが、吸着タンク63内の冷媒吸着材60が有する冷媒の吸着容量、即ち吸着可能冷媒質量は、パージコンデンサ31から1回あたりに排出される冷媒質量に対して必要十分に大きくすることが望ましい。即ち、冷媒吸着材の必要充填量が決まるので、冷媒吸着材充填容器の大きさはこれ以上の容量とする必要がある。その理由は、例えば冷媒吸着材60の吸着容量が小さすぎる場合、吸着タンク63で吸着される冷媒が、すぐに飽和(即ち吸着限界量)に達してしまい、吸着タンク63内の不凝縮ガス蓄積量が少ない場合であっても、前記の予め設定した吸着時間以内に、凝縮器41とパージコンデンサ31との圧力差が所定の値を超えるまでに回復せず、あたかも相当量の不凝縮ガスが吸着タンク63内に蓄積したのと同様な現象が出現してしまう。換言すれば、吸着タンク63を設置した効果が十分に発揮できないからである。   Incidentally, although related to the refrigerant desorption described below, the refrigerant adsorption capacity of the refrigerant adsorbent 60 in the adsorption tank 63, that is, the adsorbable refrigerant mass, is the refrigerant mass discharged from the purge condenser 31 at one time. On the other hand, it is desirable to make it large enough. That is, since the required filling amount of the refrigerant adsorbent is determined, the size of the refrigerant adsorbent filling container needs to be larger than this. The reason is that, for example, when the adsorption capacity of the refrigerant adsorbent 60 is too small, the refrigerant adsorbed in the adsorption tank 63 immediately reaches saturation (that is, the adsorption limit amount), and non-condensable gas accumulation in the adsorption tank 63 occurs. Even if the amount is small, the pressure difference between the condenser 41 and the purge condenser 31 does not recover within a predetermined adsorption time until it exceeds a predetermined value, as if a considerable amount of non-condensable gas is present. A phenomenon similar to that accumulated in the adsorption tank 63 appears. In other words, the effect of installing the adsorption tank 63 cannot be sufficiently exhibited.

なお、パージコンデンサから電磁弁51の開動作1回あたりに、吸着タンク63に向かって不凝縮ガスと共に排出される冷媒ガス質量と、吸着タンク63の冷媒吸着容量とが適切な関係にある場合、例えば冷媒吸着材60の実質的に可能な最大冷媒吸着質量が、パージコンデンサから電磁弁51の開動作1回あたりに不凝縮ガスと共に排出される冷媒ガス質量の数倍以上あるような場合は、冷媒吸着材60が冷媒で飽和する前に不凝縮ガスが吸着タンク63内に十分な量蓄積され、外部への不凝縮ガス排出工程が好適に行われる。このような不凝縮ガス排出工程が複数回行われるうちに、やがて冷媒吸着材60が吸着冷媒で飽和してくるので、冷媒脱着工程を行う必要が出てくる。   When the mass of the refrigerant gas discharged together with the non-condensable gas toward the adsorption tank 63 per opening operation of the solenoid valve 51 from the purge capacitor and the refrigerant adsorption capacity of the adsorption tank 63 are in an appropriate relationship, For example, when the maximum possible refrigerant adsorption mass of the refrigerant adsorbent 60 is more than several times the refrigerant gas mass discharged together with the non-condensable gas per opening operation of the solenoid valve 51 from the purge capacitor, A sufficient amount of non-condensable gas is accumulated in the adsorption tank 63 before the refrigerant adsorbent 60 is saturated with the refrigerant, and the non-condensable gas discharge step to the outside is suitably performed. While such a non-condensable gas discharge step is performed a plurality of times, the refrigerant adsorbent 60 will eventually be saturated with the adsorbed refrigerant, so that it is necessary to perform a refrigerant desorption step.

次に、冷媒吸着材60からの冷媒脱着動作について説明する。
冷媒吸着材60は、吸着した冷媒を脱着することにより冷媒吸着能力が回復するので、冷媒吸着材60を再使用するためには、冷媒脱着工程(冷媒吸着材再生工程)を欠くことはできない。冷媒脱着工程の間、前記の抽気動作及び不凝縮ガス排出動作は同時に行うことができないため、できるだけ速やかに完了させる必要がある。この脱着工程においては、制御部40はヒータ58とパージポンプ36に運転指令を発すると共に、電磁弁53の開信号を発する。これにより冷媒吸着材60は、脱着に適切な温度レベルまでヒータ58により昇温されると共に、パージポンプ36によって脱着された冷媒ガスを吸引され、低圧条件下に曝されるので、温度的にも圧力的にも冷媒が脱着され易くなり、冷媒吸着材60からの冷媒の脱着は促進し、換言すれば冷媒吸着材の再生が進行する。この際、本発明による冷媒吸着材充填容器を用いることにより、内部まで均一にかつ速やかに加熱を行うことが可能となるため、抽気動作を停止する時間を最小限にできるだけでなく加熱に要する投入エネルギーも最小限とすることができ、環境への負荷も低く抑えることができる。
Next, the refrigerant desorption operation from the refrigerant adsorbent 60 will be described.
Since the refrigerant adsorption capacity of the refrigerant adsorbent 60 is recovered by desorbing the adsorbed refrigerant, the refrigerant desorption process (refrigerant adsorbent regeneration process) is indispensable for reusing the refrigerant adsorbent 60. Since the extraction operation and the non-condensable gas discharge operation cannot be performed at the same time during the refrigerant desorption process, it is necessary to complete them as quickly as possible. In this desorption process, the control unit 40 issues an operation command to the heater 58 and the purge pump 36 and also issues an open signal for the electromagnetic valve 53. As a result, the refrigerant adsorbent 60 is heated by the heater 58 to a temperature level suitable for desorption, and the refrigerant gas desorbed by the purge pump 36 is sucked and exposed to low pressure conditions. The refrigerant is easily desorbed in terms of pressure, and the desorption of the refrigerant from the refrigerant adsorbent 60 is promoted. In other words, the regeneration of the refrigerant adsorbent proceeds. At this time, by using the refrigerant adsorbent filled container according to the present invention, it becomes possible to perform heating uniformly and promptly to the inside, so that not only the time for stopping the extraction operation can be minimized, but also the charging required for heating. Energy can be minimized, and the environmental load can be kept low.

冷媒吸着材60として活性炭を用いた場合には、その脱着時の冷媒吸着材60の温度を例えば120〜130℃程度に制御するのが好ましく、速やかにかつ均一に加熱する必要がある。本発明による冷媒吸着材充填容器を用いることにより、内部まで均一にかつ速やかに加熱をすることが可能となるため、効果的に冷媒の脱着を実現することが容易となる。また冷媒吸着材60の温度を検知又は制御できるサーモスタット59を容易に設置できるので、冷媒吸着材60の温度レベルを容易に所望の温度レベルに到達又は維持することができる。また、サーモスタットの代わりに熱電対、測温抵抗体やサーミスタ等の温度検出器を設置することももちろん可能であるため、温度コントローラ等の制御器との組み合わせで温度制御を行うこともできる。
ところで、冷媒吸着材60から脱着され、パージポンプ36により吸引・吐出された冷媒ガスは、接続配管54及び電磁弁53を経由してパージコンデンサ31に導入される。前述のように、パージコンデンサ31のコンデンサ室31aは、冷却コイル32により冷却されているので、冷媒ガスは凝縮・液化し、フロート弁室31bを経由して冷凍機の蒸発器42に戻る。
When activated carbon is used as the refrigerant adsorbent 60, it is preferable to control the temperature of the refrigerant adsorbent 60 at the time of desorption to, for example, about 120 to 130 ° C., and it is necessary to heat it quickly and uniformly. By using the refrigerant adsorbent-filled container according to the present invention, it is possible to heat the inside uniformly and quickly, so that it is easy to effectively realize the desorption of the refrigerant. Further, since the thermostat 59 capable of detecting or controlling the temperature of the refrigerant adsorbent 60 can be easily installed, the temperature level of the refrigerant adsorbent 60 can be easily reached or maintained at a desired temperature level. In addition, since it is possible to install a temperature detector such as a thermocouple, a resistance temperature detector, or a thermistor instead of the thermostat, temperature control can be performed in combination with a controller such as a temperature controller.
By the way, the refrigerant gas desorbed from the refrigerant adsorbent 60 and sucked and discharged by the purge pump 36 is introduced into the purge capacitor 31 via the connection pipe 54 and the electromagnetic valve 53. As described above, since the condenser chamber 31a of the purge condenser 31 is cooled by the cooling coil 32, the refrigerant gas is condensed and liquefied, and returns to the evaporator 42 of the refrigerator via the float valve chamber 31b.

次に、冷媒吸着材60の冷却操作について、説明する。
吸着した冷媒の脱着のため、冷媒吸着材60は前記のようにヒータ58により昇温されるが、再び冷媒吸着能力を取り戻すためには、冷媒吸着材60の温度をターボ冷凍機の周囲環境温度程度にまで冷やす必要がある。このため、次の操作が必要になる。本冷却工程においては、制御部40はファン62に対して起動指令を出す。冷媒吸着材60は、吸着タンク63の内部に収納されているので、ファン62により吸着タンク63の近傍に強制空気流を生じさせ、冷媒吸着材60の温度を速やかに低下させるようにする。前記強制空気流が、冷却に効果的に吸着タンク63表面近傍を流れるようにするため、例えばダクト61を吸着タンク63の周囲に設けるのが好ましい。
Next, the cooling operation of the refrigerant adsorbent 60 will be described.
In order to desorb the adsorbed refrigerant, the temperature of the refrigerant adsorbent 60 is raised by the heater 58 as described above. In order to regain the refrigerant adsorption capacity, the temperature of the refrigerant adsorbent 60 is set to the ambient temperature of the turbo chiller. It is necessary to cool to the extent. For this reason, the following operation is required. In this cooling process, the control unit 40 issues a start command to the fan 62. Since the refrigerant adsorbing material 60 is housed inside the adsorbing tank 63, a forced air flow is generated in the vicinity of the adsorbing tank 63 by the fan 62 so that the temperature of the refrigerant adsorbing material 60 is quickly reduced. In order for the forced air flow to flow in the vicinity of the surface of the adsorption tank 63 effectively for cooling, for example, a duct 61 is preferably provided around the adsorption tank 63.

この際にも、本発明による冷媒吸着材充填容器を用いることにより、該充填容器の内部まで均一にかつ速やかに冷却を行うことが可能となるため、抽気動作を停止する時間を最小限に出来るだけでなく、冷却に要する投入エネルギーも最小限とすることができ、環境への負荷も低く抑えることができる。こうして冷媒吸着材60は、再び冷媒吸着能力を取り戻すことができる(再生される)。
以上より、本発明によれば、抽気回収装置から大気中に排出される不凝縮ガスに同伴して大気中に漏れ出る冷媒量を冷媒吸着材を用いて極限まで減少でき、前記冷媒吸着材は速やかに且つ十分な冷媒吸着能力を回復するまでに再生されて反復使用でき、かつ冷媒吸着材を再生すると共に冷媒を回収して冷凍機に戻すことができる抽気回収装置を提供することができる。
また、本発明の冷媒吸着材充填容器を用いた抽気回収装置を搭載したターボ冷凍機を使用すれば、冷媒の損耗が微少であり、環境負荷が改善された冷房装置や冷凍装置等を実現することができる。
Also in this case, by using the refrigerant adsorbent filling container according to the present invention, it becomes possible to uniformly and quickly cool the inside of the filling container, so that the time for stopping the extraction operation can be minimized. In addition, the input energy required for cooling can be minimized, and the environmental load can be kept low. Thus, the refrigerant adsorbing material 60 can regain the refrigerant adsorbing capacity (regenerated).
As described above, according to the present invention, the amount of refrigerant that leaks into the atmosphere accompanying the non-condensable gas discharged into the atmosphere from the extraction device can be reduced to the limit using the refrigerant adsorbent, and the refrigerant adsorbent is It is possible to provide a bleed air recovery device that can be regenerated and reused promptly until the sufficient refrigerant adsorption capacity is recovered, and can regenerate the refrigerant adsorbent and collect the refrigerant and return it to the refrigerator.
In addition, if a turbo chiller equipped with a bleed air recovery device using the refrigerant adsorbent filling container of the present invention is used, a cooling device or a refrigeration device with minimal refrigerant wear and improved environmental load is realized. be able to.

図8は、本発明にかかる冷媒吸着材充填容器を用いた冷媒回収装置と圧縮式冷凍機及び冷媒回収容器の接続状況を示す図であり、冷媒回収装置の詳細については図9による。図9は、本発明にかかる冷媒吸着材充填容器を備えた冷媒回収装置の一例を示す全体構成図である。図8及び図9に記載の記号い、ろ、は、に、は、同一の記号が付されている部分が相互に接続される部分であることを示している。以下、関連するバルブの開閉も含めて説明する。
圧縮式冷凍機及び冷媒回収容器と冷媒回収装置との相互連絡部分から説明する。冷媒回収装置70の小形凝縮器71は、圧縮式冷凍機の熱源を構成する冷却水の一部を用いて冷却される。即ち、圧縮式冷凍機の凝縮器101の冷却水配管104から冷却水の一部を連絡配管82を用いて取り出し、ポンプ77により小形凝縮器71内に設置された熱交換器である冷却コイル72に向けて圧送される(ろの経路である)。なお、上記冷却コイル72に導入する冷却媒体は圧縮式冷凍機の冷却水の代わりに圧縮式冷凍機の冷水や一般水道水その他を用いても良いが、ここでは圧縮式冷凍機の冷却水を用いた例で説明する。
FIG. 8 is a diagram showing the connection status of the refrigerant recovery apparatus using the refrigerant adsorbent filling container according to the present invention, the compression refrigerator, and the refrigerant recovery container. FIG. 9 shows the details of the refrigerant recovery apparatus. FIG. 9 is an overall configuration diagram illustrating an example of a refrigerant recovery apparatus including the refrigerant adsorbent filling container according to the present invention. 8 and FIG. 9 indicates that the parts to which the same symbols are attached are connected to each other. Hereinafter, description will be made including opening and closing of related valves.
A description will be given from the mutual connection between the compression refrigerator, the refrigerant recovery container, and the refrigerant recovery device. The small condenser 71 of the refrigerant recovery device 70 is cooled by using a part of the cooling water that constitutes the heat source of the compression refrigerator. That is, a part of the cooling water is taken out from the cooling water pipe 104 of the condenser 101 of the compression refrigerator using the connecting pipe 82, and the cooling coil 72 which is a heat exchanger installed in the small condenser 71 by the pump 77. It is pumped towards (the path of the filter). The cooling medium introduced into the cooling coil 72 may be the cooling water of the compression refrigerator, general tap water or the like instead of the cooling water of the compression refrigerator, but here the cooling water of the compression refrigerator is used. This will be described using the example used.

熱交換器である冷却コイル72の下流側は、圧縮式冷凍機の凝縮器101の冷却水配管105に再び接続されているので、冷却コイル72はほぼ冷凍機の冷却水と等しい程度の低温にまで冷却水によって冷却される。小形凝縮器71を冷却したのち、前記冷却水は圧縮式冷凍機の凝縮器101の冷却水配管105に戻る。(はの経路である。)前記小形凝縮器71の冷却用冷却水は、ポンプ77の運転中常時流れているので、これにより小形凝縮器71の温度は、小形圧縮機又は真空ポンプ76の出口温度よりも低く保たれる。なお、本発明においては「小形圧縮機又は真空ポンプ」という語は、吸込側に対しては真空ポンプとして作用し、吐出側に対しては圧縮機として作用することを意味する。
小形圧縮機又は真空ポンプ76によって、冷凍機100から不凝縮ガスを含む冷媒ガスが連絡配管79を通り小形凝縮器71内に流入する(いの経路である)。コンデンサ室71a内で、冷媒ガスは凝縮液化したのちフロート弁室71bに流れる。該フロート弁室71bに一定量以上の液冷媒が溜まると、フロート弁73が開いて冷媒は冷媒回収容器106に回収される(にの経路である)。一方不凝縮ガスは、コンデンサ室71a内に滞留し、次第に蓄積し小形凝縮器71の内圧が徐々に上昇する。
なお、小形凝縮器71の圧力を検出するための導圧配管が、小形凝縮器71から取り出されて圧力スイッチ74に接続されている。
Since the downstream side of the cooling coil 72, which is a heat exchanger, is connected again to the cooling water pipe 105 of the condenser 101 of the compression refrigeration machine, the cooling coil 72 has a low temperature that is substantially equal to the cooling water of the refrigeration machine. Until cooled by cooling water. After cooling the small condenser 71, the cooling water returns to the cooling water pipe 105 of the condenser 101 of the compression refrigerator. The cooling water for cooling the small condenser 71 always flows during the operation of the pump 77, so that the temperature of the small condenser 71 is adjusted to the outlet of the small compressor or the vacuum pump 76. Keeps below temperature. In the present invention, the term “small compressor or vacuum pump” means that the suction side functions as a vacuum pump and the discharge side functions as a compressor.
The small compressor or the vacuum pump 76 causes the refrigerant gas containing non-condensable gas to flow from the refrigerator 100 into the small condenser 71 through the connecting pipe 79 (this is the path). In the condenser chamber 71a, the refrigerant gas is condensed and liquefied and then flows into the float valve chamber 71b. When a certain amount or more of liquid refrigerant accumulates in the float valve chamber 71b, the float valve 73 is opened and the refrigerant is recovered in the refrigerant recovery container 106 (this is the path). On the other hand, the non-condensable gas stays in the capacitor chamber 71a, gradually accumulates, and the internal pressure of the small condenser 71 gradually increases.
A pressure guiding pipe for detecting the pressure of the small condenser 71 is taken out from the small condenser 71 and connected to the pressure switch 74.

次に、本発明について冷媒回収装置の運転状況ごとに、構成と作用・効果等に関し順次説明する。
上述した通り、冷媒回収運転中には、冷凍機100から連絡配管79を経由して小形圧縮機又は真空ポンプ76により、不凝縮ガスを含む冷媒ガスが小形凝縮器71に圧送され、その内の冷媒ガスはコンデンサ室71aにおいて冷却コイル72により冷却・液化され、フロート弁室71b、フロート弁73、連絡配管81を経由して冷媒回収容器106に回収される。一方、不凝縮ガスは、コンデンサ室1a内に次第に蓄積し、小形凝縮器1の内圧が徐々に上昇する。
Next, regarding the present invention, the configuration, operation, effect, and the like will be sequentially described for each operation state of the refrigerant recovery device.
As described above, during the refrigerant recovery operation, the refrigerant gas including the non-condensable gas is pumped to the small condenser 71 by the small compressor or the vacuum pump 76 from the refrigerator 100 via the communication pipe 79, The refrigerant gas is cooled and liquefied by the cooling coil 72 in the condenser chamber 71a, and is recovered in the refrigerant recovery container 106 via the float valve chamber 71b, the float valve 73, and the connection pipe 81. On the other hand, the non-condensable gas gradually accumulates in the condenser chamber 1a, and the internal pressure of the small condenser 1 gradually increases.

次に、不凝縮ガスの大気中への排出運転に関し説明する。
小形凝縮器71のコンデンサ室71aに不凝縮ガスが蓄積された結果、小形凝縮器71の圧力が所定の値以上になると圧力スイッチ74が作動し、制御部84へ信号が伝送される。その後、制御部84は電磁弁75を開く。これにより小形凝縮器71内部に蓄積された不凝縮ガスは、冷媒ガスと共に接続配管89とその途中に配置されたオリフィス90、電磁弁75を経由して吸着タンク63に導入される。吸着タンク63の内部には、冷媒吸着材60が充填されており、冷媒ガスはその大部分がこの吸着材60に吸着される。冷媒吸着材60としては、例えば活性炭を用いることができる。吸着タンク63内に導入された冷媒ガスは、冷媒吸着材60に吸着されるため、小形凝縮器71内の圧力よりも常に吸着タンク63内の圧力は低く、また吸着タンク63内の圧力は吸着作用が進むにつれ時間経過と共に低下し、吸着タンク内に蓄積された不凝縮ガスの分圧に近づく。
Next, the discharge operation of non-condensable gas into the atmosphere will be described.
As a result of the accumulation of non-condensable gas in the condenser chamber 71 a of the small condenser 71, when the pressure of the small condenser 71 exceeds a predetermined value, the pressure switch 74 is activated and a signal is transmitted to the control unit 84. Thereafter, the control unit 84 opens the electromagnetic valve 75. As a result, the non-condensable gas accumulated in the small condenser 71 is introduced into the adsorption tank 63 together with the refrigerant gas via the connection pipe 89, the orifice 90 disposed in the middle thereof, and the electromagnetic valve 75. The adsorption tank 63 is filled with a refrigerant adsorbent 60, and most of the refrigerant gas is adsorbed by the adsorbent 60. As the refrigerant adsorbent 60, for example, activated carbon can be used. Since the refrigerant gas introduced into the adsorption tank 63 is adsorbed by the refrigerant adsorbent 60, the pressure in the adsorption tank 63 is always lower than the pressure in the small condenser 71, and the pressure in the adsorption tank 63 is adsorbed. As the action progresses, it decreases with time and approaches the partial pressure of the non-condensable gas accumulated in the adsorption tank.

こうして冷媒ガスを含む不凝縮ガスが小形凝縮器1から吸着タンク63へ移動すると、小形凝縮器1の内圧が低下するから、前記圧力スイッチ74が切れる。これにより電磁弁75が閉じられ、小形凝縮器71内に蓄積された不凝縮ガスの排出が完了する。ところで、例えば前記吸着時間以上の値を予め設定した吸着完了確認タイマーなどを制御部84内に設けることにより、前記吸着動作の完了を検出できるから、所定の吸着時間(小形凝縮器71及び吸着タンク63の大きさにもよるが、概ね50秒ないし70秒)が経過してもなお前記圧力スイッチ74が切れない場合、即ち小形凝縮器71の圧力が前記所定の値以上を維持したままである場合には、吸着タンク63内に相当量の不凝縮ガスが蓄積されたことを意味するため、電磁弁93を開く。このようにして冷媒ガスが吸着材に吸着された結果、殆ど不凝縮ガスだけが電磁弁93を経由して大気中に排出され、冷媒の排出量は極めて微少量に抑えられる。   Thus, when the non-condensable gas including the refrigerant gas moves from the small condenser 1 to the adsorption tank 63, the internal pressure of the small condenser 1 decreases, and thus the pressure switch 74 is turned off. As a result, the electromagnetic valve 75 is closed, and the discharge of the non-condensable gas accumulated in the small condenser 71 is completed. By the way, since the completion of the adsorption operation can be detected by providing, for example, an adsorption completion confirmation timer in which a value equal to or greater than the adsorption time is set in advance in the control unit 84, a predetermined adsorption time (small condenser 71 and adsorption tank) can be detected. If the pressure switch 74 still does not turn off after a lapse of approximately 50 seconds to 70 seconds, depending on the size of 63, that is, the pressure of the small condenser 71 remains above the predetermined value. In this case, it means that a considerable amount of non-condensable gas has accumulated in the adsorption tank 63, so the electromagnetic valve 93 is opened. As a result of the refrigerant gas being adsorbed on the adsorbent in this way, almost only non-condensable gas is discharged into the atmosphere via the electromagnetic valve 93, and the discharge amount of the refrigerant is suppressed to a very small amount.

以上に説明したように、小形凝縮器71の圧力が所定の値以上になった時に、小形凝縮器71から吸着タンク63へ冷媒ガスを含む不凝縮ガスを移送する。移送後には上記圧力は再び所定の値を下回り、電磁弁75は閉じられるので、小形凝縮器71には再び不凝縮ガスの蓄積が始まる。このように小形凝縮器71の圧力を検出することにより、小形凝縮器71から吸着タンク63への冷媒ガスを含む不凝縮ガスの移送を繰り返す。そして、これを複数回繰り返すとやがて吸着タンク63内の不凝縮ガス量が増大するので、前記の予め設定した吸着時間以内に前記圧力の値が所定値を下回る値にまで回復しなくなる。このときは、相当量の不凝縮ガスが吸着タンク63内に蓄積されたことになるから、電磁弁93を開いて不凝縮ガスを外部に排出するわけである。   As described above, when the pressure of the small condenser 71 becomes a predetermined value or more, the non-condensable gas including the refrigerant gas is transferred from the small condenser 71 to the adsorption tank 63. After the transfer, the pressure again falls below a predetermined value, and the solenoid valve 75 is closed. Therefore, accumulation of non-condensable gas in the small condenser 71 starts again. Thus, by detecting the pressure of the small condenser 71, the transfer of the non-condensable gas including the refrigerant gas from the small condenser 71 to the adsorption tank 63 is repeated. If this is repeated a plurality of times, the amount of non-condensable gas in the adsorption tank 63 will eventually increase, so that the pressure value will not recover to a value below a predetermined value within the preset adsorption time. At this time, since a considerable amount of non-condensable gas is accumulated in the adsorption tank 63, the electromagnetic valve 93 is opened to discharge the non-condensable gas to the outside.

因みに、次に説明する冷媒脱着とも関係するが、吸着タンク63内の冷媒吸着材60が有する冷媒の吸着容量、即ち吸着可能冷媒質量は、小形凝縮器71から1回あたりに排出される冷媒質量に対して、必要十分に大きくすることが望ましい。即ち、小形凝縮器71の容量から冷媒吸着材の必要充填量が決まるので、冷媒吸着材充填容器の大きさはこれ以上の容量とする必要がある。その理由は、例えば冷媒吸着材60の吸着容量が小さすぎる場合、吸着タンク63で吸着される冷媒がすぐに飽和(即ち吸着限界量)に達してしまい、吸着タンク63内の不凝縮ガス蓄積量が少ない場合であっても、上記の予め設定した吸着時間以内に小形凝縮器71と吸着タンク63との圧力差が所定の値を超えるまでに回復せず、あたかも相当量の不凝縮ガスが吸着タンク63内に蓄積したのと同様な現象が出現してしまう。換言すれば、吸着タンク63を設置した効果が十分に発揮できないからである。なお、小形凝縮器71から電磁弁75の開動作1回あたりに、吸着タンク63に向かって不凝縮ガスと共に排出される冷媒ガス質量と、吸着タンク63の冷媒吸着容量とが適切な関係にある場合、例えば冷媒吸着材60の実質的に可能な最大冷媒吸着質量が小形凝縮器71から電磁弁75の開動作1回あたりに不凝縮ガスと共に排出される冷媒ガス質量の数倍以上あるような場合は、冷媒吸着材60が冷媒で飽和する前に不凝縮ガスが吸着タンク63内に十分な量蓄積され、外部への不凝縮ガス排出工程が好適に行われる。このような不凝縮ガス排出工程が複数回行われるうちに、やがて冷媒吸着材60が吸着冷媒で飽和してくるので、冷媒脱着工程を行う必要が出てくる。   Incidentally, although it relates to the refrigerant desorption described below, the refrigerant adsorption capacity of the refrigerant adsorbent 60 in the adsorption tank 63, that is, the adsorbable refrigerant mass, is the mass of the refrigerant discharged from the small condenser 71 at a time. On the other hand, it is desirable to make it large enough. That is, since the required filling amount of the refrigerant adsorbent is determined from the capacity of the small condenser 71, the size of the refrigerant adsorbent filling container needs to be larger than this. The reason is that, for example, if the adsorption capacity of the refrigerant adsorbent 60 is too small, the refrigerant adsorbed in the adsorption tank 63 immediately reaches saturation (that is, the adsorption limit amount), and the non-condensable gas accumulation amount in the adsorption tank 63 is reached. Even if there is a small amount, the pressure difference between the small condenser 71 and the adsorption tank 63 does not recover within a preset adsorption time until it exceeds a predetermined value, as if a considerable amount of non-condensable gas is adsorbed. A phenomenon similar to that accumulated in the tank 63 appears. In other words, the effect of installing the adsorption tank 63 cannot be sufficiently exhibited. Note that the mass of the refrigerant gas discharged together with the non-condensable gas toward the adsorption tank 63 and the refrigerant adsorption capacity of the adsorption tank 63 per opening operation of the electromagnetic valve 75 from the small condenser 71 are in an appropriate relationship. In this case, for example, the maximum possible refrigerant adsorption mass of the refrigerant adsorbent 60 is more than several times the refrigerant gas mass discharged from the small condenser 71 together with the non-condensable gas per opening operation of the electromagnetic valve 75. In this case, before the refrigerant adsorbent 60 is saturated with the refrigerant, a sufficient amount of non-condensable gas is accumulated in the adsorption tank 63, and the non-condensable gas discharge step to the outside is suitably performed. While such a non-condensable gas discharge step is performed a plurality of times, the refrigerant adsorbent 60 will eventually be saturated with the adsorbed refrigerant, so that it is necessary to perform a refrigerant desorption step.

なお、冷媒の吸着時には発熱を伴うため、一時的に冷媒吸着材60の温度が上昇する。特に冷凍機の気密不良が原因で冷媒回収を行なうような場合には、冷凍機内に漏入した不凝縮ガスを頻繁に排出するため、同伴される冷媒ガスを短時間に大量に吸着させることから、温度上昇が無視できないほど大きくなる場合がある。このようなときには、冷媒吸着材60の温度が上昇することによって冷媒を吸着できる容量が減少するから、吸着に適する温度以上に冷媒吸着材60の温度が上昇することがない様に、冷却が必要となる場合がある。このため、後述する脱着再生処理工程後の冷却工程における場合と同様に、不凝縮ガスの排出工程における吸着時においても次の操作が必要になる。本排出工程においては、制御部84はファン62に対して起動指令を出す。冷媒吸着材60は、吸着タンク63の内部に収納されているので、ファン62により吸着タンク63の近傍に強制空気流を生じさせ、冷媒吸着材60の温度を速やかに低下させるようにする。前記強制空気流が、冷却に効果的に吸着タンク63表面近傍を流れるようにするため、例えばダクト61を吸着タンク63の周囲に設けるのが好ましい。ファン62の運転は、例えば吸着タンク63表面温度を、冷媒吸着材60の温度の代わりに温度検出器などで検出したり、冷媒吸着材60の中に温度検出器を直接埋め込んでその温度を検出し、所定の温度以上で起動し、所定の温度以下になるまで継続した後停止するようにしても良いし、排出動作と同時に起動し、予め冷却に必要な時間を計測しておき、タイマー等を用いて当該時間だけ運転を継続した後停止するようにしても良い。   Since the heat is generated during the adsorption of the refrigerant, the temperature of the refrigerant adsorbent 60 temporarily increases. Especially when refrigerant recovery is performed due to poor airtightness of the refrigerator, non-condensable gas leaked into the refrigerator is frequently discharged, and the accompanying refrigerant gas is adsorbed in a large amount in a short time. In some cases, the temperature rise is so large that it cannot be ignored. In such a case, since the capacity capable of adsorbing the refrigerant decreases as the temperature of the refrigerant adsorbent 60 rises, cooling is necessary so that the temperature of the refrigerant adsorbent 60 does not rise above the temperature suitable for adsorption. It may become. For this reason, similarly to the case of the cooling step after the desorption regeneration processing step, which will be described later, the following operation is required even during the adsorption in the non-condensable gas discharge step. In this discharge process, the control unit 84 issues a start command to the fan 62. Since the refrigerant adsorbing material 60 is housed inside the adsorbing tank 63, a forced air flow is generated in the vicinity of the adsorbing tank 63 by the fan 62 so that the temperature of the refrigerant adsorbing material 60 is quickly reduced. In order for the forced air flow to flow in the vicinity of the surface of the adsorption tank 63 effectively for cooling, for example, a duct 61 is preferably provided around the adsorption tank 63. The operation of the fan 62 is, for example, detecting the surface temperature of the adsorption tank 63 with a temperature detector or the like instead of the temperature of the refrigerant adsorbent 60, or detecting the temperature by directly embedding the temperature detector in the refrigerant adsorbent 60. However, it may be started at a predetermined temperature or more and continued until the temperature is lower than the predetermined temperature, or it may be stopped at the same time as the discharge operation, the time required for cooling is measured in advance, a timer or the like You may make it stop after continuing driving | running only for the said time using.

次に、冷媒吸着剤60からの冷媒脱着動作について説明する.
冷媒吸着材60は、吸着した冷媒を脱着することにより冷媒吸着能力が回復するので、冷媒吸着材60を再使用するためには冷媒脱着工程(冷媒吸着材再生工程)を欠くことはできない。冷媒脱着工程の間、前記の冷媒回収動作及び不凝縮ガス排出動作は同時に行うことができないため、できるだけ速やかに完了させる必要がある。この脱着工程においては、切替弁85を閉じ、切替弁92を開くことにより、吸着タンク63から小形圧縮機又は真空ポンプ76を経由して、小形凝縮器71へ連絡する接続配管94を通じさせておき、制御部84は、ヒータ58と小形圧縮機又は真空ポンプ76に運転指令を発する。これにより、冷媒吸着材60は脱着に適切な温度レベルまでヒータ58により昇温されると共に、小形圧縮機又は真空ポンプ76によって脱着された冷媒ガスを吸引され低圧条件下に曝されるので、温度的にも圧力的にも冷媒が脱着され易くなり、冷媒吸着材60からの冷媒の脱着は促進し、換言すれば冷媒吸着材の再生が進行する。この際、本発明による冷媒吸着材充填容器を用いることにより、内部まで均一にかつ速やかに加熱を行うことが可能となるため、冷媒回収動作を停止する時間を最小限にできるだけでなく、加熱に要する投入エネルギーも最小限とすることができ、環境への負荷も低く抑えることができる。
Next, the refrigerant desorption operation from the refrigerant adsorbent 60 will be described.
Since the refrigerant adsorption capacity of the refrigerant adsorbent 60 is recovered by desorbing the adsorbed refrigerant, a refrigerant desorption process (refrigerant adsorbent regeneration process) is indispensable for reusing the refrigerant adsorbent 60. Since the refrigerant recovery operation and the non-condensable gas discharge operation cannot be performed simultaneously during the refrigerant desorption process, it is necessary to complete them as quickly as possible. In this desorption process, the switching valve 85 is closed and the switching valve 92 is opened, so that the connection pipe 94 is connected from the adsorption tank 63 to the small condenser 71 via the small compressor or vacuum pump 76. The control unit 84 issues an operation command to the heater 58 and the small compressor or vacuum pump 76. Thereby, the refrigerant adsorbent 60 is heated by the heater 58 to a temperature level suitable for desorption, and the refrigerant gas desorbed by the small compressor or the vacuum pump 76 is sucked and exposed to low pressure conditions. The refrigerant is easily desorbed both in terms of pressure and pressure, and the desorption of the refrigerant from the refrigerant adsorbent 60 is promoted, in other words, the regeneration of the refrigerant adsorbent proceeds. At this time, by using the refrigerant adsorbent-filled container according to the present invention, it is possible to perform heating uniformly and promptly to the inside, so that not only the time for stopping the refrigerant recovery operation can be minimized, but also heating. The input energy required can be minimized and the environmental load can be kept low.

冷媒吸着材60として活性炭を用いた場合には、その脱着時の冷媒吸着材60の温度を例えば120〜130℃程度に制御するのが好ましく、速やかにかつ均一に加熱する必要がある。本発明による冷媒吸着材充填容器を用いることにより、内部まで均一にかつ速やかに加熱をすることが可能となるため、効果的に冷媒の脱着を実現することが容易となる。また、冷媒吸着材60の温度を検知又は制御できるサーモスタット59を容易に設置できるので、冷媒吸着材60の温度レベルを容易に所望の温度レベルに到達又は維持することができる。また、サーモスタットの代わりに、熱電対、測温抵抗体やサーミスタ等の温度検出器を設置することももちろん可能であるため、温度コントローラ等の制御器との組み合わせで温度制御を行うこともできる。
ところで、冷媒吸着材60から脱着され、小形圧縮機又は真空ポンプ76により吸引・吐出された冷媒ガスは、接続配管94を経由して小形凝縮器71に導入される。前述のように、小形凝縮器71のコンデンサ室71aは冷却コイル72により冷却されているので、冷媒ガスは凝縮・液化しフロート弁室71bを経由して冷媒回収容器106に回収される。
When activated carbon is used as the refrigerant adsorbent 60, it is preferable to control the temperature of the refrigerant adsorbent 60 at the time of desorption to, for example, about 120 to 130 ° C., and it is necessary to heat it quickly and uniformly. By using the refrigerant adsorbent-filled container according to the present invention, it is possible to heat the inside uniformly and quickly, so that it is easy to effectively realize the desorption of the refrigerant. In addition, since the thermostat 59 that can detect or control the temperature of the refrigerant adsorbent 60 can be easily installed, the temperature level of the refrigerant adsorbent 60 can easily reach or be maintained at a desired temperature level. In addition, since a temperature detector such as a thermocouple, a resistance temperature detector, or a thermistor can be installed instead of the thermostat, temperature control can be performed in combination with a controller such as a temperature controller.
By the way, the refrigerant gas desorbed from the refrigerant adsorbent 60 and sucked and discharged by the small compressor or the vacuum pump 76 is introduced into the small condenser 71 via the connection pipe 94. As described above, since the condenser chamber 71a of the small condenser 71 is cooled by the cooling coil 72, the refrigerant gas is condensed and liquefied and is recovered in the refrigerant recovery container 106 via the float valve chamber 71b.

次に、冷媒吸着材60の冷却操作について説明する。
吸着した冷媒の脱着のため、冷媒吸着材60は、上記のようにヒータ58により昇温されるが、再び冷媒吸着能力を取り戻すためには、冷媒吸着材60の温度を冷媒回収装置の周囲環境温度程度にまで冷やす必要がある。このため、次の操作が必要になる。本冷却工程においては、制御部84はファン62に対して起動指令を出す。冷媒吸着材60は、吸着タンク63の内部に収納されているので、ファン62により吸着タンク63の近傍に強制空気流を生じさせ、冷媒吸着材60の温度を速やかに低下させるようにする。前記強制空気流が、冷却に効果的に吸着タンク63表面近傍を流れるようにするため、例えばダクト61を吸着タンク63の周囲に設けるのが好ましい。
この際にも、本発明による冷媒吸着材充填容器を用いることにより、内部まで均一にかつ速やかに冷却を行なうことが可能となるため、冷媒回収動作を停止する時間を最小限にできるだけでなく、冷却に要する投入エネルギーも最小限とすることができ、環境への負荷も低く抑えることができる。
Next, the cooling operation of the refrigerant adsorbent 60 will be described.
In order to desorb the adsorbed refrigerant, the temperature of the refrigerant adsorbent 60 is raised by the heater 58 as described above. In order to regain the refrigerant adsorption capacity, the temperature of the refrigerant adsorbent 60 is changed to the ambient environment of the refrigerant recovery device. It needs to be cooled down to about the temperature. For this reason, the following operation is required. In this cooling process, the control unit 84 issues a start command to the fan 62. Since the refrigerant adsorbing material 60 is housed inside the adsorbing tank 63, a forced air flow is generated in the vicinity of the adsorbing tank 63 by the fan 62 so that the temperature of the refrigerant adsorbing material 60 is quickly reduced. In order for the forced air flow to flow in the vicinity of the surface of the adsorption tank 63 effectively for cooling, for example, a duct 61 is preferably provided around the adsorption tank 63.
Also in this case, by using the refrigerant adsorbent filling container according to the present invention, it becomes possible to cool uniformly and quickly to the inside, so not only the time for stopping the refrigerant recovery operation can be minimized, The input energy required for cooling can be minimized, and the environmental load can be kept low.

以上より本発明によれば、冷媒回収装置から大気中に排出される不凝縮ガスに同伴して大気中に漏れ出る冷媒量を、冷媒吸着材を用いて極限まで減少でき、前記冷媒吸着材は、速やかに且つ十分な冷媒吸着能力を回復するまでに再生されて反復使用でき、かつ冷媒吸着材を再生すると共に冷媒を回収することができる冷媒回収装置を提供することができる。   As described above, according to the present invention, the amount of refrigerant that leaks into the atmosphere accompanying the noncondensable gas discharged into the atmosphere from the refrigerant recovery device can be reduced to the limit using the refrigerant adsorbent, and the refrigerant adsorbent is Thus, it is possible to provide a refrigerant recovery apparatus that can be regenerated and reused promptly and before the sufficient refrigerant adsorption capacity is recovered, and that can regenerate the refrigerant adsorbent and recover the refrigerant.

本発明にかかる冷媒吸着材充填容器の一例を示す断面構成図。The cross-sectional block diagram which shows an example of the refrigerant | coolant adsorbent filling container concerning this invention. 本発明にかかる冷媒吸着材充填容器の他の一例を示す断面構成図。The cross-sectional block diagram which shows another example of the refrigerant | coolant adsorbent filling container concerning this invention. 本発明にかかる冷媒吸着材充填容器の他の一例を示す断面構成図。The cross-sectional block diagram which shows another example of the refrigerant | coolant adsorbent filling container concerning this invention. 本発明にかかる冷媒吸着材充填容器の他の一例を示す断面構成図。The cross-sectional block diagram which shows another example of the refrigerant | coolant adsorbent filling container concerning this invention. 本発明にかかる冷媒吸着材充填容器の全体形状の一例を示す縦断面構成図。The longitudinal cross-section block diagram which shows an example of the whole shape of the refrigerant | coolant adsorbent filling container concerning this invention. 本発明にかかる冷媒吸着剤充填容器を用いた抽気回収装置を有するターボ冷凍機の一例を示す概略構成図。The schematic block diagram which shows an example of the turbo refrigerator which has the extraction collection | recovery apparatus using the refrigerant | coolant adsorbent filling container concerning this invention. 本発明にかかる抽気回収装置の一例を示す全体構成図。The whole block diagram which shows an example of the extraction collection | recovery apparatus concerning this invention. 本発明にかかる冷媒回収装置と圧縮式冷凍機及び冷媒回収容器の接続状況の一例を示す概略構成図。The schematic block diagram which shows an example of the connection condition of the refrigerant | coolant collection | recovery apparatus concerning this invention, a compression type refrigerator, and a refrigerant | coolant collection container. 本発明にかかる冷媒吸着材充填容器を用いた冷媒回収装置の一例を示す全体構成図。The whole block diagram which shows an example of the refrigerant | coolant collection | recovery apparatus using the refrigerant | coolant adsorbent filling container concerning this invention.

1:外周部材、2:内部フィン(放射状)、3:内部フィン(内向き)、4:内部フィン(外向き)、5:外部フィン、6:吸着材収納スペース、7:フランジ部、8:ヒータ取付穴、9:ビス穴、10:中心部材、11:タンク上カバー、12:タンク下カバー、13:セパレーター((例えば金網))、14:シール材((例えばO−リング))、15:脚、16:センサ取付穴、17:ヒータ取付穴、18:冷媒吸着材充填容器本体、19:入口ノズル、20:出口ノズル、31:パージコンデンサ、31a:コンデンサ室、31b:フロート弁室、32:冷却コイル、33:フロート弁、34:差圧スイッチ、36:抽気ポンプ、37:接続配、38:圧縮機(ターボ冷凍機の)、39:オリフィス、40:制御部、41:凝縮器(ターボ冷凍機の)、42:蒸発器(ターボ冷凍機の)、43:冷媒ポンプ(ターボ冷凍機の)、44:冷媒フィルター(ターボ冷凍機の)、45:オリフィス、50:抽気回収装置、51:電磁弁、52:電磁弁、53:電磁弁、54:接続配管、55:リリーフ弁、56:リリーフ弁、57:オリフィス、58:ヒータ、59:サーモスタット、60:冷媒吸着材、61:ダクト、62:ファンモータ、63:吸着タンク(冷媒吸着材充填容器)、65:不凝縮ガス排出口、70:冷媒回収装置、71:小形凝縮器、71a:コンデンサ室、71b:フロート弁室、72:冷却コイル、73:フロート弁、74:圧力スイッチ、75:電磁弁、76:圧縮機又は真空ポンプ、77:冷却水ポンプ、78:リリーフ弁、79:連絡配管、80:接続配管、81:連絡配管、82:連絡配管、83:連絡配管、84:制御部、85:切替弁、86:切替弁、87:切替弁、88:切替弁、89:接続配管、90:オリフィス、91:電磁弁、92:切替弁、93:不凝縮ガス排出口、94:接続配管、95:接続配管、100:圧縮式冷凍機、101:凝縮器(冷凍機の)、102:蒸発器(冷凍機の)、103:圧縮機(冷凍機の)、104:冷却水配管(冷凍機の)、105:冷却水配管(冷凍機の)、106:冷媒回収容器   1: outer peripheral member, 2: internal fin (radial), 3: internal fin (inward), 4: internal fin (outward), 5: external fin, 6: adsorbent storage space, 7: flange portion, 8: Heater mounting hole, 9: Screw hole, 10: Center member, 11: Tank upper cover, 12: Tank lower cover, 13: Separator ((for example, wire mesh)), 14: Sealing material ((for example, O-ring)), 15 : Leg, 16: sensor mounting hole, 17: heater mounting hole, 18: refrigerant adsorbent filling container body, 19: inlet nozzle, 20: outlet nozzle, 31: purge condenser, 31a: condenser chamber, 31b: float valve chamber, 32: Cooling coil, 33: Float valve, 34: Differential pressure switch, 36: Extraction pump, 37: Connection arrangement, 38: Compressor (turbo refrigerator), 39: Orifice, 40: Control unit, 41: Condenser ( 42: evaporator (for turbo refrigerator), 43: refrigerant pump (for turbo refrigerator), 44: refrigerant filter (for turbo refrigerator), 45: orifice, 50: extraction recovery device, 51: Solenoid valve, 52: Solenoid valve, 53: Solenoid valve, 54: Connection piping, 55: Relief valve, 56: Relief valve, 57: Orifice, 58: Heater, 59: Thermostat, 60: Refrigerant adsorbent, 61: Duct, 62: fan motor, 63: adsorption tank (refrigerant adsorbent filling container), 65: non-condensable gas discharge port, 70: refrigerant recovery device, 71: small condenser, 71a: condenser chamber, 71b: float valve chamber, 72: cooling coil, 73: float valve, 74: pressure switch, 75: solenoid valve, 76: compressor or vacuum pump, 77: cooling water pump, 78: relief valve, 79: communication piping, 80 Connection piping, 81: communication piping, 82: communication piping, 83: communication piping, 84: control unit, 85: switching valve, 86: switching valve, 87: switching valve, 88: switching valve, 89: connection piping, 90: Orifice, 91: Solenoid valve, 92: Switching valve, 93: Non-condensable gas discharge port, 94: Connection pipe, 95: Connection pipe, 100: Compression refrigerator, 101: Condenser (of the refrigerator), 102: Evaporation (Refrigerator), 103: compressor (refrigerator), 104: cooling water pipe (refrigerator), 105: cooling water pipe (refrigerator), 106: refrigerant recovery container

Claims (7)

中心部を形成する中心部材と、外周部を形成する外周部材と、前記中心部材と外周部材とを相互に連結する板状のフィンとを備えた冷媒吸着材充填容器であって、該充填容器は、内部に前記中心部材と外周部材と板状のフィンとにより冷媒吸着材収納スペースが形成されると共に、さらに気体の入口と出口とを有し、該入口と出口とが、前記冷媒吸着材収納スペースを兼ねた気体通路により相互に連絡され、該入口から出口に向かって気体が流動でき、且つ前記外周部材の外部から該充填容器を加熱及び冷却可能に構成したことを特徴とする冷媒吸着材充填容器。   A refrigerant adsorbent filling container comprising: a central member that forms a central portion; an outer peripheral member that forms an outer peripheral portion; and plate-like fins that interconnect the central member and the outer peripheral member. Has a refrigerant adsorbent storage space formed therein by the central member, the outer peripheral member, and the plate-like fins, and further has a gas inlet and outlet, and the inlet and outlet are the refrigerant adsorbent. Refrigerant adsorption characterized by being connected to each other by a gas passage also serving as a storage space, allowing gas to flow from the inlet toward the outlet, and heating and cooling the filling container from the outside of the outer peripheral member. Material filling container. 前記外周部材は、外部に板状のフィンをさらに備えることを特徴とする請求項1に記載の冷媒吸着材充填容器。   The refrigerant adsorbent filling container according to claim 1, wherein the outer peripheral member further includes a plate-like fin on the outside. 前記中心部材と外周部材と板状フィンは、それらのうちの少なくとも2つが一体に形成されることを特徴とする請求項1又は2に記載の冷媒吸着材充填容器。   The refrigerant adsorbent-filled container according to claim 1 or 2, wherein at least two of the central member, the outer peripheral member, and the plate-like fin are integrally formed. 前記中心部材及び外周部材は、いずれか一方側から他方側に向かって延伸する板状のフィンを備え、該フィンは他のいずれかのフィンと互いに平行に形成されることを特徴とする請求項1、2又は3に記載の冷媒吸着材充填容器。   The center member and the outer peripheral member include plate-like fins extending from one side to the other side, and the fins are formed in parallel to any other fin. The refrigerant | coolant adsorbent filling container as described in 1, 2 or 3. ターボ冷凍機中から冷媒ガスと共に抽出された不凝縮ガスを、該冷媒ガスと分離して大気中に排出するための冷媒ガス分離手段と冷媒吸着材を充填した冷媒吸着材充填容器とを備えた抽気回収装置であって、前記冷媒吸着材充填容器が、請求項1〜4のいずれか1項に記載した冷媒吸着材充填容器であることを特徴とするターボ冷凍機用抽気回収装置。   A non-condensable gas extracted together with the refrigerant gas from the turbo refrigerator is separated from the refrigerant gas and discharged into the atmosphere, and a refrigerant adsorbent filling container filled with a refrigerant adsorbent is provided. It is a bleed air collection | recovery apparatus, Comprising: The said refrigerant | coolant adsorbent filling container is the refrigerant | coolant adsorbent filling container as described in any one of Claims 1-4, The bleed air collection | recovery apparatus for turbo refrigerators characterized by the above-mentioned. 抽気回収装置を備えたターボ冷凍機において、前記抽気回収装置が、請求項5に記載の抽気回収装置であることを特徴とするターボ冷凍機。   A turbo chiller provided with a bleed air recovery device, wherein the bleed air recovery device is the bleed air recovery device according to claim 5. 不凝縮ガスを含有する冷媒ガスから冷媒ガスのみを吸着して回収し、不凝縮ガスを大気中に排出するための冷媒回収装置が、請求項1〜4のいずれか1項に記載された冷媒吸着材充填容器に冷媒吸着材を充填したものであることを特徴とする冷媒回収装置。   The refrigerant | coolant collection apparatus for adsorb | sucking and collect | recovering only refrigerant gas from the refrigerant gas containing non-condensable gas, and discharging | emitting non-condensable gas in air | atmosphere is the refrigerant | coolant described in any one of Claims 1-4 A refrigerant recovery apparatus, wherein an adsorbent filling container is filled with a refrigerant adsorbent.
JP2009294519A 2009-12-25 2009-12-25 Refrigerant adsorbent filling container, bleed air recovery device, turbo chiller and refrigerant recovery device equipped with the same Active JP5796878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009294519A JP5796878B2 (en) 2009-12-25 2009-12-25 Refrigerant adsorbent filling container, bleed air recovery device, turbo chiller and refrigerant recovery device equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009294519A JP5796878B2 (en) 2009-12-25 2009-12-25 Refrigerant adsorbent filling container, bleed air recovery device, turbo chiller and refrigerant recovery device equipped with the same

Publications (2)

Publication Number Publication Date
JP2011133191A true JP2011133191A (en) 2011-07-07
JP5796878B2 JP5796878B2 (en) 2015-10-21

Family

ID=44346124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009294519A Active JP5796878B2 (en) 2009-12-25 2009-12-25 Refrigerant adsorbent filling container, bleed air recovery device, turbo chiller and refrigerant recovery device equipped with the same

Country Status (1)

Country Link
JP (1) JP5796878B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111356516A (en) * 2017-09-27 2020-06-30 江森自控科技公司 Drain tank system for HVAC & R systems
DE102021102722A1 (en) 2021-02-05 2022-08-11 Vaillant Gmbh Method and arrangement for detecting refrigerant leaks in a refrigeration circuit which is arranged in a closed housing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618861U (en) * 1992-08-19 1994-03-11 財団法人工業技術研究院 Adsorption type refrigerant regenerator
JPH07120112A (en) * 1993-10-27 1995-05-12 Hitachi Bill Shisetsu Eng Kk Refrigerant adsorption tank and adsorptivity deciding method for the tank
JPH08313105A (en) * 1995-05-18 1996-11-29 Nippondenso Co Ltd Adsorber
JPH11182968A (en) * 1997-12-24 1999-07-06 Kyushu Electric Power Co Inc Heat exchanger for reactor of chemical heat pump
JP2007240145A (en) * 1997-02-04 2007-09-20 Integrated Biosystems Freezing and thawing vessel with thermal bridge
JP2008128535A (en) * 2006-11-20 2008-06-05 Ebara Refrigeration Equipment & Systems Co Ltd Bleeder for compression type refrigerating machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618861U (en) * 1992-08-19 1994-03-11 財団法人工業技術研究院 Adsorption type refrigerant regenerator
JPH07120112A (en) * 1993-10-27 1995-05-12 Hitachi Bill Shisetsu Eng Kk Refrigerant adsorption tank and adsorptivity deciding method for the tank
JPH08313105A (en) * 1995-05-18 1996-11-29 Nippondenso Co Ltd Adsorber
JP2007240145A (en) * 1997-02-04 2007-09-20 Integrated Biosystems Freezing and thawing vessel with thermal bridge
JPH11182968A (en) * 1997-12-24 1999-07-06 Kyushu Electric Power Co Inc Heat exchanger for reactor of chemical heat pump
JP2008128535A (en) * 2006-11-20 2008-06-05 Ebara Refrigeration Equipment & Systems Co Ltd Bleeder for compression type refrigerating machine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111356516A (en) * 2017-09-27 2020-06-30 江森自控科技公司 Drain tank system for HVAC & R systems
CN111405937A (en) * 2017-09-27 2020-07-10 江森自控科技公司 Drain tank system for HVAC & R systems
JP2020535011A (en) * 2017-09-27 2020-12-03 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company Emission canister system for HVAC & R system
JP2020535012A (en) * 2017-09-27 2020-12-03 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company Emission canister system for HVAC & R system
US11241650B2 (en) 2017-09-27 2022-02-08 Johnson Controls Technology Company Emission canister system for a HVACandR system
US11413566B2 (en) 2017-09-27 2022-08-16 Johnson Controls Tyco IP Holdings LLP Emission canister system for a HVAC and R system
JP2022119958A (en) * 2017-09-27 2022-08-17 ジョンソン コントロールズ テクノロジー カンパニー Emission canister system for hvac&r system
JP7142686B2 (en) 2017-09-27 2022-09-27 ジョンソン コントロールズ テクノロジー カンパニー Emission canister system for HVAC&R systems
JP7142685B2 (en) 2017-09-27 2022-09-27 ジョンソン コントロールズ テクノロジー カンパニー Emission canister system for HVAC&R systems
US11738298B2 (en) 2017-09-27 2023-08-29 Johnson Controls Tyco IP Holdings LLP Emission canister system for a HVAC and R system
DE102021102722A1 (en) 2021-02-05 2022-08-11 Vaillant Gmbh Method and arrangement for detecting refrigerant leaks in a refrigeration circuit which is arranged in a closed housing

Also Published As

Publication number Publication date
JP5796878B2 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
JP4671772B2 (en) Apparatus and method for treating and recovering gaseous hydrocarbons
EP2861919B1 (en) Refrigeration system with purge using enrivonmentally-suitable chiller refrigerant
JP5669658B2 (en) Cryopump system, compressor, and cryopump regeneration method
US9631851B2 (en) Vacuum container for removing foreign gases from an adsorption refrigeration machine
JP4932911B2 (en) Cryopump
JP6343156B2 (en) Compression refrigerator
TWI413544B (en) Gas - like hydrocarbon recovery device and method
JP2017207251A5 (en)
WO2019208336A1 (en) Cryopump, cryopump system and cryopump regeneration method
JP2021508812A (en) Systems and methods for purging chiller systems
JP2011036861A (en) Treatment/recovery apparatus and method for gaseous hydrocarbon
JP5796878B2 (en) Refrigerant adsorbent filling container, bleed air recovery device, turbo chiller and refrigerant recovery device equipped with the same
JP5803704B2 (en) Refrigeration system
JP5606732B2 (en) Refrigerant recovery device
JP5606714B2 (en) Bleeding recovery device, operation method thereof, and turbo refrigerator equipped with the same
KR20150126480A (en) Dehumidifier
US10386100B2 (en) Adsorption system heat exchanger
KR20220084023A (en) How to start operation of cryopump, cryopump system, and cryopump
JP4134841B2 (en) Adsorber for adsorption refrigerator
JP2015527560A (en) Recovery container and method for recovering working medium in sorption device
CN218653054U (en) Oil gas recovery is with inhaling desorption apparatus
JP2006038347A (en) Refrigerating machine
JP5743683B2 (en) Compressor, compressor operating method, and refrigeration cycle apparatus
JP6578876B2 (en) Adsorber for refrigerator
JP6399955B2 (en) Adsorption type refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140612

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140707

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150817

R150 Certificate of patent or registration of utility model

Ref document number: 5796878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250