JP2011129602A - Gold alloy bonding wire with high strength and high elongation - Google Patents

Gold alloy bonding wire with high strength and high elongation Download PDF

Info

Publication number
JP2011129602A
JP2011129602A JP2009284716A JP2009284716A JP2011129602A JP 2011129602 A JP2011129602 A JP 2011129602A JP 2009284716 A JP2009284716 A JP 2009284716A JP 2009284716 A JP2009284716 A JP 2009284716A JP 2011129602 A JP2011129602 A JP 2011129602A
Authority
JP
Japan
Prior art keywords
wire
gold
bonding wire
heat treatment
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009284716A
Other languages
Japanese (ja)
Other versions
JP4947670B2 (en
Inventor
Michitaka Mikami
道孝 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Denshi Kogyo KK
Original Assignee
Tanaka Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Denshi Kogyo KK filed Critical Tanaka Denshi Kogyo KK
Priority to JP2009284716A priority Critical patent/JP4947670B2/en
Publication of JP2011129602A publication Critical patent/JP2011129602A/en
Application granted granted Critical
Publication of JP4947670B2 publication Critical patent/JP4947670B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01063Europium [Eu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01064Gadolinium [Gd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01083Bismuth [Bi]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/011Groups of the periodic table
    • H01L2924/01105Rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20752Diameter ranges larger or equal to 20 microns less than 30 microns

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a combination of necessary elongation and rupture strength in a bonding wire made of gold alloy. <P>SOLUTION: When high purity gold contains at least one of copper (Cu), silver (Ag), palladium (Pd), or platinum (Pt) by 0.5-30 mass%, there appears a region where a change of elongation is flat in a range of 450-650°C as to a heat treatment temperature for a wire drawing. In this temperature range, though the rupture strength of the wire lowers, the wire still keeps the strength higher than that corresponding to the heat treatment temperature of 4% elongation, which is assumed as a standard for a high purity gold wire. Therefore, by performing a heat treatment in the flat region, an alloy wire with the strength higher than a predetermine level regardless of a temperature change can be obtained and, by suitably selecting the temperature range, wires with different strengths with respect to these elongations can be obtained. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体装置に用いられるICチップ電極と外部リード等の基板の接続に好適な金合金ボンディングワイヤ、特に、車載用や高速デバイス用等の高温となる環境下で使用される金合金ボンディングワイヤに関する。   The present invention relates to a gold alloy bonding wire suitable for connection between an IC chip electrode used in a semiconductor device and a substrate such as an external lead, in particular, a gold alloy bonding used in a high temperature environment such as an in-vehicle or high-speed device. Regarding wires.

従来から、半導体装置のICチップ電極と外部リードを接続する金線として、高純度金に他の金属元素を微量含有させた純度99.99質量%以上の金線が信頼性に優れているとして多用されている。このような純金線は、一端が超音波併用熱圧着ボンディング法によってICチップ電極上の純AlパッドやAl合金パッドと接続され、他端が基板上の外部リード等に接続され、その後、樹脂封止して半導体装置とされる。このようなAl合金パッドは、通常、真空蒸着などによって形成され、Al−Cu合金、Al−Si合金、Al−Si−Cu合金等が一般的である。   Conventionally, as a gold wire for connecting an IC chip electrode of a semiconductor device and an external lead, a gold wire having a purity of 99.99% by mass or more in which a small amount of other metal element is contained in high-purity gold is excellent in reliability. It is used a lot. One end of such a pure gold wire is connected to a pure Al pad or Al alloy pad on the IC chip electrode by an ultrasonic combined thermocompression bonding method, and the other end is connected to an external lead or the like on the substrate. The semiconductor device is stopped. Such an Al alloy pad is usually formed by vacuum deposition or the like, and an Al-Cu alloy, an Al-Si alloy, an Al-Si-Cu alloy, or the like is generally used.

ところが、樹脂封止された半導体装置が高温の過酷な使用環境で高度の信頼性が要求される車載用ICや、動作温度が高くなる高周波ICなどで使用されると、カーケンダイルボイドと呼ばれる空隙やクラック、或いは、封止樹脂中に含まれるハロゲン成分による腐食などが発生し、AlパッドやAl合金パッドと純金線との接合界面における抵抗値の上昇や接合強度の低下を招く。このため、これまでよりも高い接合信頼性(ある環境下でのボールボンディングによる接合界面における抵抗値と接合強度の持続性)を確保することが求められ、Au−1質量%Pd合金のボンディングワイヤが使用されている。
このAu−Pd合金のワイヤは、高温環境下でのAl合金パッドと純金線との接合界面においてAuがAlパッド中へ拡散するのをPdによって抑制できるため、接合界面のハロゲン成分による腐食を受けやすいといわれる金属間化合物Au4Alの形成が比較的妨げられ、Al合金パッドやAl合金パッドと金合金線との接合部の劣化を抑えることができ、接合強度の低下を招くことがないという利点を有する。このAu−1質量%Pd合金ワイヤは、純度99.99質量%以上の純金線に比べて機械的特性が優れているものの、電気的特性であるボンディングワイヤの比抵抗値が高い。例えば、純度99.99質量%の純金線の比抵抗値が2.3μΩ・cmであるのに対し、Auー1質量%Pd合金は3.0μΩ・cmである。このため、高密度実装を行おうとすると、ワイヤの発熱によって素子が誤動作をしたり、断線をしたりするほか、信号の応答速度も遅延するおそれが生じる。ボンディングワイヤの径を25μmから15μmへと細くしてゆくと、ますますこの傾向が強まる。しかも、Au−1質量%Pd合金の場合、詳細なメカニズムは不明であるが、Pdが存在すると、接合界面で予想外にAlの酸化を促進させることがある。例えば、Au−1質量%Pd合金からなるボンディングワイヤを樹脂封止せずに大気中で高温放置試験をすると、微量添加元素を含有した純度99.99質量%以上のAuボンディングワイヤよりもAlの酸化物Al23が多く生成し、弱くなってしまうことがある。
However, when a resin-encapsulated semiconductor device is used in an in-vehicle IC that requires a high degree of reliability in a severe use environment at a high temperature, or a high-frequency IC that has a high operating temperature, it is called a Kirkendyl void. Corrosion due to voids, cracks, or halogen components contained in the sealing resin occurs, leading to an increase in resistance and a decrease in bonding strength at the bonding interface between the Al pad or Al alloy pad and the pure gold wire. For this reason, it is required to ensure higher bonding reliability (resistance value and durability of bonding strength at the bonding interface by ball bonding in a certain environment) than before, and a bonding wire of Au-1 mass% Pd alloy. Is used.
This Au—Pd alloy wire can suppress the diffusion of Au into the Al pad at the bonding interface between the Al alloy pad and the pure gold wire in a high temperature environment by Pd. The formation of the intermetallic compound Au 4 Al, which is said to be easy, is relatively hindered, the deterioration of the Al alloy pad and the joint between the Al alloy pad and the gold alloy wire can be suppressed, and the joint strength is not reduced. Have advantages. Although this Au-1 mass% Pd alloy wire is superior in mechanical characteristics to a pure gold wire having a purity of 99.99 mass% or more, the resistivity of the bonding wire, which is an electrical characteristic, is high. For example, the resistivity of a pure gold wire with a purity of 99.99% by mass is 2.3 μΩ · cm, whereas the Au-1% by mass Pd alloy is 3.0 μΩ · cm. For this reason, if high-density mounting is attempted, the element may malfunction or break due to heat generated by the wire, and the signal response speed may be delayed. This tendency becomes stronger as the diameter of the bonding wire is reduced from 25 μm to 15 μm. Moreover, in the case of an Au-1 mass% Pd alloy, the detailed mechanism is unknown, but if Pd is present, oxidation of Al may be unexpectedly promoted at the bonding interface. For example, when a bonding wire made of an Au-1 mass% Pd alloy is subjected to a high temperature standing test in the air without sealing with resin, the oxidation of Al is more than that of an Au bonding wire containing a trace amount of added elements and having a purity of 99.99 mass% or more. A large amount of the product Al 2 O 3 may be generated and become weak.

また、Auと全率固溶するAgを合金化してボンディングワイヤとして使用するという着想は、特開昭52−51867合公報や特開昭64−87734号公報などで古くから知られている。そこで、純度99.99質量%以上のAuに対して機械的強度を増強する微量添加元素として知られているCaやLaを、Ag微量添加したAu合金に応用することが考えられて試された。これは、純度99.99質量%程度の純金線の比抵抗値とほぼ同等の比抵抗値を得る目的で、Auを全率固溶するAgを0.06〜0.95質量%しつつ、Ca、Y及び希土類元素の内の1種以上を0.001〜0.005質量%微量添加する半導体ボンディングワイヤである(後述する特許文献1)。このボンディングワイヤは、Agを0.05〜0.95質量%並びにCa,Y及び希土類元素の内の1種以上を0.0001〜0.005質量%含み、残部がAu及び不可避不純物とするAu合金である。このボンディングワイヤは、高強度であり、過度な比抵抗値の上昇が抑えられ、かつループ変形が起きない、半導体素子用金合金ワイヤを提供することを目的とする(同公報段落0010)。   Further, the idea of alloying Ag that is completely dissolved in Au and using it as a bonding wire has been known for a long time in Japanese Patent Laid-Open Nos. 52-51867 and 64-87734. Therefore, it was considered to apply to Au alloys in which Ca and La, which are known as trace addition elements that enhance mechanical strength, with respect to Au having a purity of 99.99% by mass or more are added with a trace amount of Ag. . This is for the purpose of obtaining a specific resistance value substantially equal to the specific resistance value of a pure gold wire having a purity of about 99.99% by mass, while making Ag a solid solution of 0.06 to 0.95% by mass, It is a semiconductor bonding wire to which a trace amount of one or more of Ca, Y and rare earth elements is added in an amount of 0.001 to 0.005 mass% (Patent Document 1 described later). This bonding wire contains 0.05 to 0.95 mass% of Ag and 0.0001 to 0.005 mass% of one or more of Ca, Y and rare earth elements, with the balance being Au and inevitable impurities. It is an alloy. An object of this bonding wire is to provide a gold alloy wire for a semiconductor device that has high strength, prevents an excessive increase in specific resistance, and does not cause loop deformation (paragraph 0010 of the publication).

ところが、これまでの金合金のボンディングワイヤは、ほとんど純度99.99質量%以上の金(Au)ボンディングワイヤにおける機械的性質の測定方法を踏襲し、それによる伸び率が4〜8%の範囲で破断強度を求めていた。
ボンディングワイヤの伸びと応力との関係は、引っ張り試験により評価されるが、測定時にボンディングワイヤが破断するまでの最大応力値を引っ張り強さ(破断強度)、そのときの伸びを破断伸びといい、機械的性質として破断伸びを大きくすると引っ張り強さは小さくなり、一般に両者は相反する傾向を示す。
この引っ張り強度を大きくすると伸び率が低下して破断しやすくなり、また伸び率を大きくとるとボンディングワイヤの引っ張り強度、剛性が低下して、リーニングやワイヤフローを生じるようになる。このため、これらの機械的性質のバランスを兼ねて通常、伸び率4%程度の値が採用される(特許文献2参照)。
しかしながら、これらの領域は、これらの機械的性質を付与する熱処理温度との関係が、熱処理温度の上昇につれて下降する破断強度曲線と逆に上昇する伸び率を示す曲線とが交差する関係にある。
この傾向は、純度99.99質量%以上の高純度金(Au)ボンディングワイヤの場合は、本来伸び率が高く、かつ、破断伸び4%の近傍での伸び率を表す曲線および破断強度を表す曲線の傾斜が緩やかであるため、破断伸び4%の近傍になる熱処理条件に幅があっても大きな変化とはならなかった。
ところが、添加元素の含有量が多く、金の純度が低い金合金の場合には、一般に高強度であって、破断強度が高くかつ伸び率が小さい。これらのバランスをとるため熱処理によって伸び率を向上させると共に破断強度を適正範囲に低下させるが、熱処理温度を上げて、伸び率を向上させると伸び率4%近傍から急激に伸び率が上昇し、これに対する破断強度は逆に急激に低下するようになり、両者の値のバランスを取ることが極めて困難となる。
これらの関係を概念的に図3(A)、(B)の模式図に示す。図において高純度金ワイヤは、伸び率4%近傍となる熱処理温度近傍で伸び率及び破断強度の変化を表す曲線の傾斜が緩やかであり、熱処理温度変化に対して許容度が大きく、また図の熱処理温度域の幅に対して伸び率の変化の幅が小さい(同様に破断強度の変化幅も小さい)ため、伸び率を基準として破断強度を調整することも容易である。
他方、強化元素を含有して強度を向上した合金ワイヤは、熱処理温度の変化に対しての伸び率、及び破断強度共に大きく変化し、いずれの曲線も傾斜が大きくなるため、(B)に図示するように同様の熱処理温度変化の幅に対して、伸び率変化の幅(破断強度変化の幅も)が著しく拡大し、熱処理温度のわずかな変化に対してこれらの値が大きく変わるようになる。
したがって、伸び率4%近傍をいわば指標とする従来の熱処理に倣って、これらの金合金ワイヤの伸び率と強度・剛性のバランスを得るため、伸び率をこれらの強度に合わせて5〜10数%に設定しようとすると、その熱処理温度領域では温度変化に伴う伸び率変化及びワイヤ強度変化を表す曲線が急傾斜で交差し、熱処理条件の設定、維持が困難であり、また得られるワイヤの性質が一定しない。
このため、性質の一定したボンディングワイヤが得られず、リーニングやループ高さのバラツキが生じる原因となる。
一方、ボンディングワイヤが細くなり、ボンディングピッチが狭く高密度になり、かつ、一つの半導体素子中で多段や長短の差を設けて配線するようになってくると、金合金のボンディングワイヤではセカンド接合性のバラツキやリーニングによるループ高さのバラツキが顕在化し、ボンディングワイヤの接合性の良否に大きく影響するようになってき始めた。
ここで、リーニングとは、ボンディングワイヤをパッド側にボールボンディングしてボール直上部でワイヤを直立させ、リード側に向けて緩やかに傾斜をつけるループ形成において、ワイヤ直立部が倒れて隣接するワイヤと接触するおそれがある不具合のことである。特に、高密度実装においては、ボンディングワイヤが細く、かつ、ワイヤ間の間隔も狭くなるので、リーニングが発生しやすく、半導体装置の組立収率を下げる大きな要因となっている。
特開2003−7757号公報 特開2009−33127号公報
However, most conventional gold alloy bonding wires follow the method of measuring the mechanical properties of gold (Au) bonding wires with a purity of 99.99% by mass or more, and the resulting elongation ranges from 4 to 8%. The breaking strength was determined.
The relationship between the elongation of the bonding wire and the stress is evaluated by a tensile test. The maximum stress value until the bonding wire breaks during measurement is the tensile strength (breaking strength), and the elongation at that time is called the breaking elongation. When the elongation at break is increased as a mechanical property, the tensile strength decreases, and the two tend to conflict with each other.
When this tensile strength is increased, the elongation rate is lowered and breaks easily, and when the elongation rate is increased, the tensile strength and rigidity of the bonding wire are reduced, and leaning and wire flow are generated. For this reason, the value of about 4% of elongation is normally employ | adopted combining the balance of these mechanical properties (refer patent document 2).
However, in these regions, the relationship between the heat treatment temperature imparting these mechanical properties and the curve showing the elongation rate that rises contrary to the fracture strength curve that falls as the heat treatment temperature rises intersect.
This tendency indicates a high purity gold (Au) bonding wire having a purity of 99.99% by mass or more and a curve representing the elongation rate in the vicinity of 4% elongation at break and high strength at break. Since the slope of the curve is gradual, even if the heat treatment conditions in the vicinity of 4% elongation at break were wide, there was no significant change.
However, in the case of a gold alloy having a high content of additive elements and a low gold purity, it is generally high in strength, high in breaking strength and low in elongation. In order to balance these, the elongation rate is improved by heat treatment and the breaking strength is lowered to an appropriate range, but when the heat treatment temperature is raised and the elongation rate is improved, the elongation rate suddenly increases from around 4%, On the other hand, the breaking strength on the other hand suddenly decreases, making it extremely difficult to balance the two values.
These relationships are conceptually shown in the schematic diagrams of FIGS. In the figure, the high-purity gold wire has a gentle slope of the curve representing the change in elongation and breaking strength in the vicinity of the heat treatment temperature where the elongation is around 4%, and has a large tolerance for the heat treatment temperature change. Since the change rate of the elongation rate is small with respect to the width of the heat treatment temperature range (similarly, the change width of the breaking strength is also small), it is easy to adjust the breaking strength based on the elongation rate.
On the other hand, an alloy wire containing a strengthening element and improved in strength greatly changes in elongation rate and breaking strength with respect to changes in the heat treatment temperature, and both curves have a large slope. Thus, the width of the elongation change (the width of the breaking strength change) is remarkably expanded with respect to the same heat treatment temperature change width, and these values greatly change with the slight change of the heat treatment temperature. .
Therefore, in order to obtain a balance between the elongation rate and the strength / rigidity of these gold alloy wires in accordance with the conventional heat treatment using an elongation rate of around 4% as an index, the elongation rate is adjusted to 5 to 10 or more according to these strengths. If the temperature is set to%, the curves representing the change in elongation and the change in wire strength accompanying the temperature change intersect at a steep slope in the heat treatment temperature range, making it difficult to set and maintain the heat treatment conditions, and the properties of the obtained wire Is not constant.
For this reason, a bonding wire having a constant property cannot be obtained, which causes a variation in leaning and loop height.
On the other hand, when the bonding wire becomes thinner, the bonding pitch becomes narrower and the density becomes higher, and wiring is made with a multistage or long / short difference in one semiconductor element, the gold alloy bonding wire is second bonded. As a result, the variation in the loop height and the variation in the loop height due to the leaning have become apparent, and it has begun to greatly affect the bonding quality of the bonding wire.
Here, the term “leaning” refers to a bonding method in which a bonding wire is ball-bonded to the pad side, the wire is erected immediately above the ball, and the wire erection part falls down in the loop formation that gently inclines toward the lead side. It is a malfunction that may come into contact. Particularly in high-density mounting, the bonding wires are thin and the distance between the wires is narrow, so that leaning is likely to occur, which is a major factor in reducing the assembly yield of the semiconductor device.
JP 2003-7757 A JP 2009-33127 A

本発明は、上記課題を解決するためになされたものである。本発明は、ボンディングワイヤ用金合金において、熱処理温度が多少ばらついても、また、ボンディングワイヤの金合金の組成が多少異なっていても、リーニングによるループ高さのバラツキが少なく、一定の機械的性質を有するボンディングワイヤを提供することを目的とする。   The present invention has been made to solve the above problems. In the gold alloy for bonding wires, even if the heat treatment temperature varies somewhat or the composition of the bonding wire gold alloy is slightly different, there is little variation in loop height due to leaning, and certain mechanical properties. It is an object to provide a bonding wire having

本発明者らは、熱処理温度の上昇と共に伸び率が平坦になる領域を有する、銅(Cu)、銀(Ag)、パラジウム(Pd)、又は白金(Pt)の内の少なくとも1種以上を0,5〜30質量%及び残部が金(Au)からなる金合金のボンディングワイヤにおいて、この平坦な熱処理温度領域を利用してボンディングワイヤの熱処理を行えば、リーニングによるループ高さのバラツキが少ないボンディングワイヤが得られることを見出した。
また、上記合金は、ベリリウム(Be)、カルシウム(Ca)、希土類元素(Y、La、Ce、Eu、Gd、Nd、及びSm)、シリコン(Si)、ゲルマニウム(Ge)、すず(Sn)、インジウム(In)、ビスマス(Bi)又はホウ素(B)の内の少なくとも1種以上を合計で10〜150質量ppm含んでいても、このワイヤ断面の組織構造がほとんど変化しないことが解った。
The inventors have set at least one of copper (Cu), silver (Ag), palladium (Pd), and platinum (Pt) having a region in which the elongation becomes flat as the heat treatment temperature rises to 0. , 5-30% by mass and the balance is gold (Au) bonding wire. If the bonding wire is heat-treated by using this flat heat treatment temperature region, the bonding has less variation in loop height due to leaning. It has been found that a wire can be obtained.
The alloys include beryllium (Be), calcium (Ca), rare earth elements (Y, La, Ce, Eu, Gd, Nd, and Sm), silicon (Si), germanium (Ge), tin (Sn), It has been found that even when at least one of indium (In), bismuth (Bi), and boron (B) is contained in a total amount of 10 to 150 ppm by mass, the structure of the wire cross section hardly changes.

(a)第一の本発明は、熱処理温度の上昇と共に伸び率が平坦になる領域を有する、銅(Cu)、銀(Ag)、パラジウム(Pd)、又は白金(Pt)の内の少なくとも1種以上を0.5〜30質量%及び残部が金(Au)からなるボンディングワイヤであって、その伸び率が平坦な領域である450〜650℃の熱処理されたことを特徴とする半導体素子用ボンディングワイヤである。
(b)また、第二の本発明は、熱処理温度の上昇と共に伸び率が平坦になる領域を有する、銅(Cu)、銀(Ag)、パラジウム(Pd)又は白金(Pt)の内のすくなくとも1種以上を合計で0.5〜30質量%及び残部が金(Au)からなるボンディングワイヤであって、その伸び率が平坦な領域である450〜650℃の熱処理された後に水冷されたことを特徴とする半導体素子用ボンディングワイヤである。
(A) In the first aspect of the present invention, at least one of copper (Cu), silver (Ag), palladium (Pd), or platinum (Pt) having a region in which the elongation becomes flat as the heat treatment temperature increases. For semiconductor element, characterized in that it is a bonding wire composed of 0.5 to 30% by mass of seeds or more and the balance being gold (Au), and is subjected to heat treatment at 450 to 650 ° C., which is a flat region. It is a bonding wire.
(B) In the second aspect of the present invention, at least at least one of copper (Cu), silver (Ag), palladium (Pd), and platinum (Pt) having a region where the elongation becomes flat as the heat treatment temperature rises. One or more types are bonded wires composed of 0.5 to 30% by mass in total and the balance is gold (Au), and the elongation rate is flat and the region is a flat region, and is heat-cooled after being heat-treated at 450 to 650 ° C. A bonding wire for a semiconductor element characterized by the following.

本発明の金合金は、銅(Cu)、銀(Ag)、パラジウム(Pd)または白金(Pt)の内の少なくとも1種以上を0.5〜30質量%及び残部が金(Au)からなる。
銅(Cu)、銀(Ag)、パラジウム(Pd)または白金(Pt)は、金合金に含有させる元素としては代表的なものである。
このうち、銅(Cu)または銀(Ag)は、周知のように、少量の場合でもAuの中に完全に固溶してAu−Cu合金またはAu-Ag合金を形成する。Au-Cu合金またはAu-Ag合金は、平坦な領域の熱処理の温度範囲がパラジウム(Pd)または白金(Pt)の金合金よりも広い。これは、Cu原子またはAg原子がAuの格子中に満遍なく散在し、均質なAu-Cu合金またはAu-Ag合金を形成していることによるものと考えられる。
他方、パラジウム(Pd)は、0.5〜2質量%の範囲および残部が金(Au)からなる範囲が実用的観点から好ましい。また、白金(Pt)は、同様の理由から、0.5〜5質量%の範囲および残部が金(Au)からなる範囲が好ましい。また、銀(Ag)は、同様の理由から、5〜20質量%の範囲および残部が金(Au)からなる範囲が好ましい。
本発明の金合金において、銅(Cu)、銀(Ag)、パラジウム(Pd)または白金(Pt)の内の少なくとも1種以上を0.5〜30質量%含有すれば、この金合金は熱処理温度の上昇とともに伸び率が平坦になる領域を有する。伸び率が平坦になる領域や伸び率は、含有金属の種類と量および熱処理温度によっていくぶん異なる。Au-Cu合金にとってより好ましい範囲は、0.5〜5質量%の範囲である。Au-Ag合金にとってより好ましい範囲は、5〜20質量%の範囲である。いずれも平坦な領域の熱処理の温度範囲がより大きくなるからである。
他方、純度99.99質量%以上の金合金は、このような平坦な領域がなく、熱処理温度の上昇と共に伸び率が上昇を続け、一定の張力をかけながら熱処理すると、最終的には切れてしまう。なお、上記金合金も熱処理温度が高くなりすぎると、純度99.99質量%以上の金合金と同様、熱処理温度の上昇と共に伸び率が上昇を続け、最終的には切れてしまう。
純度99.99質量%以上の金合金(5N)及びAg、Cu、Pd、Ptを添加した金合金のこれらの性質について、表1の組成の金及び金合金の熱処理温度と伸び、及び熱処理温度と破断強度との関係を図1及び2に示す。

Figure 2011129602
表中、BL/MPa:破断荷重、EL%:伸び率% The gold alloy of the present invention comprises 0.5 to 30% by mass of at least one of copper (Cu), silver (Ag), palladium (Pd), and platinum (Pt), and the balance is gold (Au). .
Copper (Cu), silver (Ag), palladium (Pd) or platinum (Pt) is a typical element to be contained in the gold alloy.
Among these, as is well known, copper (Cu) or silver (Ag) completely dissolves in Au even in a small amount to form an Au—Cu alloy or Au—Ag alloy. Au-Cu alloy or Au-Ag alloy has a wider temperature range for heat treatment in a flat region than a gold alloy of palladium (Pd) or platinum (Pt). This is presumably because Cu atoms or Ag atoms are evenly scattered in the Au lattice to form a homogeneous Au-Cu alloy or Au-Ag alloy.
On the other hand, palladium (Pd) is preferably in the range of 0.5 to 2 mass% and the balance of gold (Au) from the practical viewpoint. Further, platinum (Pt) is preferably in the range of 0.5 to 5% by mass and the balance of gold (Au) for the same reason. Further, for the same reason, silver (Ag) is preferably in the range of 5 to 20% by mass and the balance of gold (Au).
If the gold alloy of the present invention contains 0.5 to 30% by mass of at least one of copper (Cu), silver (Ag), palladium (Pd) and platinum (Pt), the gold alloy is heat treated. It has a region where the elongation becomes flat as the temperature rises. The region where the elongation becomes flat and the elongation vary somewhat depending on the type and amount of the metal contained and the heat treatment temperature. A more preferable range for the Au—Cu alloy is a range of 0.5 to 5 mass%. A more preferable range for the Au-Ag alloy is a range of 5 to 20% by mass. In any case, the temperature range of the heat treatment in the flat region becomes larger.
On the other hand, a gold alloy having a purity of 99.99% by mass or more does not have such a flat region, and the elongation rate continues to increase as the heat treatment temperature rises. End up. When the heat treatment temperature of the gold alloy is too high, as with the gold alloy having a purity of 99.99% by mass or more, the elongation rate continues to increase with the increase of the heat treatment temperature, and eventually breaks.
Regarding the properties of a gold alloy (5N) having a purity of 99.99% by mass or more and a gold alloy to which Ag, Cu, Pd, and Pt are added, the heat treatment temperature and elongation of the gold and gold alloy having the composition shown in Table 1, and the heat treatment temperature. 1 and 2 show the relationship between the strength and the breaking strength.
Figure 2011129602
In the table, BL / MPa: Breaking load, EL%: Elongation%

図1に示すように、5N高純度金のボンディングワイヤは、伸び率4%近傍の熱処理温度350〜400℃付近で伸び率変化は比較的フラットな傾向にあり、一方、図2の破断荷重と熱処理温度との関係では、同じ範囲の熱処理温度では同様に比較的緩やかに変化する傾向を見せる。
これに対して、Au-16%Ag 、Au-18%Ag、Au-1%Cu、Au-1.5%Pdの各合金についてそれぞれ、熱処理温度と伸び率、及び破断荷重の関係をグラフにみると、従来、伸び率5〜10数%となる熱処理を行った温度範囲では、伸び率変化は極めて鋭く急上昇しており、これに対する破断荷重は逆方向に急激に降下することがわかる。このため、この温度領域で、伸び率と強度とを望む範囲に制御することは極めて困難である。
ところが、これらの合金について熱処理温度をさらに高めると、伸び率の変化が合金組成によって異なるが、450℃近傍から8〜13%でほぼ平坦となり、600℃以上、あるいは650℃に達してもその傾向を維持する。
また、これに対して、破断荷重を示す図2のグラフによれば、5N純金線の場合と同様に破断荷重が低下するが、元来高強度であるため、450℃〜650℃の熱処理温度において、5N純金線の4%伸び率における破断荷重以上の値を維持することがわかる。
以上の知見は高純度金に対してこれらの添加元素を加えて厳密に検証した結果得られたものであるが、これらの性質を利用することによって、幅広い熱処理温度域、すなわち安定した熱処理条件下で、上記の伸び率に応じた強度の金合金ワイヤが得られ、また、熱処理温度を制御して強度の異なる合金ワイヤが得られ、しかも、これらの性質のバラツキが小さく、安定した条件で得られる。
これらの性質は、合金線に添加したAg、Cu、Pd、Ptのそれぞれについて、Ag:5〜20質量%、Cu:0.5〜30質量% Pd:0.5〜2質量%、Pt:0.5〜5質量%の範囲において発揮される。伸び率と強度とのバランスは、これらの金合金ワイヤに応じて上記の特性を利用して定めればよく、ボンディングワイヤに求められる多様な性質に応じたボンディングワイヤを得ることができる。
以下に、本発明の金合金ボンディングワイヤの熱処理条件を示す。
As shown in FIG. 1, the bonding wire of 5N high-purity gold tends to have a relatively flat elongation change at a heat treatment temperature of 350 to 400 ° C. near an elongation of 4%, while the breaking load of FIG. In relation to the heat treatment temperature, the same heat treatment temperature within the same range shows a tendency to change relatively slowly.
On the other hand, regarding the respective alloys of Au-16% Ag, Au-18% Ag, Au-1% Cu, Au-1.5% Pd, the relationship between the heat treatment temperature, the elongation rate, and the breaking load is shown in the graph. Conventionally, in the temperature range where the elongation rate is 5 to 10%, the change in the elongation rate increases sharply and sharply, and the breaking load against this rapidly decreases in the opposite direction. For this reason, it is extremely difficult to control the elongation and strength within a desired range in this temperature region.
However, when the heat treatment temperature is further increased for these alloys, the change in elongation varies depending on the alloy composition, but it becomes almost flat at around 8 to 13% from around 450 ° C., and even when reaching 600 ° C. or higher or 650 ° C. To maintain.
On the other hand, according to the graph of FIG. 2 showing the breaking load, the breaking load is reduced similarly to the case of the 5N pure gold wire, but the heat treatment temperature of 450 ° C. to 650 ° C. is originally high strength. It can be seen that a value equal to or higher than the breaking load at 4% elongation of 5N pure gold wire is maintained.
The above findings were obtained as a result of rigorous verification by adding these additive elements to high-purity gold, but by utilizing these properties, a wide range of heat treatment temperatures, that is, stable heat treatment conditions were obtained. Thus, a gold alloy wire having a strength corresponding to the above elongation can be obtained, and an alloy wire having a different strength can be obtained by controlling the heat treatment temperature, and the variation in these properties is small and obtained under stable conditions. It is done.
These properties are as follows: Ag: 5 to 20% by mass, Cu: 0.5 to 30% by mass, Pd: 0.5 to 2% by mass, Pt: It is exhibited in the range of 0.5 to 5% by mass. The balance between the elongation rate and the strength may be determined using the above-described characteristics according to these gold alloy wires, and bonding wires according to various properties required for the bonding wires can be obtained.
The heat treatment conditions for the gold alloy bonding wire of the present invention are shown below.

(熱処理温度)
本発明の金合金の熱処理温度に対する伸び率変化が平坦になる領域の開始温度は、一般的に450〜650℃の温度範囲である。好ましくは、本発明の熱処理は、伸び率が平坦になる領域の温度(以下、「ST」という。)から、ST+200℃までの温度で、より好ましくはSTからST+100℃までの温度範囲がよい。結晶粒の大きさがより均質になるからである。
(Heat treatment temperature)
The starting temperature of the region where the change in elongation with respect to the heat treatment temperature of the gold alloy of the present invention becomes flat is generally in the temperature range of 450 to 650 ° C. Preferably, the heat treatment of the present invention has a temperature range from the region where the elongation becomes flat (hereinafter referred to as “ST”) to ST + 200 ° C., more preferably from ST to ST + 100 ° C. This is because the size of the crystal grains becomes more uniform.

(一定の張力)
本発明の金合金の伸び率変化が平坦になる領域での熱処理は、最終の伸線ダイスとスプールに巻き取られるまでの間で行われるので、ボンディングワイヤには一定の張力が加わっている。
(Constant tension)
Since the heat treatment in the region where the change in elongation of the gold alloy of the present invention becomes flat is performed until the wire is wound on the final wire drawing die and the spool, a certain tension is applied to the bonding wire.

(熱処理後の水冷)
熱処理後に急冷することによって、ボンディングワイヤの部分的な結晶粒の粗大化が防止でき、数万mのボンディングワイヤであっても、全体にわたってより均質な結晶粒が得られる。水冷は、ボンディングワイヤの巻取り直前に水冷することが好ましい。ボンディングワイヤはスプールに一定の張力の下で巻き取られていくので、ボンディングワイヤに剛性がもたらされる。このため、ボンディングワイヤの線径が8〜16μmと細くなればなるほど、熱処理の急冷効果が発揮される。
(Water cooling after heat treatment)
By rapidly cooling after the heat treatment, the coarsening of the partial crystal grains of the bonding wire can be prevented, and even with a bonding wire of tens of thousands of meters, more uniform crystal grains can be obtained throughout. Water cooling is preferably performed immediately before winding of the bonding wire. Since the bonding wire is wound around the spool under a certain tension, the bonding wire is provided with rigidity. For this reason, the quenching effect of heat processing is exhibited, so that the wire diameter of a bonding wire becomes thin as 8-16 micrometers.

上述のように、本発明のボンディングワイヤ用金合金線は、ボンディングワイヤの結晶組織構造についてこれまでの粒径よりも大きな粒径の結晶粒が規則正しく整列した構造となっており、また、ボンディングワイヤの機械的性質についてはこれまでの同系合金ワイヤよりも軟質になっている。そのため、本発明の金合金からなるボンディングワイヤは、これまでのボンディングワイヤよりもリーニングやループ高さのバラツキがなく、しかも、超音波接合による第二ボンドの接合強度のバラツキが少なくなるという効果がある。また、本発明の金合金は、第一ボンドにおけるAlパッドまたはAl合金パッドとの接合性も良好なことから、ボンディングワイヤの接合信頼性も確保することができ、高温や常温といった使用環境を問わず、半導体装置に対する接合信頼性を確保することができる。   As described above, the gold alloy wire for bonding wire according to the present invention has a structure in which crystal grains having a grain size larger than the conventional grain size are regularly arranged with respect to the crystal structure of the bonding wire. The mechanical properties are softer than those of conventional alloy wires. Therefore, the bonding wire made of the gold alloy of the present invention has the effect that there is no variation in the leaning and loop height and the variation in the bonding strength of the second bond due to ultrasonic bonding is less than that of the conventional bonding wire. is there. In addition, since the gold alloy of the present invention has a good bondability with the Al pad or the Al alloy pad in the first bond, the bonding reliability of the bonding wire can be secured, regardless of the use environment such as high temperature or normal temperature. Therefore, it is possible to ensure the bonding reliability for the semiconductor device.

高純度金ワイヤ及び本発明金合金ワイヤの熱処理温度に対する伸び率変化。Elongation rate change with respect to heat treatment temperature of high purity gold wire and gold alloy wire of the present invention. 高純度合金ワイヤ及び本発明金合金ワイヤの熱処理温度に対する破断強度(破断荷重)の変化。Change in breaking strength (breaking load) with respect to the heat treatment temperature of the high purity alloy wire and the gold alloy wire of the present invention. 高純度金合金ワイヤと強化元素含有高強度合金ワイヤの熱処理温度と伸び率及び破断強度の関係を示す概念図。The conceptual diagram which shows the relationship between the heat processing temperature, elongation rate, and breaking strength of a high purity gold alloy wire and a strengthening element containing high strength alloy wire.

本発明の最良の形態は、連続してダイス引きされた本発明の金合金ワイヤが、最終の伸線ダイスからスプールに巻き取られるまでの間にST〜ST+100℃の熱処理温度でなされた場合に達成される。ボンディングワイヤは細いので、大気中でも急冷されるが、水冷することにより品質が安定する。特に、Au−20質量%Ag合金、Au-0.5〜5質量%Cu合金およびAu-0.8〜1.2質量%Pd合金の場合には、上記の条件下でリーニングやループ高さ(半導体チップからのワイヤ高さを言う。以下同じ。)のバラツキや第二ボンドの接合強度のバラツキについて安定した接合信頼性が得られる。   The best mode of the present invention is when the continuously die-cast gold alloy wire of the present invention is made at a heat treatment temperature of ST to ST + 100 ° C. from the final wire drawing die until it is wound on the spool. Achieved. Since the bonding wire is thin, it is rapidly cooled even in the atmosphere, but the quality is stabilized by water cooling. In particular, in the case of Au-20 mass% Ag alloy, Au-0.5-5 mass% Cu alloy and Au-0.8-1.2 mass% Pd alloy, leaning and loop height under the above conditions Stable bonding reliability is obtained with respect to variations in the wire strength from the semiconductor chip (the same applies hereinafter) and variations in the bonding strength of the second bond.

表1に示される本発明の金合金ワイヤについて、ボンディングワイヤとしての特性を確認するため、それらの範囲の成分組成を有する実施例金合金を溶解鋳造し、伸線加工することにより20μmの線径を有する本発明に係るボンディングワイヤ用金合金線(以下、本発明ワイヤという。)No.1〜27と本発明の組成範囲に入らない比較例のボンディングワイヤ用金合金線(以下、比較例ワイヤという。)No.28〜36を製造した。
これらの本発明ワイヤNo.1〜27および比較ワイヤNo.28〜36をKulicke&Soffa(キューリッケ・アンド・ソファ)社製のワイヤボンダー(商品名:sMaxum plus)にセットし、半導体ICチップに搭載されたAl−0.5質量%Cu合金からなる50μm角Al合金パッドに、加熱温度:200℃、ループ長さ:5mm、ループ高さ:220μm、圧着ボール径:54μm、圧着ボール高さ:8μm,の条件でボンディングを行って、ループ高さのバラツキおよび第二ボンドの接合強度のバラツキについて評価を行った。各々の合金組成に対し、1000本ボンディングしたときのリーニングとループ高さのバラツキを測定した。それらの評価結果を表2および表3の評価項目欄に示す。
(評価方法)
ここで、リーニングは、第一ボンドから第二ボンドまでのループを描いたとき、ループ高さ方向(Z方向)におけるチップからの高さの最高点をXY平面に投射して第一ボンドと第二ボンドを結んだXY平面上の直線からの最短距離のずれを自動三次元測定器によって測定し、これをリーニング線(傾き量)として表した。また、ループ高さは、第一ボンドから第二ボンドまでループを描いた際に自動三次元測定器のカメラを追随させ、ループの高さ方向(Z方向)における最高点を測定した。そして、リーニングおよびループ高さのそれぞれのバラツキを算出し、標準偏差によって定量的評価を行った。なお、第二ボンドの接合強度は、第二ボンドの接合部より200μm第一ボンド側で万能ボンドテスターにてプル強度試験を行った。

Figure 2011129602
Figure 2011129602
(*)比較例36の平坦な領域の開始温度(ST)は、550℃であり、実施温度530℃はSTよりも低い。 For the gold alloy wire of the present invention shown in Table 1, in order to confirm the characteristics as a bonding wire, a gold alloy wire of 20 μm was formed by melt casting and drawing a gold alloy of Examples having a component composition in these ranges. Gold alloy wires for bonding wires according to the present invention (hereinafter referred to as the present invention wires) Nos. 1 to 27 and comparative gold alloy wires for bonding wires that do not fall within the composition range of the present invention (hereinafter referred to as comparative wire) No. 28-36 were manufactured.
These wire Nos. 1 to 27 and comparative wires No. 28 to 36 of the present invention were set on a wire bonder (trade name: sMaxum plus) manufactured by Kulicke & Soffa (Curicke & Sofa) and mounted on a semiconductor IC chip. On a 50 μm square Al alloy pad made of Al-0.5 mass% Cu alloy, heating temperature: 200 ° C., loop length: 5 mm, loop height: 220 μm, pressure ball diameter: 54 μm, pressure ball height: 8 μm Bonding was performed under the conditions, and variations in the loop height and the bonding strength of the second bond were evaluated. For each alloy composition, the variation in the leaning and loop height when 1000 pieces were bonded was measured. The evaluation results are shown in the evaluation item columns of Tables 2 and 3.
(Evaluation methods)
Here, when the loop is drawn from the first bond to the second bond, the leaning projects the highest point from the chip in the loop height direction (Z direction) onto the XY plane and the first bond and the second bond. The shift of the shortest distance from the straight line on the XY plane connecting two bonds was measured with an automatic three-dimensional measuring instrument, and this was expressed as a leaning line (amount of inclination). The loop height was determined by making the automatic three-dimensional measuring device follow the camera when drawing the loop from the first bond to the second bond, and measuring the highest point in the loop height direction (Z direction). Then, each variation of the leaning and the loop height was calculated, and quantitative evaluation was performed based on the standard deviation. The bonding strength of the second bond was a pull strength test using a universal bond tester on the first bond side of 200 μm from the bonding portion of the second bond.
Figure 2011129602
Figure 2011129602
(*) The starting temperature (ST) of the flat region of Comparative Example 36 is 550 ° C., and the operating temperature 530 ° C. is lower than ST.

表2、3の評価項目欄中、リーニングはワイヤ傾き量の偏差値を示し、◎印は5μm未満、○印は5μm以上8μm未満、△印は8μm以上10μm未満、×印は10μm以上をそれぞれ示す。
また、表の評価項目欄中、ループ高さはバラツキの標準偏差の値を示し、◎印は15μm未満、○印は15μm以上20μm未満、△印は、20μm以上30μm未満、×印は、30μm以上をそれぞれ示す。
また、表の表評価項目欄中、第二ボンドの接合強度は、標準偏差の値を示し、◎印は0.8未満、○印は0.8以上1.0未満、△印は、1.0以上1.5未満、×印は、1.5以上をそれぞれ示す。
In the evaluation item columns of Tables 2 and 3, leaning indicates the deviation value of the amount of wire inclination, ◎ indicates less than 5 μm, ○ indicates 5 μm or more and less than 8 μm, Δ indicates 8 μm or more and less than 10 μm, and X indicates 10 μm or more. Show.
Moreover, in the evaluation item column of the table, the loop height indicates the value of the standard deviation of variation, ◎ is less than 15 μm, ○ is 15 μm or more and less than 20 μm, Δ is 20 μm or more and less than 30 μm, and X is 30 μm. The above is shown respectively.
Moreover, in the table evaluation item column of the table, the bonding strength of the second bond indicates a standard deviation value, ◎ is less than 0.8, ○ is 0.8 or more and less than 1.0, Δ is 1 0.0 or more and less than 1.5, and x indicates 1.5 or more, respectively.

表2及び3から示される結果から明らかなように、本発明の金合金ワイヤはその発明範囲の含有元素組成に対して伸び率変化が平坦化する領域において、熱処理することを特徴としており、その結果得られた本発明ワイヤは軟質であるため機械的性質が良く、リーニング、ループ高さのバラツキおよび第二ボンドの接合強度が良好であるのに対し、これらの組成をはずれ、これらの特性を有していない比較例ワイヤであるNo.28〜36はこれらの評価の少なくともいずれか一つは不良となることが分かる。
すなわち、本発明ワイヤは、これらの熱処理温度範囲において伸び率がほぼ一定に保たれるため、この条件を利用することによって、温度変化によらず一定以上の強度の合金ワイヤが得られ、また温度域を適宜に選択することによってこれらの伸び率に対して強度の異なる性質のワイヤが得られる。さらに、これらの条件の組み合わせから、リーニング及びループ高さに関する性質のバラツキが少なくほぼ一定の性質のものが得られる。
これに対して、比較例のものは熱処理温度変化に対する伸び、及び強度の変化が大きいため、一定の性質のものが得られず、また、機械的性質、強度を向上するために添加元素を多く加えても、いずれもリーニング及びループ高さにおいて不良となり、伸び率と強度とのバランスが保たれていない結果となった。
As is apparent from the results shown in Tables 2 and 3, the gold alloy wire of the present invention is characterized in that it is heat-treated in a region where the change in elongation is flattened with respect to the element composition contained in the invention range. The resulting wire of the present invention is soft and has good mechanical properties, while leaning, variation in loop height, and bonding strength of the second bond are good. It turns out that No.28-36 which is a comparative example wire which does not have becomes bad at least any one of these evaluation.
That is, since the elongation rate of the wire of the present invention is kept almost constant in these heat treatment temperature ranges, by using this condition, an alloy wire with a certain strength or higher can be obtained regardless of temperature change, and the temperature By appropriately selecting the region, wires having different properties with respect to these elongation rates can be obtained. Furthermore, from the combination of these conditions, a property with almost constant properties can be obtained with little variation in properties related to leaning and loop height.
On the other hand, the comparative example has a large elongation and change in strength with respect to the heat treatment temperature change, so that a certain property cannot be obtained, and more elements are added to improve the mechanical properties and strength. In addition, both of them were poor in leaning and loop height, and the balance between elongation and strength was not maintained.

本発明のボンディングワイヤは、熱処理温度に対する伸び率の変化の平坦な領域が存在することを利用して、所望の破断強度のワイヤを得ることができ、また、熱処理温度のこれ伸び率変化の平坦な領域で熱処理することにより、これらの性質の安定したワイヤを得ることができるため、ボンディングワイヤに求められる種々の性質のワイヤを安定して製造することが可能であり、これらの生産性向上にも寄与することができる。   The bonding wire of the present invention can obtain a wire having a desired breaking strength by utilizing the existence of a flat region where the elongation changes with respect to the heat treatment temperature. By heat-treating in various regions, it is possible to obtain wires with stable properties, so it is possible to stably manufacture wires with various properties required for bonding wires, and to improve their productivity. Can also contribute.

Claims (7)

銅(Cu)、銀(Ag)、パラジウム(Pd)または白金(Pt)の内の少なくとも一種以上を0.5〜30質量%および残部が金(Au)からなるボンディングワイヤであって、熱処理温度の上昇に伴って上昇する伸び率が平坦になる450〜650℃の領域で熱処理されたことを特徴とする半導体素子用ボンディングワイヤ。   A bonding wire comprising 0.5 to 30% by mass of at least one of copper (Cu), silver (Ag), palladium (Pd) or platinum (Pt) and the balance being gold (Au), and a heat treatment temperature A bonding wire for a semiconductor element, wherein the bonding wire is heat-treated in a region of 450 to 650 ° C. in which an elongation rate that rises with increasing is flattened. 銅(Cu)、銀(Ag)、パラジウム(Pd)または白金(Pt)の内の少なくとも一種以上を合計で0.5〜30質量%および残部が金(Au)からなるボンディングワイヤであって、熱処理温度の上昇に伴って上昇する伸び率が平坦になる450〜650℃の領域で熱処理されたことを特徴とする半導体素子用ボンディングワイヤ。   A bonding wire consisting of at least one of copper (Cu), silver (Ag), palladium (Pd) or platinum (Pt) in a total amount of 0.5 to 30% by mass and the balance being gold (Au), A bonding wire for a semiconductor element, characterized by being heat-treated in a region of 450 to 650 ° C. in which an elongation rate rising with an increase in heat treatment temperature is flat. 銅(Cu)、銀(Ag)、パラジウム(Pd)または白金(Pt)の内の少なくとも一種以上を0.5〜30質量%および残部が金(Au)からなるボンディングワイヤであって、熱処理温度の上昇に伴って上昇する伸び率が平坦になる450〜650℃の領域で熱処理された後に水冷されたことを特徴とする請求項1または2記載の半導体素子用ボンディングワイヤ。   A bonding wire comprising 0.5 to 30% by mass of at least one of copper (Cu), silver (Ag), palladium (Pd) or platinum (Pt) and the balance being gold (Au), and a heat treatment temperature The bonding wire for a semiconductor element according to claim 1 or 2, wherein the bonding wire for a semiconductor element is water-cooled after being heat-treated in a region of 450 to 650 ° C in which an elongation rate that rises with increasing is flattened. 上記金合金が銅(Cu)を0.5〜5質量%および残部が金(Au)からなる金合金であることを特徴とする請求項1または2記載の半導体素子用ボンディングワイヤ。   3. The bonding wire for a semiconductor element according to claim 1, wherein the gold alloy is a gold alloy composed of copper (Cu) in an amount of 0.5 to 5% by mass and the balance being gold (Au). 上記金合金が銀(Ag)を5〜20質量%および残部が金(Au)からなる金合金であることを特徴とする請求項1または2記載の半導体素子用ボンディングワイヤ。   3. The bonding wire for a semiconductor element according to claim 1, wherein the gold alloy is a gold alloy composed of 5 to 20% by mass of silver (Ag) and the balance being gold (Au). 上記金合金がパラジウム(Pd)を0.5〜2質量%および残部が金(Au)からなる金合金であることを特徴とする請求項1または2記載の半導体素子用ボンディングワイヤ。   3. The bonding wire for a semiconductor element according to claim 1, wherein the gold alloy is a gold alloy composed of 0.5 to 2% by mass of palladium (Pd) and the balance being gold (Au). 上記熱処理は伸び率が平坦になる領域の開始温度(以下「ST」という。)からST+200℃までの温度範囲で行なわれたことを特徴とする請求項1または請求項2のいずれかに記載の半導体素子用ボンディングワイヤ。   The heat treatment is performed in a temperature range from a start temperature (hereinafter referred to as “ST”) in a region where the elongation becomes flat to ST + 200 ° C. 3. The bonding wire for semiconductor elements as described.
JP2009284716A 2009-12-16 2009-12-16 Heat treatment method for bonding wires for semiconductor devices Expired - Fee Related JP4947670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009284716A JP4947670B2 (en) 2009-12-16 2009-12-16 Heat treatment method for bonding wires for semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009284716A JP4947670B2 (en) 2009-12-16 2009-12-16 Heat treatment method for bonding wires for semiconductor devices

Publications (2)

Publication Number Publication Date
JP2011129602A true JP2011129602A (en) 2011-06-30
JP4947670B2 JP4947670B2 (en) 2012-06-06

Family

ID=44291906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009284716A Expired - Fee Related JP4947670B2 (en) 2009-12-16 2009-12-16 Heat treatment method for bonding wires for semiconductor devices

Country Status (1)

Country Link
JP (1) JP4947670B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113862504A (en) * 2021-12-01 2021-12-31 北京达博有色金属焊料有限责任公司 Gold alloy and alloy product and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158642A (en) * 1979-05-30 1980-12-10 Noge Denki Kogyo:Kk Bonding alloy wire for assembling semiconductor device
JPH0212935A (en) * 1988-06-30 1990-01-17 Tanaka Electron Ind Co Ltd Method and apparatus for takeup of bonding wiring for semiconductor
JPH04229631A (en) * 1990-12-27 1992-08-19 Sumitomo Metal Mining Co Ltd Bonding wire
JPH08321525A (en) * 1995-05-25 1996-12-03 Tanaka Denshi Kogyo Kk Manufacture of bonding wire
JPH0974113A (en) * 1995-09-06 1997-03-18 Tanaka Denshi Kogyo Kk Manufacture of very fine wire of gold alloy
JPH10303236A (en) * 1997-04-25 1998-11-13 Tanaka Denshi Kogyo Kk Gold alloy wire for bonding on semiconductor device
JPH10326803A (en) * 1997-05-23 1998-12-08 Nippon Steel Corp Gold and silver alloy thin wire for semiconductor element
JP2001308134A (en) * 2000-04-24 2001-11-02 Nippon Steel Corp Bonding wire for semiconductor mounting
JP2003055748A (en) * 2001-08-10 2003-02-26 Nittetsu Micro Metal:Kk Method and device for heat treatment of gold bonding wire
JP2007027335A (en) * 2005-07-14 2007-02-01 Tanaka Electronics Ind Co Ltd Manufacturing method of au extra-fine wire for ball bonding
JP2009033127A (en) * 2007-06-28 2009-02-12 Nippon Steel Materials Co Ltd Bonding wire for semiconductor mounting

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158642A (en) * 1979-05-30 1980-12-10 Noge Denki Kogyo:Kk Bonding alloy wire for assembling semiconductor device
JPH0212935A (en) * 1988-06-30 1990-01-17 Tanaka Electron Ind Co Ltd Method and apparatus for takeup of bonding wiring for semiconductor
JPH04229631A (en) * 1990-12-27 1992-08-19 Sumitomo Metal Mining Co Ltd Bonding wire
JPH08321525A (en) * 1995-05-25 1996-12-03 Tanaka Denshi Kogyo Kk Manufacture of bonding wire
JPH0974113A (en) * 1995-09-06 1997-03-18 Tanaka Denshi Kogyo Kk Manufacture of very fine wire of gold alloy
JPH10303236A (en) * 1997-04-25 1998-11-13 Tanaka Denshi Kogyo Kk Gold alloy wire for bonding on semiconductor device
JPH10326803A (en) * 1997-05-23 1998-12-08 Nippon Steel Corp Gold and silver alloy thin wire for semiconductor element
JP2001308134A (en) * 2000-04-24 2001-11-02 Nippon Steel Corp Bonding wire for semiconductor mounting
JP2003055748A (en) * 2001-08-10 2003-02-26 Nittetsu Micro Metal:Kk Method and device for heat treatment of gold bonding wire
JP2007027335A (en) * 2005-07-14 2007-02-01 Tanaka Electronics Ind Co Ltd Manufacturing method of au extra-fine wire for ball bonding
JP2009033127A (en) * 2007-06-28 2009-02-12 Nippon Steel Materials Co Ltd Bonding wire for semiconductor mounting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113862504A (en) * 2021-12-01 2021-12-31 北京达博有色金属焊料有限责任公司 Gold alloy and alloy product and preparation method thereof

Also Published As

Publication number Publication date
JP4947670B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
WO2012169067A1 (en) High-strength, high-elongation-percentage gold alloy bonding wire
JP4866490B2 (en) Copper alloy bonding wire for semiconductors
KR101989799B1 (en) Copper bond wire and method of making the same
JP5840328B1 (en) Bonding wire for semiconductor device and manufacturing method thereof
JP5839763B1 (en) Bonding wires for semiconductor devices
CN100557784C (en) The bonding wire alloy gold wire
JP5343069B2 (en) Bonding wire bonding structure
JP4130843B1 (en) High reliability gold alloy bonding wire and semiconductor device
JP4726206B2 (en) Gold alloy wire for bonding wire with high initial bondability, high bond reliability, high roundness of crimped ball, high straightness, high resin flow resistance and low specific resistance
JP4947670B2 (en) Heat treatment method for bonding wires for semiconductor devices
TWI407515B (en) Wire with gold alloy wire
JP2005294874A (en) Wire wedge bonded semiconductor device and gold alloy bonding wire
JP5840327B1 (en) Bonding wire for semiconductor device and manufacturing method thereof
JP2003059964A (en) Bonding wire and manufacturing method therefor
JP6369994B2 (en) Copper alloy thin wire for ball bonding
JP4641248B2 (en) Gold alloy wire for bonding wires with excellent bondability, straightness and resin flow resistance
JP6898705B2 (en) Copper alloy thin wire for ball bonding
JPH09321075A (en) Bonding wire
JP3426473B2 (en) Gold alloy wires for semiconductor devices
JP2001308133A (en) Semiconductor device with wedge-bonded wire and gold alloy bonding wire
JP5240890B2 (en) Gold alloy wire for bonding wire with high initial bondability, high bond reliability, high roundness of crimped ball, high loop controllability and low specific resistance
JP2003133362A (en) Semiconductor device and bonding wire for the same
JP2003023030A (en) Bonding wire and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110603

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110603

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120301

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120301

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees