JP2011129393A - Solid battery and method of manufacturing the same - Google Patents

Solid battery and method of manufacturing the same Download PDF

Info

Publication number
JP2011129393A
JP2011129393A JP2009287336A JP2009287336A JP2011129393A JP 2011129393 A JP2011129393 A JP 2011129393A JP 2009287336 A JP2009287336 A JP 2009287336A JP 2009287336 A JP2009287336 A JP 2009287336A JP 2011129393 A JP2011129393 A JP 2011129393A
Authority
JP
Japan
Prior art keywords
electrode
solid
electrode body
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009287336A
Other languages
Japanese (ja)
Other versions
JP5549214B2 (en
Inventor
Fuminori Mizuno
史教 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009287336A priority Critical patent/JP5549214B2/en
Publication of JP2011129393A publication Critical patent/JP2011129393A/en
Application granted granted Critical
Publication of JP5549214B2 publication Critical patent/JP5549214B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid battery and a method of manufacturing the same, capable of reducing internal resistance. <P>SOLUTION: The solid battery includes an axis center member, a cylindrical electrode body arranged around the axis center member, and a case housing the axis center member and the electrode body. The electrode body includes a cathode, an anode, and a solid electrolyte layer arranged between the cathode and the anode. As a component of the axis center member, a material with a larger coefficient of thermal expansion than that of the case is contained. The manufacturing method of the solid battery which contains a material with a larger coefficient of thermal expansion than that of the case for a component of the axis center member, includes a process for manufacturing a structure body equipped with the axis center member and the cylindrical electrode by forming the cylindrical electrode body having a cathode, an anode and a solid electrolyte layer arranged between the cathode and the anode around the axis center member with its temperature retained lower than the normal temperature, a process for housing the manufactured structure body into the case while retaining the axis center member as a lower temperature than the normal temperature, and restraining circumference of the structure body, and a process for raising the temperature of the axis center member more than the normal temperature after the former process. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、固体電池及びその製造方法に関し、特に、捲回された固体電解質層を有する固体電池及びその製造方法に関する。   The present invention relates to a solid battery and a method for manufacturing the same, and more particularly, to a solid battery having a wound solid electrolyte layer and a method for manufacturing the same.

リチウムイオン二次電池は、他の二次電池よりもエネルギー密度が高く、高電圧での動作が可能という特徴を有している。そのため、小型軽量化を図りやすい二次電池として携帯電話等の情報機器に使用されており、近年、電気自動車やハイブリッド自動車用等、大型の動力用としての需要も高まっている。   A lithium ion secondary battery has the characteristics that it has a higher energy density than other secondary batteries and can operate at a high voltage. For this reason, it is used as a secondary battery that can be easily reduced in size and weight in information equipment such as a mobile phone, and in recent years, there is an increasing demand for large motive power such as for electric vehicles and hybrid vehicles.

リチウムイオン二次電池には、正極及び負極と、これらの間に配置される電解質とが備えられ、電解質の形態としては、液体や固体によって構成したもの等が知られている。液体の電解質(以下において、「電解液」という。)が用いられる場合には、電解液が正極の内部へと浸透する。そのため、正極を構成する正極活物質と電解質との界面が形成されやすく、性能を向上させやすい。ところが、広く用いられている電解液は可燃性であるため、安全性を確保するためのシステムを搭載する必要がある。一方、固体の電解質は不燃性であるため、上記システムを簡素化できる。それゆえ、不燃性である固体の電解質を含有する層(以下において、「固体電解質層」ということがある。)が備えられる形態のリチウムイオン二次電池(以下において、「固体電池」という。)が提案されている。   A lithium ion secondary battery includes a positive electrode and a negative electrode, and an electrolyte disposed between them. Known electrolyte forms include those made of liquid or solid. When a liquid electrolyte (hereinafter referred to as “electrolytic solution”) is used, the electrolytic solution penetrates into the positive electrode. Therefore, the interface between the positive electrode active material constituting the positive electrode and the electrolyte is easily formed, and the performance is easily improved. However, since the widely used electrolyte is flammable, it is necessary to mount a system for ensuring safety. On the other hand, since the solid electrolyte is nonflammable, the above system can be simplified. Therefore, a lithium ion secondary battery (hereinafter, referred to as “solid battery”) having a layer containing a non-combustible solid electrolyte (hereinafter, sometimes referred to as “solid electrolyte layer”). Has been proposed.

このような固体電池に関する技術として、例えば特許文献1には、正極基板の短尺方向の一方端部全体に正極リード部を有する正極と、負極基板の短尺方向の一方端部全体に負極リード部を有する負極と、正極と負極との間に介在される固体電解質層とを有する電池素子を備え、正極リード部及び負極リード部が各電極の長尺方向に亘る全域で外部と電気的に接続されている電池が開示されている。そして、特許文献1には、正極と負極とが、正極基板及び負極基板の短尺方向において正極露出部と負極露出部とが互いに反対方向となるように配置された状態で電解質層を介して積層されると共に、正極基板及び負極基板の長尺方向に捲回又は折りたたまれることによって正極露出部及び負極露出部が正極及び負極の一方端部で積層され、この積層された正極露出部及び負極露出部が積層一体化されている電池素子の形態についても開示されている。   As a technology related to such a solid battery, for example, Patent Document 1 discloses that a positive electrode having a positive electrode lead portion at one end portion in the short direction of the positive electrode substrate and a negative electrode lead portion at one end portion in the short direction of the negative electrode substrate. A battery element having a negative electrode having a solid electrolyte layer interposed between the positive electrode and the negative electrode, and the positive electrode lead portion and the negative electrode lead portion are electrically connected to the outside over the entire length of each electrode. A battery is disclosed. And in patent document 1, a positive electrode and a negative electrode are laminated | stacked through an electrolyte layer in the state arrange | positioned so that a positive electrode exposed part and a negative electrode exposed part may become a mutually opposing direction in the short direction of a positive electrode substrate and a negative electrode substrate. In addition, the positive electrode exposed portion and the negative electrode exposed portion are stacked at one end of the positive electrode and the negative electrode by being wound or folded in the longitudinal direction of the positive electrode substrate and the negative electrode substrate, and the stacked positive electrode exposed portion and negative electrode exposed The form of the battery element in which the parts are laminated and integrated is also disclosed.

特開2003−187781号公報JP 2003-188771 A

特許文献1に開示されている技術によれば、正極と固体電解質層と負極とを積層した積層体を捲回することによって構成した構造体を有しているので、固体電池のエネルギー密度を高めることも可能になると考えられる。しかしながら、特許文献1に開示されている技術では、十分な締結圧力を確保し難い。そのため、積層された層の界面における物質移動の抵抗が増大しやすく、内部抵抗を低減し難いという問題があった。   According to the technique disclosed in Patent Document 1, since the structure is formed by winding a laminate in which a positive electrode, a solid electrolyte layer, and a negative electrode are laminated, the energy density of the solid battery is increased. It will be possible. However, with the technique disclosed in Patent Document 1, it is difficult to ensure a sufficient fastening pressure. Therefore, there has been a problem that the resistance of mass transfer at the interface between the stacked layers is likely to increase, and it is difficult to reduce the internal resistance.

そこで本発明は、内部抵抗を低減することが可能な固体電池及びその製造方法を提供することを課題とする。   Then, this invention makes it a subject to provide the solid battery which can reduce internal resistance, and its manufacturing method.

上記課題を解決するために、本発明は以下の手段をとる。すなわち、
本発明の第1の態様は、軸心部材と、該軸心部材の周囲に配設された筒状の電極体と、軸心部材及び電極体を収容する筐体とを有し、電極体は、正極と、負極と、正極及び負極の間に配設された固体電解質層とを有し、軸心部材の構成材料に、筐体よりも熱膨張率の大きい材料が含まれていることを特徴とする、固体電池である。
In order to solve the above problems, the present invention takes the following means. That is,
A first aspect of the present invention includes an axial member, a cylindrical electrode body disposed around the axial member, and a housing that accommodates the axial member and the electrode body. Has a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode, and the constituent material of the shaft member includes a material having a higher coefficient of thermal expansion than the housing It is a solid state battery characterized by these.

本発明において、「熱膨張率の大きい材料」とは、金属、プラスチック、セラミックスに限らず、線膨張率が10×10−6/℃以上、好ましくは45×10−6/℃以上である材料をいう。具体的には、ニトリルゴム、スチレンブタジエンゴム、フッ素ゴム、シリコーンゴム等のゴムや、ポリプロピレン、ポリエチレン、ポリエチレンテレフタラート、ポリカーボネート等のプラスチック等を用いることができる。 In the present invention, the “material having a high coefficient of thermal expansion” is not limited to metals, plastics, and ceramics, and a material having a linear expansion coefficient of 10 × 10 −6 / ° C. or higher, preferably 45 × 10 −6 / ° C. or higher. Say. Specifically, rubbers such as nitrile rubber, styrene butadiene rubber, fluorine rubber, and silicone rubber, plastics such as polypropylene, polyethylene, polyethylene terephthalate, and polycarbonate can be used.

上記本発明の第1の態様において、軸心部材を中心にして、正極と、負極と、正極及び負極の間に配設された固体電解質層とを有するシート状の電極体を捲回する過程を経て、筒状の電極体が形成されていることが好ましい。   In the first aspect of the present invention, a process of winding a sheet-like electrode body having a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode, with the shaft member as a center. It is preferable that the cylindrical electrode body is formed through this.

本発明の第2の態様は、常温よりも低い温度に保たれた軸心部材の周囲に、正極と負極と正極及び負極の間に配設された固体電解質層とを有する筒状の電極体を形成することにより、軸心部材及び筒状の電極体を具備する構造体を作製する構造体作製工程と、軸心部材を常温よりも低い温度に保ったまま、構造体作製工程で作製された構造体を筐体へと収容し、構造体の周囲を拘束する収容工程と、該収容工程の後に、軸心部材を常温以上の温度にする加温工程と、を有し、軸心部材の構成材料に、筐体よりも熱膨張率の大きい材料が含まれていることを特徴とする、固体電池の製造方法である。   According to a second aspect of the present invention, a cylindrical electrode body having a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode around a shaft member maintained at a temperature lower than normal temperature. Forming a structure including a shaft member and a cylindrical electrode body, and a structure manufacturing step while maintaining the shaft member at a temperature lower than room temperature. A housing step of housing the structure in a housing and restraining the periphery of the structure, and a heating step of setting the shaft member to a temperature equal to or higher than room temperature after the housing step, In the method for producing a solid state battery, a material having a higher thermal expansion coefficient than that of the casing is included in the constituent material.

上記本発明の第2の態様において、構造体作製工程が、正極と負極との間に固体電解質層が配設されるように、正極、負極、及び、固体電解質層を積層する過程を経て、正極、負極、及び、固体電解質層を具備するシート状の電極体を作製した後、作製されたシート状の電極体を、常温よりも低い温度に保たれた軸心部材を中心に捲回する過程を経て、構造体を作製する工程であることが好ましい。   In the second aspect of the present invention, the structure manufacturing step undergoes a process of laminating the positive electrode, the negative electrode, and the solid electrolyte layer so that the solid electrolyte layer is disposed between the positive electrode and the negative electrode. After producing a sheet-like electrode body comprising a positive electrode, a negative electrode, and a solid electrolyte layer, the produced sheet-like electrode body is wound around an axial center member maintained at a temperature lower than room temperature. It is preferable that the process is a process for manufacturing a structure.

本発明の第1の態様では、筐体と熱膨張率の大きい材料を用いた軸心部材との間に、電極体が配設されている。固体電池を使用すると使用前よりも温度が上昇するため、かかる形態とすることにより、固体電池の使用時に、軸心部材を膨張させることが可能になる。筒状の電極体の内側(軸心側。以下において同じ。)に配設された軸心部材が膨張すると、固体電池の使用時に、電極体の内側から外側へ向けて圧力を付与すること、すなわち、電極体へ締結圧力を付与することが可能になるので、内部抵抗を低減することが可能になる。したがって、本発明によれば、内部抵抗を低減することが可能な、固体電池を提供することができる。   In the first aspect of the present invention, the electrode body is disposed between the casing and the shaft member using a material having a high coefficient of thermal expansion. When the solid battery is used, the temperature rises more than before use. Therefore, with this configuration, the shaft member can be expanded when the solid battery is used. When the axial member disposed inside the cylindrical electrode body (axial center side; the same applies hereinafter) expands, when a solid battery is used, pressure is applied from the inner side to the outer side of the electrode body; That is, since it is possible to apply a fastening pressure to the electrode body, it is possible to reduce internal resistance. Therefore, according to the present invention, a solid state battery capable of reducing internal resistance can be provided.

本発明の第1の態様において、軸心部材を中心にして、正極と、負極と、正極及び負極の間に配設された固体電解質層とを有するシート状の電極体を捲回する過程を経て、筒状の電極体が形成されていることにより、上記効果を有する固体電池の生産性を向上させることが可能になる。   1st aspect of this invention WHEREIN: The process of winding the sheet-like electrode body which has a positive electrode, a negative electrode, and the solid electrolyte layer arrange | positioned between the positive electrode and the negative electrode centering on an axial center member is carried out. Then, by forming the cylindrical electrode body, it becomes possible to improve the productivity of the solid state battery having the above effect.

本発明の第2の態様は、熱膨張率の大きい材料が含まれている軸心部材を常温よりも低い温度に保ちながら、軸心部材及び該軸心部材の周囲に形成された筒状の電極体を具備する構造体を作製し該構造体の周囲を拘束した後、軸心部材の温度を常温以上の温度にする加温工程を有している。このような過程を経て固体電池を製造することにより、加温工程で軸心部材を膨張させることが可能になる。筒状の電極体の内側に配設された軸心部材を膨張させることにより、電極体の内側から外側へ向けて圧力を付与すること、すなわち、電極体へ締結圧力を付与することが可能になるので、内部抵抗を低減することが可能になる。したがって、本発明によれば、内部抵抗を低減し得る固体電池を製造することが可能な、固体電池の製造方法を提供することができる。   The second aspect of the present invention is a cylindrical member formed around the shaft member and the shaft member while maintaining the shaft member containing a material having a high coefficient of thermal expansion at a temperature lower than room temperature. After producing the structure which comprises an electrode body, restraining the circumference | surroundings of this structure, it has the heating process which makes the temperature of a shaft center member the temperature more than normal temperature. By manufacturing the solid battery through such a process, the shaft center member can be expanded in the heating process. It is possible to apply pressure from the inside to the outside of the electrode body, that is, to apply a fastening pressure to the electrode body, by expanding the shaft member disposed inside the cylindrical electrode body. As a result, the internal resistance can be reduced. Therefore, according to this invention, the manufacturing method of a solid battery which can manufacture the solid battery which can reduce internal resistance can be provided.

本発明の第2の態様において、正極と負極との間に固体電解質層が配設されるように、正極、負極、及び、固体電解質層を積層する過程を経て、正極、負極、及び、固体電解質層を具備するシート状の電極体を作製した後、作製されたシート状の電極体を、常温よりも低い温度に保たれた軸心部材を中心に捲回する過程を経て、構造体が作製されることにより、上記効果に加えて、生産性を向上させることが可能な、固体電池の製造方法を提供することができる。   In the second aspect of the present invention, the positive electrode, the negative electrode, and the solid are passed through a process of laminating the positive electrode, the negative electrode, and the solid electrolyte layer so that the solid electrolyte layer is disposed between the positive electrode and the negative electrode. After producing a sheet-like electrode body comprising an electrolyte layer, the structure is obtained by winding the produced sheet-like electrode body around a shaft member maintained at a temperature lower than room temperature. By being manufactured, in addition to the above effects, it is possible to provide a method of manufacturing a solid battery capable of improving productivity.

本発明の固体電池の形態例を示す断面図である。It is sectional drawing which shows the example of a form of the solid battery of this invention. 本発明の固体電池の製造方法を説明するフローチャートである。It is a flowchart explaining the manufacturing method of the solid battery of this invention.

本発明者は、鋭意研究の結果、筒状の電極体の外側から圧力を付与する従来技術を用いて固体電池を拘束した場合、抵抗上昇率(20サイクル後の抵抗値を1サイクル後の抵抗値で割ったもの)を一定値以下(例えば120%以下)にするためには、非常に大きな面圧(例えば、44MPa以上の面圧)が必要になることを知見した。しかしながら、大きな面圧を付与して抵抗上昇率を低減しても、使用にともなって固体電池の体積が低減すると、面圧が低減しやすい。面圧が低減すると、抵抗上昇率が上昇しやすく、耐久特性が低下しやすいため、従来技術を用いた内部抵抗の低減には限界があった。さらに、筒状の電極体の外側から面圧を付与する従来技術では、電極体の軸方向に拘束ムラが生じやすいため、充電ムラが生じやすく、ハイレート充放電時や耐久使用の過程で抵抗が上昇しやすい。加えて、電極体の外側から非常に大きな面圧を付与する従来の拘束では、再拘束する度に電極体の外側のみが毎回プレスされる。そのため、活物質の劣化に起因する固体電池の出力低下も懸念される。   As a result of earnest research, the present inventor has found that when the solid battery is constrained using a conventional technique that applies pressure from the outside of the cylindrical electrode body, the resistance increase rate (the resistance value after 20 cycles is the resistance value after 1 cycle) It has been found that a very large surface pressure (for example, a surface pressure of 44 MPa or more) is required to make the value divided by a value less than a certain value (for example, 120% or less). However, even if a large surface pressure is applied to reduce the rate of increase in resistance, if the volume of the solid battery is reduced with use, the surface pressure is likely to be reduced. When the surface pressure is reduced, the rate of increase in resistance is likely to increase, and the durability characteristics are likely to be reduced. Therefore, there has been a limit to the reduction in internal resistance using the conventional technology. Furthermore, in the conventional technique in which surface pressure is applied from the outside of the cylindrical electrode body, restraint unevenness is likely to occur in the axial direction of the electrode body. Easy to rise. In addition, in the conventional restraint in which a very large surface pressure is applied from the outside of the electrode body, only the outside of the electrode body is pressed every time the restraint is performed again. Therefore, there is a concern that the output of the solid battery is reduced due to the deterioration of the active material.

上記知見を踏まえ、本発明者は、筒状の電極体の内側から外側へ向けて締結圧力を付与することによって内部抵抗を低減することが可能な固体電池及びその製造方法を検討した。その結果、熱膨張率の大きい材料を用いた、低温に保持された軸心部材を、筒状の電極体の内側へと配設し、電極体を筐体へと収容した後に軸心部材の温度を上昇させることによって、電極体の内側から外側へ向けて締結圧力を付与し続けることが可能になり、内部抵抗を低減することが可能になることを知見した。さらに、電極体の内側から外側ヘ向けて締結圧力を付与することにより、電極体の外側から内側へと付与する締結圧力を従来よりも低減することが可能になるので、電極体の軸方向の拘束ムラを低減することが可能になる。それゆえ、充電ムラを低減することが可能になり、ハイレート充放電特性や耐久特性等の電池特性の劣化度合いを低減・抑制することが可能になる。また、電解液を用いたリチウムイオン電池では、製造時に電解液を低温に保持すると、電解液が凍結したり電解液が不均一に含浸されたりする結果、電池の高出力化を図ることが困難になる事態が懸念される。しかしながら、固体電解質の場合にはかかる事態が懸念されないため、低温の軸心部材を配設する過程を経て固体電池を製造しても、出力低下は生じないと考えられる。   Based on the above findings, the present inventor studied a solid state battery capable of reducing internal resistance by applying a fastening pressure from the inside to the outside of the cylindrical electrode body and a method for manufacturing the same. As a result, a shaft center member kept at a low temperature using a material having a high coefficient of thermal expansion is arranged inside the cylindrical electrode body, and after the electrode body is accommodated in the housing, the shaft center member It has been found that by increasing the temperature, it is possible to continue to apply the fastening pressure from the inside to the outside of the electrode body, and to reduce the internal resistance. Furthermore, by applying a fastening pressure from the inside to the outside of the electrode body, the fastening pressure applied from the outside to the inside of the electrode body can be reduced as compared with the conventional case. It becomes possible to reduce restraint unevenness. Therefore, charging unevenness can be reduced, and the degree of deterioration of battery characteristics such as high-rate charge / discharge characteristics and durability characteristics can be reduced / suppressed. In addition, in a lithium ion battery using an electrolytic solution, if the electrolytic solution is kept at a low temperature during production, the electrolytic solution freezes or the electrolytic solution is impregnated unevenly, so that it is difficult to increase the output of the battery. There is concern about the situation. However, in the case of a solid electrolyte, such a situation is not a concern. Therefore, even if a solid battery is manufactured through a process of disposing a low-temperature shaft member, it is considered that the output does not decrease.

本発明は、これらの知見に基づいてなされたものである。本発明は、内部抵抗を低減することが可能な固体電池及びその製造方法を提供することを、主な要旨とする。   The present invention has been made based on these findings. The main gist of the present invention is to provide a solid state battery capable of reducing internal resistance and a method for manufacturing the same.

以下、図面を参照しつつ、本発明について説明する。なお、以下に示す形態は本発明の例示であり、本発明は以下に示す形態に限定されるものではない。   The present invention will be described below with reference to the drawings. In addition, the form shown below is an illustration of this invention and this invention is not limited to the form shown below.

図1は、本発明の固体電池の形態例を示す断面図である。図1の紙面奥/手前方向が筒状の電極体の軸方向であり、図1では、本発明の固体電池の特徴的部分を抽出して示している。図1に示すように、本発明の固体電池10は、円筒状の電極体1と、該電極体1の軸心に配設された円柱状の軸心部材2とを有し、電極体1の周囲には筐体3が配設されている。電極体1は、円筒状の負極1aと円筒状の固体電解質層1bと円筒状の正極1cとを有し、固体電解質層1bの内周面は負極1aの外周面と接触しており、固体電解質層1bの外周面は正極1cの内周面と接触している。また、軸心部材2の外周面は負極1aの内周面と接触しており、正極1cの外周面は筐体3の内周面と接触している。固体電池10において、軸心部材2は、ポリプロピレン樹脂によって構成されており、固体電池10の製造時には、0℃以下の温度に保たれた状態で筐体3へと収容され、筐体3が封止された後、軸心部材2が常温以上の温度へと加温される。   FIG. 1 is a cross-sectional view showing an example of a solid battery according to the present invention. The back / front direction in FIG. 1 is the axial direction of the cylindrical electrode body, and FIG. 1 shows an extracted characteristic portion of the solid state battery of the present invention. As shown in FIG. 1, a solid battery 10 according to the present invention includes a cylindrical electrode body 1 and a columnar shaft center member 2 disposed on the axis of the electrode body 1. A housing 3 is disposed around the. The electrode body 1 has a cylindrical negative electrode 1a, a cylindrical solid electrolyte layer 1b, and a cylindrical positive electrode 1c. The inner peripheral surface of the solid electrolyte layer 1b is in contact with the outer peripheral surface of the negative electrode 1a, The outer peripheral surface of the electrolyte layer 1b is in contact with the inner peripheral surface of the positive electrode 1c. Further, the outer peripheral surface of the shaft member 2 is in contact with the inner peripheral surface of the negative electrode 1 a, and the outer peripheral surface of the positive electrode 1 c is in contact with the inner peripheral surface of the housing 3. In the solid battery 10, the shaft center member 2 is made of polypropylene resin. When the solid battery 10 is manufactured, the shaft center member 2 is housed in the housing 3 while being kept at a temperature of 0 ° C. or lower, and the housing 3 is sealed. After being stopped, the shaft center member 2 is heated to a temperature equal to or higher than room temperature.

図2は、本発明の固体電池の製造方法を説明するフローチャートである。図2に示すように、本発明の固体電池の製造方法は、冷却工程(S1)と、構造体作製工程(S2)と、収容工程(S3)と、加温工程(S4)と、を有している。以下、図1及び図2を参照しつつ、固体電池10の製造方法について説明する。   FIG. 2 is a flowchart illustrating a method for manufacturing a solid state battery according to the present invention. As shown in FIG. 2, the method for producing a solid battery of the present invention includes a cooling step (S1), a structure manufacturing step (S2), a housing step (S3), and a heating step (S4). is doing. Hereinafter, a method for manufacturing the solid battery 10 will be described with reference to FIGS. 1 and 2.

冷却工程(以下において、「工程S1」という。)は、熱膨張率の大きい材料が含まれている軸心部材2を、常温よりも低い温度(例えば、0℃以下等の温度。以下において同じ。)へと冷却する工程である。工程S1は、軸心部材2を常温よりも低い温度へと冷却できれば、その形態は特に限定されるものではなく、例えば、0℃以下等の低温環境下(例えば、寒冷地や冷凍庫等)で軸心部材2を保管する形態や、ペルチェ素子を用いて軸心部材2を冷却する形態とすることも可能である。   In the cooling step (hereinafter referred to as “step S1”), the temperature of the shaft member 2 containing a material having a high coefficient of thermal expansion is lower than room temperature (for example, a temperature of 0 ° C. or lower, etc.). )). As long as the shaft center member 2 can be cooled to a temperature lower than room temperature, the form of the step S1 is not particularly limited. For example, in a low temperature environment such as 0 ° C. or lower (for example, a cold district or a freezer). It is possible to store the shaft member 2 or to cool the shaft member 2 using a Peltier element.

本発明において、軸心部材2は、線膨張率が10×10−6/℃以上、好ましくは45×10−6/℃以上である材料(熱膨張率の大きい材料)が、筒状の電極体1の内側から外側へ向けて締結圧力を付与可能な形態で含まれていれば、その形態は特に限定されるものではない。軸心部材2は、熱膨張率の大きい材料のみによって構成されていても良く、軸心部材2の一部にのみ熱膨張率の大きい材料が含まれていても良い。また、軸心部材2は中空形状であっても良い。軸心部材2を構成し得る材料としては、ニトリルゴム、スチレンブタジエンゴム、フッ素ゴム、シリコーンゴム等のゴムや、ポリプロピレン、ポリエチレン、ポリエチレンテレフタラート、ポリカーボネート等のプラスチック等を例示することができる。 In the present invention, the shaft member 2 is a cylindrical electrode made of a material having a linear expansion coefficient of 10 × 10 −6 / ° C. or higher, preferably 45 × 10 −6 / ° C. or higher (a material having a high thermal expansion coefficient). The form is not particularly limited as long as it is included in a form capable of applying a fastening pressure from the inside to the outside of the body 1. The shaft member 2 may be made of only a material having a high coefficient of thermal expansion, and only a part of the shaft member 2 may contain a material having a large coefficient of thermal expansion. Further, the shaft center member 2 may be hollow. Examples of the material that can constitute the shaft member 2 include rubbers such as nitrile rubber, styrene butadiene rubber, fluorine rubber, and silicone rubber, and plastics such as polypropylene, polyethylene, polyethylene terephthalate, and polycarbonate.

構造体作製工程(以下において、「工程S2」という。)は、常温よりも低い温度に保たれた軸心部材の周囲に、正極と負極と正極及び負極の間に配設された固体電解質層とを有する筒状の電極体を形成することにより、軸心部材及び筒状の電極体を具備する構造体を作製する工程である。工程S2は、常温よりも低い温度に保たれた軸心部材の周囲に、筒状の電極体を形成して構造体を作製する工程であれば、その形態は特に限定されるものではない。工程S2は、例えば、正極と負極との間に固体電解質層が配設されるように、正極、負極、及び、固体電解質層を積層する過程を経て、正極、負極、及び、固体電解質層を具備するシート状の電極体を作製した後、このシート状の電極体を常温よりも低い温度に保たれた軸心部材を中心に捲回する過程を経て、構造体を作製する形態とすることができる。このほか、常温よりも低い温度に保たれた軸心部材の外周面に負極を形成し、形成された円筒状の負極の外周面に固体電解質層を形成し、形成された固体電解質層の外周面に正極(円筒状の正極)を形成することにより、構造体を作製する形態、とすることも可能である。ただし、固体電池の生産性を向上させやすい形態にする等の観点からは、シート状の電極体を常温よりも低い温度に保たれた軸心部材を中心に捲回する過程を経て、構造体を作製する形態とすることが好ましい。   In the structure manufacturing step (hereinafter referred to as “step S2”), a solid electrolyte layer disposed between a positive electrode, a negative electrode, and the positive electrode and the negative electrode around a shaft member maintained at a temperature lower than room temperature. Is a step of producing a structure including an axial center member and a cylindrical electrode body. The form of the step S2 is not particularly limited as long as the step S2 is a step of forming a structure by forming a cylindrical electrode body around a shaft member maintained at a temperature lower than normal temperature. Step S2 includes, for example, a process of laminating the positive electrode, the negative electrode, and the solid electrolyte layer so that the solid electrolyte layer is disposed between the positive electrode and the negative electrode. After producing the sheet-like electrode body to be provided, the structure is produced through a process of winding the sheet-like electrode body around a shaft center member maintained at a temperature lower than room temperature. Can do. In addition, the negative electrode is formed on the outer peripheral surface of the shaft member maintained at a temperature lower than normal temperature, the solid electrolyte layer is formed on the outer peripheral surface of the formed cylindrical negative electrode, and the outer periphery of the formed solid electrolyte layer It is possible to form the structure by forming a positive electrode (cylindrical positive electrode) on the surface. However, from the viewpoint of easily improving the productivity of the solid battery, the structure body is subjected to a process of winding a sheet-shaped electrode body around a shaft center member maintained at a temperature lower than normal temperature. It is preferable to adopt a form for manufacturing.

本発明において、正極は、公知の方法によって作製することができる。例えば、正極材と固体電解質とを混合した混合材を、集電箔として機能する厚さ15μmのAl箔の表面に塗布した後、98MPaの圧力でプレスすることにより、Al箔の表面に正極を作製することができる。正極作製時に用いられる正極材としては、リチウム遷移金属酸化物及びカルコゲン化物を例示することができる。正極材のリチウム遷移金属酸化物としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、鉄オリビン(LiFePO)、コバルトオリビン(LiCoPO)、マンガンオリビン(LiMnPO)、及び、チタン酸リチウム(LiTi12)等を例示することができる。また、カルコゲン化物としては、銅シュブレル(CuMo)、硫化鉄(FeS)、硫化コバルト(CoS)、及び、硫化ニッケル(NiS)等を例示することができる。また、正極作製時に用いられる固体電解質としては、LiS:P=50:50〜100:0(質量比)でLiS及びPを混合することにより作製される固体電解質(以下において、「LiS−P」という。)等を例示することができる。このようにして作製される正極の厚さは、例えば、30μmとすることができる。 In the present invention, the positive electrode can be produced by a known method. For example, a mixture material obtained by mixing a positive electrode material and a solid electrolyte is applied to the surface of a 15 μm thick Al foil functioning as a current collector foil, and then pressed at a pressure of 98 MPa, whereby the positive electrode is applied to the surface of the Al foil. Can be produced. Examples of the positive electrode material used when producing the positive electrode include lithium transition metal oxides and chalcogenides. Examples of the lithium transition metal oxide of the positive electrode material include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), iron olivine (LiFePO 4 ), cobalt olivine (LiCoPO 4 ), manganese Examples include olivine (LiMnPO 4 ) and lithium titanate (Li 4 Ti 5 O 12 ). Further, examples of the chalcogenide include copper subrel (Cu 2 Mo 6 S 8 ), iron sulfide (FeS), cobalt sulfide (CoS), nickel sulfide (NiS), and the like. Further, the solid electrolyte used during the cathode produced, Li 2 S: P 2 S 5 = 50: 50~100: 0 Solid made by mixing Li 2 S and P 2 S 5 (mass ratio) An electrolyte (hereinafter referred to as “Li 2 S—P 2 S 5 ”) and the like can be exemplified. Thus, the thickness of the positive electrode produced can be 30 micrometers, for example.

本発明において、負極は、公知の方法によって作製することができる。例えば、負極材と固体電解質とを混合した混合材を、集電箔として機能する厚さ15μmのステンレス鋼(SUS)箔の表面に塗布した後、392MPaの圧力でプレスすることにより、ステンレス鋼(SUS)箔の表面に負極を作製することができる。負極作製時に用いられる負極材としては、カーボン、リチウム遷移金属酸化物、及び、合金を例示することができる。負極材のリチウム遷移金属酸化物としては、チタン酸リチウム(LiTi12)を例示することができる。また、負極材の合金としては、LaNiSnを例示することができる。また、負極作製時に用いられる固体電解質としては、LiS−P等を例示することができる。このようにして作製される負極の厚さは、例えば、40μmとすることができる。 In the present invention, the negative electrode can be produced by a known method. For example, a mixture material obtained by mixing a negative electrode material and a solid electrolyte is applied to the surface of a stainless steel (SUS) foil having a thickness of 15 μm that functions as a current collector foil, and then pressed at a pressure of 392 MPa to obtain stainless steel ( A negative electrode can be prepared on the surface of the (SUS) foil. Examples of the negative electrode material used when preparing the negative electrode include carbon, lithium transition metal oxides, and alloys. Examples of the lithium transition metal oxide of the negative electrode material include lithium titanate (Li 4 Ti 5 O 12 ). As the alloy of the negative electrode material, it can be exemplified La 3 Ni 2 Sn 7. As the solid electrolyte used during anode manufacturing, it can be exemplified Li 2 S-P 2 S 5 or the like. Thus, the thickness of the negative electrode produced can be 40 micrometers, for example.

本発明において、固体電解質層は、公知の方法によって作製することができる。例えば、上記のようにして作製した負極の表面にLiS−Pを塗布し、98MPaの圧力でプレスすることにより、負極の表面に固体電解質層を作製することができる。固体電解質層の厚さは、例えば、50μmとすることができる。このようにして固体電解質層を作製した場合、工程S2では、例えば、作製したシート状の正極を、シート状の負極の表面に形成された固体電解質層の表面へと配設することにより、シート状の電極体を作製することができる。こうしてシート状の電極体を作製したら、例えば、作製したシート状の電極体の負極の上面に、常温よりも低い温度に保たれた軸心部材2を配設した後、この軸心部材2を中心にシート状の電極体を捲回することにより、軸心部材2及びその周囲に配設された円筒状の電極体1を具備する構造体を作製することができる。工程S2は、軸心部材2の温度を常温よりも低い温度に保ったまま、構造体を作製する工程である。そのため、例えば、寒冷地で構造体を作製する、又は、0℃以下程度の低温とされた部屋で構造体を作製する等の形態のほか、ペルチェ素子を用いて軸心部材2を冷却しながら構造体を作製する形態とすることも可能である。本発明の固体電池の製造方法において、筐体3の内側における結露を防止する等の観点からは、乾燥雰囲気下で工程S2を行うことが好ましい。 In the present invention, the solid electrolyte layer can be produced by a known method. For example, a solid electrolyte layer can be produced on the surface of the negative electrode by applying Li 2 S—P 2 S 5 to the surface of the negative electrode produced as described above and pressing it at a pressure of 98 MPa. The thickness of the solid electrolyte layer can be set to 50 μm, for example. When the solid electrolyte layer is produced in this way, in step S2, for example, the produced sheet-like positive electrode is disposed on the surface of the solid electrolyte layer formed on the surface of the sheet-like negative electrode. A shaped electrode body can be produced. When the sheet-like electrode body is produced in this manner, for example, after the axial member 2 maintained at a temperature lower than normal temperature is disposed on the upper surface of the negative electrode of the produced sheet-like electrode body, the axial member 2 is By winding a sheet-like electrode body at the center, a structure including the axial member 2 and the cylindrical electrode body 1 disposed around the shaft member 2 can be produced. Step S2 is a step of manufacturing the structure while keeping the temperature of the shaft member 2 at a temperature lower than room temperature. Therefore, for example, the structure is produced in a cold region, or the structure is produced in a room at a low temperature of about 0 ° C. or less, while the shaft member 2 is cooled using a Peltier element. It is also possible to form the structure body. In the method for producing a solid state battery of the present invention, it is preferable to perform step S2 in a dry atmosphere from the viewpoint of preventing condensation on the inside of the housing 3.

収容工程(以下において、「工程S3」という。)は、軸心部材2の温度を常温よりも低い温度に保ったまま、上記工程S2で作製した構造体を筐体3へと収容し、構造体の周囲を拘束する工程である。工程S3は、例えば、上記工程S2で作製した構造体を、軸心部材2の温度を常温よりも低い温度に保ったまま筐体3へと収容した後、筐体3の内周面から正極1cの外周面へと締結圧力を付与し得る形態で筐体3を封止することにより、上記工程S2で作製した構造体の周囲を拘束する工程、とすることができる。筐体3の封止は、減圧環境で行う等、公知の方法で行うことができ、筐体3は、固体電池の筐体として使用可能な公知の材料(例えば、正極1c側に公知の樹脂等によって構成される絶縁層が配設されるとともに外周面が金属層等によって構成され、これらの層がラミネート加工等により貼り合わされた材料等)によって構成することができる。   In the housing step (hereinafter referred to as “step S3”), the structure produced in step S2 is housed in the housing 3 while maintaining the temperature of the shaft member 2 at a temperature lower than room temperature. It is a process of restraining the periphery of the body. In step S3, for example, the structure manufactured in step S2 is accommodated in the housing 3 while maintaining the temperature of the shaft center member 2 at a temperature lower than the normal temperature, and then the positive electrode is formed from the inner peripheral surface of the housing 3. By sealing the housing | casing 3 with the form which can provide a fastening pressure to the outer peripheral surface of 1c, it can be set as the process of restraining the circumference | surroundings of the structure produced by said process S2. The casing 3 can be sealed by a known method such as in a reduced pressure environment. The casing 3 is a known material that can be used as a casing of a solid battery (for example, a known resin on the positive electrode 1c side). Etc., and an outer peripheral surface is constituted by a metal layer or the like, and a material obtained by laminating these layers by lamination or the like.

加温工程(以下において、「工程S4」という。)は、上記工程S3の後に、軸心部材2を常温以上の温度に加温する工程である。工程S4は、例えば、封止された筐体3を常温環境へと移動することにより軸心部材2を常温へと加温する形態や、任意の加熱手段を用いて封止された筐体3を加熱することにより軸心部材2を常温以上の温度へと加熱する形態とすることができる。このほか、ペルチェ素子を用いて軸心部材2を冷却した場合には、ペルチェ素子を用いて加熱することにより軸心部材2を常温以上の温度に加熱する形態とすることも可能である。   The heating step (hereinafter referred to as “step S4”) is a step of heating the shaft member 2 to a temperature equal to or higher than room temperature after the step S3. Step S4 is, for example, a mode in which the shaft member 2 is heated to room temperature by moving the sealed housing 3 to a room temperature environment, or a case 3 sealed using any heating means. The shaft center member 2 can be heated to a temperature equal to or higher than normal temperature by heating. In addition, when the shaft center member 2 is cooled using a Peltier element, the shaft center member 2 can be heated to a temperature equal to or higher than normal temperature by heating using the Peltier element.

上記工程S1〜工程S4を経て製造される固体電池10は、円筒状の電極体1の内側に、熱膨張率の大きい材料が含まれる軸心部材2が配設され、電極体1の周囲は筐体3によって拘束されている。そして、軸心部材2及び円筒状の電極体1が筐体3へと収容された後に、常温よりも低い温度に保たれていた軸心部材2が常温以上の温度へと加温される。軸心部材2が加温されることにより、軸心部材2を膨張させることができるので、膨張させた軸心部材2によって電極体1の内側から外側へ向けて締結圧力を付与することができる。締結圧力を付与することにより内部抵抗を低減することが可能になるので、本発明によれば、内部抵抗を低減することが可能な固体電池10及びその製造方法を提供することができる。また、このようにして製造された固体電池10の使用時には、軸心部材2の温度がさらに上昇する。そのため、本発明によれば、使用時に電極体1の内側から外側へと付与される締結圧力を、使用前よりも増大させることが可能な固体電池10及びその製造方法を提供することができる。   In the solid battery 10 manufactured through the above steps S1 to S4, the axial member 2 containing a material having a high coefficient of thermal expansion is disposed inside the cylindrical electrode body 1, and the periphery of the electrode body 1 is Restrained by the housing 3. Then, after the shaft center member 2 and the cylindrical electrode body 1 are accommodated in the housing 3, the shaft center member 2 kept at a temperature lower than the normal temperature is heated to a temperature equal to or higher than the normal temperature. Since the axial member 2 can be expanded by heating the axial member 2, a fastening pressure can be applied from the inner side to the outer side of the electrode body 1 by the expanded axial member 2. . Since the internal resistance can be reduced by applying the fastening pressure, according to the present invention, it is possible to provide the solid state battery 10 capable of reducing the internal resistance and the manufacturing method thereof. Further, when the solid battery 10 manufactured in this way is used, the temperature of the shaft center member 2 further increases. Therefore, according to the present invention, it is possible to provide a solid battery 10 and a method for manufacturing the same that can increase the fastening pressure applied from the inside to the outside of the electrode body 1 during use as compared to before use.

加えて、電極体1の内側から外側へと締結圧力が付与される本発明によれば、電池の連続使用に伴う拘束荷重の低下を随時補うことも可能である。電極体の外側からの再拘束よりも内側からの再拘束の方が簡便であるため、本発明によれば、連続使用に伴う拘束荷重の低下を容易に補うことが可能な固体電池10及びその製造方法を提供することができる。例えば、本発明の固体電池10が電気自動車やハイブリッド自動車に利用された場合には、電池搭載車を充電スタンドへと停車させた後、軸心部材を所定以上の温度へと加温又は加熱し、軸心部材の温度を維持したまま充電した後、軸心部材の温度を常温へと戻せば良い。かかる形態とすることにより、電池の連続使用に伴う拘束荷重の低下を、電極体の内側から補うことが可能になる。   In addition, according to the present invention in which the fastening pressure is applied from the inner side to the outer side of the electrode body 1, it is possible to compensate for a decrease in the restraining load accompanying continuous use of the battery as needed. Since re-restraining from the inside is easier than re-restraining from the outside of the electrode body, according to the present invention, the solid battery 10 that can easily compensate for the decrease in the restraining load accompanying continuous use and its A manufacturing method can be provided. For example, when the solid battery 10 according to the present invention is used in an electric vehicle or a hybrid vehicle, the battery-equipped vehicle is stopped at a charging stand, and then the shaft member is heated or heated to a predetermined temperature or higher. After charging with the temperature of the shaft member maintained, the temperature of the shaft member may be returned to room temperature. By setting it as this form, it becomes possible to supplement the fall of the restraint load accompanying continuous use of a battery from the inner side of an electrode body.

本発明に関する上記説明では、軸心部材2の周囲に1つの電極体1のみが配設されている形態を例示したが、本発明は当該形態に限定されるものではなく、軸心部材の周囲に複数の電極体が同心円状に捲回されていても良い。また、本発明に関する上記説明では、軸方向を法線方向とする断面が円形である電極体1、軸心部材2、及び、筐体3が備えられる形態を例示したが、本発明は当該形態に限定されるものではなく、これらの断面形状は、例えば、三角形、四角形、六角形等の多角形形状にすることも可能であり、楕円形状にすることも可能である。また、本発明に関する上記説明では、固体電解質層1bの内周面側に負極1aが配設され、固体電解質層1bの外周面側に正極1cが配設される形態を例示したが、本発明は当該形態に限定されるものではなく、固体電解質層の内周面側に正極を配設し、固体電解質層の外周面側に負極を配設した形態とすることも可能である。   In the above description regarding the present invention, the mode in which only one electrode body 1 is disposed around the shaft center member 2 is illustrated, but the present invention is not limited to this mode, and the periphery of the shaft center member A plurality of electrode bodies may be wound concentrically. In the above description of the present invention, an example in which the electrode body 1, the shaft center member 2, and the housing 3 having a circular cross section with the axial direction as the normal direction is provided is illustrated. However, the cross-sectional shape is not limited to, and may be a polygonal shape such as a triangle, a quadrangle, or a hexagon, for example, and may be an elliptical shape. In the above description of the present invention, the negative electrode 1a is disposed on the inner peripheral surface side of the solid electrolyte layer 1b, and the positive electrode 1c is disposed on the outer peripheral surface side of the solid electrolyte layer 1b. However, the present invention is not limited to this form, and a form in which the positive electrode is disposed on the inner peripheral surface side of the solid electrolyte layer and the negative electrode is disposed on the outer peripheral surface side of the solid electrolyte layer is also possible.

また、本発明に関する上記説明では、冷却工程の後に構造体作製工程が行われる形態を例示したが、本発明の固体電池の製造方法は当該形態に限定されるものではない。本発明の固体電池の製造方法は、例えば、シート状の電極体と接触するように軸心部材を配設した後、この軸心部材を常温よりも低い温度へと冷却し、軸心部材を常温よりも低い温度に維持したまま作製した構造体を筐体へと収容した後、軸心部材を常温以上の温度へと加温する形態、とすることも可能である。   Moreover, in the said description regarding this invention, although the structure manufacturing process was illustrated after the cooling process, the manufacturing method of the solid battery of this invention is not limited to the said form. In the solid battery manufacturing method of the present invention, for example, after the shaft center member is disposed so as to contact the sheet-like electrode body, the shaft center member is cooled to a temperature lower than room temperature, It is also possible to adopt a configuration in which the structure manufactured while being maintained at a temperature lower than normal temperature is accommodated in a housing, and then the shaft center member is heated to a temperature equal to or higher than normal temperature.

本発明の固体電池は電気自動車やハイブリッド自動車用等に、本発明の固体電池の製造方法は電気自動車やハイブリッド自動車用等に利用される固体電池を製造する際に、利用することができる。   The solid battery of the present invention can be used for electric vehicles, hybrid vehicles, and the like, and the solid battery manufacturing method of the present invention can be used for manufacturing solid batteries used for electric vehicles, hybrid vehicles, and the like.

1…電極体
1a…負極
1b…固体電解質層
1c…正極
2…軸心部材
3…筐体
10…固体電池
DESCRIPTION OF SYMBOLS 1 ... Electrode body 1a ... Negative electrode 1b ... Solid electrolyte layer 1c ... Positive electrode 2 ... Axial member 3 ... Case 10 ... Solid battery

Claims (4)

軸心部材と、該軸心部材の周囲に配設された筒状の電極体と、前記軸心部材及び前記電極体を収容する筐体とを有し、
前記電極体は、正極と、負極と、前記正極及び前記負極の間に配設された固体電解質層とを有し、
前記軸心部材の構成材料に、前記筐体よりも熱膨張率の大きい材料が含まれていることを特徴とする、固体電池。
An axial member, a cylindrical electrode body disposed around the axial member, and a housing that houses the axial member and the electrode body,
The electrode body includes a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode,
A solid battery, wherein the constituent material of the shaft member includes a material having a higher coefficient of thermal expansion than the casing.
前記軸心部材を中心にして、前記正極と、前記負極と、前記正極及び前記負極の間に配設された固体電解質層とを有するシート状の電極体を捲回する過程を経て、前記筒状の電極体が形成されていることを特徴とする、請求項1に記載の固体電池。 The tube is subjected to a process of winding a sheet-like electrode body having the positive electrode, the negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode around the shaft member. The solid battery according to claim 1, wherein a solid electrode body is formed. 常温よりも低い温度に保たれた軸心部材の周囲に、正極と負極と前記正極及び前記負極の間に配設された固体電解質層とを有する筒状の電極体を形成することにより、前記軸心部材及び前記筒状の電極体を具備する構造体を作製する構造体作製工程と、
前記軸心部材を常温よりも低い温度に保ったまま、前記構造体作製工程で作製された前記構造体を筐体へと収容し、前記構造体の周囲を拘束する収容工程と、
前記収容工程の後に、前記軸心部材の温度を常温以上の温度にする加温工程と、を有し、
前記軸心部材の構成材料に、前記筐体よりも熱膨張率の大きい材料が含まれていることを特徴とする、固体電池の製造方法。
By forming a cylindrical electrode body having a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode around the shaft member maintained at a temperature lower than normal temperature, A structure manufacturing step of manufacturing a structure including an axial center member and the cylindrical electrode body;
While holding the shaft member at a temperature lower than room temperature, the structure produced in the structure production step is accommodated in a housing, and the accommodation step of restraining the periphery of the structure;
A heating step of setting the temperature of the shaft member to a temperature equal to or higher than room temperature after the housing step;
A method for manufacturing a solid state battery, wherein the constituent material of the shaft member includes a material having a higher coefficient of thermal expansion than the casing.
前記構造体作製工程が、前記正極と前記負極との間に前記固体電解質層が配設されるように、前記正極、前記負極、及び、前記固体電解質層を積層する過程を経て、前記正極、前記負極、及び、前記固体電解質層を具備するシート状の電極体を作製した後、作製された前記シート状の電極体を、常温よりも低い温度に保たれた軸心部材を中心に捲回する過程を経て、前記構造体を作製する工程であることを特徴とする、請求項3に記載の固体電池の製造方法。 The positive electrode, the negative electrode, and the solid electrolyte layer are laminated so that the solid-state electrolyte layer is disposed between the positive electrode and the negative electrode, and the positive electrode, After producing the negative electrode and the sheet-like electrode body comprising the solid electrolyte layer, the produced sheet-like electrode body is wound around an axis member maintained at a temperature lower than room temperature. The method for producing a solid state battery according to claim 3, wherein the structure is a step of producing the structure through a process of performing the step.
JP2009287336A 2009-12-18 2009-12-18 Solid battery and manufacturing method thereof Active JP5549214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009287336A JP5549214B2 (en) 2009-12-18 2009-12-18 Solid battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009287336A JP5549214B2 (en) 2009-12-18 2009-12-18 Solid battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011129393A true JP2011129393A (en) 2011-06-30
JP5549214B2 JP5549214B2 (en) 2014-07-16

Family

ID=44291766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009287336A Active JP5549214B2 (en) 2009-12-18 2009-12-18 Solid battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5549214B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168549A1 (en) * 2017-03-13 2018-09-20 富士フイルム株式会社 All-solid secondary battery and production method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333600A (en) * 1993-05-20 1994-12-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its manufacture
JP2003092142A (en) * 2001-09-18 2003-03-28 Sony Corp Nonaqueous electrolyte battery and its manufacturing method
JP2011530784A (en) * 2008-08-05 2011-12-22 シオン・パワー・コーポレーション Force application in electrochemical cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333600A (en) * 1993-05-20 1994-12-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its manufacture
JP2003092142A (en) * 2001-09-18 2003-03-28 Sony Corp Nonaqueous electrolyte battery and its manufacturing method
JP2011530784A (en) * 2008-08-05 2011-12-22 シオン・パワー・コーポレーション Force application in electrochemical cells

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168549A1 (en) * 2017-03-13 2018-09-20 富士フイルム株式会社 All-solid secondary battery and production method therefor
JPWO2018168549A1 (en) * 2017-03-13 2019-11-07 富士フイルム株式会社 All-solid secondary battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP5549214B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP4038699B2 (en) Lithium ion battery
JP5050065B2 (en) Metal-air secondary battery
US8734983B2 (en) Housing for electrochemical devices
JP5218586B2 (en) Solid lithium secondary battery and manufacturing method thereof
JP4075034B2 (en) Nonaqueous electrolyte battery and manufacturing method thereof
JP5702541B2 (en) Lithium ion battery and manufacturing method thereof
WO2005013408A1 (en) Lithium ion secondary cell
JP5321196B2 (en) Manufacturing method of all-solid lithium secondary battery
CA2709122A1 (en) Electrochemical storage cell with blow out vents
JP2013243062A (en) Battery
JP5487719B2 (en) Manufacturing method of all-solid lithium secondary battery, and all-solid lithium secondary battery obtained by the manufacturing method
JP2009193728A (en) All-solid battery and its manufacturing method
JP5470335B2 (en) Winding type secondary battery
JP2012174344A (en) Battery and manufacturing method therefor
JP4590723B2 (en) Winding electrode battery and method for manufacturing the same
JP5838073B2 (en) Cylindrical wound battery
US20180115013A1 (en) Method for producing laminated electrode assembly
JPWO2018070218A1 (en) Electrode drying method
JP5549214B2 (en) Solid battery and manufacturing method thereof
WO2012111712A1 (en) Lithium-ion battery
JP6962231B2 (en) Non-aqueous electrolyte secondary battery
CN110676517B (en) Battery cell and battery
JP2003346768A (en) Non-aqueous electrolyte secondary battery
JP2017027837A (en) Lithium ion secondary battery
WO2011086658A1 (en) Solid-state battery and process for production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140505

R151 Written notification of patent or utility model registration

Ref document number: 5549214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151