JP2011131117A - Microbubble concentrator, microbubble generating apparatus, method of concentrating microbubble and method of generating microbubble - Google Patents

Microbubble concentrator, microbubble generating apparatus, method of concentrating microbubble and method of generating microbubble Download PDF

Info

Publication number
JP2011131117A
JP2011131117A JP2009290335A JP2009290335A JP2011131117A JP 2011131117 A JP2011131117 A JP 2011131117A JP 2009290335 A JP2009290335 A JP 2009290335A JP 2009290335 A JP2009290335 A JP 2009290335A JP 2011131117 A JP2011131117 A JP 2011131117A
Authority
JP
Japan
Prior art keywords
microbubble
flow path
concentrator
bubble liquid
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009290335A
Other languages
Japanese (ja)
Other versions
JP5440151B2 (en
Inventor
Kazusuke Sato
一祐 佐藤
Kiichi Komada
紀一 駒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009290335A priority Critical patent/JP5440151B2/en
Publication of JP2011131117A publication Critical patent/JP2011131117A/en
Application granted granted Critical
Publication of JP5440151B2 publication Critical patent/JP5440151B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a liquid in which microbubbles of desired diameters are concentrated. <P>SOLUTION: A microbubble generating apparatus includes a microbubble generator 2 generating a bubble liquid containing bubbles of various diameters including microbubbles and a microbubble concentrator 3 to which the bubble liquid is supplied. The microbubble concentrator 3 includes a primary concentrator 6 removing a bubble liquid containing large-diameter bubbles from the bubble liquid containing bubbles of various diameters including microbubbles and a secondary concentrator 7 causing the bubble liquid passing through the primary concentrator 6 to flow through a spiral passage 5 and taking out a bubble liquid which passes through the outer portion of the spiral passage 5 in the radial direction. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、マイクロバブルを含む種々の直径の気泡を含有するバブル液から所望の直径のマイクロバブルを濃縮するマイクロバブル濃縮装置及びその濃縮装置を用いたマイクロバブル生成装置並びにこれらの濃縮方法及び生成方法に関する。   The present invention relates to a microbubble concentrating device for concentrating microbubbles having a desired diameter from a bubble liquid containing bubbles having various diameters including microbubbles, a microbubble generating device using the concentrating device, and a concentration method and generation thereof. Regarding the method.

マイクロバブルは、数μm〜数十μm(又は数百μm)の微細気泡であり、単位体積当たりの気泡表面積が大きく、浮力が小さいため流れへの追従性に優れ、微細なゴミを吸着して水面に浮上させることができ、また淡水あるいは海水への溶存酸素量を高めることができるなど、優れた物理的、化学的性質を有している。このため、カキや帆立貝等の海産物の養殖において成果を得ているとともに、汚水処理や微生物の除去などの環境分野への応用、清浄水やオゾン水の製造、半導体の洗浄、船舶の抵抗軽減化への応用、バイオ、医療分野への展開等、広い範囲で応用が期待されている。   A microbubble is a fine bubble of several μm to several tens of μm (or several hundred μm), has a large bubble surface area per unit volume, and a small buoyancy, so it has excellent followability to flow and adsorbs fine dust. It has excellent physical and chemical properties such as being able to float on the water surface and increasing the amount of dissolved oxygen in fresh water or seawater. For this reason, it has been successful in aquaculture of seafood such as oysters and scallops, applied to environmental fields such as sewage treatment and removal of microorganisms, manufacture of clean water and ozone water, cleaning of semiconductors, reducing ship resistance Applications are expected in a wide range such as application to biotechnology, biotechnology and medical field.

このマイクロバブルを発生する装置として、例えば特許文献1〜3に記載の方法がある。
特許文献1記載の装置は、有底円筒形のスペースを有する容器本体と、同スペースの内壁円周面の一部にその接線方向に開設された加圧液体導入口と、前記円筒形のスペース底部に開設された気体導入孔と、前記円筒形スペースの先部に開設された旋回気液混合体導出口とから構成された旋回式微細気泡発生装置である。
As an apparatus for generating the microbubbles, for example, there are methods described in Patent Documents 1 to 3.
The apparatus described in Patent Document 1 includes a container body having a bottomed cylindrical space, a pressurized liquid inlet opening in a tangential direction in a part of the inner wall circumferential surface of the space, and the cylindrical space. It is a swirl type fine bubble generator composed of a gas introduction hole opened at the bottom and a swirl gas-liquid mixture outlet opened at the tip of the cylindrical space.

特許文献2記載の装置は、液体を導入する液体導入部と、導入される液体に気体を混入する気体導入部と、混入された気体から多数の微小気泡を生成させる微小気泡生成部と、発生した多数の微小気泡の放出口とを有し、該液体は界面活性剤を含んでおり、該界面活性剤の作用により該微小気泡生成部で生成された多数の微小気泡の合体を抑制しながら該微小気泡を放出させるベンチュリ管式微細気泡発生装置である。   An apparatus described in Patent Document 2 includes a liquid introduction unit that introduces a liquid, a gas introduction unit that mixes a gas into the introduced liquid, a microbubble generation unit that generates a large number of microbubbles from the mixed gas, and a generation And the liquid contains a surfactant, while suppressing the coalescence of a large number of microbubbles generated in the microbubble generator by the action of the surfactant. This is a venturi-type microbubble generator that discharges the microbubbles.

特許文献3記載の装置は、加圧ポンプ等により汲み上げた水を加圧用タンクに入れ、このタンク内に加圧した酸素を供給することによりこの酸素を加圧状態で水に溶解させ、のちこの水を大気解放することにより上記溶存した酸素を微細気泡となし、この微細気泡を水中に浮遊させることによりこの気泡の酸素を水中に溶解させる加圧式酸素溶解法による装置である。   In the apparatus described in Patent Document 3, water pumped up by a pressure pump or the like is placed in a tank for pressurization, and this oxygen is dissolved in water in a pressurized state by supplying pressurized oxygen into the tank. This is an apparatus by a pressurized oxygen dissolution method in which the dissolved oxygen is made into fine bubbles by releasing water into the atmosphere, and the oxygen in the bubbles is dissolved in water by suspending the fine bubbles in water.

国際公開第00/69550号パンフレットInternational Publication No. 00/69550 Pamphlet 特開2003−230824号公報Japanese Patent Laid-Open No. 2003-230824 特開平11−207162号公報JP-A-11-207162

このように、マイクロバブルを発生する方法は沢山知られているが、気泡の直径分布は広く、例えば、旋回式では5〜50μm程度、ベンチュリ管式では50〜300μm程度に分布し、ナノバブルやミリバブルを含む場合も多い。これらの気泡から所望の直径のマイクロバブルのみを得る方法は知られていない。
マイクロバブルは同じ極性で有意な表面電位を持つため、相互に電気的斥力が働いて融合しないが、大きな気泡は表面電位がゼロのため、マイクロバブルと接触して融合吸収してしまうので好ましくない。ナノバブルはマイクロバブルと大きく性質が異なっているとされ、マイクロバブルの特性を活かした利用には向いていない。
As described above, many methods for generating microbubbles are known, but the diameter distribution of bubbles is wide, for example, about 5 to 50 μm in the swivel type, about 50 to 300 μm in the Venturi type, and nanobubbles and millibubbles. In many cases. A method for obtaining only microbubbles having a desired diameter from these bubbles is not known.
Since microbubbles have a significant surface potential with the same polarity, they do not fuse with each other due to electrical repulsion, but large bubbles are unfavorable because they have a surface potential of zero and come into contact with microbubbles and absorb. . Nanobubbles are said to be significantly different in nature from microbubbles and are not suitable for use utilizing the characteristics of microbubbles.

マイクロバブルの範囲は直径10〜100μm程度と云われているが、大きなマイクロバブルは寿命が長いという特徴を有する反面、気泡内圧は小さい。一方、小さなマイクロバブルは寿命は短いが、内圧は高く、自己加圧効果が大きいという特徴を有するので、用途に応じて所望の直径のマイクロバブルが得られれば、その効果が著しく改善される。
従って、マイクロバブルより広い直径分布を有する気泡を含む液体からマイクロバブル、特に所望の直径のマイクロバブルが濃縮された液体を得る方法/装置が望まれる。しかも、マイクロバブルを発生させてから直径が縮小して消滅するまでの寿命は長くても数分と言われているため、その操作は数秒以内に完了する必要がある。
The range of microbubbles is said to be about 10 to 100 μm in diameter, but large microbubbles have a feature of long life, but the bubble internal pressure is small. On the other hand, small microbubbles have a short life but high internal pressure and a large self-pressurizing effect. Therefore, if microbubbles having a desired diameter are obtained according to the application, the effect is remarkably improved.
Therefore, a method / apparatus for obtaining microbubbles, particularly liquids enriched with microbubbles having a desired diameter, from a liquid containing bubbles having a diameter distribution wider than that of microbubbles is desired. Moreover, since the lifetime from the generation of microbubbles until the diameter is reduced and disappears is said to be several minutes at the longest, the operation needs to be completed within a few seconds.

本発明は、このような事情に鑑みてなされたもので、所望の直径のマイクロバブルが濃縮された液体を得ることを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to obtain a liquid in which microbubbles having a desired diameter are concentrated.

本発明者は、浮力と遠心力あるいは重力とが釣り合っている時の気泡の移動速度は、Stokes(ストークス)の式に従い、気泡の直径の自乗に比例することに着目して検討した結果、実用的な気液の組合せのマイクロバブルを得る装置を以下のように工業的に製作可能であり、また実用的な条件で操作することが可能であることを見出した。   As a result of studying the fact that the moving speed of the bubble when the buoyancy and the centrifugal force or the gravity are balanced is proportional to the square of the diameter of the bubble according to the Stokes formula, It has been found that a device for obtaining microbubbles of a typical gas-liquid combination can be manufactured industrially as follows and can be operated under practical conditions.

すなわち、本発明のマイクロバブル濃縮装置は、マイクロバブルを含む種々の直径の気泡を含有するバブル液を流通する螺旋状流路と、前記螺旋状流路の出口で流路内の半径方向の所定位置から分岐して前記バブル液の一部を分取する抜き出し流路とを有することを特徴とする。
また、マイクロバブル濃縮方法は、マイクロバブルを含む種々の直径の気泡を含有するバブル液を螺旋状流路に流通して、螺旋状流路の半径方向の所定位置から前記バブル液の一部を分取することを特徴とする。
That is, the microbubble concentrating device of the present invention has a spiral flow path for circulating bubble liquid containing bubbles of various diameters including microbubbles, and a predetermined radial direction in the flow path at the outlet of the spiral flow path. It has the extraction flow path which branches from a position and fractionates the said bubble liquid, It is characterized by the above-mentioned.
Further, the microbubble concentration method distributes bubble liquid containing bubbles of various diameters including microbubbles to the spiral flow path, and removes a part of the bubble liquid from a predetermined position in the radial direction of the spiral flow path. It is characterized by sorting.

マイクロバブルを含む直径分布を有する気泡を含む液体を重力場あるいは遠心力が支配的な場の中を流すと、力の釣合方向に沿って大径の気泡が相対的に大きな移動速度、小径の気泡が相対的に小さな移動速度を持つため、時間が経つにつれて気泡が大径から小径に分布する。そこで所望の直径のマイクロバブルが集積する位置でバブル液を分取するのである。   When a liquid containing bubbles with a diameter distribution including microbubbles is flowed in a field where gravity force or centrifugal force is dominant, the bubbles with large diameter move relatively large along the force balance direction. Bubbles have a relatively small moving speed, so that the bubbles are distributed from a large diameter to a small diameter as time passes. Therefore, the bubble liquid is collected at a position where microbubbles having a desired diameter are accumulated.

本発明のマイクロバブル濃縮装置において、前記半径方向の所定位置は、流路内の半径方向の内側部分及び外側部分を除く中間位置であるとよい。
螺旋状流路の半径方向の内側及び外側を除く中間位置から分取することにより、大径のマイクロバブル及び小径のマイクロバブルを除いて、これらの中間の直径のマイクロバブルが濃縮されたバブル液を得ることができる。
In the microbubble concentrator of the present invention, the predetermined position in the radial direction may be an intermediate position excluding the inner part and the outer part in the radial direction in the flow path.
A bubble liquid in which microbubbles having an intermediate diameter are concentrated except for microbubbles with a large diameter and microbubbles with a small diameter by separating from an intermediate position excluding the inside and outside in the radial direction of the spiral channel. Can be obtained.

また、本発明のマイクロバブル濃縮装置は、マイクロバブルを含む種々の直径の気泡を含有するバブル液から大径気泡を含むバブル液を除去する一次濃縮器と、前記一次濃縮器を経由したバブル液を螺旋状流路に流通して、螺旋状流路の半径方向外側部分を通るバブル液を分取する二次濃縮器とを備える。
ミリバブルなどの大きな気泡は、マイクロバブルと接触して融合吸収してしまうため、最初に一次濃縮器により大径の気泡を優先的にバブル液から除き、その後に二次濃縮器において所望の直径のマイクロバブルが濃縮されたバブル液を分取するのである。
The microbubble concentrator of the present invention includes a primary concentrator that removes bubble liquid containing large diameter bubbles from bubble liquid containing bubbles of various diameters including microbubbles, and a bubble liquid that passes through the primary concentrator. And a secondary concentrator for separating the bubble liquid passing through the radially outer portion of the spiral flow path.
Since large bubbles such as millibubbles come into contact with microbubbles and are absorbed and absorbed, first the large diameter bubbles are preferentially removed from the bubble liquid by the primary concentrator, and then the desired diameter is obtained in the secondary concentrator. The bubble liquid in which microbubbles are concentrated is collected.

本発明のマイクロバブル濃縮装置において、前記一次濃縮器は、バブル液を流通する第1の螺旋状流路を有し、前記第1の螺旋状流路の出口における流路内の半径方向外側部分が前記二次濃縮器に連通しているものとすることができる。
また、前記一次濃縮器は、撥液性多孔膜で液面を規制し、液面に浮上した大径気泡を撥液性多孔膜から外気に逃がす気液分離槽を有し、前記気液分離槽の底面と前記撥液性多孔膜との間の流路が前記二次濃縮器に連通しているものとすることができる。
In the microbubble concentrator of the present invention, the primary concentrator has a first spiral channel through which bubble liquid flows, and a radially outer portion in the channel at the outlet of the first spiral channel. In communication with the secondary concentrator.
The primary concentrator has a gas-liquid separation tank that regulates the liquid level with a liquid-repellent porous membrane and allows large-sized bubbles floating on the liquid surface to escape from the liquid-repellent porous membrane to the outside air. A flow path between the bottom of the tank and the liquid repellent porous membrane may communicate with the secondary concentrator.

そして、これらマイクロバブル濃縮装置と、マイクロバブルを含む種々の直径の気泡を含有するバブル液を生成して前記マイクロバブル濃縮装置に供給するマイクロバブル発生装置とを備えることにより、本発明のマイクロバブル生成装置が構成される。
また、本発明のマイクロバブル生成方法は、マイクロバブルを含む種々の直径の気泡を含有するバブル液を発生した後、前記バブル液を螺旋状流路に流通して、螺旋状流路の半径方向の所定位置から前記バブル液の一部を分取することを特徴とする。
The microbubble concentrating device of the present invention includes the microbubble concentrating device and a microbubble generating device that generates bubble liquid containing bubbles having various diameters including microbubbles and supplies the microbubble concentrating device to the microbubble concentrating device. A generation device is configured.
Further, the microbubble generating method of the present invention generates a bubble liquid containing bubbles having various diameters including microbubbles, and then circulates the bubble liquid through the spiral flow path, so that the radial direction of the spiral flow path A part of the bubble liquid is dispensed from a predetermined position.

さらに、本発明のマイクロバブル生成装置において、前記マイクロバブル濃縮装置と前記マイクロバブル発生装置との間に、前記マイクロバブル濃縮装置で分取されなかったバブル液を回収し前記マイクロバブル発生装置の原料の一部とする回収流路が設けられているとよい。バブル液を効率的に利用するためである。   Furthermore, in the microbubble generating apparatus of the present invention, a raw material of the microbubble generating apparatus is recovered between the microbubble concentrating apparatus and the microbubble generating apparatus by collecting bubble liquid that has not been separated by the microbubble concentrating apparatus. It is preferable that a recovery flow path as a part of is provided. This is to use the bubble liquid efficiently.

本発明によれば、マイクロバブルを含む種々の直径の気泡を含有するバブル液から螺旋状流路により所望の直径のマイクロバブルが濃縮されたバブル液を分取することができる。   ADVANTAGE OF THE INVENTION According to this invention, the bubble liquid in which the microbubble of a desired diameter was concentrated with the spiral flow path from the bubble liquid containing the bubble of various diameters containing a microbubble can be fractionated.

本発明に係るマイクロバブル生成装置の第1実施形態を示す概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram which shows 1st Embodiment of the microbubble production | generation apparatus which concerns on this invention. 図1のA−A線に沿う矢視図である。It is an arrow line view which follows the AA line of FIG. 図1の螺旋状流路の断面図である。It is sectional drawing of the spiral flow path of FIG. 本発明に係るマイクロバブル生成装置の第2実施形態を示す概略構成図である。It is a schematic block diagram which shows 2nd Embodiment of the microbubble production | generation apparatus which concerns on this invention. 図4のB−B線に沿う矢視図である。It is an arrow line view which follows the BB line of FIG. 本発明に係るマイクロバブル生成装置の第3実施形態を示す概略構成図である。It is a schematic block diagram which shows 3rd Embodiment of the microbubble production | generation apparatus which concerns on this invention. 図4のC−C線に沿う断面図である。It is sectional drawing which follows the CC line of FIG.

以下、本発明に係るマイクロバブル生成装置の実施形態を図面を参照しながら説明する。
図1から図3は本実施形態のマイクロバブル生成装置の第1実施形態を示しており、この実施形態のマイクロバブル生成装置1は、図1に示すように、マイクロバブル発生装置2と、発生したマイクロバブルを含むバブル液から所望の直径のマイクロバブルを含むバブル液に濃縮するマイクロバブル濃縮装置3とから構成されている。
Embodiments of a microbubble generating apparatus according to the present invention will be described below with reference to the drawings.
FIG. 1 to FIG. 3 show a first embodiment of the microbubble generator of this embodiment. The microbubble generator 1 of this embodiment includes a microbubble generator 2 and a generator as shown in FIG. The microbubble concentrator 3 concentrates the bubble liquid containing the microbubbles into the bubble liquid containing microbubbles having a desired diameter.

マイクロバブル発生装置2は、前述した旋回式微細気泡発生装置、ベンチュリ管式微細気泡発生装置の他、加圧溶解式、スタティックミキサ式、エジェクタ式、細孔式、回転式、超音波式、蒸気凝縮式、電気分解式など、現在知られている種々の方式のものを適用することができる。その中でも、バブルの直径の分布範囲が広くても高ボイド率が得られるベンチュリ管式や加圧溶解式が望ましい。
マイクロバブル濃縮装置3は、異なる二種類の径の螺旋状流路4,5が連続するように設けられており、大径の螺旋状流路4を有する一次濃縮器6と、小径の螺旋状流路5を有する二次濃縮器7とから構成されている。
The microbubble generator 2 includes the above-described swirling microbubble generator, venturi tube microbubble generator, pressure dissolution type, static mixer type, ejector type, pore type, rotary type, ultrasonic type, steam Various types currently known, such as a condensation type and an electrolysis type, can be applied. Among them, the Venturi tube type and the pressure dissolution type are preferable because a high void ratio can be obtained even if the bubble diameter distribution range is wide.
The microbubble concentrating device 3 is provided so that spiral channels 4 and 5 having two different types of diameters are continuous, and includes a primary concentrator 6 having a large-diameter spiral channel 4 and a small-diameter spiral channel. The secondary concentrator 7 has a flow path 5.

一次濃縮器6は、その螺旋状流路4の始端部4aがマイクロバブル発生装置2に接続され、終端部は、流路の縦方向(螺旋の半径方向)の長さの半分の位置に分離板8が設けられ、この分離板8によって流路が螺旋の半径方向内側部分と外側部分とに二股状に分岐され、その外側半分の流路に二次濃縮器7における螺旋状流路5の始端部が接続されている。
図1及び図2に示す例では、一次濃縮器6の螺旋状流路4の半径方向内方位置に二次濃縮器7の螺旋状流路5が配置され、両螺旋状流路4,5の接続部において折り返すように連結されている。
The primary concentrator 6 has a spiral channel 4 having a start end 4a connected to the microbubble generator 2 and a terminal end separated into a position half the length of the channel in the longitudinal direction (spiral radial direction). A plate 8 is provided, and the flow path is bifurcated into an inner part and an outer part in the radial direction of the spiral by the separation plate 8, and the spiral channel 5 in the secondary concentrator 7 is divided into the outer half channel. The start end is connected.
In the example shown in FIGS. 1 and 2, the spiral flow path 5 of the secondary concentrator 7 is disposed at the radially inner position of the spiral flow path 4 of the primary concentrator 6, and both spiral flow paths 4, 5 are arranged. It is connected so that it may be folded at the connection part.

そして、二次濃縮器7の終端部には、その縦方向(螺旋の半径方向)の長さの半分の位置に図2に示すように流路の延長方向に沿う分離板9が設けられ、この分離板9によって流路内が螺旋の半径方向内側部分と外側部分とに二股状に分岐され、その内側半分の流路にバブル液の抜き出し口10が形成され、この抜き出し口10に、目的の用途に応じた抜き出し流路11が接続されている。   And in the terminal part of the secondary concentrator 7, the separating plate 9 along the extension direction of a flow path as shown in FIG. 2 is provided in the position of the length of the longitudinal direction (radial direction of a spiral), The inside of the flow path is bifurcated into a spiral radial inner portion and an outer portion by the separation plate 9, and a bubble liquid extraction port 10 is formed in the inner half of the flow channel. The extraction flow path 11 corresponding to the application is connected.

一方、一次濃縮器6の終端部において分岐された螺旋の内側半分の流路、及び二次濃縮器7の終端部において分岐された螺旋の外側半分の流路は排出口12,13とされ、それぞれ回収流路14,15が接続され、マイクロバブル発生装置2にバブル液を回収して、原料の一部として再利用するようになっている。   On the other hand, the flow path of the inner half of the spiral branched at the terminal end of the primary concentrator 6 and the flow path of the outer half of the spiral branched at the terminal end of the secondary concentrator 7 are the discharge ports 12 and 13, The recovery channels 14 and 15 are connected to each other, and the bubble liquid is recovered in the microbubble generator 2 and reused as a part of the raw material.

このように構成されたマイクロバブル生成装置1において、マイクロバブル発生装置2では、マイクロバブルを含む種々の直径の気泡を含有するバブル液が発生し、このバブル液を濃縮装置3の一次濃縮器6に供給する。この一次濃縮器6においては、バブル液が螺旋状流路4を流通する際に遠心力が作用し、ストークスの式により、力の釣合方向に沿う移動速度が大径の気泡は相対的に大きく、小径の気泡は相対的に小さいため、螺旋状流路4を流通する間に大径の気泡ほど螺旋の半径方向内方に大きな移動速度で移動する。このため、螺旋の半径方向の内側から外側に向かって気泡が大径のものから小径のものへと分布する。   In the microbubble generator 1 configured as described above, the microbubble generator 2 generates bubble liquid containing bubbles having various diameters including microbubbles, and the bubble liquid is converted into the primary concentrator 6 of the concentrator 3. To supply. In the primary concentrator 6, centrifugal force acts when the bubble liquid flows through the spiral flow path 4. According to the Stokes' formula, bubbles having a large moving speed along the force balance direction are relatively Since the large and small-sized bubbles are relatively small, the larger-sized bubbles move inwardly in the radial direction of the spiral while flowing through the spiral flow path 4. For this reason, bubbles are distributed from those having a large diameter to those having a small diameter from the inside to the outside in the radial direction of the spiral.

そして、一次濃縮器6の螺旋状流路4の終端部では、分離板8によって流路の半径方向の内側部分と外側部分とに分離され、その外側部分を通過するバブル液のみ二次濃縮器7に送られる。したがって、一次濃縮器6の螺旋状流路4で螺旋の半径方向外側に集まった比較的小径の気泡を含むバブル液が二次濃縮器7に送られ、螺旋の半径方向内側に集まった比較的大径の気泡を含むバブル液は、排出口12から回収流路14を経てマイクロバブル発生装置2に戻される。   Then, at the end of the spiral flow path 4 of the primary concentrator 6, the separation plate 8 separates the radially inner portion and the outer portion of the flow path, and only the bubble liquid that passes through the outer portion is the secondary concentrator. 7 is sent. Accordingly, the bubble liquid containing relatively small-diameter bubbles collected outside the spiral in the spiral flow path 4 of the primary concentrator 6 is sent to the secondary concentrator 7 and relatively collected inside the spiral in the radial direction. Bubble liquid containing large-diameter bubbles is returned to the microbubble generator 2 from the discharge port 12 through the recovery flow path 14.

二次濃縮器7では、一次濃縮器6から送られたバブル液が螺旋状流路5を流通する間に、一次濃縮器6の場合と同様にして、螺旋の半径方向に沿って気泡が大径のものから小径のものに向けて分布し、比較的大径の気泡が半径方向内側に、比較的小径の気泡が半径方向外側に集まってくる。   In the secondary concentrator 7, while the bubble liquid sent from the primary concentrator 6 flows through the spiral flow path 5, as in the case of the primary concentrator 6, large bubbles are generated along the radial direction of the spiral. The bubbles are distributed from those having a diameter toward those having a smaller diameter, and bubbles having a relatively large diameter gather on the radially inner side and bubbles having a relatively small diameter gather on the radially outer side.

そして、この二次濃縮器7の終端部において、分離板9によって流路内の半径方向の内側部分と外側部分とに分離され、その内側部分を通過する比較的大径の気泡を含むバブル液のみ目的の用途に用いる抜き出し流路11に送られる。したがって、一次濃縮器6で大径の気泡が除かれて小径の気泡を含むバブル液が分取され、二次濃縮器7でその中からより小径の気泡が除かれることにより、マイクロバブル発生装置2で発生した種々の直径の気泡のうち、ほぼ中間の直径の気泡を含むバブル液が分取されることになる。なお、二次濃縮器7で螺旋の半径方向外側に集まった比較的小径の気泡を含むバブル液は、排出口13から回収流路15を経てマイクロバブル発生装置2に戻される。   Then, at the end portion of the secondary concentrator 7, a bubble liquid containing relatively large-sized bubbles that are separated into a radially inner portion and an outer portion in the flow path by the separation plate 9 and pass through the inner portion. Only to the extraction channel 11 used for the intended application. Therefore, a bubble liquid containing small diameter bubbles is removed by removing the large diameter bubbles in the primary concentrator 6, and the smaller diameter bubbles are removed from the bubble liquid in the secondary concentrator 7, thereby generating a microbubble generator. Among the bubbles having various diameters generated in 2, the bubble liquid containing bubbles having a substantially intermediate diameter is collected. In addition, the bubble liquid containing relatively small-sized bubbles collected outside the spiral in the secondary concentrator 7 is returned from the discharge port 13 to the microbubble generator 2 through the recovery flow path 15.

このようにして、マイクロバブル発生装置2で発生したバブル液を二つの濃縮器6,7に流通させることにより、マイクロバブルを含む種々の直径の気泡を含有するバブル液から大径の気泡及び小径の気泡を含むバブル液を除去し、中間の直径の気泡を含むバブル液のみ分取して目的の用途に提供することができる。この場合、マイクロバブル発生装置2で発生する種々の直径の気泡のうち、大径の気泡はマイクロバブルと接触して融合吸収してしまうため、最初に大径の気泡を分離除去することにより、マイクロバブルの消失を防いで、確実かつ効率的にマイクロバブルを分取することができる。   In this way, the bubble liquid generated by the microbubble generator 2 is circulated through the two concentrators 6 and 7, so that the bubble liquid containing bubbles having various diameters including microbubbles can be changed from a large diameter bubble and a small diameter. It is possible to remove the bubble liquid containing the bubbles and collect only the bubble liquid containing the bubbles having an intermediate diameter and provide it for the intended use. In this case, among the bubbles of various diameters generated in the microbubble generator 2, the large diameter bubbles come into contact with the microbubbles and are absorbed and absorbed, so by separating and removing the large diameter bubbles first, The disappearance of the microbubbles can be prevented, and the microbubbles can be sorted reliably and efficiently.

ところで、螺旋状流路4,5内に発生する流れの乱れは気泡の選別にとって有害である。この流れの乱れの原因の一つは、螺旋中心からの距離によって遠心力が異なることにあり、従って、螺旋の軸方向を横方向とするとき、流路断面の縦寸法は螺旋半径の1/10以下にすることが好ましい。流れが乱れるもう一つの原因は、流路の内面に凹凸があったり粗面であると流れの抵抗となることであり、従って、螺旋流路4,5の内面は滑らかで鏡面仕上げすることが好ましい。三つめの原因は流路の縦側側壁近傍に生じる不可避的な乱れであり、この影響を小さくするためには、螺旋状流路4,5の流路断面の縦横比を1/5以下にし、図3に示す偏平な横断面形状とすることが好ましい。   By the way, the turbulence of the flow generated in the spiral flow paths 4 and 5 is harmful to the selection of bubbles. One of the causes of this flow disturbance is that the centrifugal force varies depending on the distance from the center of the helix. Therefore, when the axial direction of the helix is taken as the transverse direction, the vertical dimension of the channel cross section is 1 / h of the helix radius. It is preferable to make it 10 or less. Another cause of the disturbance of the flow is that the inner surface of the flow path is uneven or rough, resulting in flow resistance. Therefore, the inner surfaces of the spiral flow paths 4 and 5 can be smooth and mirror-finished. preferable. The third cause is unavoidable turbulence that occurs in the vicinity of the vertical side wall of the flow path. In order to reduce this effect, the aspect ratio of the cross-section of the spiral flow paths 4 and 5 is set to 1/5 or less. The flat cross-sectional shape shown in FIG.

具体的寸法について一例を挙げると、第1実施形態のマイクロバブル濃縮装置3においては、一次濃縮器6の螺旋状流路4が螺旋の半径で例えば10cmとされ、流路の横断面は横方向(螺旋の長さ方向)の長さが3cm、縦方向(螺旋の半径方向)の長さが0.5cmの矩形断面とされ、全体で5巻き分の長さを有している。そして、その螺旋状流路4の終端部において、縦方向の長さの半分の位置(0.25cmの位置)に分離板8が設けられている。   As an example of specific dimensions, in the microbubble concentrator 3 of the first embodiment, the spiral flow path 4 of the primary concentrator 6 has a spiral radius of, for example, 10 cm, and the cross section of the flow path is in the horizontal direction. It has a rectangular cross section with a length of 3 cm (spiral length direction) and a length of 0.5 cm in the vertical direction (radial direction of the spiral), and has a total length of 5 turns. And in the terminal part of the spiral flow path 4, the separation plate 8 is provided at a position half the length in the longitudinal direction (position of 0.25 cm).

また、二次濃縮器7は、その螺旋状流路5が螺旋の半径で例えば5cmとされ、流路の横断面は横方向(螺旋の長さ方向)の長さが2cm、縦方向(螺旋の半径方向)の長さが0.4cmの矩形断面とされ、全体で52巻き分の長さを有しており、二次濃縮器7の終端部には、その縦方向の長さの半分の位置(0.2cmの位置)に分離板9が設けられている。   In the secondary concentrator 7, the spiral flow path 5 has a spiral radius of, for example, 5 cm, and the cross section of the flow path has a length of 2 cm in the horizontal direction (helical length direction) and a vertical direction (spiral). (Radial direction) is a rectangular cross section having a length of 0.4 cm, and has a total length of 52 turns, and the end of the secondary concentrator 7 has a half of its longitudinal length. The separation plate 9 is provided at the position (position of 0.2 cm).

図4及び図5は本発明の第2実施形態を示している。この実施形態のマイクロバブル生成装置21は、マイクロバブル濃縮装置22の一次濃縮器23が、第1実施形態のような螺旋状流路ではなく、撥液性多孔膜24による気液分離槽25を用いている。マイクロバブル発生装置2は第1実施形態と同様であり、その他、第1実施形態と共通部分には同一符号を付して説明を簡略化する。   4 and 5 show a second embodiment of the present invention. In the microbubble generating device 21 of this embodiment, the primary concentrator 23 of the microbubble concentrating device 22 is not a spiral flow channel as in the first embodiment, but a gas-liquid separation tank 25 by a liquid repellent porous membrane 24. Used. The microbubble generator 2 is the same as that of the first embodiment, and other parts common to the first embodiment are denoted by the same reference numerals and the description thereof is simplified.

この第2実施形態において、一次濃縮器23は、底面25aが平坦面とされた槽25内に、その平坦な底面25aとの間に一定のわずかな間隔をあけて撥液性多孔膜24が張られており、この撥液性多孔膜24と槽25の底面25aとの間に偏平な流路26が形成されている。撥液性多孔膜24としては、例えばフッ素樹脂製多孔質疎水膜が用いられる。   In this second embodiment, the primary concentrator 23 has a liquid repellent porous membrane 24 in a tank 25 having a flat bottom surface 25a with a certain slight gap between the flat bottom surface 25a. A flat flow path 26 is formed between the liquid-repellent porous film 24 and the bottom surface 25 a of the tank 25. As the liquid repellent porous film 24, for example, a fluororesin porous hydrophobic film is used.

また、撥液性多孔膜24と槽25の底面25aとの間の流路26は、例えば長さが42cm、幅が20cm、高さが0.5cmとされる。そして、この流路26に連通するように気液分離槽25の一端部25bにマイクロバブル発生装置2が接続され、終端部に二次濃縮器7の螺旋状流路5の始端部が接続されている。この二次濃縮器7は、寸法等に若干の違いはあるが、第1実施形態の二次濃縮器7とほぼ同じ構造であるので、同一符号を用いている。   The flow path 26 between the liquid repellent porous film 24 and the bottom surface 25a of the tank 25 has a length of 42 cm, a width of 20 cm, and a height of 0.5 cm, for example. The microbubble generator 2 is connected to one end 25 b of the gas-liquid separation tank 25 so as to communicate with the flow path 26, and the start end of the spiral flow path 5 of the secondary concentrator 7 is connected to the terminal end. ing. Although this secondary concentrator 7 has a slight difference in dimensions and the like, since it has substantially the same structure as the secondary concentrator 7 of the first embodiment, the same reference numerals are used.

この二次濃縮器7は、その螺旋状流路5が螺旋の半径で例えば5cmとされ、流路の横断面は横方向(螺旋の長さ方向)の長さが2.5cm、縦方向(螺旋の半径方向)の長さが0.5cmの矩形断面とされ、全体で16巻き分の長さを有している。二次濃縮器7の終端部には、その縦方向の長さの半分の位置(0.25cmの位置)に流路の延長方向に沿う分離板9が設けられ、この分離板9によって流路が螺旋の半径方向内側部分と外側部分とに二股状に分岐され、その内側半分の流路にバブル液の抜き出し口10が形成される。
一次濃縮器23の槽25の上部には、撥液性多孔膜24を通過したバブルガスの排出口27が形成され、二次濃縮器7の終端部の排出口13と合わせてマイクロバブル発生装置2に回収配管14,15によって接続されている。
In the secondary concentrator 7, the spiral flow path 5 has a spiral radius of, for example, 5 cm, and the cross section of the flow path has a length in the horizontal direction (helical length direction) of 2.5 cm and a vertical direction ( The length of the spiral (in the radial direction) is a rectangular cross section of 0.5 cm, and has a total length of 16 turns. The end portion of the secondary concentrator 7 is provided with a separation plate 9 extending along the direction of the flow path at a position half the length in the longitudinal direction (position of 0.25 cm). Is bifurcated into an inner portion and an outer portion in the radial direction of the spiral, and a bubble liquid outlet 10 is formed in the inner half of the flow path.
A bubble gas discharge port 27 that has passed through the liquid repellent porous membrane 24 is formed in the upper portion of the tank 25 of the primary concentrator 23, and together with the discharge port 13 at the end of the secondary concentrator 7, the microbubble generator 2 Are connected by recovery pipes 14 and 15.

この第2実施形態のマイクロバブル生成装置21は、マイクロバブル発生装置2で発生したマイクロバブルを含む種々の直径の気泡を含有するバブル液が一次濃縮器23の流路26内を流通する間に、大径の気泡が撥液性多孔膜24を通過してバブルガス排出口27に放出され、この大径の気泡が除去されたバブル液が二次濃縮器7を流通して、その終端部において、比較的小径の気泡を含むバブル液は回収配管15に回収され、比較的大径の気泡を含むバブル液のみ抜き出し口10に分取される。   The microbubble generating device 21 of the second embodiment is configured such that bubble liquid containing bubbles having various diameters including the microbubbles generated by the microbubble generating device 2 flows through the flow path 26 of the primary concentrator 23. The large diameter bubbles pass through the liquid-repellent porous membrane 24 and are discharged to the bubble gas discharge port 27. The bubble liquid from which the large diameter bubbles have been removed flows through the secondary concentrator 7, and at the end portion thereof. The bubble liquid containing relatively small diameter bubbles is collected in the recovery pipe 15, and only the bubble liquid containing relatively large diameter bubbles is taken out to the outlet 10.

図6及び図7は、本発明の第3実施形態を示している。この第3実施形態のマイクロバブル生成装置31は、上記各実施形態のものと同様のマイクロバブル発生装置2と、上記各実施形態のものとは異なり、一つの螺旋状流路32からなるマイクロバブル濃縮装置33とから構成されている。   6 and 7 show a third embodiment of the present invention. The microbubble generating device 31 of the third embodiment is different from the microbubble generating device 2 similar to that of each of the above embodiments, and the microbubble consisting of one spiral channel 32, unlike those of each of the above embodiments. And a concentrating device 33.

このマイクロバブル濃縮装置33は、螺旋状流路32が螺旋の半径で例えば7cmとされ、流路の横断面は横方向(螺旋の長さ方向)の長さが4cm、縦方向(螺旋の半径方向)の長さが0.8cmの矩形断面とされ、全体で20巻き分の長さを有している。そして、この螺旋状流路32の始端部32aにマイクロバブル発生装置2が接続され、終端部には、図7に示すように、その縦方向の長さを3等分するように、二枚の分離板34,35が設けられ、流路内が螺旋の内側部分、中間部分、外側部分の三つに分岐され、その中間部分が抜き出し口36とされ、目的の用途に応じた抜き出し流路11に接続されるようになっており、内側部分と外側部分とが排出口37,38とされ、回収流路39によってマイクロバブル発生装置2に接続されている。   In the microbubble concentrator 33, the spiral flow path 32 has a spiral radius of, for example, 7 cm, and the cross section of the flow path has a length of 4 cm in the horizontal direction (helical length direction) and a vertical direction (the spiral radius). (Direction) is a rectangular cross section having a length of 0.8 cm, and has a total length of 20 turns. Then, the microbubble generator 2 is connected to the start end portion 32a of the spiral flow path 32, and the end portion is divided into two pieces as shown in FIG. The separation plates 34 and 35 are provided, and the inside of the flow path is branched into three parts of an inner part, an intermediate part, and an outer part of the spiral, and the intermediate part serves as an extraction port 36, and an extraction flow path corresponding to the intended use 11, the inner part and the outer part serve as discharge ports 37 and 38, and are connected to the microbubble generator 2 by a recovery channel 39.

この第3実施形態のマイクロバブル生成装置31は、マイクロバブル濃縮装置33の螺旋状流路32で気泡が大径から小径に分布した状態の中から、中間の直径のマイクロバブルを選択して抜き出すものであり、第1実施形態及び第2実施形態のものに比べて、装置全体をコンパクトに収めることができる。   The microbubble generator 31 of the third embodiment selects and extracts microbubbles having an intermediate diameter from a state in which bubbles are distributed from a large diameter to a small diameter in the spiral flow path 32 of the microbubble concentrator 33. Compared to those of the first embodiment and the second embodiment, the entire apparatus can be compactly accommodated.

第1実施形態におけるマイクロバブル濃縮装置3の実施例として、大径の気泡を分離除去するための一次濃縮器6の螺旋状流路4を螺旋の半径10cm、縦0.5cm、横3cmの流路断面で5巻きのものを形成し、その始端部4aはマイクロバブルを含む原液の入口とし、終端部においては流路断面を分離板によって縦方向0.25cmずつに区画し、外側流路を、小径の気泡を分離除去するための二次濃縮器7における螺旋状流路5の始端部に連結し、内側流路は大径気泡を含む液を除去する排出口12とする。二次濃縮器7の螺旋状流路5は螺旋の半径5cm、縦0.4cm、横2cmの流路断面で、52巻きとする。この螺旋状流路5の終端部において分離板9によって縦方向0.2cmずつに区画し、内側流路はマイクロバブル含有の製品液のための抜き出し口10、外側流路は小径気泡を含むバブル液の排出口13とする。   As an example of the microbubble concentrating device 3 in the first embodiment, a spiral flow path 4 of a primary concentrator 6 for separating and removing large-sized bubbles is passed through a spiral radius of 10 cm, a length of 0.5 cm, and a width of 3 cm. 5 sections are formed in the section of the road, the starting end 4a is used as an inlet for the stock solution containing microbubbles, and at the terminal section, the section of the channel is divided into 0.25 cm in the vertical direction by a separating plate, and the outer channel is formed. The inner channel is connected to the start end of the spiral channel 5 in the secondary concentrator 7 for separating and removing small-diameter bubbles, and the inner channel serves as a discharge port 12 for removing liquid containing large-diameter bubbles. The spiral flow path 5 of the secondary concentrator 7 has a spiral radius of 5 cm, a vertical length of 0.4 cm, and a horizontal cross section of 2 cm, and has 52 turns. At the end of the spiral channel 5, the separator 9 separates the longitudinal channel by 0.2 cm, the inner channel is the outlet 10 for the microbubble-containing product liquid, and the outer channel is a bubble containing small-sized bubbles. The liquid outlet 13 is used.

このマイクロバブル濃縮装置3に空気からなる直径1〜100μmの気泡を含有する純水を30l/minで通過させると、大径気泡を含むバブル液の排出口12からは直径20μm以上の気泡を含むバブル液が分取され、小径気泡を含むバブル液の排出口13からは直径5μm以下の気泡を含むバブル液が分取され、製品液の抜き出し口10から直径5〜20μmのマイクロバブルが濃縮されたマイクロバブル水を得ることができる。バブル水の総通過時間は約6秒である。   When pure water containing air bubbles having a diameter of 1 to 100 μm is passed through the microbubble concentrating device 3 at 30 l / min, bubbles having a diameter of 20 μm or more are contained from the bubble liquid discharge port 12 containing large bubbles. Bubble liquid is collected, bubble liquid containing bubbles having a diameter of 5 μm or less is collected from the bubble liquid discharge port 13 containing small bubbles, and microbubbles having a diameter of 5 to 20 μm are concentrated from the product liquid outlet 10. Microbubble water can be obtained. The total transit time of bubble water is about 6 seconds.

第2実施形態におけるマイクロバブル濃縮装置22の実施例として、大径の気泡を分離除去するための一次濃縮器23の気液分離槽25を幅20cm、長さ42cm、底面25aから高さ0.5cmのところに撥水性多孔膜24を張った槽25として形成し、その流路26に通じる気液分離槽25の一端部25bはマイクロバブルを含む原液の入口とし、他端において小径の気泡を分離除去するための二次濃縮器7の螺旋状流路5の始端部に連結する。螺旋状流路5は螺旋の半径が5cm、縦0.5cm、横2.5cmの流路断面で、16巻きとする。この螺旋状流路5の終端部において分離板9によって縦方向0.25cmずつに区画し、内側流路はマイクロバブル含有の製品液のための抜き出し口10、外側流路は小径気泡を含むバブル液の排出口13とする。   As an example of the microbubble concentrator 22 in the second embodiment, a gas-liquid separation tank 25 of a primary concentrator 23 for separating and removing large-sized bubbles is 20 cm wide, 42 cm long, and has a height of 0. Formed as a tank 25 with a water-repellent porous membrane 24 stretched at a distance of 5 cm, one end portion 25b of the gas-liquid separation tank 25 leading to the flow path 26 serves as an inlet for a stock solution containing microbubbles, and a small diameter bubble is formed at the other end. It connects with the starting end part of the spiral flow path 5 of the secondary concentrator 7 for separating and removing. The spiral flow path 5 has a flow path cross section of a spiral radius of 5 cm, a vertical length of 0.5 cm, and a horizontal width of 2.5 cm. The end of the spiral channel 5 is partitioned by a separation plate 9 in a longitudinal direction of 0.25 cm, the inner channel is an extraction port 10 for a microbubble-containing product liquid, and the outer channel is a bubble containing small-sized bubbles. The liquid outlet 13 is used.

このマイクロバブル濃縮装置22に空気からなる直径5〜300μmの気泡を含有する純水を30l/minで通過させると、直径100μm以上の気泡は撥水性多孔膜24を通して気相中に分離され、二次濃縮器7の排出口13からは直径10μm以下の気泡を含むバブル液が分取され、製品液の抜き出し口10から直径10〜100μmのマイクロバブルが濃縮されたマイクロバブル水を得ることができる。バブル水の総通過時間は約2秒である。   When pure water containing air bubbles having a diameter of 5 to 300 μm is passed through the microbubble concentrator 22 at 30 l / min, the bubbles having a diameter of 100 μm or more are separated into the gas phase through the water-repellent porous membrane 24, A bubble liquid containing bubbles having a diameter of 10 μm or less is collected from the discharge port 13 of the sub-concentrator 7, and microbubble water in which microbubbles having a diameter of 10 to 100 μm are concentrated can be obtained from the product liquid outlet 10. . The total transit time of bubble water is about 2 seconds.

第3実施形態におけるマイクロバブル濃縮装置33の実施例として、大小の気泡を分離除去するための螺旋状流路32を螺旋の半径7cm、縦0.8cm、横4cmの流路断面で20巻きのものを形成し、その始端部32aは原液の入口とし、終端部においては流路断面を縦方向に外周から0.2cm及び0.6cmの位置でそれぞれ区画するように分離板34,35を配置し、内側流路は大径の気泡を含むバブル液の排出口37、外側流路は小径の気泡を含むバブル液の排出口37、中央の流路をマイクロバブル含有液の製品液のための抜き出し口36とする。   As an example of the microbubble concentrating device 33 in the third embodiment, the spiral flow path 32 for separating and removing large and small bubbles has a spiral radius of 7 cm, a vertical length of 0.8 cm, and a horizontal cross section of the horizontal 4 cm. The separation plate 34, 35 is disposed so that the starting end portion 32a serves as an inlet for the stock solution, and the flow passage section is vertically partitioned at the positions of 0.2 cm and 0.6 cm from the outer periphery at the end portion, respectively. The inner channel is a bubble liquid outlet 37 containing large-sized bubbles, the outer channel is a bubble liquid outlet 37 containing small-sized bubbles, and the central channel is used for the product liquid of the microbubble-containing liquid. The extraction port 36 is used.

このマイクロバブル濃縮装置33に空気からなる直径1〜50μmの気泡を含有する純水を60l/minで通過させると、大径気泡を含む液の排出口37からは直径15μm以上の気泡を含むバブル液が分取され、小径気泡を含む液の排出口38からは直径10μm以下の気泡を含むバブル液が分取され、製品液の抜き出し口36から直径10〜15μmのマイクロバブルが濃縮されたマイクロバブル水を得ることができる。バブル水の総通過時間は約3秒である。
上記の3例とも気泡の構成気体をオゾンとした場合も同じ結果が得られる。
When pure water containing air bubbles having a diameter of 1 to 50 μm is passed through the microbubble concentrator 33 at a rate of 60 l / min, bubbles containing bubbles having a diameter of 15 μm or more are discharged from the discharge port 37 for liquid containing large bubbles. The liquid is collected, the bubble liquid containing bubbles of 10 μm or less in diameter is collected from the liquid discharge port 38 containing small-sized bubbles, and the microbubbles having a diameter of 10 to 15 μm are concentrated from the product liquid outlet 36. Bubble water can be obtained. The total transit time of bubble water is about 3 seconds.
In the above three examples, the same result can be obtained when ozone is used as the constituent gas of the bubbles.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.

本発明は、マイクロバブルの表面電位を利用した液中の油脂や懸濁物質の付着による種々の材料の洗浄処理・液体の浄化、空気あるいは酸素マイクロバブルによる魚介類の成長促進、オゾンマイクロバブルによる培養液などの殺菌・汚泥分解・材料の表面酸化処理、マイクロバブルの圧壊時の衝撃力を利用した金属材料のピーニング、マイクロバブル水の表面張力・粘度の低下を利用した低い配管摩擦抵抗での送水・船舶航行時の抵抗減少、超音波造影剤などの目的のためのマイクロバブル生成に利用することができる。   The present invention is based on the surface potential of microbubbles, cleaning of various materials by adhesion of fats and oils and suspended substances in liquid, purification of liquids, promotion of growth of seafood by air or oxygen microbubbles, by ozone microbubbles Sterilization of sludge, sludge decomposition, surface oxidation treatment of materials, peening of metal materials using impact force when crushing microbubbles, low pipe friction resistance using reduction of surface tension and viscosity of microbubble water It can be used to generate microbubbles for purposes such as reducing resistance during water supply and ship navigation, and ultrasound contrast agents.

1 マイクロバブル生成装置
2 マイクロバブル発生装置
3 マイクロバブル濃縮装置
4,5 螺旋状流路
6 一次濃縮器
7 二次濃縮器
8,9 分離板
10 抜き出し口
11 抜き出し配管
12,13 排出口
14,15 回収配管
21 マイクロバブル生成装置
22 マイクロバブル濃縮装置
23 一次濃縮器
24 撥液性多孔膜
25 気液分離槽
25a 底面
26 流路
27 排出口
31 マイクロバブル生成装置
32 螺旋状流路
33 マイクロバブル濃縮装置
34,35 分離板
36 抜き出し口
37,38 排出口
39 回収配管
DESCRIPTION OF SYMBOLS 1 Microbubble generator 2 Microbubble generator 3 Microbubble concentrator 4,5 Spiral flow path 6 Primary concentrator 7 Secondary concentrator 8,9 Separation plate 10 Extraction port 11 Extraction piping 12, 13 Discharge ports 14,15 Recovery pipe 21 Micro bubble generating device 22 Micro bubble concentrating device 23 Primary concentrator 24 Liquid repellent porous membrane 25 Gas-liquid separation tank 25a Bottom surface 26 Channel 27 Discharge port 31 Micro bubble generating device 32 Spiral channel 33 Micro bubble concentrating device 34, 35 Separation plate 36 Extraction port 37, 38 Discharge port 39 Recovery piping

Claims (9)

マイクロバブルを含む種々の直径の気泡を含有するバブル液を流通する螺旋状流路と、前記螺旋状流路の出口で流路内の半径方向の所定位置から分岐して前記バブル液の一部を分取する抜き出し流路とを有することを特徴とするマイクロバブル濃縮装置。   A spiral flow path for circulating bubble liquid containing bubbles of various diameters including microbubbles, and a part of the bubble liquid branched from a predetermined radial position in the flow path at the outlet of the spiral flow path A microbubble concentrating device comprising an extraction flow path for separating the liquid. 前記半径方向の所定位置は、流路内の半径方向の内側部分及び外側部分を除く中間位置であることを特徴とする請求項1記載のマイクロバブル濃縮装置。   2. The microbubble concentrating device according to claim 1, wherein the predetermined position in the radial direction is an intermediate position excluding an inner portion and an outer portion in the radial direction in the flow path. マイクロバブルを含む種々の直径の気泡を含有するバブル液から大径気泡を含むバブル液を除去する一次濃縮器と、前記一次濃縮器を経由したバブル液を螺旋状流路に流通して、螺旋状流路の半径方向外側部分を通るバブル液を分取する二次濃縮器とを備えるマイクロバブル濃縮装置。   A primary concentrator that removes bubble liquid containing large-diameter bubbles from bubble liquid containing bubbles of various diameters including microbubbles, and a bubble liquid passing through the primary concentrator is circulated through the spiral flow path to form a spiral. A microbubble concentrating device comprising a secondary concentrator for fractionating bubble liquid that passes through a radially outer portion of the channel. 前記一次濃縮器は、バブル液を流通する第1の螺旋状流路を有し、前記第1の螺旋状流路の出口における流路内の半径方向外側部分が前記二次濃縮器に連通していることを特徴とする請求項3記載のマイクロバブル濃縮装置。   The primary concentrator has a first spiral channel through which bubble liquid flows, and a radially outer portion in the channel at the outlet of the first spiral channel communicates with the secondary concentrator. The microbubble concentrator according to claim 3, wherein 前記一次濃縮器は、撥液性多孔膜で液面を規制し、液面に浮上した大径気泡を撥液性多孔膜から外気に逃がす気液分離槽を有し、前記気液分離槽の底面と前記撥液性多孔膜との間の流路が前記二次濃縮器に連通していることを特徴とする請求項3記載のマイクロバブル濃縮装置。   The primary concentrator has a gas-liquid separation tank that regulates the liquid level with a liquid-repellent porous membrane and allows large-sized bubbles floating on the liquid surface to escape from the liquid-repellent porous film to the outside air. The microbubble concentrating device according to claim 3, wherein a flow path between a bottom surface and the liquid repellent porous membrane communicates with the secondary concentrator. 請求項1から5のいずれか一項に記載のマイクロバブル濃縮装置と、マイクロバブルを含む種々の直径の気泡を含有するバブル液を生成して前記マイクロバブル濃縮装置に供給するマイクロバブル発生装置とを備えることを特徴とするマイクロバブル生成装置。   A microbubble concentrating device according to any one of claims 1 to 5, a microbubble generating device that generates bubble liquid containing bubbles having various diameters including microbubbles and supplies the bubble liquid to the microbubble concentrating device. A microbubble generating device comprising: 前記マイクロバブル濃縮装置と前記マイクロバブル発生装置との間に、前記マイクロバブル濃縮装置で分取されなかったバブル液を回収し前記マイクロバブル発生装置の原料の一部とする回収流路が設けられていることを特徴とする請求項6記載のマイクロバブル生成装置。   A recovery channel is provided between the microbubble concentrator and the microbubble generator to recover the bubble liquid that has not been separated by the microbubble concentrator and use it as a part of the raw material of the microbubble generator. The microbubble generator according to claim 6, wherein マイクロバブルを含む種々の直径の気泡を含有するバブル液を発生した後、前記バブル液を螺旋状流路に流通して、螺旋状流路の半径方向の所定位置から前記バブル液の一部を分取することを特徴とするマイクロバブル濃縮方法。   After generating bubble liquid containing bubbles of various diameters including microbubbles, the bubble liquid is circulated through the spiral flow path, and a part of the bubble liquid is removed from a predetermined position in the radial direction of the spiral flow path. A method for concentrating microbubbles, comprising sorting. マイクロバブルを含む種々の直径の気泡を含有するバブル液を発生した後、前記バブル液を螺旋状流路に流通して、螺旋状流路の半径方向の所定位置から前記バブル液の一部を分取することを特徴とするマイクロバブル生成方法。   After generating bubble liquid containing bubbles of various diameters including microbubbles, the bubble liquid is circulated through the spiral flow path, and a part of the bubble liquid is removed from a predetermined position in the radial direction of the spiral flow path. A microbubble generating method characterized by sorting.
JP2009290335A 2009-12-22 2009-12-22 Microbubble concentrating device, generating device and methods thereof Active JP5440151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009290335A JP5440151B2 (en) 2009-12-22 2009-12-22 Microbubble concentrating device, generating device and methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009290335A JP5440151B2 (en) 2009-12-22 2009-12-22 Microbubble concentrating device, generating device and methods thereof

Publications (2)

Publication Number Publication Date
JP2011131117A true JP2011131117A (en) 2011-07-07
JP5440151B2 JP5440151B2 (en) 2014-03-12

Family

ID=44344442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009290335A Active JP5440151B2 (en) 2009-12-22 2009-12-22 Microbubble concentrating device, generating device and methods thereof

Country Status (1)

Country Link
JP (1) JP5440151B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116570A (en) * 2013-01-17 2015-06-25 Idec株式会社 High density fine air bubble liquid generation method and high density fine air bubble liquid generation device
KR20160142616A (en) * 2015-06-03 2016-12-13 한국해양과학기술원 Ice tank having density control function of model ice by circulating bubble injection device on underwater carriage
WO2017073347A1 (en) * 2015-10-29 2017-05-04 日東電工株式会社 Bubble liquid concentration device, bubble liquid concentration method, and device for generating highly dense fine bubble liquid
WO2017073346A1 (en) * 2015-10-29 2017-05-04 日東電工株式会社 Bubble liquid concentration device, and device for generating highly dense fine bubble liquid
CN106861240A (en) * 2017-05-04 2017-06-20 哈尔滨瀚钧药业有限公司 For separating the fat-soluble spiral separator with water-soluble mixed liquor
CN107436063A (en) * 2017-09-19 2017-12-05 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) A kind of novel ice making device
CN108704504A (en) * 2018-08-14 2018-10-26 嘉诚环保工程有限公司 Venturi microbubble generator and its application in catalytic ozonation
WO2019111802A1 (en) * 2017-12-04 2019-06-13 株式会社島津製作所 Fine bubble removing method and fine bubble removing device, and bubble diameter distribution measuring method and bubble diameter distribution measuring device
US11759723B2 (en) 2019-02-28 2023-09-19 Canon Kabushiki Kaisha Ultrafine bubble generating method, ultrafine bubble generating apparatus, and ultrafine bubble-containing liquid
JP7446844B2 (en) 2020-02-12 2024-03-11 キヤノン株式会社 Ultra fine bubble generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159102U (en) * 1980-04-24 1981-11-27
JP2006116390A (en) * 2004-10-20 2006-05-11 Hitachi Industries Co Ltd Separator of suspended material
JP2008006432A (en) * 2006-05-29 2008-01-17 Spg Techno Kk Method and apparatus for dissolving and mixing gas and liquid using linear slit
JP2011121002A (en) * 2009-12-10 2011-06-23 Takenaka Komuten Co Ltd Nano bubble generator
JP2011240477A (en) * 2010-04-23 2011-12-01 Kumamoto Idm:Kk Water-jet cutting apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159102U (en) * 1980-04-24 1981-11-27
JP2006116390A (en) * 2004-10-20 2006-05-11 Hitachi Industries Co Ltd Separator of suspended material
JP2008006432A (en) * 2006-05-29 2008-01-17 Spg Techno Kk Method and apparatus for dissolving and mixing gas and liquid using linear slit
JP2011121002A (en) * 2009-12-10 2011-06-23 Takenaka Komuten Co Ltd Nano bubble generator
JP2011240477A (en) * 2010-04-23 2011-12-01 Kumamoto Idm:Kk Water-jet cutting apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013056712; Jameel A. Feshitan 、他3名: '"Microbubble size isolation by differential centrifugation"' Jounal of Colloid and Interface Science vol.329 No.2, 20090115, p.316-324 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9764254B2 (en) 2013-01-17 2017-09-19 Idec Corporation High-density fine bubble-containing liquid producing method and high-density fine bubble-containing liquid producing apparatus
CN104936686A (en) * 2013-01-17 2015-09-23 Idec株式会社 Method for generating high density micro-bubble liquid and device for generating high density micro-bubble liquid
JP2015211973A (en) * 2013-01-17 2015-11-26 Idec株式会社 Method and device for producing high-density fine-bubble liquid
JP2015116570A (en) * 2013-01-17 2015-06-25 Idec株式会社 High density fine air bubble liquid generation method and high density fine air bubble liquid generation device
US10300409B2 (en) 2013-01-17 2019-05-28 Idec Corporation High-density fine bubble-containing liquid producing method and high-density fine bubble-containing liquid producing apparatus
CN104936686B (en) * 2013-01-17 2019-02-19 Idec株式会社 High density micro air bubble liquid generation method and high density micro air bubble liquid generating means
KR20160142616A (en) * 2015-06-03 2016-12-13 한국해양과학기술원 Ice tank having density control function of model ice by circulating bubble injection device on underwater carriage
KR101693032B1 (en) * 2015-06-03 2017-01-04 한국해양과학기술원 Ice tank having density control function of model ice by circulating bubble injection device on underwater carriage
JP2017080691A (en) * 2015-10-29 2017-05-18 日東電工株式会社 Bubble liquid concentrator, bubble liquid concentration method and high-density fine bubble liquid generation device
JP2017080690A (en) * 2015-10-29 2017-05-18 日東電工株式会社 Bubble liquid concentrator and high-density fine bubble liquid generation device
WO2017073346A1 (en) * 2015-10-29 2017-05-04 日東電工株式会社 Bubble liquid concentration device, and device for generating highly dense fine bubble liquid
WO2017073347A1 (en) * 2015-10-29 2017-05-04 日東電工株式会社 Bubble liquid concentration device, bubble liquid concentration method, and device for generating highly dense fine bubble liquid
CN106861240A (en) * 2017-05-04 2017-06-20 哈尔滨瀚钧药业有限公司 For separating the fat-soluble spiral separator with water-soluble mixed liquor
CN106861240B (en) * 2017-05-04 2023-06-09 哈尔滨瀚钧现代制药有限公司 Spiral separator for separating fat-soluble and water-soluble mixed liquid
CN107436063B (en) * 2017-09-19 2020-02-07 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) Novel ice making device
CN107436063A (en) * 2017-09-19 2017-12-05 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) A kind of novel ice making device
JP7001712B2 (en) 2017-12-04 2022-01-20 株式会社島津製作所 Fine bubble removing method and fine bubble removing device, as well as bubble diameter distribution measuring method and bubble diameter distribution measuring device
JPWO2019111802A1 (en) * 2017-12-04 2020-11-19 株式会社島津製作所 Fine bubble removing method and fine bubble removing device, as well as bubble diameter distribution measuring method and bubble diameter distribution measuring device
WO2019111802A1 (en) * 2017-12-04 2019-06-13 株式会社島津製作所 Fine bubble removing method and fine bubble removing device, and bubble diameter distribution measuring method and bubble diameter distribution measuring device
US11898949B2 (en) 2017-12-04 2024-02-13 Shimadzu Corporation Fine bubble elimination method and fine bubble elimination device, and bubble size distribution measuring method and bubble size distribution measuring device
CN108704504A (en) * 2018-08-14 2018-10-26 嘉诚环保工程有限公司 Venturi microbubble generator and its application in catalytic ozonation
CN108704504B (en) * 2018-08-14 2023-07-25 河北粤海水务集团有限公司 Venturi microbubble generator and application thereof in ozone catalytic oxidation
US11759723B2 (en) 2019-02-28 2023-09-19 Canon Kabushiki Kaisha Ultrafine bubble generating method, ultrafine bubble generating apparatus, and ultrafine bubble-containing liquid
JP7446844B2 (en) 2020-02-12 2024-03-11 キヤノン株式会社 Ultra fine bubble generator

Also Published As

Publication number Publication date
JP5440151B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5440151B2 (en) Microbubble concentrating device, generating device and methods thereof
US20130264254A1 (en) Oil-containing wastewater treatment system
KR101852179B1 (en) Flotation device using high efficiency tank for dissolving a gases into liquids
CN101347687B (en) Device for generating oil-containing water with micro air bubble
US9346695B2 (en) Apparatus for purifying wastewater and method thereof
KR100919367B1 (en) Flotation device using high efficiency tank for dissolving a gases into liquids
EA021685B1 (en) Apparatus and method for separation of phases in a multiphase flow
KR101679739B1 (en) Flotation device using high efficiency tank for dissolving a gases into liquids
WO2008123973A1 (en) Systems and methods for liquid separation
JP6104399B2 (en) Contaminated water purification system provided with fine bubble generating device and fine bubble generating device
JP6170552B2 (en) Seawater desalination apparatus and method
SG184575A1 (en) A microbubble generator
US20220001332A1 (en) Tubular membrane with spiral flow
KR101336169B1 (en) Water purifying apparatus using sedimentation and dissolved air flotation
JP2016034632A (en) Water treatment system, water treatment method and reactive floatation article separation unit used therefor, reaction device and radical removal device
CN202152290U (en) Pressurized dissolved-air floating system
KR101715564B1 (en) Flotation device using high efficiency tank for dissolving a gases into liquids
US6821415B2 (en) Self-adjusting fluid surface skimmer and fluid treatment system using same
JP2016150283A (en) Membrane treatment apparatus and method
JP2012157849A (en) Membrane separation activated sludge apparatus
JP3166826U (en) Wastewater treatment equipment
RU29248U1 (en) Hydrocyclone microflotator
JP2008030009A (en) Method and apparatus for purifying polluted waste water
CN106430707A (en) Skid-mounted system used for treating oily sewage
KR101634770B1 (en) Water treatment apparatus for intake

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Ref document number: 5440151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350