JP2011127889A - Multiple temperature control system - Google Patents

Multiple temperature control system Download PDF

Info

Publication number
JP2011127889A
JP2011127889A JP2010255055A JP2010255055A JP2011127889A JP 2011127889 A JP2011127889 A JP 2011127889A JP 2010255055 A JP2010255055 A JP 2010255055A JP 2010255055 A JP2010255055 A JP 2010255055A JP 2011127889 A JP2011127889 A JP 2011127889A
Authority
JP
Japan
Prior art keywords
refrigerant
flow
heat exchanger
state
flow state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010255055A
Other languages
Japanese (ja)
Other versions
JP5498359B2 (en
Inventor
Tsutomu Wakabayashi
努 若林
Hiroshi Fujimoto
洋 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2010255055A priority Critical patent/JP5498359B2/en
Publication of JP2011127889A publication Critical patent/JP2011127889A/en
Application granted granted Critical
Publication of JP5498359B2 publication Critical patent/JP5498359B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multiple temperature control system capable of improving air-conditioning efficiency by improving heat transfer between a refrigerant and the outside air. <P>SOLUTION: This multiple temperature control system has a circulation state switching means S capable of switching an ordinary circulation state for circulating a refrigerant between a compressor 1 and a heat exchanger 3 of the same refrigerant circuit C in each of the plurality of refrigerant circuits C, and a partial load circulation state for circulating the refrigerant over the compressor 1 as an operation target, the first heat exchanger 3 of the refrigerant circuit C as an operation target, including the target compressor, and the first heat exchangers 3 of a part or all of the refrigerant circuits C except for the target refrigerant circuit C, and a series connection flow channel Qs for connecting the first heat exchangers 3 of the plurality of refrigerant circuits C in series, and a control means 6 switches the circulation state switching means S to the ordinary circulation state in a rated operation state, and switches the circulation state switching means S to the partial load circulation state in the partial load operation state. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、冷媒を圧縮する圧縮機と冷媒を減圧膨張させる膨張弁と第1熱交換器と温調対象空間を温調するための第2熱交換器とが冷媒流路で接続された冷媒回路が複数設けられ、
運転を制御する制御手段が、前記複数の圧縮機を全て運転させる定格運転状態と、前記複数の圧縮機のうちの一部の運転対象の圧縮機を運転させる部分負荷運転状態とに運転状態を切り換え自在に構成されたマルチ型温調システムに関する。
The present invention relates to a refrigerant in which a compressor that compresses a refrigerant, an expansion valve that decompresses and expands the refrigerant, a first heat exchanger, and a second heat exchanger that regulates the temperature of the temperature adjustment target space are connected by a refrigerant flow path. Multiple circuits are provided,
The control means for controlling the operation changes the operation state into a rated operation state in which all of the plurality of compressors are operated and a partial load operation state in which some of the plurality of compressors to be operated are operated. The present invention relates to a multi-type temperature control system configured to be switchable.

かかるマルチ型温調システムは、例えば、冷媒回路のうちの圧縮機、膨張弁及び第1熱交換器が備えられて室外ユニットに構成され、冷媒回路のうちの第2熱交換器が備えられて室内ユニットに構成されて、複数の室内ユニットが複数の温調対象空間に分散して配置されるものであり、複数の温調対象空間を冷房や暖房することができる。
そして、制御手段により、冷房や暖房の空調負荷に応じて、複数の圧縮機を全て運転させる定格運転状態と、複数の圧縮機のうちの一部の運転対象の圧縮機を運転させる部分負荷運転状態とに運転状態を切り換えるように構成されている。
Such a multi-type temperature control system includes, for example, a compressor, an expansion valve, and a first heat exchanger in the refrigerant circuit, and is configured as an outdoor unit, and includes a second heat exchanger in the refrigerant circuit. It is comprised by an indoor unit, a some indoor unit is disperse | distributed and arrange | positioned in several temperature control object space, and can cool and heat several temperature control object space.
And by the control means, according to the air conditioning load of cooling and heating, the rated operation state in which all the plurality of compressors are operated, and the partial load operation in which some of the plurality of compressors to be operated are operated. It is comprised so that an operation state may be switched to a state.

このようなマルチ型温調システムにおいて、従来は、複数の冷媒回路夫々が、各冷媒回路毎に独立した状態で圧縮機と第1熱交換器とにわたって冷媒を通流させるように構成されていた(例えば、特許文献1参照。)。   In such a multi-type temperature control system, conventionally, each of the plurality of refrigerant circuits is configured to allow the refrigerant to flow through the compressor and the first heat exchanger in an independent state for each refrigerant circuit. (For example, refer to Patent Document 1).

特開2007−113830号公報JP 2007-1113830 A

従来のマルチ型温調システムでは、部分負荷運転状態においては、運転対象の圧縮機とその運転対象の圧縮機が備えられた運転対象の冷媒回路の第1熱交換器とにわたって冷媒が通流されるので、部分負荷運転状態において、冷媒を外気と熱交換させる第1熱交換器は、運転対象の圧縮機が備えられた運転対象の冷媒回路の第1熱交換器に限定されることになる。
従って、冷媒と外気との伝熱を改善させて空調効率(成績係数)を向上する上で、改善の余地があった。
In the conventional multi-type temperature control system, in the partial load operation state, the refrigerant flows through the operation target compressor and the first heat exchanger of the operation target refrigerant circuit provided with the operation target compressor. Therefore, in the partial load operation state, the first heat exchanger that exchanges heat between the refrigerant and the outside air is limited to the first heat exchanger of the operation target refrigerant circuit provided with the operation target compressor.
Therefore, there is room for improvement in improving the air-conditioning efficiency (coefficient of performance) by improving the heat transfer between the refrigerant and the outside air.

本発明は、かかる実情に鑑みてなされたものであり、その目的は、冷媒と外気との伝熱を改善させて空調効率を向上し得るマルチ型温調システムを提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to provide a multi-type temperature control system capable of improving the air conditioning efficiency by improving the heat transfer between the refrigerant and the outside air.

上記目的を達成するための本発明のマルチ型温調システムは、冷媒を圧縮する圧縮機と冷媒を減圧膨張させる膨張弁と第1熱交換器と温調対象空間を温調するための第2熱交換器とが冷媒流路で接続された冷媒回路が複数設けられ、
運転を制御する制御手段が、前記複数の圧縮機を全て運転させる定格運転状態と、前記複数の圧縮機のうちの一部の運転対象の圧縮機を運転させる部分負荷運転状態とに運転状態を切り換え自在に構成されたものであって、
その特徴構成は、前記複数の冷媒回路が、異なる冷媒回路に備えられた前記第1熱交換器に冷媒を通流可能とする接続流路にて連結されており、
前記複数の冷媒回路の夫々において同一の冷媒回路の圧縮機と第1熱交換器とにわたって冷媒を通流させる通常通流状態、及び、前記複数の圧縮機のうちの前記運転対象の圧縮機と、その運転対象の圧縮機が備えられた運転対象の冷媒回路の第1熱交換器及び前記運転対象の冷媒回路とは異なる一部又は全ての冷媒回路の第1熱交換器とにわたって冷媒を通流させる部分負荷通流状態に切り換え自在な通流状態切換手段が設けられ、
前記接続流路として、前記複数の冷媒回路の夫々に備えられた前記第1熱交換器を直列状に接続する直列接続流路が設けられ、
前記通流状態切換手段が、前記部分負荷通流状態においては前記直列接続流路を通して冷媒を通流させるように構成され、
前記制御手段が、前記定格運転状態においては、前記通流状態切換手段を前記通常通流状態に切り換え、前記部分負荷運転状態においては、前記通流状態切換手段を前記部分負荷通流状態に切り換えるように構成されている点にある。
In order to achieve the above object, a multi-type temperature control system of the present invention includes a compressor that compresses refrigerant, an expansion valve that decompresses and expands the refrigerant, a first heat exchanger, and a second temperature controller that regulates the temperature. A plurality of refrigerant circuits connected to the heat exchanger by the refrigerant flow path are provided,
The control means for controlling the operation changes the operation state into a rated operation state in which all the plurality of compressors are operated and a partial load operation state in which some of the plurality of compressors to be operated are operated. It is configured to be switchable,
The characteristic configuration is that the plurality of refrigerant circuits are connected to each other through a connection flow path that allows the refrigerant to flow to the first heat exchanger provided in different refrigerant circuits.
A normal flow state in which the refrigerant flows through the compressor and the first heat exchanger in the same refrigerant circuit in each of the plurality of refrigerant circuits, and the compressor to be operated among the plurality of compressors, and The refrigerant is passed through the first heat exchanger of the refrigerant circuit to be operated provided with the compressor to be operated and the first heat exchanger of a part or all of the refrigerant circuits different from the refrigerant circuit to be operated. A flow state switching means that can be switched to a partial load flow state to be flown is provided,
As the connection flow path, a series connection flow path for connecting the first heat exchangers provided in each of the plurality of refrigerant circuits in series is provided,
The flow state switching means is configured to flow the refrigerant through the series connection flow path in the partial load flow state.
The control means switches the flow state switching means to the normal flow state in the rated operation state, and switches the flow state switching means to the partial load flow state in the partial load operation state. It is in the point which is constituted as follows.

上記特徴構成によれば、定格運転状態においては、通流状態切換手段が通常通流状態に切り換えられて、複数の冷媒回路の夫々において、同一の冷媒回路の圧縮機と第1熱交換器とにわたって冷媒が通流する。
部分負荷運転状態においては、通流状態切換手段が部分負荷通流状態に切り換えられて、複数の圧縮機のうちの運転対象の圧縮機と、その運転対象の圧縮機が備えられた運転対象の冷媒回路の第1熱交換器及び運転対象の冷媒回路とは異なる一部又は全ての冷媒回路の第1熱交換器とにわたって冷媒が通流する。
つまり、部分負荷通流状態においては、運転対象の圧縮機が備えられた運転対象の冷媒回路の第1熱交換器に加えて、運転対象以外の一部又は全ての冷媒回路の第1熱交換器においても、冷媒を外気と熱交換させることができるので、冷媒と外気との伝熱を改善させることができる。
しかも、部分負荷通流状態においては、直列接続流路を通して、冷媒が運転対象の冷媒回路の第1熱交換器、運転対象の冷媒回路とは異なる一部又は全ての冷媒回路の第1熱交換器を1台ずつ順に通流する。これにより、冷媒を外気と熱交換させる状態で通流させる経路を長くすることができると共に、冷媒が複数の第1熱交換器を並行して通流する場合に起こり得る第1熱交換器での冷媒の流量の減少及び流速の低下(即ち、レイノルズ数の低下)を回避して、各第1熱交換器での伝熱性能の低下を回避することができるので、冷媒と外気との伝熱を一層効果的に改善させることができる。
従って、冷媒と外気との伝熱を改善させて空調効率を向上し得るマルチ型温調システムを提供することができるようになった。
According to the above characteristic configuration, in the rated operation state, the flow state switching means is switched to the normal flow state, and in each of the plurality of refrigerant circuits, the compressor of the same refrigerant circuit and the first heat exchanger The refrigerant flows through.
In the partial load operation state, the flow state switching means is switched to the partial load flow state, and the operation target compressor of the plurality of compressors and the operation target equipped with the operation target compressor are selected. The refrigerant flows through the first heat exchanger of the refrigerant circuit and the first heat exchanger of a part or all of the refrigerant circuits different from the refrigerant circuit to be operated.
That is, in the partial load flow state, in addition to the first heat exchanger of the operation target refrigerant circuit provided with the operation target compressor, the first heat exchange of some or all of the refrigerant circuits other than the operation target. Since the refrigerant can also exchange heat with the outside air, the heat transfer between the refrigerant and the outside air can be improved.
In addition, in the partial load flow state, the first heat exchanger of the refrigerant circuit that is the operation target refrigerant circuit, a part of the refrigerant circuit that is different from the operation target refrigerant circuit, or the first heat exchange that is different from the operation target refrigerant circuit through the series connection flow path Pass the vessels one by one in order. This makes it possible to lengthen the path through which the refrigerant flows in a state of exchanging heat with the outside air, and at the first heat exchanger that can occur when the refrigerant flows through the plurality of first heat exchangers in parallel. Therefore, it is possible to avoid a decrease in the heat transfer performance in each first heat exchanger by avoiding a decrease in the refrigerant flow rate and a decrease in flow velocity (that is, a decrease in Reynolds number). Heat can be improved more effectively.
Therefore, it has become possible to provide a multi-type temperature control system capable of improving the air conditioning efficiency by improving the heat transfer between the refrigerant and the outside air.

上記目的を達成するための本発明のマルチ型温調システムは、冷媒を圧縮する圧縮機と冷媒を減圧膨張させる膨張弁と第1熱交換器と温調対象空間を温調するための第2熱交換器とが冷媒流路で接続された冷媒回路が複数設けられ、
運転を制御する制御手段が、前記複数の圧縮機を全て運転させる定格運転状態と、前記複数の圧縮機のうちの一部の運転対象の圧縮機を運転させる部分負荷運転状態とに運転状態を切り換え自在に構成されたものであって、
その特徴構成は、前記複数の冷媒回路が、異なる冷媒回路に備えられた前記第1熱交換器に冷媒を通流可能とする接続流路にて連結されており、
前記複数の冷媒回路の夫々において同一の冷媒回路の圧縮機と第1熱交換器とにわたって冷媒を通流させる通常通流状態、及び、前記複数の圧縮機のうちの前記運転対象の圧縮機と、その運転対象の圧縮機が備えられた運転対象の冷媒回路の第1熱交換器及び前記運転対象の冷媒回路とは異なる一部又は全ての冷媒回路の第1熱交換器とにわたって冷媒を通流させる部分負荷通流状態に切り換え自在な通流状態切換手段が設けられ、
前記接続流路として、前記複数の冷媒回路の夫々に備えられた前記第1熱交換器を並列状に接続する並列接続流路が設けられ、
前記通流状態切換手段が、前記部分負荷通流状態においては前記並列接続流路を通して冷媒を通流させるように構成され、
前記複数の冷媒回路が、異なる冷媒回路に備えられた膨張弁に冷媒を通流可能とする膨張弁用接続流路にて連結されており、
前記通流状態切換手段が、前記部分負荷通流状態において、冷媒を通流させる膨張弁の数を変更自在に構成され、
前記制御手段が、前記定格運転状態においては、前記通流状態切換手段を前記通常通流状態に切り換え、前記部分負荷運転状態においては、前記通流状態切換手段を前記部分負荷通流状態に切り換えると共に、空調負荷に応じて冷媒を通流させる膨張弁の数を変更すべく前記通流状態切換手段を作動させるように構成されている点にある。
In order to achieve the above object, a multi-type temperature control system of the present invention includes a compressor that compresses refrigerant, an expansion valve that decompresses and expands the refrigerant, a first heat exchanger, and a second temperature controller that regulates the temperature. A plurality of refrigerant circuits connected to the heat exchanger by the refrigerant flow path are provided,
The control means for controlling the operation changes the operation state into a rated operation state in which all the plurality of compressors are operated and a partial load operation state in which some of the plurality of compressors to be operated are operated. It is configured to be switchable,
The characteristic configuration is that the plurality of refrigerant circuits are connected to each other through a connection flow path that allows the refrigerant to flow to the first heat exchanger provided in different refrigerant circuits.
A normal flow state in which the refrigerant flows through the compressor and the first heat exchanger in the same refrigerant circuit in each of the plurality of refrigerant circuits, and the compressor to be operated among the plurality of compressors, and The refrigerant is passed through the first heat exchanger of the refrigerant circuit to be operated provided with the compressor to be operated and the first heat exchanger of a part or all of the refrigerant circuits different from the refrigerant circuit to be operated. A flow state switching means that can be switched to a partial load flow state to be flown is provided,
As the connection flow path, a parallel connection flow path for connecting the first heat exchangers provided in each of the plurality of refrigerant circuits in parallel is provided,
The flow state switching means is configured to flow the refrigerant through the parallel connection flow path in the partial load flow state.
The plurality of refrigerant circuits are connected by an expansion valve connection flow path that allows refrigerant to flow through expansion valves provided in different refrigerant circuits,
The flow state switching means is configured to freely change the number of expansion valves through which the refrigerant flows in the partial load flow state,
The control means switches the flow state switching means to the normal flow state in the rated operation state, and switches the flow state switching means to the partial load flow state in the partial load operation state. At the same time, the flow state switching means is operated to change the number of expansion valves through which the refrigerant flows according to the air conditioning load.

上記特徴構成によれば、前述の特徴構成と同様に、定格運転状態においては、通流状態切換手段が通常通流状態に切り換えられ、部分負荷運転状態においては、通流状態切換手段が部分負荷通流状態に切り換えられる。
そして、部分負荷通流状態においては、運転対象の圧縮機が備えられた運転対象の冷媒回路の第1熱交換器に加えて、運転対象以外の一部又は全ての冷媒回路の第1熱交換器においても、冷媒を外気と熱交換させることができるので、冷媒と外気との伝熱を改善させることができる。
ところで、部分負荷通流状態においては、冷媒を通流させる膨張弁の数が空調負荷に応じて変更される状態で、冷媒が、並列接続流路を通して、運転対象の冷媒回路の第1熱交換器及び運転対象の冷媒回路とは異なる一部又は全ての冷媒回路の第1熱交換器を並行して通流する。
そして、部分負荷通流状態では、冷媒が複数の第1熱交換器を並行して通流するにしても、空調負荷が小さいときは、冷媒が一つの膨張弁を通流するようにしたり、冷媒が並行して通流する膨張弁の数を少なくすることができる。
これにより、空調負荷が小さくなって冷媒の通流量が少なくなっても、冷媒を通流させる膨張弁の数を少なくして、膨張弁1台当たりの冷媒流量を増やすことにより、膨張弁を通流する冷媒流量が膨張弁での制御可能流量範囲の下限よりも少なくなるのを回避することができるので、適切に運転することができる。
ちなみに、部分負荷通流状態においては、冷媒が複数の第1熱交換器を並行して通流するので、各第1熱交換器を通流する冷媒の流量が減少すると共に流速が低下して、各第1熱交換器での伝熱性能が多少低下する虞があるが、運転対象の冷媒回路の第1熱交換器に加えて、運転対象以外の第1熱交換器においても冷媒を外気と熱交換させることにより、全体として冷媒と外気との伝熱を十分に改善させることができるのである。
従って、冷媒と外気との伝熱を改善させて空調効率を向上し得るマルチ型温調システムを提供することができるようになった。
According to the above characteristic configuration, like the above-described characteristic configuration, in the rated operation state, the flow state switching means is switched to the normal flow state, and in the partial load operation state, the flow state switching means is the partial load. It is switched to the flow state.
In the partial load flow state, in addition to the first heat exchanger of the operation target refrigerant circuit provided with the operation target compressor, the first heat exchange of a part or all of the refrigerant circuits other than the operation target Since the refrigerant can also exchange heat with the outside air, the heat transfer between the refrigerant and the outside air can be improved.
By the way, in the partial load flow state, the first heat exchange of the operation target refrigerant circuit is performed through the parallel connection flow path in a state where the number of expansion valves through which the refrigerant flows is changed according to the air conditioning load. And the first heat exchanger of a part or all of the refrigerant circuits different from the refrigerant circuit and the refrigerant circuit to be operated are passed in parallel.
And in the partial load flow state, even if the refrigerant flows through the plurality of first heat exchangers in parallel, when the air conditioning load is small, the refrigerant flows through one expansion valve, It is possible to reduce the number of expansion valves through which the refrigerant flows in parallel.
As a result, even if the air conditioning load decreases and the refrigerant flow rate decreases, the number of expansion valves through which the refrigerant flows is reduced, and the refrigerant flow rate per expansion valve is increased, thereby allowing the expansion valve to pass. Since it can be avoided that the flow rate of the flowing refrigerant is less than the lower limit of the controllable flow rate range in the expansion valve, it is possible to operate appropriately.
Incidentally, in the partial load flow state, since the refrigerant flows through the plurality of first heat exchangers in parallel, the flow rate of the refrigerant flowing through each first heat exchanger decreases and the flow velocity decreases. The heat transfer performance in each first heat exchanger may be somewhat reduced, but in addition to the first heat exchanger of the refrigerant circuit to be operated, the refrigerant is also discharged to the outside in the first heat exchanger other than the operation target. As a result, heat transfer between the refrigerant and the outside air can be sufficiently improved.
Therefore, it has become possible to provide a multi-type temperature control system capable of improving the air conditioning efficiency by improving the heat transfer between the refrigerant and the outside air.

本発明に係るマルチ型温調システムの更なる特徴構成は、
前記制御手段が、前記部分負荷運転状態において前記運転対象の圧縮機を変更設定自在に構成され、
前記通流状態切換手段が、前記変更設定される運転対象の圧縮機を備えた冷媒回路を前記運転対象の冷媒回路として前記部分負荷通流状態に切り換え自在に構成されている点にある。
Further features of the multi-type temperature control system according to the present invention are as follows:
The control means is configured to freely change and set the compressor to be operated in the partial load operation state,
The flow state switching means is configured to be able to switch the refrigerant circuit having the operation target compressor to be changed and set to the partial load flow state as the operation target refrigerant circuit.

上記特徴構成によれば、部分負荷運転状態において、運転対象となる圧縮機が変更設定され、そして、運転対象となる圧縮機が変更設定されると、通流状態切換手段が、変更設定された運転対象の圧縮機を備えた冷媒回路を運転対象の冷媒回路とする部分負荷通流状態に切り換えられる。
つまり、部分負荷運転状態において、運転対象の圧縮機を変更設定することができるので、複数の圧縮機の運転時間を均等化することができるものとなり、複数の圧縮機及びそれらを駆動するエンジン又はモータの寿命を均等化して、マルチ型温調システムの耐久性を向上することができる。
そして、部分負荷運転状態において運転対象の圧縮機が変更設定されても、変更設定される運転対象の圧縮機を備えた冷媒回路を運転対象の冷媒回路とする部分負荷通流状態にて、冷媒を通流させることができる。
従って、マルチ型温調システムの耐久性を向上しながら、空調効率を向上することができるようになった。
According to the above characteristic configuration, when the compressor to be operated is changed and set in the partial load operation state, and the compressor to be operated is changed and set, the flow state switching means is changed and set. The refrigerant circuit having the compressor to be operated is switched to the partial load flow state in which the refrigerant circuit to be operated is used.
That is, in the partial load operation state, the compressor to be operated can be changed and set, so that the operation time of the plurality of compressors can be equalized, and the plurality of compressors and the engine for driving them or The service life of the motor can be equalized, and the durability of the multi-type temperature control system can be improved.
Even when the operation target compressor is changed and set in the partial load operation state, the refrigerant in the partial load flow state in which the refrigerant circuit including the operation target compressor to be changed and set is the operation target refrigerant circuit. Can be circulated.
Therefore, the air conditioning efficiency can be improved while improving the durability of the multi-type temperature control system.

本発明に係るマルチ型温調システムの更なる特徴構成は、
前記複数の冷媒回路の夫々が、各冷媒回路専用の第1熱交換器と前記複数の冷媒回路で共通の複数の第2熱交換器とを並列状に接続するように構成され、
前記複数の第2熱交換器が、温調対象空間に設置される複数の室内ユニットに分散して設けられている点にある。
Further features of the multi-type temperature control system according to the present invention are as follows:
Each of the plurality of refrigerant circuits is configured to connect, in parallel, a first heat exchanger dedicated to each refrigerant circuit and a plurality of second heat exchangers common to the plurality of refrigerant circuits,
The plurality of second heat exchangers are provided in a distributed manner in a plurality of indoor units installed in the temperature control target space.

上記特徴構成によれば、複数の冷媒回路の夫々が、各冷媒回路専用の第1熱交換器と複数の冷媒回路で共通の複数の第2熱交換器とを並列状に接続するように構成されていて、複数の第2熱交換器のうちのいずれが運転されても、複数の圧縮機から任意のものを運転対象に選定して、運転される第2熱交換器と運転対象の圧縮機とにわたって冷媒を循環させることができる。
しかも、複数の室内ユニットにおける運転時間のバラツキが大きくなっても、部分負荷運転状態においては、複数の圧縮機の運転時間が均等になるように、運転対象の圧縮機を設定することができる。
従って、複数の室内ユニットにおける運転時間のバラツキに拘わらず、耐久性を向上することができるようになった。
According to the above characteristic configuration, each of the plurality of refrigerant circuits is configured to connect the first heat exchanger dedicated to each refrigerant circuit and the plurality of second heat exchangers common to the plurality of refrigerant circuits in parallel. Even if any of the plurality of second heat exchangers is operated, any one of the plurality of compressors is selected as an operation target, and the second heat exchanger to be operated and the compression of the operation target are selected. The refrigerant can be circulated through the machine.
In addition, even when the variation in operation time among the plurality of indoor units increases, the compressor to be operated can be set so that the operation times of the plurality of compressors are equal in the partial load operation state.
Therefore, the durability can be improved regardless of variations in the operation time in the plurality of indoor units.

本発明に係るマルチ型温調システムの更なる特徴構成は、
前記複数の冷媒回路の夫々が、各冷媒回路専用の第1熱交換器と各冷媒回路専用の第2交換器とを接続して構成され、
前記複数の冷媒回路の第2熱交換器夫々が、温調対象空間に設置される室内用熱交換器に循環される熱搬送用流体と冷媒とを熱交換させるように構成されている点にある。
Further features of the multi-type temperature control system according to the present invention are as follows:
Each of the plurality of refrigerant circuits is configured by connecting a first heat exchanger dedicated to each refrigerant circuit and a second exchanger dedicated to each refrigerant circuit,
Each of the second heat exchangers of the plurality of refrigerant circuits is configured to exchange heat between the heat transfer fluid circulated through the indoor heat exchanger installed in the temperature control target space and the refrigerant. is there.

上記特徴構成によれば、複数の冷媒回路の夫々が、各冷媒回路専用の第1熱交換器と各冷媒回路専用の第2交換器とを接続して構成されているので、冷媒回路全ての構成を室外ユニットに組み込むことができる。
そして、複数の冷媒回路の第2熱交換器夫々と温調対象空間に設置される室内用熱交換器とを熱搬送用流体を循環させる循環路にて接続することにより、第2熱交換器での冷媒との熱交換により冷却又は加熱した熱搬送用流体を室内用熱交換器に循環供給して、温調対象空間を冷房又は暖房することができる。
つまり、冷媒回路全ての構成を室外ユニットに組み込むことができるので、マルチ型温調システムの設置箇所では、手間のかかる冷媒流路の配管を不要にして、据付工事を簡略化することができる。
According to the above characteristic configuration, each of the plurality of refrigerant circuits is configured by connecting the first heat exchanger dedicated to each refrigerant circuit and the second exchanger dedicated to each refrigerant circuit. The configuration can be incorporated into an outdoor unit.
And by connecting each 2nd heat exchanger of a some refrigerant circuit and the indoor heat exchanger installed in the temperature regulation object space in the circulation path which circulates the heat transfer fluid, the 2nd heat exchanger The heat transfer fluid cooled or heated by heat exchange with the refrigerant in the circulation is circulated and supplied to the indoor heat exchanger, so that the temperature adjustment target space can be cooled or heated.
That is, since the entire configuration of the refrigerant circuit can be incorporated into the outdoor unit, the installation of the multi-type temperature control system can be simplified by eliminating the need for complicated refrigerant flow pipes.

本発明に係るマルチ型温調システムの更なる特徴構成は、
前記複数の冷媒回路が、異なる冷媒回路に備えられた前記第2熱交換器に冷媒を通流可能とする空調側接続流路にて連結されており、
前記複数の冷媒回路の夫々において同一の冷媒回路の圧縮機と第2熱交換器とにわたって冷媒を通流させる通常通流状態、及び、前記複数の圧縮機のうちの前記運転対象の圧縮機と、その運転対象の圧縮機が備えられた運転対象の冷媒回路の第2熱交換器及び前記運転対象の冷媒回路とは異なる一部又は全ての冷媒回路の第2熱交換器とにわたって冷媒を通流させる部分負荷通流状態に切り換え自在な空調側通流状態切換手段が設けられ、
前記制御手段が、前記定格運転状態においては、前記空調側通流状態切換手段を前記通常通流状態に切り換え、前記部分負荷運転状態においては、前記空調側通流状態切換手段を前記部分負荷通流状態に切り換えるように構成されている点にある。
Further features of the multi-type temperature control system according to the present invention are as follows:
The plurality of refrigerant circuits are connected to the second heat exchanger provided in different refrigerant circuits by an air conditioning side connection flow path that allows the refrigerant to flow therethrough,
A normal flow state in which the refrigerant flows through the compressor and the second heat exchanger in the same refrigerant circuit in each of the plurality of refrigerant circuits, and the compressor to be operated among the plurality of compressors; The refrigerant is passed through the second heat exchanger of the refrigerant circuit to be operated provided with the compressor to be operated and the second heat exchanger of a part or all of the refrigerant circuits different from the refrigerant circuit to be operated. Air-conditioning side flow state switching means that can be switched to a partial load flow state to be flown is provided,
The control means switches the air conditioning side flow state switching means to the normal flow state in the rated operation state, and switches the air conditioning side flow state switching means to the partial load passage in the partial load operation state. It is in the point comprised so that it may switch to a flow state.

上記特徴構成によれば、定格運転状態においては、空調側通流状態切換手段が通常通流状態に切り換えられて、複数の冷媒回路の夫々において、同一の冷媒回路の圧縮機と第2熱交換器とにわたって冷媒が通流する。
部分負荷運転状態においては、空調側通流状態切換手段が部分負荷通流状態に切り換えられて、運転対象の冷媒回路の第2熱交換器、及び、運転対象の冷媒回路とは異なる一部又は全ての冷媒回路の第2熱交換器に供給された冷媒が運転対象の圧縮機に戻されるので、運転対象の圧縮機が備えられた運転対象の冷媒回路の第2熱交換器に加えて、運転対象以外の一部又は全ての冷媒回路に備えられた第2熱交換器においても、冷媒を熱搬送用流体と熱交換させることができるものとなり、冷媒と熱搬送用流体との伝熱を改善させることができる。
従って、冷媒と熱搬送用流体との伝熱を改善させることができるので、空調効率をより一層向上することができるようになった。
According to the above characteristic configuration, in the rated operation state, the air-conditioning-side flow state switching means is switched to the normal flow state, and the second heat exchange with the compressor of the same refrigerant circuit is performed in each of the plurality of refrigerant circuits. Refrigerant flows through the vessel.
In the partial load operation state, the air-conditioning-side flow state switching means is switched to the partial load flow state, and the second heat exchanger of the operation target refrigerant circuit and a part different from the operation target refrigerant circuit or Since the refrigerant supplied to the second heat exchanger of all the refrigerant circuits is returned to the operation target compressor, in addition to the second heat exchanger of the operation target refrigerant circuit provided with the operation target compressor, In the second heat exchanger provided in some or all refrigerant circuits other than the operation target, the refrigerant can be heat-exchanged with the heat transfer fluid, and the heat transfer between the refrigerant and the heat transfer fluid is performed. Can be improved.
Therefore, since heat transfer between the refrigerant and the heat transfer fluid can be improved, the air conditioning efficiency can be further improved.

本発明に係るマルチ型温調システムの更なる特徴構成は、
前記空調側接続流路として、前記複数の冷媒回路の夫々に備えられた前記第2熱交換器を並列状に接続する空調側並列接続流路が設けられ、
前記空調側通流状態切換手段が、前記部分負荷通流状態においては前記空調側並列接続流路を通して冷媒を通流させるように構成されている点にある。
Further features of the multi-type temperature control system according to the present invention are as follows:
As the air conditioning side connection flow path, an air conditioning side parallel connection flow path for connecting the second heat exchangers provided in each of the plurality of refrigerant circuits in parallel is provided,
The air conditioning side flow state switching means is configured to allow the refrigerant to flow through the air conditioning side parallel connection flow path in the partial load flow state.

上記特徴構成によれば、部分負荷通流状態においては、空調側並列接続流路を通して、冷媒が運転対象の冷媒回路の第2熱交換器及び運転対象の冷媒回路とは異なる一部又は全ての冷媒回路の第2熱交換器を並行して通流する。
つまり、部分負荷通流状態においては、冷媒が複数の第2熱交換器を並行して通流するので、各第2熱交換器を通流する冷媒の流量が減少すると共に流速が低下して、各第2熱交換器での伝熱性能が多少低下する虞があるが、運転対象の冷媒回路の第2熱交換器に加えて、運転対象以外の第2熱交換器においても冷媒を熱搬送用流体と熱交換させるので、全体として冷媒と熱搬送用流体との伝熱を十分に改善させることができるものとなり、空調効率を向上することができる。
According to the above characteristic configuration, in the partial load flow state, a part or all of the refrigerant is different from the second heat exchanger of the operation target refrigerant circuit and the operation target refrigerant circuit through the air conditioning side parallel connection flow path. The second heat exchanger of the refrigerant circuit is passed in parallel.
That is, in the partial load flow state, the refrigerant flows through the plurality of second heat exchangers in parallel, so that the flow rate of the refrigerant flowing through each second heat exchanger decreases and the flow velocity decreases. The heat transfer performance in each of the second heat exchangers may be somewhat lowered, but in addition to the second heat exchanger of the refrigerant circuit to be operated, the refrigerant is also heated in the second heat exchanger other than the operation target. Since heat is exchanged with the transport fluid, heat transfer between the refrigerant and the heat transport fluid can be sufficiently improved as a whole, and air conditioning efficiency can be improved.

本発明に係るマルチ型温調システムの更なる特徴構成は、
前記空調側接続流路として、前記複数の冷媒回路の夫々に備えられた前記第2熱交換器を直列状に接続する空調側直列接続流路が設けられ、
前記空調側通流状態切換手段が、前記部分負荷通流状態においては前記空調側直列接続流路を通して冷媒を通流させるように構成されている点にある。
Further features of the multi-type temperature control system according to the present invention are as follows:
As the air conditioning side connection flow path, an air conditioning side series connection flow path for connecting the second heat exchangers provided in each of the plurality of refrigerant circuits in series is provided,
The air-conditioning-side flow state switching means is configured to allow the refrigerant to flow through the air-conditioning-side series connection flow path in the partial load flow state.

上記特徴構成によれば、部分負荷通流状態においては、空調側直列接続流路を通して、冷媒が運転対象の冷媒回路の第2熱交換器、運転対象の冷媒回路とは異なる一部又は全ての冷媒回路の第2熱交換器を1台ずつ順に通流する。
これにより、冷媒を熱搬送用流体と熱交換させる状態で通流させる経路を長くすることができると共に、冷媒が複数の第2熱交換器を並行して通流する場合に起こり得る第2熱交換器での冷媒の流量の減少及び流速の低下を回避して、各第2熱交換器での伝熱性能の低下を回避することができるので、冷媒と熱搬送用流体との伝熱を一層効果的に改善させて、空調効率を向上することができる。
According to the above characteristic configuration, in the partial load flow state, through the air conditioning side series connection flow path, the refrigerant is partly or entirely different from the second heat exchanger of the operation target refrigerant circuit and the operation target refrigerant circuit. The second heat exchanger of the refrigerant circuit is sequentially passed one by one.
This makes it possible to lengthen the path through which the refrigerant flows in a state of exchanging heat with the heat transfer fluid, and to generate second heat that can occur when the refrigerant flows through the plurality of second heat exchangers in parallel. Since it is possible to avoid a decrease in the flow rate of refrigerant and a decrease in flow velocity in the exchanger and a decrease in heat transfer performance in each second heat exchanger, heat transfer between the refrigerant and the heat transfer fluid can be avoided. It is possible to improve the air conditioning efficiency more effectively.

本発明に係るマルチ型温調システムの更なる特徴構成は、
前記複数の冷媒回路の夫々に、前記圧縮機、凝縮器として機能する前記第1熱交換器、前記膨張弁、蒸発器として機能する前記第2熱交換器の順に冷媒を通流させる冷房用通流状態と、前記圧縮機、凝縮器として機能する前記第2熱交換器、前記膨張弁、蒸発器として機能する前記第1熱交換器の順に冷媒を通流させる暖房用通流状態とに冷媒の通流状態を切り換え自在な冷暖切換手段が設けられている点にある。
Further features of the multi-type temperature control system according to the present invention are as follows:
A cooling passage in which the refrigerant flows in the order of the compressor, the first heat exchanger that functions as a condenser, the expansion valve, and the second heat exchanger that functions as an evaporator, in each of the plurality of refrigerant circuits. Refrigerant in the flow state and in the heating flow-through state in which the refrigerant flows in the order of the compressor, the second heat exchanger functioning as a condenser, the expansion valve, and the first heat exchanger functioning as an evaporator. This is in that a cooling / heating switching means capable of switching the flow state is provided.

上記特徴構成によれば、冷暖切換手段を冷房用通流状態に切り換えると、蒸発器として機能する第2熱交換器にて、温調対象空間の空気、又は、温調対象空間に設置される室内用熱交換器に循環供給される熱搬送用流体を冷却して、温調対象空間を冷房することができる。
そして、冷暖切換手段が冷房用通流状態に切り換えられた状態において、通流状態切換手段が部分負荷通流状態に切り換えられると、運転対象の圧縮機と、その運転対象の圧縮機が備えられた運転対象の冷媒回路の第1熱交換器及び運転対象の冷媒回路とは異なる一部又は全ての冷媒回路の第1熱交換器とにわたって冷媒が通流することになる。
又、冷暖切換手段を暖房用通流状態に切り換えると、凝縮器として機能する第2熱交換器にて、温調対象空間の空気、又は、温調対象空間に設置される室内用熱交換器に循環供給される熱搬送用流体を加熱して、温調対象空間を暖房することができる。
そして、冷暖切換手段が暖房用通流状態に切り換えられた状態において、通流状態切換手段が部分負荷通流状態に切り換えられると、運転対象の圧縮機と、その運転対象の圧縮機が備えられた運転対象の冷媒回路の第1熱交換器及び運転対象の冷媒回路とは異なる一部又は全ての冷媒回路の第1熱交換器とにわたって冷媒が通流することになる。
従って、冷房運転と暖房運転とに切り換え自在なマルチ型温調システムにおいて、空調効率を向上することができるようになった。
According to the above characteristic configuration, when the cooling / heating switching means is switched to the cooling flow state, the second heat exchanger functioning as an evaporator is installed in the air in the temperature adjustment target space or in the temperature adjustment target space. The heat transfer fluid circulated and supplied to the indoor heat exchanger can be cooled to cool the temperature adjustment target space.
When the cooling / heating switching means is switched to the cooling flow state, the operation target compressor and the operation target compressor are provided when the flow state switching means is switched to the partial load flow state. The refrigerant flows through the first heat exchanger of the refrigerant circuit to be operated and the first heat exchanger of a part or all of the refrigerant circuits different from the refrigerant circuit to be operated.
Further, when the cooling / heating switching means is switched to the heating flow state, the air in the temperature adjustment target space or the indoor heat exchanger installed in the temperature adjustment target space in the second heat exchanger functioning as a condenser It is possible to heat the temperature control target space by heating the heat transfer fluid circulated and supplied to the air.
In the state where the cooling / heating switching means is switched to the heating flow state, the operation target compressor and the operation target compressor are provided when the flow state switching means is switched to the partial load flow state. The refrigerant flows through the first heat exchanger of the refrigerant circuit to be operated and the first heat exchanger of a part or all of the refrigerant circuits different from the refrigerant circuit to be operated.
Therefore, in a multi-type temperature control system that can be switched between a cooling operation and a heating operation, the air conditioning efficiency can be improved.

本発明に係るマルチ型温調システムの更なる特徴構成は、
前記圧縮機がエンジンにて駆動される点にある。
Further features of the multi-type temperature control system according to the present invention are as follows:
The compressor is driven by an engine.

上記特徴構成によれば、圧縮機がエンジンにて駆動され、そのエンジンの排熱を暖房用や給湯用に利用することができる。又、温熱を冷熱に変換することができる装置が設けられる場合は、エンジンの排熱を冷熱変換用として用いることができる。
従って、圧縮機を駆動するエンジンの排熱をこのマルチ型温調システムとは別の空調機器での暖房用や冷房用に利用することができ、又、給湯用にも利用することができるので、空調効率をより一層向上することができるようになった。
According to the above characteristic configuration, the compressor is driven by the engine, and the exhaust heat of the engine can be used for heating or hot water supply. Further, when a device capable of converting warm heat into cold heat is provided, the exhaust heat of the engine can be used for cold heat conversion.
Therefore, the exhaust heat of the engine that drives the compressor can be used for heating and cooling in an air conditioner different from this multi-type temperature control system, and can also be used for hot water supply. The air conditioning efficiency can be further improved.

第1実施形態に係るマルチ型空調システムの構成、及び、冷房運転状態での冷媒の流れを示す図The figure which shows the structure of the multi type air conditioning system which concerns on 1st Embodiment, and the flow of the refrigerant | coolant in a cooling operation state 第1実施形態に係る暖房運転状態での冷媒の流れを示す図The figure which shows the flow of the refrigerant | coolant in the heating operation state which concerns on 1st Embodiment. 第2実施形態に係るマルチ型空調システムの構成、及び、冷房運転状態での冷媒の流れを示す図The figure which shows the structure of the multi-type air conditioning system which concerns on 2nd Embodiment, and the flow of the refrigerant | coolant in a cooling operation state 第2実施形態に係る暖房運転状態での冷媒の流れを示す図The figure which shows the flow of the refrigerant | coolant in the heating operation state which concerns on 2nd Embodiment. 第3実施形態に係るマルチ型空調システムの構成、及び、冷房運転状態での冷媒の流れを示す図The figure which shows the structure of the multi type air conditioning system which concerns on 3rd Embodiment, and the flow of the refrigerant | coolant in a cooling operation state 第3実施形態に係る暖房運転状態での冷媒の流れを示す図The figure which shows the flow of the refrigerant | coolant in the heating operation state which concerns on 3rd Embodiment. 第3実施形態に係る冷房運転状態での冷媒の流れを示す図The figure which shows the flow of the refrigerant | coolant in the air_conditionaing | cooling operation state which concerns on 3rd Embodiment. 第3実施形態に係る暖房運転状態での冷媒の流れを示す図The figure which shows the flow of the refrigerant | coolant in the heating operation state which concerns on 3rd Embodiment. 第4実施形態に係るマルチ型空調システムの構成、及び、冷房運転状態での冷媒の流れを示す図The figure which shows the structure of the multi type air conditioning system which concerns on 4th Embodiment, and the flow of the refrigerant | coolant in a cooling operation state 第4実施形態に係る暖房運転状態での冷媒の流れを示す図The figure which shows the flow of the refrigerant | coolant in the heating operation state which concerns on 4th Embodiment. 第4実施形態に係る冷房運転状態での冷媒の流れを示す図The figure which shows the flow of the refrigerant | coolant in the air_conditionaing | cooling operation state which concerns on 4th Embodiment. 第4実施形態に係る暖房運転状態での冷媒の流れを示す図The figure which shows the flow of the refrigerant | coolant in the heating operation state which concerns on 4th Embodiment. 第5実施形態に係るマルチ型空調システムの構成、及び、冷房運転状態での冷媒の流れを示す図The figure which shows the structure of the multi type air conditioning system which concerns on 5th Embodiment, and the flow of the refrigerant | coolant in a cooling operation state 第5実施形態に係る暖房運転状態での冷媒の流れを示す図The figure which shows the flow of the refrigerant | coolant in the heating operation state which concerns on 5th Embodiment. 第6実施形態に係るマルチ型空調システムの構成、及び、冷房運転状態での冷媒の流れを示す図The figure which shows the structure of the multi type | mold air conditioning system which concerns on 6th Embodiment, and the flow of the refrigerant | coolant in a cooling operation state 第6実施形態に係る暖房運転状態での冷媒の流れを示す図The figure which shows the flow of the refrigerant | coolant in the heating operation state which concerns on 6th Embodiment. 第6実施形態に係る冷房運転状態での冷媒の流れを示す図The figure which shows the flow of the refrigerant | coolant in the air_conditionaing | cooling operation state which concerns on 6th Embodiment. 第6実施形態に係る暖房運転状態での冷媒の流れを示す図The figure which shows the flow of the refrigerant | coolant in the heating operation state which concerns on 6th Embodiment. 第6実施形態に係る冷房運転状態での冷媒の流れを示す図The figure which shows the flow of the refrigerant | coolant in the air_conditionaing | cooling operation state which concerns on 6th Embodiment. 第6実施形態に係る暖房運転状態での冷媒の流れを示す図The figure which shows the flow of the refrigerant | coolant in the heating operation state which concerns on 6th Embodiment. 第6実施形態に係る冷房運転状態での冷媒の流れを示す図The figure which shows the flow of the refrigerant | coolant in the air_conditionaing | cooling operation state which concerns on 6th Embodiment. 第6実施形態に係る暖房運転状態での冷媒の流れを示す図The figure which shows the flow of the refrigerant | coolant in the heating operation state which concerns on 6th Embodiment. 第7実施形態に係るマルチ型空調システムの構成、及び、冷房運転状態での冷媒の流れを示す図The figure which shows the structure of the multi type air conditioning system which concerns on 7th Embodiment, and the flow of the refrigerant | coolant in a cooling operation state 第7実施形態に係る暖房運転状態での冷媒の流れを示す図The figure which shows the flow of the refrigerant | coolant in the heating operation state which concerns on 7th Embodiment. 第8実施形態に係るマルチ型空調システムの構成、及び、冷房運転状態での冷媒の流れを示す図The figure which shows the structure of the multi-type air conditioning system which concerns on 8th Embodiment, and the flow of the refrigerant | coolant in a cooling operation state 第8実施形態に係る冷房運転状態での冷媒の流れを示す図The figure which shows the flow of the refrigerant | coolant in the air_conditionaing | cooling operation state which concerns on 8th Embodiment. 第9実施形態に係るマルチ型空調システムの構成、及び、冷房運転状態での冷媒の流れを示す図The figure which shows the structure of the multi type | mold air conditioning system which concerns on 9th Embodiment, and the flow of the refrigerant | coolant in a cooling operation state 第9実施形態に係る冷房運転状態での冷媒の流れを示す図The figure which shows the flow of the refrigerant | coolant in the air_conditionaing | cooling operation state which concerns on 9th Embodiment. 第10実施形態に係るマルチ型空調システムの構成、及び、冷房運転状態での冷媒の流れを示す図The figure which shows the structure of the multi type | mold air conditioning system which concerns on 10th Embodiment, and the flow of the refrigerant | coolant in a cooling operation state 第10実施形態に係る冷房運転状態での冷媒の流れを示す図The figure which shows the flow of the refrigerant | coolant in the air_conditionaing | cooling operation state which concerns on 10th Embodiment. 別実施形態に係るマルチ型空調システムの構成、及び、冷房運転状態での冷媒の流れを示す図The figure which shows the structure of the multi-type air conditioning system which concerns on another embodiment, and the flow of the refrigerant | coolant in a cooling operation state 別実施形態に係るマルチ型空調システムの構成、及び、暖房運転状態での冷媒の流れを示す図The figure which shows the structure of the multi-type air conditioning system which concerns on another embodiment, and the flow of the refrigerant | coolant in a heating operation state 別実施形態に係るマルチ型空調システムの構成、及び、冷房運転状態での冷媒の流れを示す図The figure which shows the structure of the multi-type air conditioning system which concerns on another embodiment, and the flow of the refrigerant | coolant in a cooling operation state 別実施形態に係るマルチ型空調システムの構成、及び、暖房運転状態での冷媒の流れを示す図The figure which shows the structure of the multi-type air conditioning system which concerns on another embodiment, and the flow of the refrigerant | coolant in a heating operation state 別実施形態に係るマルチ型空調システムの構成、及び、冷房運転状態での冷媒の流れを示す図The figure which shows the structure of the multi-type air conditioning system which concerns on another embodiment, and the flow of the refrigerant | coolant in a cooling operation state 別実施形態に係るマルチ型空調システムの構成、及び、暖房運転状態での冷媒の流れを示す図The figure which shows the structure of the multi-type air conditioning system which concerns on another embodiment, and the flow of the refrigerant | coolant in a heating operation state

以下、図面に基づいて、本発明の実施形態を説明する。
〔第1実施形態〕
先ず、図1及び図2に基づいて、第1実施形態を説明する。
尚、図1は、マルチ型温調システムとしてのマルチ型空調システムの全体構成、及び、冷媒回路Cを冷房運転状態に切り換えた状態での冷媒の流れを示し、図2は、冷媒回路Cを暖房運転状態に切り換えた状態での冷媒の流れを示し、更に、図1及び図2夫々において、(a)は複数の圧縮機1を全て運転させる定格運転状態での冷媒の流れを示し、(b)は複数の圧縮機1のうちの一部の運転対象の圧縮機2を運転させる部分負荷運転状態(第1部分負荷運転状態)での冷媒の流れを示す。尚、図1及び図2夫々、並びに、後述の他の実施形態を説明する図夫々において、冷媒が通流している部位を太線にて示し、冷媒が通流していない部位を細線にて示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
First, the first embodiment will be described with reference to FIGS. 1 and 2.
FIG. 1 shows the overall configuration of a multi-type air conditioning system as a multi-type temperature control system, and the flow of refrigerant in a state where the refrigerant circuit C is switched to the cooling operation state, and FIG. FIG. 1 and FIG. 2 each show the flow of refrigerant in a rated operation state in which all the plurality of compressors 1 are operated. b) shows the flow of the refrigerant in a partial load operation state (first partial load operation state) in which some of the operation target compressors 2 among the plurality of compressors 1 are operated. In addition, in each of FIG. 1 and FIG. 2 and each of the drawings for explaining other embodiments described later, a portion through which the refrigerant flows is shown by a thick line, and a portion through which the refrigerant does not flow is shown by a thin line.

マルチ型空調システムには、冷媒を圧縮する圧縮機1と冷媒を減圧膨張させる膨張弁2と第1熱交換器としての室外用熱交換器3と空調対象空間(温調対象空間に相当する)を空調するための第2熱交換器としての空調用熱交換器4とが冷媒流路5で接続された冷媒回路Cが複数設けられ、又、マルチ型空調システムの運転を制御する制御手段としての制御部6も設けられている。
各冷媒回路Cの圧縮機1は、ガスエンジン9にて駆動される。このガスエンジン9を冷却するエンジン冷却水が冷却水循環路10を通して排熱利用熱交換器11に循環されるように構成されている。図示を省略するが、排熱利用熱交換器11は、給湯用や暖房用等の熱源とするように構成され、ガスエンジン9の排熱が給湯用や暖房用に利用される。
The multi-type air conditioning system includes a compressor 1 that compresses refrigerant, an expansion valve 2 that decompresses and expands the refrigerant, an outdoor heat exchanger 3 as a first heat exchanger, and an air conditioning target space (corresponding to a temperature control target space). As a control means for controlling the operation of the multi-type air-conditioning system, a plurality of refrigerant circuits C are provided in which the air-conditioning heat exchanger 4 as a second heat exchanger for air-conditioning is connected by the refrigerant flow path 5. The control unit 6 is also provided.
The compressor 1 of each refrigerant circuit C is driven by a gas engine 9. The engine cooling water for cooling the gas engine 9 is circulated to the exhaust heat utilization heat exchanger 11 through the cooling water circulation path 10. Although not shown, the exhaust heat utilization heat exchanger 11 is configured to be a heat source for hot water supply or heating, and the exhaust heat of the gas engine 9 is used for hot water supply or heating.

そして、制御部6が、複数の圧縮機1を全て運転させる定格運転状態と、複数の圧縮機1のうちの一部の運転対象の圧縮機1を運転させる部分負荷運転状態とに運転状態を切り換え自在に構成されている。   And the control part 6 changes an operation state into the rated operation state which operates all the some compressors 1, and the partial load operation state which operates the compressor 1 of some operation objects among the some compressors 1. FIG. It is configured to be switchable.

この第1実施形態では、冷媒回路Cが2台設けられている。尚、各図では、2台の冷媒回路Cを区別するため、冷媒回路を示す符号Cに添え字a,bを付し、又、以下の説明において、2台の冷媒回路Cを区別して説明するときは、冷媒回路を示す符号Cに添え字a,bを付して、第1冷媒回路Ca、第2冷媒回路Cbと記載する。   In the first embodiment, two refrigerant circuits C are provided. In addition, in each figure, in order to distinguish the two refrigerant circuits C, the subscripts a and b are attached to the code | symbol C which shows a refrigerant circuit, and the two refrigerant circuits C are distinguished and demonstrated in the following description. In order to do this, the subscripts a and b are added to the symbol C indicating the refrigerant circuit, and they are described as the first refrigerant circuit Ca and the second refrigerant circuit Cb.

複数の冷媒回路Cの夫々には、圧縮機1、凝縮器として機能する室外用熱交換器3、膨張弁2、蒸発器として機能する空調用熱交換器4の順に巡る冷房運転用循環経路で冷媒を通流させる冷房用通流状態と、圧縮機1、凝縮器として機能する空調用熱交換器4、膨張弁2、蒸発器として機能する室外用熱交換器3の順に巡る暖房運転用循環経路で冷媒を通流させる暖房用通流状態とに冷媒の通流状態を切り換え自在な冷暖切換手段としての四方弁7が設けられている。   In each of the plurality of refrigerant circuits C, there is a circulation path for cooling operation that goes in order of the compressor 1, the outdoor heat exchanger 3 that functions as a condenser, the expansion valve 2, and the heat exchanger 4 for air conditioning that functions as an evaporator. Circulation for cooling operation in which the refrigerant is passed, the compressor 1, the air-conditioning heat exchanger 4 that functions as a condenser, the expansion valve 2, and the outdoor heat exchanger 3 that functions as an evaporator. A four-way valve 7 is provided as a cooling / heating switching means capable of switching the refrigerant flow state to the heating flow state in which the refrigerant flows through the path.

冷媒回路Cについて説明を加えると、四方弁7は、冷媒出入用の4つのポート7a,7b,7c,7dを備えている。
そして、ポート7aと圧縮機1の冷媒吐出口とが冷媒流路5のうちの対圧縮機出口流路5aにて接続され、ポート7bと圧縮機1の冷媒入口とが冷媒流路5のうちの対圧縮機入口流路5bにて接続され、ポート7cと室外用熱交換器3の一方の冷媒出入口とが冷媒流路5のうちの対室外用熱交換器流路5cにて接続され、ポート7dと空調用熱交換器4の一方の冷媒出入口とが冷媒流路5のうちの対空調用熱交換器流路5dにて接続され、更に、室外用熱交換器3の他方の冷媒出入口と空調用熱交換器4の他方の冷媒出入口とが冷媒流路5のうちの熱交換器間流路5eにて接続されている。
前記膨張弁2が、熱交換器間流路5eに設けられ、対圧縮機入口流路5bには、アキュムレータ8が設けられている。
The refrigerant circuit C will be further described. The four-way valve 7 includes four ports 7a, 7b, 7c, and 7d for entering and leaving the refrigerant.
The port 7 a and the refrigerant discharge port of the compressor 1 are connected by a counter-compressor outlet channel 5 a in the refrigerant channel 5, and the port 7 b and the refrigerant inlet of the compressor 1 are in the refrigerant channel 5. And the port 7c and one refrigerant inlet / outlet of the outdoor heat exchanger 3 are connected by the outdoor heat exchanger flow path 5c of the refrigerant flow path 5, The port 7d and one refrigerant inlet / outlet of the air-conditioning heat exchanger 4 are connected by an air-conditioning heat exchanger channel 5d in the refrigerant channel 5, and the other refrigerant inlet / outlet of the outdoor heat exchanger 3 is further connected. And the other refrigerant inlet / outlet of the air-conditioning heat exchanger 4 are connected to each other through the inter-heat exchanger channel 5 e in the refrigerant channel 5.
The expansion valve 2 is provided in the heat exchanger flow path 5e, and an accumulator 8 is provided in the compressor inlet flow path 5b.

この第1実施形態では、2台の冷媒回路Cの夫々が、各冷媒回路専用の室外用熱交換器3と2台の冷媒回路Cで共通の複数(この実施形態では6台)の空調用熱交換器4とを対空調用熱交換器流路5d及び熱交換器間流路5eにより並列状に接続するように構成されている。
冷媒回路Cのうち圧縮機1、アキュムレータ8、膨張弁2及び室外用熱交換器3が1台ずつ設けられて、室外ユニットUeが構成されている。つまり、室外ユニットUeが2台設けられている。図示を省略するが、各室外ユニットUeには、室外用熱交換器3を通流する冷媒と熱交換させるために外気を室外用熱交換器3に通風する外気用通風機が設けられている。
又、6台の空調用熱交換器4が1台ずつ室内ユニットUiに設けられている。各室内ユニットUiは、空調対象空間に設置されるものである。図示を省略するが、各室内ユニットUiには、空調対象空間内の空気を空調用熱交換器4に通風したのち空調対象空間に戻すように通風作用する空調用送風機、及び、室内ユニットUiの運転及び停止等を指令するリモートコントローラ等が設けられている。つまり、6台の室内ユニットUiは、夫々のリモートコントローラにより各別に運転及び停止が可能である。
In this first embodiment, each of the two refrigerant circuits C is used for air conditioning for a plurality of (6 in this embodiment) common to the outdoor heat exchanger 3 dedicated to each refrigerant circuit and the two refrigerant circuits C. The heat exchanger 4 is configured to be connected in parallel by a heat exchanger channel 5d for air conditioning and a channel 5e between heat exchangers.
In the refrigerant circuit C, the compressor 1, the accumulator 8, the expansion valve 2, and the outdoor heat exchanger 3 are provided one by one to constitute the outdoor unit Ue. That is, two outdoor units Ue are provided. Although not shown in the drawings, each outdoor unit Ue is provided with an outdoor air ventilator for passing outside air through the outdoor heat exchanger 3 in order to exchange heat with the refrigerant flowing through the outdoor heat exchanger 3. .
Further, six air conditioning heat exchangers 4 are provided in the indoor unit Ui one by one. Each indoor unit Ui is installed in the air conditioning target space. Although not shown in the drawings, each indoor unit Ui has an air-conditioning blower that ventilates air in the air-conditioning target space so that the air in the air-conditioning heat exchanger 4 is returned to the air-conditioning target space, and the indoor unit Ui. A remote controller or the like for commanding operation and stop is provided. That is, the six indoor units Ui can be individually operated and stopped by the respective remote controllers.

そして、図1に示すように、操作盤(図示省略)から冷房運転が指令されると、ポート7a,7c間が連通し且つポート7b,7d間が連通する状態に四方弁7が切り換えられて、冷媒回路Cが冷房運転状態に切り換えられる。
この冷房運転状態では、圧縮機1から吐出される高温高圧の蒸気冷媒が四方弁7を経由して凝縮器として機能する室外用熱交換器3に供給され、その室外用熱交換器3において蒸気冷媒が外気との熱交換により熱を放出して凝縮液化する。
室外用熱交換器3から流出した液冷媒は膨張弁2を通過して減圧されたのち、蒸発器として機能する空調用熱交換器4に供給され、その空調用熱交換器4において液冷媒が空調対象空間の空気から熱を奪って蒸発気化する。
空調用熱交換器4から流出した蒸気冷媒は、四方弁7を経由し、更にアキュムレータ8を通過して液分が除去されたのち圧縮機1に戻り、以降、同様の冷房運転用循環経路で冷媒が循環される。
As shown in FIG. 1, when a cooling operation is commanded from an operation panel (not shown), the four-way valve 7 is switched to a state in which the ports 7a and 7c are in communication and the ports 7b and 7d are in communication. The refrigerant circuit C is switched to the cooling operation state.
In this cooling operation state, the high-temperature and high-pressure steam refrigerant discharged from the compressor 1 is supplied to the outdoor heat exchanger 3 functioning as a condenser via the four-way valve 7, and the steam is discharged from the outdoor heat exchanger 3. The refrigerant releases heat by heat exchange with the outside air and condensates.
The liquid refrigerant flowing out of the outdoor heat exchanger 3 passes through the expansion valve 2 and is depressurized. Then, the liquid refrigerant is supplied to the air conditioning heat exchanger 4 functioning as an evaporator, and the liquid refrigerant is supplied to the air conditioning heat exchanger 4. Removes heat from the air in the air-conditioned space and evaporates.
The vapor refrigerant flowing out of the air-conditioning heat exchanger 4 passes through the four-way valve 7 and further passes through the accumulator 8 to be removed from the liquid, and then returns to the compressor 1. The refrigerant is circulated.

図2に示すように、前記操作盤から暖房運転が指令されると、ポート7a,7d間が連通し且つポート7b,7c間が連通する状態に四方弁7が切り換えられて、冷媒回路Cが暖房運転状態に切り換えられる。
この暖房運転状態では、圧縮機1から吐出される高温高圧の蒸気冷媒が四方弁7を経由して凝縮器として機能する空調用熱交換器4に供給され、その空調用熱交換器4において蒸気冷媒が空調対象空間の空気との熱交換により熱を放出して凝縮液化する。
空調用熱交換器4から流出した液冷媒は膨張弁2を通過して減圧されたのち、蒸発器として機能する室外用熱交換器3に供給され、その室外用熱交換器3において液冷媒が外気から熱を奪って蒸発気化する。
室外用熱交換器3から流出した蒸気冷媒は、四方弁7を経由し、更にアキュムレータ8を通過して液分が除去されたのち圧縮機1に戻り、以降、同様の暖房運転用循環経路で冷媒が循環される。
As shown in FIG. 2, when a heating operation is commanded from the operation panel, the four-way valve 7 is switched to a state where the ports 7a and 7d are in communication and the ports 7b and 7c are in communication, and the refrigerant circuit C is Switch to the heating operation state.
In this heating operation state, the high-temperature and high-pressure vapor refrigerant discharged from the compressor 1 is supplied to the air-conditioning heat exchanger 4 functioning as a condenser via the four-way valve 7, and the steam is discharged from the air-conditioning heat exchanger 4. The refrigerant releases heat by heat exchange with the air in the air-conditioning target space, and condensates.
The liquid refrigerant flowing out of the air conditioning heat exchanger 4 passes through the expansion valve 2 and is depressurized. Then, the liquid refrigerant is supplied to the outdoor heat exchanger 3 that functions as an evaporator. In the outdoor heat exchanger 3, the liquid refrigerant is Removes heat from outside air and evaporates.
The vapor refrigerant that has flowed out of the outdoor heat exchanger 3 passes through the four-way valve 7 and further passes through the accumulator 8 to be removed from the liquid, and then returns to the compressor 1. The refrigerant is circulated.

本発明では、複数の冷媒回路Cが、異なる冷媒回路Cに備えられた室外用熱交換器3に冷媒を通流可能とする接続流路としての室外側接続流路Qにて連結されている。
そして、複数の冷媒回路Cの夫々において同一の冷媒回路Cの圧縮機1と室外用熱交換器3とにわたって冷媒を通流させる通常通流状態、及び、複数の圧縮機1のうちの一部の運転対象の圧縮機1と、その運転対象の圧縮機1が備えられた運転対象の冷媒回路Cの室外用熱交換器3及び運転対象の冷媒回路Cとは異なる全ての冷媒回路Cの室外用熱交換器3とにわたって冷媒を通流させる部分負荷通流状態に切り換え自在な通流状態切換手段として室外側通流状態切換部Sが設けられている。
更に、この第1実施形態では、室外側接続流路Qとして、複数の冷媒回路Cの夫々に備えられた室外側熱交換器3を直列状に接続する直列接続流路としての室外側直列接続流路Qsが設けられ、室外側通流状態切換部Sが、部分負荷通流状態においては室外側直列接続流路Qsを通して冷媒を通流させるように構成されている。
そして、前記制御部6が、定格運転状態においては、室外側通流状態切換部Sを通常通流状態に切り換え、部分負荷運転状態においては、室外側通流状態切換部Sを部分負荷通流状態に切り換えるように構成されている。
In the present invention, a plurality of refrigerant circuits C are connected to an outdoor heat exchanger 3 provided in different refrigerant circuits C by an outdoor connection channel Q as a connection channel that allows the refrigerant to flow. .
In each of the plurality of refrigerant circuits C, a normal flow state in which the refrigerant flows through the compressor 1 and the outdoor heat exchanger 3 of the same refrigerant circuit C, and a part of the plurality of compressors 1 Of the operation target compressor 1, the outdoor heat exchanger 3 of the operation target refrigerant circuit C provided with the operation target compressor 1, and all the refrigerant circuits C that are different from the operation target refrigerant circuit C. The outdoor-side flow state switching unit S is provided as a flow state switching means that can be switched to a partial load flow state that allows the refrigerant to flow through the heat exchanger 3.
Furthermore, in this 1st Embodiment, the outdoor side serial connection as a serial connection flow path which connects the outdoor side heat exchanger 3 with which each of the some refrigerant circuit C was provided in series as the outdoor connection flow path Q. A channel Qs is provided, and the outdoor flow state switching unit S is configured to flow the refrigerant through the outdoor series connection flow channel Qs in the partial load flow state.
The control unit 6 switches the outdoor flow state switching unit S to the normal flow state in the rated operation state, and the outdoor flow state switching unit S to the partial load flow in the partial load operation state. It is configured to switch to a state.

室外側直列接続流路Qs及び室外側通流状態切換部Sについて説明を加える。
この第1実施形態では、第1冷媒回路Caの熱交換器間流路5eと第2冷媒回路Cbの対室外用熱交換器流路5cとを連通接続する第3連通流路P3、及び、その流路を開閉する第3連通流路開閉弁V3が設けられている。
又、第2冷媒回路Cbの対室外用熱交換器流路5cにおける第3連通流路P3の接続箇所よりも四方弁7側の箇所には、流路開閉用の対室外用熱交換器流路開閉弁Vcが設けられ、更に、第2冷媒回路Cbの対空調用熱交換器流路5dにおける複数の空調用熱交換器4に対する分岐箇所よりも四方弁7側の箇所には、流路開閉用の対空調用熱交換器流路開閉弁Vdが設けられている。
つまり、この第1実施形態では、室外側直列接続流路Qsが第3連通流路P3により構成され、室外側通流状態切換部Sが、第3連通流路開閉弁V3、各冷媒回路Ca,Cbの膨張弁2、並びに、第2冷媒回路Cbの対室外用熱交換器流路開閉弁Vc及び対空調用熱交換器流路開閉弁Vdにより構成されている。
The outdoor side serial connection flow path Qs and the outdoor side flow state switching unit S will be described.
In the first embodiment, a third communication flow path P3 that connects the heat exchanger flow path 5e of the first refrigerant circuit Ca and the outdoor heat exchanger flow path 5c of the second refrigerant circuit Cb, and A third communication channel opening / closing valve V3 that opens and closes the channel is provided.
In addition, the outdoor heat exchanger flow for opening and closing the flow path is located at a position closer to the four-way valve 7 than the connection position of the third communication flow path P3 in the outdoor heat exchanger flow path 5c of the second refrigerant circuit Cb. A path opening / closing valve Vc is provided, and further, a flow path is provided at a position closer to the four-way valve 7 than a branching position for the plurality of air conditioning heat exchangers 4 in the heat exchanger flow path 5d for air conditioning of the second refrigerant circuit Cb. An air conditioning heat exchanger channel opening / closing valve Vd for opening / closing is provided.
That is, in the first embodiment, the outdoor series connection flow path Qs is configured by the third communication flow path P3, and the outdoor flow state switching unit S includes the third communication flow path opening / closing valve V3 and each refrigerant circuit Ca. , Cb, the outdoor refrigerant heat exchanger channel opening / closing valve Vc and the air conditioning heat exchanger channel switching valve Vd of the second refrigerant circuit Cb.

次に、図1及び図2に基づいて、室外側通流状態切換部Sの通常通流状態及び部分負荷通流状態夫々における各弁の開閉作動状態について説明する。
尚、図1及び図2夫々、並びに、後述の他の実施形態を説明する図夫々において、開弁状態の弁を黒塗りで示し、閉弁状態の弁を白抜きで示し、又、運転状態の室内ユニットUiを斜線のハッチングで示し、停止状態の室内ユニットUiを白抜きで示す。
図1及び図2夫々の(a)に示すように、第3連通流路開閉弁V3を閉弁し、且つ、各冷媒回路Cの膨張弁2、並びに、第2冷媒回路Cbの対室外用熱交換器流路開閉弁Vc及び対空調用熱交換器流路開閉弁Vdを開弁すると、室外側通流状態切換部Sが通常通流状態に切り換えられる。
Next, the open / close operation states of the valves in the normal flow state and the partial load flow state of the outdoor flow state switching unit S will be described with reference to FIGS. 1 and 2.
In addition, in each of FIG. 1 and FIG. 2 and the drawings for explaining other embodiments described later, the valve in the valve open state is shown in black, the valve in the valve closed state is shown in white, and the operating state The indoor unit Ui is indicated by hatching, and the stopped indoor unit Ui is indicated by white.
As shown in FIG. 1 and FIG. 2 (a), the third communication flow path opening / closing valve V3 is closed, and the expansion valve 2 of each refrigerant circuit C and the second refrigerant circuit Cb for outdoor use When the heat exchanger flow path opening / closing valve Vc and the heat exchanger flow path opening / closing valve Vd for air conditioning are opened, the outdoor flow state switching unit S is switched to the normal flow state.

図1及び図2夫々の(b)に示すように、部分負荷運転状態では、第1冷媒回路Caの圧縮機1を運転対象とし、第3連通流路開閉弁V3、及び、第2冷媒回路Cbの膨張弁2を開弁し、第1冷媒回路Caの膨張弁2、並びに、第2冷媒回路Cbの対室外用熱交換器流路開閉弁Vc及び対空調用熱交換器流路開閉弁Vdを閉弁すると、室外側通流状態切換部Sが部分負荷通流状態に切り換えられる。   As shown in FIG. 1 and FIG. 2B, in the partial load operation state, the compressor 1 of the first refrigerant circuit Ca is the operation target, and the third communication channel on-off valve V3 and the second refrigerant circuit are used. The expansion valve 2 of Cb is opened, the expansion valve 2 of the first refrigerant circuit Ca, the outdoor heat exchanger flow opening / closing valve Vc of the second refrigerant circuit Cb, and the heat exchanger flow opening / closing valve for air conditioning. When Vd is closed, the outdoor flow state switching unit S is switched to the partial load flow state.

次に、図1及び図2に基づいて、室外側通流状態切換部Sが通常通流状態及び部分負荷通流状態の夫々に切り換えられたときの冷媒の通流形態について説明する。   Next, the refrigerant flow mode when the outdoor flow state switching unit S is switched to the normal flow state and the partial load flow state will be described with reference to FIGS. 1 and 2.

冷媒回路Cが冷房運転状態に切り換えられた状態で、室外側通流状態切換部Sが通常通流状態に切り換えられると、図1の(a)に示すように、2台の冷媒回路Ca,Cbの夫々において独立して上述の冷房運転用循環経路で冷媒が循環する。
冷媒回路Cが冷房運転状態に切り換えられた状態で、室外側通流状態切換部Sが部分負荷通流状態に切り換えられると、冷媒は図1の(b)に示すように通流する。即ち、第1冷媒回路Caの圧縮機1から吐出された冷媒が第3連通流路P3により第1冷媒回路Caの室外用熱交換器3、第2冷媒回路Cbの室外用熱交換器3を順に通流したのち第2冷媒回路Cbの熱交換器間流路5eを通流して、その第2冷媒回路Cbの膨張弁2を通過し、更に、空調用熱交換器4を通過し、第1冷媒回路Caの対空調用熱交換器流路5d及び対圧縮機入口流路5bを通流して第1冷媒回路Caの圧縮機1に戻る。
When the outdoor flow state switching unit S is switched to the normal flow state in a state where the refrigerant circuit C is switched to the cooling operation state, as shown in FIG. 1 (a), two refrigerant circuits Ca, In each of Cb, the refrigerant circulates independently in the above-described cooling operation circulation path.
When the outdoor flow state switching unit S is switched to the partial load flow state while the refrigerant circuit C is switched to the cooling operation state, the refrigerant flows as shown in FIG. That is, the refrigerant discharged from the compressor 1 of the first refrigerant circuit Ca passes through the outdoor heat exchanger 3 of the first refrigerant circuit Ca and the outdoor heat exchanger 3 of the second refrigerant circuit Cb through the third communication channel P3. After flowing in order, it flows through the heat exchanger flow path 5e of the second refrigerant circuit Cb, passes through the expansion valve 2 of the second refrigerant circuit Cb, and further passes through the heat exchanger 4 for air conditioning. It returns to the compressor 1 of the first refrigerant circuit Ca through the heat exchanger channel 5d for air conditioning of the refrigerant circuit Ca and the inlet channel 5b for the compressor.

又、冷媒回路Cが暖房運転状態に切り換えられた状態で、室外側通流状態切換部Sが通常通流状態に切り換えられると、図2の(a)に示すように、2台の冷媒回路Ca,Cbの夫々において独立して上述の暖房運転用循環経路で冷媒が循環する。
冷媒回路Cが暖房運転状態に切り換えられた状態で、室外側通流状態切換部Sが部分負荷通流状態に切り換えられると、冷媒は図2の(b)に示すように通流する。即ち、第1冷媒回路Caの圧縮機1から吐出された冷媒が第1冷媒回路Caの対空調用熱交換器流路5dを通流して、空調用熱交換器4を通過し、更に、第2冷媒回路Cbの熱交換器間流路5eを通流して、その第2冷媒回路Cbの膨張弁2を通過し、更に、第3連通流路P3により第2冷媒回路Cbの室外用熱交換器3、第1冷媒回路Caの室外用熱交換器3を順に通流したのち第1冷媒回路Caの対室外用熱交換器流路5c及び対圧縮機入口流路5bを通流して第1冷媒回路Caの圧縮機1に戻る。
つまり、第3連通流路P3が、室外側直列接続流路Qsに相当する。
Further, when the outdoor flow state switching unit S is switched to the normal flow state in a state where the refrigerant circuit C is switched to the heating operation state, as shown in FIG. In each of Ca and Cb, the refrigerant circulates independently through the above-described heating operation circulation path.
When the outdoor flow state switching unit S is switched to the partial load flow state in a state where the refrigerant circuit C is switched to the heating operation state, the refrigerant flows as shown in FIG. That is, the refrigerant discharged from the compressor 1 of the first refrigerant circuit Ca flows through the heat exchanger channel 5d for air conditioning of the first refrigerant circuit Ca, passes through the heat exchanger 4 for air conditioning, and further 2 through the inter-heat exchanger channel 5e of the refrigerant circuit Cb, through the expansion valve 2 of the second refrigerant circuit Cb, and further through the third communication channel P3, outdoor heat exchange of the second refrigerant circuit Cb. First through the heat exchanger 3 and the outdoor heat exchanger 3 of the first refrigerant circuit Ca, and then through the outdoor heat exchanger channel 5c and the compressor inlet channel 5b of the first refrigerant circuit Ca. It returns to the compressor 1 of the refrigerant circuit Ca.
That is, the third communication channel P3 corresponds to the outdoor series connection channel Qs.

次に、制御部6の制御動作について、説明を加える。
室内ユニットUiの運転台数が4台以上の場合は、制御部6は、運転状態を定格運転状態とし、並びに、室外側通流状態切換部Sを通常通流状態に切り換え、室内ユニットUiの運転台数が1〜3台の場合は、運転状態を部分負荷運転状態とし、並びに、室外側通流状態切換部Sを部分負荷通流状態に切り換える。
ここで、室外側通流状態切換部Sの通常通流状態と部分負荷運転状態との切り換えは、上述のように室内ユニットUiの運転台数に基づいて行う場合に限定されるものではない。例えば、マルチ型空調システム全体の空調負荷を検出して、その検出空調負荷に基づいて行っても良い。この場合、例えば、検出空調負荷が定格空調負荷の半分以上のときは通常通流状態に切り換え、検出空調負荷が半分よりも小さいときは部分負荷通流状態に切り換える。
Next, the control operation of the control unit 6 will be described.
When the number of indoor units Ui operated is four or more, the control unit 6 sets the operation state to the rated operation state, switches the outdoor flow state switching unit S to the normal flow state, and operates the indoor unit Ui. When the number is 1 to 3, the operation state is set to the partial load operation state, and the outdoor flow state switching unit S is switched to the partial load flow state.
Here, the switching between the normal flow state and the partial load operation state of the outdoor flow state switching unit S is not limited to the case where the switching is performed based on the number of indoor units Ui operated as described above. For example, the air conditioning load of the entire multi-type air conditioning system may be detected and performed based on the detected air conditioning load. In this case, for example, when the detected air-conditioning load is half or more of the rated air-conditioning load, the normal flow state is switched, and when the detected air-conditioning load is smaller than half, the partial load flow state is switched.

以下、第2及び第3の各実施形態を説明するが、各実施形態は室外側接続流路Q及び室外側通流状態切換部Sの別の実施形態を説明するものであって、マルチ型空調システムの構成は上記の第1実施形態と同様であるので、各実施形態では、マルチ型空調システムの構成の説明を省略する。   Hereinafter, the second and third embodiments will be described. Each embodiment describes another embodiment of the outdoor connection flow path Q and the outdoor flow state switching unit S, and is a multi-type. Since the configuration of the air conditioning system is the same as that of the first embodiment, description of the configuration of the multi-type air conditioning system is omitted in each embodiment.

〔第2実施形態〕
以下、図3及び図4に基づいて、第2実施形態を説明する。
尚、図3は、マルチ型空調システムの全体構成、及び、冷房運転状態での第2部分負荷運転状態における冷媒の流れを示し、図4は、暖房運転状態での第2部分負荷運転状態における冷媒の流れを示す。
この第2実施形態では、上記の第1実施形態と同様に、室外側接続流路Qとして室外側直列接続流路Qsが設けられて、室外側通流状態切換手段Sが、部分負荷通流状態においては室外側直列接続流路Qsを通して冷媒を通流させるように構成されているが、それら室外側直列接続流路Qs及び室外側通流状態切換部Sの構成が第1実施形態と異なる。
つまり、第1実施形態における室外側直列接続流路Qsの構成に加えて、第1冷媒回路Caの対室外用熱交換器流路5cと第2冷媒回路Cbの熱交換器間流路5eとを連通接続する第4連通流路P4が設けられ、第1実施形態における室外側通流状態切換部Sの構成に加えて、第4連通流路P4を開閉する第4連通流路開閉弁V4が設けられている。更に、第1冷媒回路Caの対室外用熱交換器流路5cにおける第4連通流路P4の接続箇所よりも四方弁7側の箇所には、流路開閉用の対室外用熱交換器流路開閉弁Vcが設けられ、第1冷媒回路Caの対空調用熱交換器流路5dにおける複数の空調用熱交換器4に対する分岐箇所よりも四方弁7側の箇所には、流路開閉用の対空調用熱交換器流路開閉弁Vdが設けられている。
つまり、この第2実施形態では、室外側直列接続流路Qsが、第3連通流路P3及び第4連通流路P4により構成され、室外側通流状態切換部Sが、第3連通流路開閉弁V3及び第4連通流路開閉弁V4、並びに、各冷媒回路Ca,Cbの膨張弁2、対室外用熱交換器流路開閉弁Vc及び対空調用熱交換器流路開閉弁Vdにより構成されている。
[Second Embodiment]
Hereinafter, the second embodiment will be described with reference to FIGS. 3 and 4.
3 shows the overall configuration of the multi-type air conditioning system and the refrigerant flow in the second partial load operation state in the cooling operation state, and FIG. 4 shows the second partial load operation state in the heating operation state. The flow of a refrigerant is shown.
In the second embodiment, as in the first embodiment, an outdoor series connection flow path Qs is provided as the outdoor connection flow path Q, and the outdoor flow state switching means S is provided with a partial load flow. In the state, the refrigerant is configured to flow through the outdoor series connection flow path Qs, but the configurations of the outdoor serial connection flow path Qs and the outdoor flow state switching unit S are different from those of the first embodiment. .
That is, in addition to the configuration of the outdoor series connection flow path Qs in the first embodiment, the outdoor heat exchanger flow path 5c of the first refrigerant circuit Ca and the inter-heat exchanger flow path 5e of the second refrigerant circuit Cb Is provided, and in addition to the configuration of the outdoor flow state switching unit S in the first embodiment, a fourth communication flow path opening / closing valve V4 that opens and closes the fourth communication flow path P4. Is provided. Furthermore, the outdoor heat exchanger flow for opening and closing the flow path is located at a position closer to the four-way valve 7 than the connection position of the fourth communication flow path P4 in the outdoor heat exchanger flow path 5c of the first refrigerant circuit Ca. A passage opening / closing valve Vc is provided, and a passage opening / closing valve is provided at a location closer to the four-way valve 7 than a branching portion for the plurality of air conditioning heat exchangers 4 in the heat exchanger passage 5d for air conditioning of the first refrigerant circuit Ca. A heat exchanger channel opening / closing valve Vd for air conditioning is provided.
That is, in the second embodiment, the outdoor series connection flow path Qs is configured by the third communication flow path P3 and the fourth communication flow path P4, and the outdoor flow state switching unit S is configured by the third communication flow path. The on-off valve V3 and the fourth communication channel on-off valve V4, the expansion valve 2 of each refrigerant circuit Ca, Cb, the outdoor heat exchanger channel on-off valve Vc, and the air-conditioning heat exchanger channel on-off valve Vd. It is configured.

次に、室外側通流状態切換部Sの通常通流状態及び部分負荷通流状態夫々における各弁の開閉作動状態について説明する。
図示を省略するが、通常通流状態では、上記の第1実施形態における各弁の開閉作動に加えて、第4連通流路開閉弁V4を閉弁し、第1冷媒回路Caの対室外用熱交換器流路開閉弁Vc及び対空調用熱交換器流路開閉弁Vdを開弁する。
又、図示を省略するが、第1冷媒回路Caの圧縮機1が運転対象となる場合は、上記の第1実施形態における各弁の開閉作動に加えて、第4連通流路開閉弁V4を閉弁し、第1冷媒回路Caの対室外用熱交換器流路開閉弁Vc及び対空調用熱交換器流路開閉弁Vdを開弁すると、室外側通流状態切換部Sが第1部分負荷通流状態に切り換えられる。
Next, the opening / closing operation states of the valves in the normal flow state and the partial load flow state of the outdoor flow state switching unit S will be described.
Although not shown, in the normal flow state, in addition to the opening / closing operation of each valve in the first embodiment, the fourth communication flow path opening / closing valve V4 is closed, and the first refrigerant circuit Ca is used for outdoor use. The heat exchanger channel opening / closing valve Vc and the heat exchanger channel switching valve Vd for air conditioning are opened.
Although not shown, when the compressor 1 of the first refrigerant circuit Ca is an operation target, in addition to the opening / closing operation of each valve in the first embodiment, the fourth communication flow path opening / closing valve V4 is provided. When the valve is closed and the outdoor heat exchanger channel on / off valve Vc and the air conditioning heat exchanger channel on / off valve Vd of the first refrigerant circuit Ca are opened, the outdoor flow state switching unit S is the first part. It is switched to the load flow state.

図3及び図4に示すように、第2冷媒回路Cbの圧縮機1が運転対象となる場合は、第4連通流路開閉弁V4を開弁し、第3連通流路開閉弁V3を閉弁し、第1冷媒回路Caの膨張弁2を開弁し、第2冷媒回路Cbの膨張弁2を閉弁し、第2冷媒回路Cbの対室外用熱交換器流路開閉弁Vc及び対空調用熱交換器流路開閉弁Vdを開弁し、第1冷媒回路Caの対室外用熱交換器流路開閉弁Vc及び対空調用熱交換器流路開閉弁Vdを閉弁すると、室外側通流状態切換部Sが第2部分負荷通流状態に切り換えられる。   As shown in FIGS. 3 and 4, when the compressor 1 of the second refrigerant circuit Cb is an operation target, the fourth communication flow path opening / closing valve V4 is opened and the third communication flow path opening / closing valve V3 is closed. And the expansion valve 2 of the first refrigerant circuit Ca is opened, the expansion valve 2 of the second refrigerant circuit Cb is closed, and the outdoor heat exchanger channel opening / closing valve Vc and the pair of the second refrigerant circuit Cb are connected. When the air conditioning heat exchanger channel on / off valve Vd is opened and the outdoor heat exchanger channel on / off valve Vc and the air conditioning heat exchanger channel on / off valve Vd of the first refrigerant circuit Ca are closed, the chamber The outer flow state switching unit S is switched to the second partial load flow state.

次に、室外側通流状態切換部Sが部分負荷通流状態に切り換えられたときの冷媒の通流形態について説明する。
図示を省略するが、冷媒回路Cが冷房運転状態に切り換えられた状態で、室外側通流状態切換部Sが第1部分負荷通流状態に切り換えられると、冷媒は上記の第1実施形態において図1の(b)を用いて説明したのと同様の形態で通流する。
又、図示を省略するが、冷媒回路Cが暖房運転状態に切り換えられた状態で、室外側通流状態切換部Sが第1部分負荷通流状態に切り換えられると、冷媒は上記の第1実施形態において図2の(b)を用いて説明したのと同様の形態で通流する。
Next, the flow mode of the refrigerant when the outdoor flow state switching unit S is switched to the partial load flow state will be described.
Although illustration is omitted, if the outdoor flow state switching unit S is switched to the first partial load flow state in a state where the refrigerant circuit C is switched to the cooling operation state, the refrigerant is the same as in the first embodiment. The flow is the same as described with reference to FIG.
Although illustration is omitted, if the outdoor flow state switching unit S is switched to the first partial load flow state in a state where the refrigerant circuit C is switched to the heating operation state, the refrigerant is the first embodiment described above. In the form, the air flows in the same form as described with reference to FIG.

冷媒回路Cが冷房運転状態に切り換えられた状態で、室外側通流状態切換部Sが第2部分負荷通流状態に切り換えられると、冷媒は図3に示すように通流する。即ち、第2冷媒回路Cbの圧縮機1から吐出された冷媒が第4連通流路P4により第2冷媒回路Cbの室外用熱交換器3、第1冷媒回路Caの室外用熱交換器3を順に通流したのち第1冷媒回路Caの熱交換器間流路5eを通流して、その第1冷媒回路Caの膨張弁2を通過し、更に、空調用熱交換器4を通過し、第2冷媒回路Cbの対空調用熱交換器流路5d及び対圧縮機入口流路5bを通流して第2冷媒回路Cbの圧縮機1に戻る。   When the outdoor flow state switching unit S is switched to the second partial load flow state while the refrigerant circuit C is switched to the cooling operation state, the refrigerant flows as shown in FIG. That is, the refrigerant discharged from the compressor 1 of the second refrigerant circuit Cb is connected to the outdoor heat exchanger 3 of the second refrigerant circuit Cb and the outdoor heat exchanger 3 of the first refrigerant circuit Ca by the fourth communication flow path P4. After flowing in order, it flows through the heat exchanger flow path 5e of the first refrigerant circuit Ca, passes through the expansion valve 2 of the first refrigerant circuit Ca, and further passes through the heat exchanger 4 for air conditioning. The air-conditioning heat exchanger channel 5d and the compressor inlet channel 5b of the second refrigerant circuit Cb return to the compressor 1 of the second refrigerant circuit Cb.

又、冷媒回路Cが暖房運転状態に切り換えられた状態で、室外側通流状態切換部Sが第2部分負荷通流状態に切り換えられると、冷媒は図4に示すように通流する。即ち、第2冷媒回路Cbの圧縮機1から吐出された冷媒が第2冷媒回路Cbの対空調用熱交換器流路5dを通流して、空調用熱交換器4を通過し、更に、第1冷媒回路Caの熱交換器間流路5eを通流して、その第1冷媒回路Caの膨張弁2を通過し、更に、第4連通流路P4により第1冷媒回路Caの室外用熱交換器3、第2冷媒回路Cbの室外用熱交換器3を順に通流したのち第2冷媒回路Cbの対室外用熱交換器流路5c及び対圧縮機入口流路5bを通流して第2冷媒回路Cbの圧縮機1に戻る。   Further, when the outdoor flow state switching unit S is switched to the second partial load flow state in a state where the refrigerant circuit C is switched to the heating operation state, the refrigerant flows as shown in FIG. That is, the refrigerant discharged from the compressor 1 of the second refrigerant circuit Cb flows through the air-conditioning heat exchanger channel 5d of the second refrigerant circuit Cb, passes through the air-conditioning heat exchanger 4, and further The heat exchange channel 5e of the first refrigerant circuit Ca flows through the expansion valve 2 of the first refrigerant circuit Ca, and the outdoor heat exchange of the first refrigerant circuit Ca is performed by the fourth communication channel P4. And the outdoor heat exchanger 3 of the second refrigerant circuit Cb in order, and then the second heat flow path 5c and the compressor inlet flow path 5b of the second refrigerant circuit Cb. It returns to the compressor 1 of the refrigerant circuit Cb.

次に、制御部6の制御動作について、説明を加える。
室内ユニットUiの運転台数が4台以上の場合は、制御部6は、運転状態を定格運転状態とし、並びに、室外側通流状態切換部Sを通常通流状態に切り換え、室内ユニットUiの運転台数が1〜3台の場合は、運転状態を部分負荷運転状態とし、並びに、室外側通流状態切換部Sを部分負荷通流状態に切り換える。
又、制御部6は、部分負荷運転状態においては、複数の冷媒回路Cの圧縮機1の積算運転時間を均等化すべく、運転対象の圧縮機1を複数の冷媒回路Cの圧縮機1から選択して設定し、並びに、そのように設定した運転対象の圧縮機1に応じて第1及び第2のうちのいずれかの部分負荷通流状態に切り換えるように、室外側通流状態切換部Sの作動を制御する。
つまり、制御部6が、部分負荷運転状態において運転対象の圧縮機1を変更設定自在に構成され、室外側通流状態切換部Sが、変更設定される運転対象の圧縮機1を備えた冷媒回路Cを運転対象の冷媒回路Cとして部分負荷通流状態に切り換え自在に構成されている。
Next, the control operation of the control unit 6 will be described.
When the number of indoor units Ui operated is four or more, the control unit 6 sets the operation state to the rated operation state, switches the outdoor flow state switching unit S to the normal flow state, and operates the indoor unit Ui. When the number is 1 to 3, the operation state is set to the partial load operation state, and the outdoor flow state switching unit S is switched to the partial load flow state.
Further, the control unit 6 selects the compressor 1 to be operated from the compressors 1 of the plurality of refrigerant circuits C in order to equalize the accumulated operation time of the compressors 1 of the plurality of refrigerant circuits C in the partial load operation state. And the outdoor flow state switching unit S so as to switch to the partial load flow state of either the first or the second according to the compressor 1 to be operated set as described above. Control the operation of
That is, the control unit 6 is configured to be able to change and set the operation target compressor 1 in the partial load operation state, and the outdoor-side flow state switching unit S includes the operation target compressor 1 to be changed and set. The circuit C is configured to be switched to a partial load flow state as a refrigerant circuit C to be operated.

〔第3実施形態〕
以下、図5〜図8に基づいて、第3実施形態を説明する。
尚、図5は、マルチ型空調システムの全体構成、及び、冷媒回路Cを冷房運転状態に切り換えた状態での冷媒の流れを示し、図6は、冷媒回路Cを暖房運転状態に切り換えた状態での冷媒の流れを示し、更に、図5及び図6夫々において、(a)は定格運転状態での冷媒の流れを示し、(b)は単一膨張弁通過形態の第1部分負荷運転状態での冷媒の流れを示す。
又、図7は、冷房運転状態での複数膨張弁通過形態の第1部分負荷運転状態における冷媒の流れを示し、図8は、暖房運転状態での複数膨張弁通過形態の第1部分負荷運転状態における冷媒の流れを示す。
[Third Embodiment]
Hereinafter, the third embodiment will be described with reference to FIGS.
5 shows the overall configuration of the multi-type air conditioning system and the flow of the refrigerant when the refrigerant circuit C is switched to the cooling operation state, and FIG. 6 shows the state where the refrigerant circuit C is switched to the heating operation state. 5 and 6, (a) shows the refrigerant flow in the rated operation state, and (b) shows the first partial load operation state of the single expansion valve passing configuration. Shows the flow of refrigerant.
FIG. 7 shows the refrigerant flow in the first partial load operation state of the multiple expansion valve passing configuration in the cooling operation state, and FIG. 8 shows the first partial load operation of the multiple expansion valve passage configuration in the heating operation state. The flow of the refrigerant in a state is shown.

この第3実施形態では、室外側接続流路Qとして、複数の冷媒回路Cの夫々に備えられた室外側熱交換器3を並列状に接続する並列接続流路としての室外側並列接続流路Qpが設けられ、室外側通流状態切換部Sが、部分負荷通流状態においては室外側並列接続流路Qpを通して冷媒を通流させるように構成されている。
又、複数の冷媒回路Cが、異なる冷媒回路Cに備えられた膨張弁2に冷媒を通流可能とする膨張弁用接続流路Qbにて連結されており、室外側通流状態切換部Sが、部分負荷通流状態において、冷媒を通流させる膨張弁2の数を変更自在に構成されている。
そして、制御部6が、定格運転状態においては、室外側通流状態切換部Sを通常通流状態に切り換え、部分負荷運転状態においては、室外側通流状態切換部Sを部分負荷通流状態に切り換えると共に、空調負荷に応じて冷媒を通流させる膨張弁2の数を変更すべく室外側通流状態切換部Sを作動させるように構成されている。
In this 3rd Embodiment, the outdoor parallel connection flow path as a parallel connection flow path which connects the outdoor heat exchanger 3 provided in each of the some refrigerant circuit C in parallel as the outdoor connection flow path Q Qp is provided, and the outdoor flow state switching unit S is configured to flow the refrigerant through the outdoor parallel connection flow path Qp in the partial load flow state.
A plurality of refrigerant circuits C are connected to expansion valves 2 provided in different refrigerant circuits C through expansion valve connection channels Qb that allow refrigerant to flow, and the outdoor flow state switching unit S However, in the partial load flow state, the number of the expansion valves 2 through which the refrigerant flows can be changed.
The control unit 6 switches the outdoor flow state switching unit S to the normal flow state in the rated operation state, and switches the outdoor flow state switching unit S to the partial load flow state in the partial load operation state. And the outdoor flow state switching unit S is operated to change the number of expansion valves 2 through which the refrigerant flows according to the air conditioning load.

室外側並列接続流路Qp及び室外側通流状態切換部Sについて説明を加える。
この第3実施形態では、複数(この第3実施形態では2台)の冷媒回路C夫々の対室外用熱交換器流路5cを連通接続する第1連通流路P1、及び、複数の冷媒回路C夫々の熱交換器間流路5eにおける膨張弁2よりも室外用熱交換器3側の部分を連通接続する第2連通流路P2が設けられ、第1連通流路P1、第2連通流路P2には、それぞれ流路開閉用として第1連通流路開閉弁V1、第2連通流路開閉弁V2が設けられている。
又、各冷媒回路Cの対室外用熱交換器流路5cにおける第1連通流路P1の接続箇所よりも四方弁7側の箇所には、流路開閉用の対室外用熱交換器流路開閉弁Vcが設けられ、更に、各冷媒回路Cの対空調用熱交換器流路5dにおける複数の空調用熱交換器4に対する分岐箇所よりも四方弁7側の箇所には、流路開閉用の対空調用熱交換器流路開閉弁Vdが設けられている。
そして、室外側並列接続流路Qpが、第1連通流路P1及び第2連通流路P2により構成され、室外側通流状態切換部Sが、第1連通流路開閉弁V1及び第2連通流路開閉弁V2、並びに、各冷媒回路Ca,Cbの膨張弁2、対室外用熱交換器流路開閉弁Vc及び対空調用熱交換器流路開閉弁Vdにより構成されている。
The outdoor side parallel connection flow path Qp and the outdoor side flow state switching unit S will be described.
In the third embodiment, the first communication flow path P1 that connects the plurality of (two in the third embodiment) refrigerant circuits C to the outdoor heat exchanger flow paths 5c and the plurality of refrigerant circuits. A second communication channel P2 is provided to communicate and connect a portion closer to the outdoor heat exchanger 3 than the expansion valve 2 in each of the C inter-heat exchanger channels 5e. The first communication channel P1 and the second communication channel The path P2 is provided with a first communication flow path opening / closing valve V1 and a second communication flow path opening / closing valve V2 for opening and closing the flow paths, respectively.
Further, the outdoor heat exchanger flow path for opening and closing the flow path is located at a position closer to the four-way valve 7 than the connection position of the first communication flow path P1 in the outdoor heat exchanger flow path 5c of each refrigerant circuit C. An opening / closing valve Vc is provided, and further, a passage opening / closing valve is provided at a location closer to the four-way valve 7 than a branching location for the plurality of air conditioning heat exchangers 4 in the heat exchanger passage 5d for air conditioning of each refrigerant circuit C A heat exchanger channel opening / closing valve Vd for air conditioning is provided.
And the outdoor side parallel connection flow path Qp is comprised by the 1st communication flow path P1 and the 2nd communication flow path P2, and the outdoor side flow state switching part S is the 1st communication flow path opening / closing valve V1 and the 2nd communication flow path. The flow path opening / closing valve V2, the expansion valves 2 of the refrigerant circuits Ca and Cb, the outdoor heat exchanger flow path opening / closing valve Vc, and the air conditioning heat exchanger flow path opening / closing valve Vd are configured.

次に、図5及び図6に基づいて、室外側通流状態切換部Sの通常通流状態及び部分負荷通流状態夫々における各弁の開閉作動状態について説明する。
図5及び図6夫々の(a)に示すように、第1連通流路開閉弁V1及び第2連通流路開閉弁V2を閉弁し、且つ、各冷媒回路Cの膨張弁2、対室外用熱交換器流路開閉弁Vc及び対空調用熱交換器流路開閉弁Vdを開弁すると、室外側通流状態切換部Sが通常通流状態に切り換えられる。
Next, the opening / closing operation states of the valves in the normal flow state and the partial load flow state of the outdoor flow state switching unit S will be described with reference to FIGS. 5 and 6.
As shown in (a) of FIG. 5 and FIG. 6, the first communication channel on-off valve V1 and the second communication channel on-off valve V2 are closed, and the expansion valve 2 of each refrigerant circuit C When the heat exchanger flow path opening / closing valve Vc and the heat exchanger flow path opening / closing valve Vd for air conditioning are opened, the outdoor flow state switching unit S is switched to the normal flow state.

図5及び図6夫々の(b)に示すように、第1冷媒回路Caの圧縮機1が運転対象となる場合は、第1連通流路開閉弁V1及び第2連通流路開閉弁V2を開弁し、第1冷媒回路Caの膨張弁2、対室外用熱交換器流路開閉弁Vc及び対空調用熱交換器流路開閉弁Vdを開弁し、第2冷媒回路Cbの膨張弁2、対室外用熱交換器流路開閉弁Vc及び対空調用熱交換器流路開閉弁Vdを閉弁すると、室外側通流状態切換部Sが単一膨張弁通過形態の第1部分負荷通流状態に切り換えられる。
又、図示を省略するが、第2冷媒回路Cbの圧縮機1が運転対象となる場合は、第1連通流路開閉弁V1及び第2連通流路開閉弁V2を開弁し、第2冷媒回路Cbの膨張弁2、対室外用熱交換器流路開閉弁Vc及び対空調用熱交換器流路開閉弁Vdを開弁し、第1冷媒回路Caの膨張弁2、対室外用熱交換器流路開閉弁Vc及び対空調用熱交換器流路開閉弁Vdを閉弁すると、室外側通流状態切換部Sが単一膨張弁通過形態の第2部分負荷通流状態に切り換えられる。
As shown in FIG. 5 and FIG. 6B, when the compressor 1 of the first refrigerant circuit Ca is an operation target, the first communication channel on-off valve V1 and the second communication channel on-off valve V2 are provided. The valve is opened to open the expansion valve 2 of the first refrigerant circuit Ca, the outdoor heat exchanger flow path opening / closing valve Vc and the air conditioning heat exchanger flow path opening / closing valve Vd, and the expansion valve of the second refrigerant circuit Cb 2. When the outdoor heat exchanger flow path opening / closing valve Vc and the air conditioning heat exchanger flow path opening / closing valve Vd are closed, the outdoor partial flow state switching section S is a first partial load having a single expansion valve passing configuration. It is switched to the flow state.
Although not shown, when the compressor 1 of the second refrigerant circuit Cb is an operation target, the first communication channel on-off valve V1 and the second communication channel on-off valve V2 are opened, and the second refrigerant The expansion valve 2 of the circuit Cb, the outdoor heat exchanger flow opening / closing valve Vc and the air conditioning heat exchanger flow opening / closing valve Vd are opened, and the expansion valve 2 of the first refrigerant circuit Ca and the outdoor heat exchange are opened. When the flow path opening / closing valve Vc and the heat exchanger flow path opening / closing valve Vd for air conditioning are closed, the outdoor flow state switching unit S is switched to the second partial load flow state of the single expansion valve passing configuration.

図7及び図8に示すように、上記の単一膨張弁通過形態の第1部分負荷通流状態及び第2部分負荷通流状態夫々において、第2連通流路開閉弁V2を閉じ、且つ、2台の冷媒回路C夫々の膨張弁2を開弁すると、2台の冷媒回路C夫々の膨張弁2を通過させる状態で冷媒を通流させる複数膨張弁通過形態の第1部分負荷通流状態及び第2部分負荷通流状態とすることができる。つまり、上述したように、室外側通流状態切換部Sが、部分負荷通流状態において、冷媒を通流させる膨張弁2の数を変更自在に構成されていることになる。   As shown in FIG. 7 and FIG. 8, in each of the first partial load flow state and the second partial load flow state of the single expansion valve passing configuration, the second communication flow path opening / closing valve V2 is closed, and When the expansion valve 2 of each of the two refrigerant circuits C is opened, the first partial load flow state in which a plurality of expansion valves pass through the refrigerant in a state of passing through the expansion valves 2 of the two refrigerant circuits C And a second partial load flow state. That is, as described above, the outdoor flow state switching unit S is configured to be able to change the number of expansion valves 2 through which the refrigerant flows in the partial load flow state.

次に、図5及び図6に基づいて、室外側通流状態切換部Sが単一膨張弁通過形態の部分負荷通流状態に切り換えられたときの冷媒の通流形態について説明する。
冷媒回路Cが冷房運転状態に切り換えられた状態で、室外側通流状態切換部Sが単一膨張弁通過形態の第1部分負荷通流状態に切り換えられると、冷媒は図5の(b)に示すように通流する。即ち、第1冷媒回路Caの圧縮機1から吐出された冷媒が第1連通流路P1により第1及び第2冷媒回路Ca,Cb夫々の室外用熱交換器3を並行して通流したのち第2連通流路P2により第1冷媒回路Caの熱交換器間流路5eに合流して、その第1冷媒回路Caの膨張弁2を通過し、更に、空調用熱交換器4を通過し、第1冷媒回路Caの対空調用熱交換器流路5d及び対圧縮機入口流路5bを通流して第1冷媒回路Caの圧縮機1に戻る。
図示を省略するが、冷媒回路Cが冷房運転状態に切り換えられた状態で、室外側通流状態切換部Sが単一膨張弁通過形態の第2部分負荷通流状態に切り換えられると、第2冷媒回路Cbの圧縮機1から吐出された冷媒が第1連通流路P1により第1及び第2冷媒回路Ca,Cb夫々の室外用熱交換器3を並行して通流したのち第2連通流路P2により第2冷媒回路Cbの熱交換器間流路5eに合流して、その第2冷媒回路Cbの膨張弁2を通過し、更に、空調用熱交換器4を通過し、第2冷媒回路Cbの対空調用熱交換器流路5d及び対圧縮機入口流路5bを通流して第2冷媒回路Cbの圧縮機1に戻る。
Next, based on FIG.5 and FIG.6, the flow form of the refrigerant | coolant when the outdoor side flow state switching part S is switched to the partial load flow state of a single expansion valve passage form is demonstrated.
When the refrigerant circuit C is switched to the cooling operation state and the outdoor flow state switching unit S is switched to the first partial load flow state of the single expansion valve passing configuration, the refrigerant is shown in FIG. As shown in Fig. That is, after the refrigerant discharged from the compressor 1 of the first refrigerant circuit Ca flows through the outdoor heat exchangers 3 of the first and second refrigerant circuits Ca and Cb in parallel through the first communication flow path P1. The second communication channel P2 joins the inter-heat exchanger channel 5e of the first refrigerant circuit Ca, passes through the expansion valve 2 of the first refrigerant circuit Ca, and further passes through the heat exchanger 4 for air conditioning. The air-conditioning heat exchanger channel 5d and the compressor inlet channel 5b of the first refrigerant circuit Ca are returned to the compressor 1 of the first refrigerant circuit Ca.
Although illustration is omitted, when the outdoor flow state switching unit S is switched to the second partial load flow state of the single expansion valve passing state in a state where the refrigerant circuit C is switched to the cooling operation state, The refrigerant discharged from the compressor 1 of the refrigerant circuit Cb passes through the outdoor heat exchangers 3 of the first and second refrigerant circuits Ca and Cb in parallel through the first communication flow path P1, and then the second communication flow. The path P2 joins the inter-heat exchanger flow path 5e of the second refrigerant circuit Cb, passes through the expansion valve 2 of the second refrigerant circuit Cb, and further passes through the heat exchanger 4 for air conditioning. It returns to the compressor 1 of the second refrigerant circuit Cb through the heat exchanger channel 5d for air conditioning in the circuit Cb and the inlet channel 5b for the compressor.

冷媒回路Cが暖房運転状態に切り換えられた状態で、室外側通流状態切換部Sが単一膨張弁通過形態の第1部分負荷通流状態に切り換えられると、冷媒は図6の(b)に示すように通流する。即ち、第1冷媒回路Caの圧縮機1から吐出された冷媒が第1冷媒回路Caの対空調用熱交換器流路5dを通流して、空調用熱交換器4を通過し、更に、第1冷媒回路Caの熱交換器間流路5eを通流して、その第1冷媒回路Caの膨張弁2を通過し、更に、第2連通流路P2により第1及び第2冷媒回路Ca,Cb夫々の室外用熱交換器3を並行して通流したのち第1連通流路P1により第1冷媒回路Caの対室外用熱交換器流路5cに合流し、その第1冷媒回路Caの対圧縮機入口流路5bを通流して第1冷媒回路Caの圧縮機1に戻る。
図示を省略するが、冷媒回路Cが暖房運転状態に切り換えられた状態で、室外側通流状態切換部Sが単一膨張弁通過形態の第2部分負荷通流状態に切り換えられると、第2冷媒回路Cbの圧縮機1から吐出された冷媒が第2冷媒回路Cbの対空調用熱交換器流路5dを通流して、空調用熱交換器4を通過し、更に、第2冷媒回路Cbの熱交換器間流路5eを通流して、その第2冷媒回路Cbの膨張弁2を通過し、更に、第2連通流路P2により第1及び第2冷媒回路Ca,Cb夫々の室外用熱交換器3を並行して通流したのち第1連通流路P1により第2冷媒回路Cbの対室外用熱交換器流路5cに合流し、その第2冷媒回路Cbの対圧縮機入口流路5bを通流して第2冷媒回路Cbの圧縮機1に戻る。
When the outdoor-side flow state switching unit S is switched to the first partial load flow state of the single expansion valve passing configuration in the state where the refrigerant circuit C is switched to the heating operation state, the refrigerant is shown in FIG. As shown in Fig. That is, the refrigerant discharged from the compressor 1 of the first refrigerant circuit Ca flows through the heat exchanger channel 5d for air conditioning of the first refrigerant circuit Ca, passes through the heat exchanger 4 for air conditioning, and further The flow path 5e between the heat exchangers of the first refrigerant circuit Ca flows through the expansion valve 2 of the first refrigerant circuit Ca, and further, the first and second refrigerant circuits Ca, Cb by the second communication flow path P2. After each of the outdoor heat exchangers 3 flows in parallel, it is joined to the outdoor heat exchanger flow path 5c of the first refrigerant circuit Ca by the first communication flow path P1, and the pair of the first refrigerant circuit Ca. It returns to the compressor 1 of the first refrigerant circuit Ca through the compressor inlet channel 5b.
Although illustration is omitted, when the outdoor-side flow state switching unit S is switched to the second partial load flow state of the single expansion valve passing state with the refrigerant circuit C being switched to the heating operation state, The refrigerant discharged from the compressor 1 of the refrigerant circuit Cb flows through the air-conditioning heat exchanger channel 5d of the second refrigerant circuit Cb, passes through the air-conditioning heat exchanger 4, and further passes through the second refrigerant circuit Cb. Through the heat exchanger flow path 5e, through the expansion valve 2 of the second refrigerant circuit Cb, and for the outdoor use of the first and second refrigerant circuits Ca and Cb through the second communication flow path P2. After flowing through the heat exchanger 3 in parallel, the first communication flow path P1 joins the outdoor heat exchanger flow path 5c of the second refrigerant circuit Cb to the compressor inlet flow of the second refrigerant circuit Cb. It returns to the compressor 1 of the second refrigerant circuit Cb through the passage 5b.

次に、図7及び図8に基づいて、室外側通流状態切換部Sが複数膨張弁通過形態の部分負荷通流状態に切り換えられたときの冷媒の通流形態について説明する。
例えば、冷媒回路Cが冷房運転状態に切り換えられた状態で、室外側通流状態切換部Sが複数膨張弁通過形態の第1部分負荷通流状態に切り換えられると、冷媒は図7に示すように通流する。即ち、単一膨張弁通過形態の場合と同様に第1連通流路P1により第1及び第2冷媒回路Ca,Cb夫々の室外用熱交換器3を並行して通流した冷媒は、そのまま第1及び第2冷媒回路Ca,Cb夫々の熱交換器間流路5eに並行して通流して第1及び第2冷媒回路Ca,Cb夫々の膨張弁2を並行して通過し、以降、単一膨張弁通過形態の場合と同様に通流する。
又、冷媒回路Cが暖房運転状態に切り換えられた状態で、室外側通流状態切換部Sが複数膨張弁通過形態の第1部分負荷通流状態に切り換えられると、冷媒は図8に示すように通流する。即ち、単一膨張弁通過形態の場合と同様に空調用熱交換器4を通過した冷媒は、第1及び第2冷媒回路Ca,Cb夫々の熱交換器間流路5eに並行して通流して第1及び第2冷媒回路Ca,Cb夫々の膨張弁2を並行して通過し、そのまま、第1及び第2冷媒回路Ca,Cb夫々の室外用熱交換器3を並行して通流し、以降、単一膨張弁通過形態の場合と同様に通流する。
Next, based on FIG.7 and FIG.8, the flow form of the refrigerant | coolant when the outdoor side flow state switching part S is switched to the partial load flow state of multiple expansion valve passage form is demonstrated.
For example, when the outdoor flow state switching unit S is switched to the first partial load flow state of the multiple expansion valve passage configuration in a state where the refrigerant circuit C is switched to the cooling operation state, the refrigerant is as shown in FIG. To flow into. That is, as in the case of the single expansion valve passing configuration, the refrigerant that has flowed in parallel through the outdoor heat exchanger 3 of each of the first and second refrigerant circuits Ca and Cb through the first communication flow path P1 remains as it is. 1 and the second refrigerant circuits Ca and Cb flow in parallel between the heat exchanger flow paths 5e and pass through the expansion valves 2 of the first and second refrigerant circuits Ca and Cb in parallel. The flow is the same as in the case of the one expansion valve passing configuration.
Further, when the refrigerant circuit C is switched to the heating operation state and the outdoor flow state switching unit S is switched to the first partial load flow state of the plural expansion valve passage form, the refrigerant is as shown in FIG. To flow into. That is, as in the case of the single expansion valve passing configuration, the refrigerant that has passed through the air conditioning heat exchanger 4 flows in parallel to the heat exchanger flow path 5e of each of the first and second refrigerant circuits Ca and Cb. Pass through the expansion valves 2 of the first and second refrigerant circuits Ca and Cb in parallel, and flow through the outdoor heat exchangers 3 of the first and second refrigerant circuits Ca and Cb in parallel as they are, Thereafter, the flow is the same as in the case of the single expansion valve passing configuration.

冷媒回路Cが冷房運転状態に切り換えられた状態においては、第1連通流路P1が、複数の冷媒回路Cの夫々に備えられた室外用熱交換器3を並列状に接続する並列状接続流路としての室外側並列接続流路Qpとして機能し、第2連通流路P2が、異なる冷媒回路Cに備えられた膨張弁2に冷媒を通流可能とする膨張弁用接続流路Qbとして機能する。
又、冷媒回路Cが暖房運転状態に切り換えられた状態においては、第1連通流路P1及び第2連通流路P2が室外側並列接続流路Qpとして機能する。
In the state where the refrigerant circuit C is switched to the cooling operation state, the first communication flow path P1 connects the outdoor heat exchangers 3 provided in each of the plurality of refrigerant circuits C in parallel. It functions as an outdoor parallel connection flow path Qp as a passage, and the second communication flow path P2 functions as an expansion valve connection flow path Qb that allows the refrigerant to flow through the expansion valves 2 provided in different refrigerant circuits C. To do.
Further, in a state where the refrigerant circuit C is switched to the heating operation state, the first communication flow path P1 and the second communication flow path P2 function as the outdoor parallel connection flow path Qp.

次に、制御部6の制御動作について、説明を加える。
制御部6は、室内ユニットUiの運転台数が4台以上の場合は、運転状態を定格運転状態とし、並びに、室外側通流状態切換部Sを通常通流状態に切り換える。又、制御部6は、室内ユニットUiの運転台数が3台の場合は、運転状態を部分負荷運転状態とし、並びに、室外側通流状態切換部Sを複数膨張弁通過形態の第1又は第2部分負荷通流状態に切り換え、室内ユニットUiの運転台数が1又は2台の場合は、運転状態を部分負荷運転状態とし、並びに、室外側通流状態切換部Sを単一膨張弁通過形態の第1又は第2部分負荷通流状態に切り換える。
又、制御部6は、部分負荷運転状態においては、複数の冷媒回路Cの圧縮機1の積算運転時間を均等化すべく、運転対象の圧縮機1を複数の冷媒回路Cの圧縮機1から選択して設定し、並びに、そのように設定した運転対象の圧縮機1に応じて第1及び第2のうちのいずれかの部分負荷通流状態に切り換えるように、室外側通流状態切換部Sの作動を制御する。
つまり、制御部6が、部分負荷運転状態において運転対象の圧縮機1を変更設定自在に構成され、室外側通流状態切換部Sが、変更設定される運転対象の圧縮機1を備えた冷媒回路Cを運転対象の冷媒回路Cとして部分負荷通流状態に切り換え自在に構成されている。
Next, the control operation of the control unit 6 will be described.
When the number of indoor units Ui operated is four or more, the control unit 6 sets the operation state to the rated operation state and switches the outdoor flow state switching unit S to the normal flow state. Further, when the number of indoor units Ui is three, the control unit 6 sets the operation state to the partial load operation state, and sets the outdoor flow state switching unit S to the first or second of the plurality of expansion valve passage configurations. When the number of operating units of the indoor unit Ui is 1 or 2, the operation state is set to the partial load operation state, and the outdoor flow state switching unit S is passed through the single expansion valve. Are switched to the first or second partial load flow state.
Further, the control unit 6 selects the compressor 1 to be operated from the compressors 1 of the plurality of refrigerant circuits C in order to equalize the accumulated operation time of the compressors 1 of the plurality of refrigerant circuits C in the partial load operation state. And the outdoor flow state switching unit S so as to switch to the partial load flow state of either the first or the second according to the compressor 1 to be operated set as described above. Control the operation of
That is, the control unit 6 is configured to be able to change and set the operation target compressor 1 in the partial load operation state, and the outdoor-side flow state switching unit S includes the operation target compressor 1 to be changed and set. The circuit C is configured to be switched to a partial load flow state as a refrigerant circuit C to be operated.

〔第4実施形態〕
以下、図9〜図12に基づいて、第4実施形態を説明する。
尚、図9は、マルチ型空調システムの全体構成、及び、冷媒回路Cを冷房運転状態に切り換えた状態での冷媒の流れを示し、図10は、冷媒回路Cを暖房運転状態に切り換えた状態での冷媒の流れを示し、更に、図9及び図10夫々において、(a)は定格運転状態での冷媒の流れを示し、(b)は単一膨張弁通過形態の第1部分負荷運転状態での冷媒の流れを示す。
又、図11は、冷房運転状態での複数膨張弁通過形態の第1部分負荷運転状態における冷媒の流れを示し、図12は、暖房運転状態での複数膨張弁通過形態の第1部分負荷運転状態における冷媒の流れを示す。
[Fourth Embodiment]
Hereinafter, based on FIGS. 9-12, 4th Embodiment is described.
9 shows the overall configuration of the multi-type air conditioning system and the flow of the refrigerant in a state where the refrigerant circuit C is switched to the cooling operation state, and FIG. 10 shows the state where the refrigerant circuit C is switched to the heating operation state. 9 and 10, (a) shows the refrigerant flow in the rated operation state, and (b) shows the first partial load operation state of the single expansion valve passing configuration. Shows the flow of refrigerant.
FIG. 11 shows the refrigerant flow in the first partial load operation state of the multiple expansion valve passage configuration in the cooling operation state, and FIG. 12 shows the first partial load operation of the multiple expansion valve passage configuration in the heating operation state. The flow of the refrigerant in a state is shown.

図9及び図10に示すように、この第4実施形態においても、上記の第1実施形態と同様に、マルチ型空調システムには冷媒回路Cが2台設けられているが、各冷媒回路Cにおいて室外用熱交換器3と空調用熱交換器4との接続形態が第1実施形態と異なる。
つまり、この第4実施形態では、2台の冷媒回路C夫々が、各冷媒回路C専用の室外用熱交換器3と各冷媒回路C専用の空調用熱交換器4とを接続して構成されている。
2台の冷媒回路Cの空調用熱交換器4夫々が、空調対象空間に設置される室内用熱交換12に循環される熱搬送用流体と冷媒とを熱交換させるように構成されている。
ちなみに、第4実施形態では、室内用熱交換12が冷媒回路Cの設置台数よりも多い6台設けられ、それら6台の室内用熱交換器12が流体往き路13及び流体戻り路14により並列状に各冷媒回路Cの空調用熱交換器4に接続されている。
As shown in FIGS. 9 and 10, in the fourth embodiment, as in the first embodiment, the multi-type air conditioning system is provided with two refrigerant circuits C. However, the connection configuration of the outdoor heat exchanger 3 and the air conditioning heat exchanger 4 is different from that of the first embodiment.
That is, in the fourth embodiment, each of the two refrigerant circuits C is configured by connecting the outdoor heat exchanger 3 dedicated to each refrigerant circuit C and the air conditioning heat exchanger 4 dedicated to each refrigerant circuit C. ing.
Each of the air conditioner heat exchangers 4 of the two refrigerant circuits C is configured to exchange heat between the heat transfer fluid circulated through the indoor heat exchanger 12 installed in the air-conditioning target space and the refrigerant.
Incidentally, in the fourth embodiment, six indoor heat exchanges 12 are provided, which is larger than the number of refrigerant circuits C installed, and these six indoor heat exchangers 12 are arranged in parallel by the fluid forward path 13 and the fluid return path 14. Are connected to the air conditioner heat exchanger 4 of each refrigerant circuit C.

圧縮機1、アキュムレータ8、膨張弁2、室外用熱交換器3及び空調用熱交換器4が1台ずつ設けられて、室外ユニットUeが構成されている。つまり、室外ユニットUeが2台設けられている。図示を省略するが、各室外ユニットUeには、室外用熱交換器3を通流する冷媒と熱交換させるために外気を室外用熱交換器3に通風する外気用通風機が設けられている。
6台の室内用熱交換器12が1台ずつ室内ユニットUiに設けられている。図示を省略するが、各室内ユニットUiには、空調対象空間内の空気を室内用熱交換器12に通風したのち空調対象空間に戻すように通風作用する空調用送風機、及び、室内ユニットUiの運転及び停止等を指令するリモートコントローラ等が設けられている。つまり、6台の室内ユニットUiは、夫々のリモートコントローラにより各別に運転及び停止が可能である。
The compressor 1, the accumulator 8, the expansion valve 2, the outdoor heat exchanger 3 and the air conditioning heat exchanger 4 are provided one by one to constitute the outdoor unit Ue. That is, two outdoor units Ue are provided. Although not shown in the drawings, each outdoor unit Ue is provided with an outdoor air ventilator for passing outside air through the outdoor heat exchanger 3 in order to exchange heat with the refrigerant flowing through the outdoor heat exchanger 3. .
Six indoor heat exchangers 12 are provided in the indoor unit Ui one by one. Although not shown in the drawings, each indoor unit Ui has an air conditioner blower that ventilates air in the air conditioning target space to return to the air conditioning target space after passing through the indoor heat exchanger 12, and an indoor unit Ui. A remote controller or the like for commanding operation and stop is provided. That is, the six indoor units Ui can be individually operated and stopped by the respective remote controllers.

この第4実施形態では、上記の第3実施形態と同様に、室外側並列接続流路Qp及び室外側通流状態切換部Sが設けられている。
つまり、この第4実施形態でも、第3実施形態と同様に、室外側接続流路Qとして室外側並列接続流路Qpが設けられ、室外側通流状態切換部Sが、部分負荷通流状態においては室外側並列接続流路Qpを通して冷媒を通流させるように構成されている。
又、複数の冷媒回路Cが、異なる冷媒回路Cに備えられた膨張弁2に冷媒を通流可能とする膨張弁用接続流路Qbにて連結されており、室外側通流状態切換部Sが、部分負荷通流状態において、冷媒を通流させる膨張弁2の数を変更自在に構成されている。
そして、制御部6が、定格運転状態においては、室外側通流状態切換部Sを通常通流状態に切り換え、部分負荷運転状態においては、室外側通流状態切換部Sを部分負荷通流状態に切り換えると共に、空調負荷に応じて冷媒を通流させる膨張弁2の数を変更すべく室外側通流状態切換部Sを作動させるように構成されている。
In the fourth embodiment, the outdoor parallel connection flow path Qp and the outdoor flow state switching unit S are provided as in the third embodiment.
That is, also in the fourth embodiment, as in the third embodiment, the outdoor parallel connection flow path Qp is provided as the outdoor connection flow path Q, and the outdoor flow state switching unit S is in the partial load flow state. Is configured to allow refrigerant to flow through the outdoor parallel connection flow path Qp.
A plurality of refrigerant circuits C are connected to expansion valves 2 provided in different refrigerant circuits C through expansion valve connection channels Qb that allow refrigerant to flow, and the outdoor flow state switching unit S However, in the partial load flow state, the number of the expansion valves 2 through which the refrigerant flows can be changed.
The control unit 6 switches the outdoor flow state switching unit S to the normal flow state in the rated operation state, and switches the outdoor flow state switching unit S to the partial load flow state in the partial load operation state. And the outdoor flow state switching unit S is operated to change the number of expansion valves 2 through which the refrigerant flows according to the air conditioning load.

更に、複数の冷媒回路Cが、異なる冷媒回路Cに備えられた空調用熱交換器4に冷媒を通流可能とする空調側接続流路Rにて連結されており、複数の冷媒回路Cの夫々において同一の冷媒回路Cの圧縮機1と空調用熱交換器4とにわたって冷媒を通流させる通常通流状態、及び、複数の圧縮機1のうちの運転対象の圧縮機1と、その運転対象の圧縮機1が備えられた運転対象の冷媒回路Cの空調用熱交換器4及び運転対象の冷媒回路Cとは異なる全ての冷媒回路Cの空調用熱交換器4とにわたって冷媒を通流させる部分負荷通流状態に切り換え自在な空調側通流状態切換手段としての空調側通流状態切換部Tが設けられている。
そして、制御部6が、定格運転状態においては、室外側通流状態切換部S及び空調側通流状態切換部T夫々を通常通流状態に切り換え、部分負荷運転状態においては、室外側通流状態切換部S及び空調側通流状態切換部T夫々を部分負荷通流状態に切り換えるように構成されている。
Further, a plurality of refrigerant circuits C are connected to the air conditioning heat exchanger 4 provided in different refrigerant circuits C by an air conditioning side connection flow path R that allows the refrigerant to flow. The normal flow state in which the refrigerant flows through the compressor 1 and the air-conditioning heat exchanger 4 in the same refrigerant circuit C, and the compressor 1 to be operated among the plurality of compressors 1 and the operation thereof The refrigerant flows through the air conditioning heat exchanger 4 of the operation target refrigerant circuit C provided with the target compressor 1 and the air conditioning heat exchangers 4 of all the refrigerant circuits C different from the operation target refrigerant circuit C. An air-conditioning-side flow state switching unit T is provided as air-conditioning-side flow state switching means that can be switched to the partial load flow state.
Then, the control unit 6 switches the outdoor-side flow state switching unit S and the air-conditioning-side flow state switching unit T to the normal flow state in the rated operation state, and the outdoor-flow flow in the partial load operation state. Each of the state switching unit S and the air conditioning side flow state switching unit T is configured to switch to the partial load flow state.

室外側並列接続流路Qpは、第3実施形態と同様の構成であり、第1連通流路P1及び第2連通流路P2により構成され、室外側通流状態切換部Sも、第3実施形態と同様の構成であり、第1連通流路開閉弁V1及び第2連通流路開閉弁V2、並びに、各冷媒回路Ca,Cbの膨張弁2、対室外用熱交換器流路開閉弁Vc及び対空調用熱交換器流路開閉弁Vdにより構成されている。   The outdoor parallel connection flow path Qp has the same configuration as that of the third embodiment, and includes the first communication flow path P1 and the second communication flow path P2, and the outdoor flow condition switching unit S is also configured in the third embodiment. The first communication flow path opening / closing valve V1 and the second communication flow path opening / closing valve V2, the expansion valve 2 of each refrigerant circuit Ca, Cb, the outdoor heat exchanger flow opening / closing valve Vc. And an air conditioning heat exchanger channel opening / closing valve Vd.

空調側接続流路R及び空調側通流状態切換部Tについて説明を加える。
この第4実施形態では、複数(この第4実施形態では2台)の冷媒回路C夫々の対空調用熱交換器流路5dにおける対空調用熱交換器流路開閉弁Vdよりも空調用熱交換器4側の部分を連通接続する第5連通流路P5、及び、複数の冷媒回路C夫々の熱交換器間流路5eにおける膨張弁2よりも空調用熱交換器4側の部分を連通接続する第6連通流路P6が設けられ、第5連通流路P5、第6連通流路P6には、それぞれ流路開閉用として第5連通流路開閉弁V5、第6連通流路開閉弁V6が設けられている。
そして、空調側接続流路Rが、第5連通流路P5及び第6連通流路P6により構成され、空調側通流状態切換部Tが、第5連通流路開閉弁V5及び第6連通流路開閉弁V6により構成されている。
The air conditioning side connection flow path R and the air conditioning side flow state switching unit T will be described.
In the fourth embodiment, the heat for air conditioning is higher than the heat exchanger flow on / off valve Vd for air conditioning in the heat exchanger flow passage 5d for air conditioning of each of the refrigerant circuits C (two in the fourth embodiment). The fifth communication flow path P5 that communicates and connects the parts on the exchanger 4 side, and the part on the heat exchanger 4 side for air conditioning with respect to the expansion valve 2 in the inter-heat exchanger flow path 5e of each of the plurality of refrigerant circuits C communicates. A sixth communication channel P6 to be connected is provided, and the fifth communication channel P5 and the sixth communication channel P6 are respectively provided with a fifth communication channel on-off valve V5 and a sixth communication channel on-off valve for opening and closing the channel. V6 is provided.
And the air-conditioning side connection flow path R is comprised by the 5th communication flow path P5 and the 6th communication flow path P6, and the air-conditioning side flow state switching part T is the 5th communication flow path opening / closing valve V5 and the 6th communication flow. It is comprised by the road on-off valve V6.

次に、図9〜図12に基づいて、空調側通流状態切換部Tの通常通流状態及び部分負荷通流状態夫々における各弁の開閉作動状態について説明する。
図9及び図10夫々の(a)に示すように、第5連通流路開閉弁V5及び第6連通流路開閉弁V6を閉弁すると、空調側通流状態切換部Tが通常通流状態に切り換えられる。
又、図9及び図10夫々の(b)に示すように、第5連通流路開閉弁V5及び第6連通流路開閉弁V6を開弁すると、空調側通流状態切換部Tが単一膨張弁通過形態の部分負荷通流状態に切り換えられる。又、図11及び図12に示すように、第5連通流路開閉弁V5を開弁し且つ第6連通流路開閉弁V6を閉弁すると、空調側通流状態切換部Tが複数膨張弁通過形態の部分負荷通流状態に切り換えられる。
尚、室外側通流状態切換部Sは、第3実施形態と同様に各弁を開閉作動させて、単一膨張弁通過形態の第1部分負荷通流状態、単一膨張弁通過形態の第2部分負荷通流状態、複数膨張弁通過形態の第1部分負荷通流状態、複数膨張弁通過形態の第2部分負荷通流状態のいずれかに切り換えられる。
そして、そのように室外側通流状態切換部Sが単一膨張弁通過形態の第1部分負荷通流状態及び第2部分負荷通流状態のいずれかに切り換えられるときは、空調側通流状態切換部Tが単一膨張弁通過形態の部分負荷通流状態に切り換えられ、室外側通流状態切換部Sが複数膨張弁通過形態の第1部分負荷通流状態及び第2部分負荷通流状態のいずれかに切り換えられるときは、室外側通流状態切換部Sが複数膨張弁通過形態の部分負荷通流状態に切り換えられる。
Next, the opening / closing operation states of the valves in the normal flow state and the partial load flow state of the air conditioning side flow state switching unit T will be described with reference to FIGS.
As shown in FIGS. 9 and 10 (a), when the fifth communication channel on / off valve V5 and the sixth communication channel on / off valve V6 are closed, the air-conditioning-side communication state switching unit T is in the normal communication state. Can be switched to.
Further, as shown in FIG. 9 and FIG. 10B, when the fifth communication channel on / off valve V5 and the sixth communication channel on / off valve V6 are opened, the air-conditioning-side communication state switching unit T is single. It is switched to the partial load flow state of the expansion valve passage form. Further, as shown in FIGS. 11 and 12, when the fifth communication flow path opening / closing valve V5 is opened and the sixth communication flow path opening / closing valve V6 is closed, the air-conditioning-side flow condition switching section T becomes a plurality of expansion valves. It is switched to the partial load flow state in the passing form.
The outdoor flow state switching unit S opens and closes each valve in the same manner as in the third embodiment, so that the first partial load flow state in the single expansion valve passage form, the first expansion valve passage form in the first The two partial load flow state, the first partial load flow state of the plural expansion valve passage form, or the second partial load passage state of the plural expansion valve passage form is switched.
And when the outdoor flow state switching unit S is switched to either the first partial load flow state or the second partial load flow state of the single expansion valve passage type in this way, the air conditioning side flow state The switching part T is switched to a partial load flow state in a single expansion valve passage form, and the outdoor flow state switching part S is a first partial load flow state and a second partial load flow state in a multiple expansion valve passage form. When switching to any of the above, the outdoor-side flow state switching unit S is switched to the partial load flow state of the plural expansion valve passage form.

次に、室外側通流状態切換部S及び空調側通流状態切換部Tが部分負荷通流状態に切り換えられたときの冷媒の通流形態について説明する。
尚、部分負荷通流状態での冷媒の通流形態は、複数の冷媒回路Cの空調用熱交換器4を通過するときの通流形態が異なる以外は第3実施形態と同様であるので、第3実施形態と同様の形態で通流する部分の説明を省略する。
冷媒回路Cが冷房運転状態に切り換えられた状態で、室外側通流状態切換部Sが単一膨張弁通過形態の第1部分負荷通流状態に切り換えられ且つ空調側通流状態切換部Tが単一膨張弁通過形態の部分負荷通流状態に切り換えられたときの冷媒の通流形態は、図9の(b)に示す通りである。
つまり、第3実施形態の単一膨張弁通過形態の場合と同様に第1冷媒回路Caの膨張弁2を通過した冷媒は、第5連通流路P5及び第6連通流路P6により第1及び第2冷媒回路Ca,Cb夫々の空調用熱交換器4を並行して通流したのち、第1冷媒回路Caの対空調用熱交換器流路5dに合流し、以降、第3実施形態の単一膨張弁通過形態の場合と同様に通流する。
冷媒回路Cが冷房運転状態に切り換えられた状態で、室外側通流状態切換部Sが単一膨張弁通過形態の第2部分負荷通流状態に切り換えられ且つ空調側通流状態切換部Tが単一膨張弁通過形態の部分負荷通流状態に切り換えられたときは、図示を省略するが、第3実施形態の単一膨張弁通過形態の場合と同様に第2冷媒回路Cbの膨張弁2を通過した冷媒は、第5連通流路P5及び第6連通流路P6により第1及び第2冷媒回路Ca,Cb夫々の空調用熱交換器4を並行して通流したのち、第2冷媒回路Cbの対空調用熱交換器流路5dに合流し、以降、第3実施形態の単一膨張弁通過形態の場合と同様に通流する。
Next, the refrigerant flow mode when the outdoor flow state switching unit S and the air conditioning side flow state switching unit T are switched to the partial load flow state will be described.
In addition, since the flow mode of the refrigerant in the partial load flow state is the same as that of the third embodiment except that the flow mode when passing through the heat exchanger 4 for air conditioning of the plurality of refrigerant circuits C is different, The description of the part that flows in the same form as the third embodiment is omitted.
In a state where the refrigerant circuit C is switched to the cooling operation state, the outdoor flow state switching unit S is switched to the first partial load flow state of the single expansion valve passing configuration and the air conditioning side flow state switching unit T is The refrigerant flow mode when switched to the partial load flow mode of the single expansion valve passing mode is as shown in FIG. 9B.
In other words, the refrigerant that has passed through the expansion valve 2 of the first refrigerant circuit Ca, as in the case of the single expansion valve passage form of the third embodiment, passes through the first communication path P5 and the sixth communication path P6. After the air conditioning heat exchanger 4 of each of the second refrigerant circuits Ca and Cb flows in parallel, the air flows into the heat exchanger flow path 5d for the air conditioning of the first refrigerant circuit Ca, and thereafter the third embodiment of the third embodiment. It flows similarly to the case of the single expansion valve passing configuration.
With the refrigerant circuit C switched to the cooling operation state, the outdoor flow state switching unit S is switched to the second partial load flow state of the single expansion valve passing configuration and the air conditioning side flow state switching unit T is When switched to the partial expansion flow state of the single expansion valve passage form, although not shown, the expansion valve 2 of the second refrigerant circuit Cb is the same as in the case of the single expansion valve passage form of the third embodiment. The refrigerant that has passed through the first and second refrigerant circuits Ca and Cb in parallel through the fifth communication flow path P5 and the sixth communication flow path P6 flows in parallel to the second refrigerant. The air flows into the heat exchanger flow path 5d for the air conditioning of the circuit Cb, and thereafter flows in the same manner as in the single expansion valve passing form of the third embodiment.

冷媒回路Cが冷房運転状態に切り換えられた状態で、室外側通流状態切換部Sが複数膨張弁通過形態の第1部分負荷通流状態に切り換えられ且つ空調側通流状態切換部Tが複数膨張弁通過形態の部分負荷通流状態に切り換えられたときは、冷媒は図11に示すように通流する。即ち、第3実施形態の複数膨張弁通過形態の場合と同様に第1及び第2冷媒回路Ca,Cb夫々の熱交換器間流路5eを並行して通流して第1及び第2冷媒回路Ca,Cb夫々の膨張弁2を並行して通過した冷媒は、そのまま第1及び第2冷媒回路Ca,Cb夫々の空調用熱交換器4を並行して通流したのち、第5連通流路P5により第1冷媒回路Caの対空調用熱交換器流路5dに合流し、以降、上記の単一膨張弁通過形態の場合と同様に通流する。
又、冷媒回路Cが冷房運転状態に切り換えられた状態で、室外側通流状態切換部Sが複数膨張弁通過形態の第2部分負荷通流状態に切り換えられ且つ空調側通流状態切換部Tが複数膨張弁通過形態の部分負荷通流状態に切り換えられたときは、図示を省略するが、第3実施形態の複数膨張弁通過形態の場合と同様に第1及び第2冷媒回路Ca,Cb夫々の熱交換器間流路5eを並行して通流して第1及び第2冷媒回路Ca,Cb夫々の膨張弁2を並行して通過した冷媒は、そのまま第1及び第2冷媒回路Ca,Cb夫々の空調用熱交換器4を並行して通流したのち、第5連通流路P5により第2冷媒回路Cbの対空調用熱交換器流路5dに合流し、以降、上記の単一膨張弁通過形態の場合と同様に通流する。
In a state where the refrigerant circuit C is switched to the cooling operation state, the outdoor flow state switching unit S is switched to the first partial load flow state in which the plurality of expansion valves pass and the air conditioning side flow state switching unit T is plural. When switched to the partial load flow state of the expansion valve passing configuration, the refrigerant flows as shown in FIG. That is, the first and second refrigerant circuits are made to flow in parallel through the heat exchanger flow passages 5e of the first and second refrigerant circuits Ca and Cb in the same manner as in the case of the multiple expansion valve passage form of the third embodiment. The refrigerant that has passed through the expansion valves 2 of Ca and Cb in parallel passes through the air conditioning heat exchangers 4 of the first and second refrigerant circuits Ca and Cb in parallel as they are, and then the fifth communication channel. P5 joins the heat exchanger flow path 5d for the air conditioning of the first refrigerant circuit Ca, and then flows in the same manner as in the case of the single expansion valve passing configuration.
Further, in the state where the refrigerant circuit C is switched to the cooling operation state, the outdoor-side flow state switching unit S is switched to the second partial load flow state of the plural expansion valve passage type and the air-conditioning side flow state switching unit T. Is switched to the partial-load flow state of the multiple expansion valve passage configuration, the illustration is omitted, but the first and second refrigerant circuits Ca, Cb are the same as in the multiple expansion valve passage configuration of the third embodiment. Refrigerants that have passed through the respective heat exchanger flow paths 5e in parallel and passed through the first and second refrigerant circuits Ca, Cb in parallel with the respective expansion valves 2 are directly supplied to the first and second refrigerant circuits Ca, After each of the Cb air conditioning heat exchangers 4 flows in parallel, it is joined to the air conditioning heat exchanger channel 5d of the second refrigerant circuit Cb through the fifth communication channel P5. The flow is the same as in the expansion valve passing configuration.

冷媒回路Cが暖房運転状態に切り換えられた状態で、室外側通流状態切換部Sが単一膨張弁通過形態の第1部分負荷通流状態に切り換えられ且つ空調側通流状態切換部Tが単一膨張弁通過形態の部分負荷通流状態に切り換えられたときの冷媒の通流形態は、図10の(b)に示す通りである。
つまり、第3実施形態の単一膨張弁通過形態の場合と同様に第1冷媒回路Caの対空調用熱交換器流路5dを通流する冷媒は、第5連通流路P5及び第6連通流路P6により第1及び第2冷媒回路Ca,Cb夫々の空調用熱交換器4を並行して通流したのち、第1冷媒回路Caの熱交換器間流路5eに合流し、以降、第3実施形態の単一膨張弁通過形態の場合と同様に通流する。
冷媒回路Cが暖房運転状態に切り換えられた状態で、室外側通流状態切換部Sが単一膨張弁通過形態の第2部分負荷通流状態に切り換えられ且つ空調側通流状態切換部Tが単一膨張弁通過形態の部分負荷通流状態に切り換えられたときは、図示を省略するが、第3実施形態の単一膨張弁通過形態の場合と同様に第2冷媒回路Cbの対空調用熱交換器流路5dを通流する冷媒は、第5連通流路P5及び第6連通流路P6により第1及び第2冷媒回路Ca,Cb夫々の空調用熱交換器4を並行して通流したのち、第2冷媒回路Cbの熱交換器間流路5eに合流し、以降、第3実施形態の単一膨張弁通過形態の場合と同様に通流する。
With the refrigerant circuit C switched to the heating operation state, the outdoor flow state switching unit S is switched to the first partial load flow state of the single expansion valve passing configuration and the air conditioning side flow state switching unit T is The flow mode of the refrigerant when switched to the partial load flow state of the single expansion valve passing mode is as shown in FIG.
That is, as in the case of the single expansion valve passage configuration of the third embodiment, the refrigerant flowing through the heat exchanger channel 5d for air conditioning of the first refrigerant circuit Ca is the fifth communication channel P5 and the sixth communication channel. After passing the air conditioning heat exchangers 4 of the first and second refrigerant circuits Ca and Cb in parallel through the flow path P6, they merge into the heat exchanger flow path 5e of the first refrigerant circuit Ca. It flows similarly to the case of the single expansion valve passage form of the third embodiment.
With the refrigerant circuit C switched to the heating operation state, the outdoor flow state switching unit S is switched to the second partial load flow state of the single expansion valve passing configuration and the air conditioning side flow state switching unit T is When switched to the partial load flow state of the single expansion valve passing configuration, the illustration is omitted, but the second refrigerant circuit Cb is for air conditioning as in the case of the single expansion valve passing configuration of the third embodiment. The refrigerant flowing through the heat exchanger channel 5d passes through the air conditioning heat exchangers 4 of the first and second refrigerant circuits Ca and Cb in parallel through the fifth communication channel P5 and the sixth communication channel P6. After flowing, it merges into the heat exchanger flow path 5e of the second refrigerant circuit Cb, and thereafter flows in the same manner as in the single expansion valve passage form of the third embodiment.

冷媒回路Cが暖房運転状態に切り換えられた状態で、室外側通流状態切換部Sが複数膨張弁通過形態の第1部分負荷通流状態に切り換えられ且つ空調側通流状態切換部Tが複数膨張弁通過形態の部分負荷通流状態に切り換えられたときは、冷媒は図12に示すように通流する。即ち、上記の単数膨張弁通過形態の場合と同様に第1冷媒回路Caの対空調用熱交換器流路5dを通流する冷媒は、第5連通流路P5により第1及び第2冷媒回路Ca,Cb夫々の空調用熱交換器4を並行して通流した後、そのまま、第1及び第2冷媒回路Ca,Cb夫々の熱交換器間流路5eを並行して通流し、以降、第3実施形態の複数膨張弁通過形態の場合と同様に通流する。
冷媒回路Cが暖房運転状態に切り換えられた状態で、室外側通流状態切換部Sが複数膨張弁通過形態の第2部分負荷通流状態に切り換えられ且つ空調側通流状態切換部Tが複数膨張弁通過形態の部分負荷通流状態に切り換えられたときは、図示を省略するが、上記の単数膨張弁通過形態の場合と同様に第2冷媒回路Cbの対空調用熱交換器流路5dを通流する冷媒は、第5連通流路P5により第1及び第2冷媒回路Ca,Cb夫々の空調用熱交換器4を並行して通流した後、そのまま、第1及び第2冷媒回路Ca,Cb夫々の熱交換器間流路5eを並行して通流し、以降、第3実施形態の複数膨張弁通過形態の場合と同様に通流する。
In the state where the refrigerant circuit C is switched to the heating operation state, the outdoor flow state switching unit S is switched to the first partial load flow state in which the plurality of expansion valves pass and the air conditioning side flow state switching unit T is plural. When switched to the partial load flow state of the expansion valve passing configuration, the refrigerant flows as shown in FIG. That is, the refrigerant flowing through the heat exchanger channel 5d for air conditioning of the first refrigerant circuit Ca is the first and second refrigerant circuits through the fifth communication channel P5 as in the case of the single expansion valve passing configuration. After flowing the heat exchangers 4 for air conditioning of Ca and Cb in parallel, the flow paths 5e between the heat exchangers of the first and second refrigerant circuits Ca and Cb are passed in parallel as they are. It flows similarly to the case of the multiple expansion valve passage form of the third embodiment.
In the state where the refrigerant circuit C is switched to the heating operation state, the outdoor flow state switching unit S is switched to the second partial load flow state in which the plurality of expansion valves pass and the air conditioning side flow state switching unit T is plural. When switched to the partial load flow state of the expansion valve passage configuration, the illustration is omitted, but as in the case of the single expansion valve passage configuration, the heat exchanger flow path 5d for the air conditioning of the second refrigerant circuit Cb. The refrigerant flowing through the first and second refrigerant circuits passes through the first and second refrigerant circuits Ca and Cb through the air conditioning heat exchangers 4 in parallel through the fifth communication flow path P5 and then flows as they are. The flow paths 5e between the heat exchangers Ca and Cb flow in parallel, and then flow in the same manner as in the multiple expansion valve passage form of the third embodiment.

つまり、第5連通流路P5及び第6連通流路P6が、複数の冷媒回路Cの夫々に備えられた空調用熱交換器4を並列状に接続する空調側並列接続流路Rpとして機能し、空調側通流状態切換部Tが、部分負荷通流状態においては空調側並列接続流路Rpを通して冷媒を通流させるように構成されていることになる。   That is, the fifth communication flow path P5 and the sixth communication flow path P6 function as an air conditioning side parallel connection flow path Rp that connects the air conditioning heat exchangers 4 provided in each of the plurality of refrigerant circuits C in parallel. In the partial load flow state, the air conditioning side flow state switching unit T is configured to flow the refrigerant through the air conditioning side parallel connection flow path Rp.

次に、制御部6の制御動作について、説明を加える。
制御部6は、室内ユニットUiの運転台数に応じて、上記の第3実施形態と同様に室外側通流状態切換部Sを切り換える。又、制御部6は、室外側通流状態切換部Sを通常通流状態に切り換えたときは、空調側通流状態切換部Tを通常通流状態に切り換え、室外側通流状態切換部Sを複数膨張弁通過形態の第1又は第2部分負荷通流状態に切り換えたときは、空調側通流状態切換部Tを複数膨張弁通過形態の部分負荷通流状態に切り換え、室外側通流状態切換部Sを単一膨張弁通過形態の第1又は第2部分負荷通流状態に切り換えたときは、空調側通流状態切換部Tを単一膨張弁通過形態の部分負荷通流状態に切り換える。
又、上記の第3実施形態と同様に、制御部6は、部分負荷運転状態においては、複数の冷媒回路Cの圧縮機1の積算運転時間を均等化すべく、運転対象の圧縮機1を複数の冷媒回路Cの圧縮機1から選択して設定し、そのように設定した運転対象の圧縮機1に応じて第1及び第2のうちのいずれかの部分負荷通流状態に切り換えるように室外側通流状態切換部Sの作動を制御し、並びに、空調側通流状態切換部Tを部分負荷通流状態に切り換える。
つまり、制御部6が、部分負荷運転状態において運転対象の圧縮機1を変更設定自在に構成され、室外側通流状態切換部Sが、変更設定される運転対象の圧縮機1を備えた冷媒回路Cを運転対象の冷媒回路Cとして部分負荷通流状態に切り換え自在に構成されている。
Next, the control operation of the control unit 6 will be described.
The control unit 6 switches the outdoor-side flow state switching unit S in the same manner as in the third embodiment, according to the number of operating indoor units Ui. Further, when the outdoor-side flow state switching unit S is switched to the normal flow state, the control unit 6 switches the air-conditioning-side flow state switching unit T to the normal flow state, and the outdoor-side flow state switching unit S. Is switched to the first or second partial load flow state of the multiple expansion valve passage form, the air conditioning side flow state switching unit T is switched to the partial load flow state of the multiple expansion valve passage form, When the state switching unit S is switched to the first or second partial load flow state of the single expansion valve passing configuration, the air conditioning side flow state switching unit T is switched to the partial load flow state of the single expansion valve passing configuration. Switch.
Similarly to the third embodiment, in the partial load operation state, the control unit 6 sets a plurality of compressors 1 to be operated in order to equalize the accumulated operation time of the compressors 1 of the plurality of refrigerant circuits C. The chamber is selected and set from the compressor 1 of the refrigerant circuit C, and switched to the partial load flow state of either the first or the second according to the compressor 1 to be operated set as such. The operation of the outer flow state switching unit S is controlled, and the air conditioning side flow state switching unit T is switched to the partial load flow state.
That is, the control unit 6 is configured to be able to change and set the operation target compressor 1 in the partial load operation state, and the outdoor-side flow state switching unit S includes the operation target compressor 1 to be changed and set. The circuit C is configured to be switched to a partial load flow state as a refrigerant circuit C to be operated.

以下、第5〜第8実施形態を説明するが、各実施形態は、マルチ型空調システムの構成は上記の第4実施形態と同様であり、又、その第4実施形態と同様に室外側接続流路Q及び室外側通流状態切換部Sの組み合わせ、並びに、空調側接続流路R及び空調側通流状態切換部Tの組み合わせが設けられているが、それら2つの組み合わせのうちの少なくとも一方が上記の第4実施形態と異なるので、各実施形態では、主として、第4実施形態と異なる点を説明する。   Hereinafter, although 5th-8th embodiment is described, each embodiment is the same as that of said 4th Embodiment in the structure of a multi-type air conditioning system, Moreover, outdoor connection is the same as that 4th Embodiment. A combination of the channel Q and the outdoor flow state switching unit S and a combination of the air conditioning side connection flow channel R and the air conditioning side flow state switching unit T are provided, but at least one of these two combinations Are different from the fourth embodiment described above, and in each embodiment, points different from the fourth embodiment will be mainly described.

ちなみに、第5、第7及び第8の各実施形態では、室外側接続流路Qとして室外側直列接続流路Qsが設けられ、室外側通流状態切換部Sが、部分負荷通流状態においては室外側直列接続流路Qsを通して冷媒を通流させるように構成され、制御部6が、定格運転状態においては、室外側通流状態切換部Sを通常通流状態に切り換え、部分負荷運転状態においては、室外側通流状態切換部Sを部分負荷通流状態に切り換えるように構成されている。
又、第6実施形態では、室外側接続流路Qとして室外側並列接続流路Qpが設けられ、室外側通流状態切換部Sが、部分負荷通流状態においては室外側並列接続流路Qpを通して冷媒を通流させるように構成されている。又、複数の冷媒回路Cが、異なる冷媒回路Cに備えられた膨張弁2に冷媒を通流可能とする膨張弁用接続流路Qbにて連結されており、室外側通流状態切換部Sが、部分負荷通流状態において、冷媒を通流させる膨張弁2の数を変更自在に構成されている。そして、制御部6が、定格運転状態においては、室外側通流状態切換部Sを通常通流状態に切り換え、部分負荷運転状態においては、室外側通流状態切換部Sを部分負荷通流状態に切り換えると共に、空調負荷に応じて冷媒を通流させる膨張弁2の数を変更すべく室外側通流状態切換部Sを作動させるように構成されている。
Incidentally, in each of the fifth, seventh and eighth embodiments, an outdoor series connection flow path Qs is provided as the outdoor connection flow path Q, and the outdoor flow state switching unit S is in the partial load flow state. Is configured to allow the refrigerant to flow through the outdoor-side series connection flow path Qs, and in the rated operation state, the control unit 6 switches the outdoor-side flow state switching unit S to the normal flow state, and the partial load operation state Is configured to switch the outdoor-side flow state switching unit S to the partial-load flow state.
Further, in the sixth embodiment, an outdoor parallel connection flow path Qp is provided as the outdoor connection flow path Q, and the outdoor flow connection state switching unit S is configured to be connected to the outdoor parallel connection flow path Qp in the partial load flow state. The refrigerant is allowed to flow through. A plurality of refrigerant circuits C are connected to expansion valves 2 provided in different refrigerant circuits C through expansion valve connection channels Qb that allow refrigerant to flow, and the outdoor flow state switching unit S However, in the partial load flow state, the number of the expansion valves 2 through which the refrigerant flows can be changed. The control unit 6 switches the outdoor flow state switching unit S to the normal flow state in the rated operation state, and switches the outdoor flow state switching unit S to the partial load flow state in the partial load operation state. And the outdoor flow state switching unit S is operated to change the number of expansion valves 2 through which the refrigerant flows according to the air conditioning load.

〔第5実施形態〕
以下、図13及び図14に基づいて、第5実施形態を説明する。
尚、図13は、マルチ型空調システムの全体構成、及び、冷房運転状態での部分負荷運転状態における冷媒の流れを示し、図14は、暖房運転状態での部分負荷運転状態における冷媒の流れを示す。
図13及び図14に示すように、この第5実施形態では、空調側接続流路Rと空調側通流状態切換部Tが第4実施形態と同様であるが、室外側接続流路Q及び室外側通流状態切換部Sが上記の第1実施形態と同様であって第4実施形態と異なる。
[Fifth Embodiment]
Hereinafter, the fifth embodiment will be described with reference to FIGS. 13 and 14.
13 shows the overall configuration of the multi-type air conditioning system and the refrigerant flow in the partial load operation state in the cooling operation state, and FIG. 14 shows the refrigerant flow in the partial load operation state in the heating operation state. Show.
As shown in FIGS. 13 and 14, in the fifth embodiment, the air conditioning side connection flow path R and the air conditioning side flow state switching unit T are the same as those in the fourth embodiment, but the outdoor connection flow path Q and The outdoor flow state switching unit S is the same as that in the first embodiment and is different from that in the fourth embodiment.

室外側通流状態切換部Sの通常通流状態及び部分負荷通流状態夫々における各弁の開閉作動状態は、第1実施形態と同様であり、空調側通流状態切換部Tの通常通流状態及び部分負荷通流状態夫々における各弁の開閉作動状態は、第4実施形態と同様である。
ちなみに、図13に、冷房運転状態において、室外側通流状態切換部S及び空調側通流状態切換部Tが部分負荷通流状態に切り換えられた状態、及び、その状態での冷媒の通流形態を示し、図14に、暖房運転状態において、室外側通流状態切換部S及び空調側通流状態切換部Tが部分負荷通流状態に切り換えられた状態、及び、その状態での冷媒の通流形態を示す。
The open / close operation state of each valve in the normal flow state and the partial load flow state of the outdoor flow state switching unit S is the same as in the first embodiment, and the normal flow of the air-conditioning side flow state switching unit T The open / close operation state of each valve in each of the state and the partial load flow state is the same as in the fourth embodiment.
Incidentally, FIG. 13 shows a state where the outdoor flow state switching unit S and the air conditioning side flow state switching unit T are switched to the partial load flow state in the cooling operation state, and the refrigerant flow in that state. FIG. 14 shows the configuration, and in the heating operation state, the outdoor-side flow state switching unit S and the air-conditioning-side flow state switching unit T are switched to the partial load flow state, and the refrigerant in that state The flow form is shown.

つまり、この第5実施形態では、空調側接続流路Rとして空調側並列接続流路Rpが設けられ、空調側通流状態切換部Tが、部分負荷通流状態においては空調側並列接続流路Rpを通して冷媒を通流させるように構成されていることになる。   That is, in the fifth embodiment, the air-conditioning side parallel connection flow path Rp is provided as the air-conditioning side connection flow path R, and the air-conditioning side flow state switching unit T is operated in the partial load flow state. The refrigerant is configured to flow through Rp.

〔第6実施形態〕
以下、図15〜図22に基づいて、第6実施形態を説明する。
尚、図15は、マルチ型空調システムの全体構成、及び、冷房運転状態での単一膨張弁通過形態の第1部分負荷運転状態における冷媒の流れを示し、図16は、暖房運転状態での単一膨張弁通過形態の第1部分負荷運転状態における冷媒の流れを示す。又、図17、図19及び図21は、冷房運転状態での冷媒の流れを示し、図17は単一膨張弁通過形態の第2部分負荷運転状態であり、図19は複数膨張弁通過形態の第1部分負荷状態であり、図21は複数膨張弁通過形態の第2部分負荷状態である。又、図18、図20及び図22は、暖房運転状態での冷媒の流れを示し、図18は単一膨張弁通過形態の第2部分負荷運転状態であり、図20は複数膨張弁通過形態の第1部分負荷状態であり、図22は複数膨張弁通過形態の第2部分負荷状態である。
図15及び図16に示すように、この第6実施形態では室外側接続流路Q及び室外側通流状態切換部Sが上記の第4実施形態と同様であるが、空調側接続流路R及び空調側通流状態切換部Tが第4実施形態と異なる。
[Sixth Embodiment]
Hereinafter, the sixth embodiment will be described with reference to FIGS. 15 to 22.
FIG. 15 shows the overall configuration of the multi-type air conditioning system and the refrigerant flow in the first partial load operation state of the single expansion valve passage configuration in the cooling operation state, and FIG. 16 shows the flow in the heating operation state. The refrigerant | coolant flow in the 1st partial load driving | running state of a single expansion valve passage form is shown. 17, 19 and 21 show the flow of the refrigerant in the cooling operation state, FIG. 17 shows the second partial load operation state of the single expansion valve passage form, and FIG. 19 shows the multiple expansion valve passage form. FIG. 21 shows a second partial load state in which a plurality of expansion valves are passed. 18, 20 and 22 show the flow of the refrigerant in the heating operation state, FIG. 18 shows the second partial load operation state of the single expansion valve passage form, and FIG. 20 shows the multiple expansion valve passage form. FIG. 22 shows a second partial load state in which a plurality of expansion valves are passed.
As shown in FIGS. 15 and 16, in the sixth embodiment, the outdoor connection flow path Q and the outdoor flow state switching unit S are the same as those in the fourth embodiment, but the air conditioning side connection flow path R And the air-conditioning side flow state switching unit T is different from that of the fourth embodiment.

空調側接続流路R及び空調側通流状態切換部Tについて説明を加える。
第4実施形態と同様に、第5連通流路P5、第5連通流路開閉弁V5、第6連通流路P6及び第6連通流路開閉弁V6が設けられている。
又、第1冷媒回路Caの対空調用熱交換器流路5dにおける第5連通流路P5の接続箇所よりも空調用熱交換器4側の箇所と第2冷媒回路Cbの熱交換器間流路5eにおける第6連通流路P6の接続箇所よりも空調用熱交換器4側の箇所とを連通接続する第7連通流路P7、及び、その第7連通流路P7を開閉する第7連通流路開閉弁V7が設けられている。
更に、第1冷媒回路Caの対空調用熱交換器流路5dにおける第5連通流路P5及び第7連通流路P7夫々の接続箇所同士の間に、対空調用熱交換器流路5dを開閉する対空調用熱交換器流路第2開閉弁Vddが設けられ、第2冷媒回路Cbの熱交換器間流路5eにおける第6連通流路P6及び第7連通流路P7夫々の接続箇所同士の間に、熱交換器間流路5eを開閉する熱交換器間流路開閉弁Veが設けられている。
つまり、空調側接続流路Rが、第5連通流路P5、第6連通流路P6及び第7連通流路P7により構成され、空調側通流状態切換部Tが、第5連通流路開閉弁V5、第6連通流路開閉弁V6、第7連通流路開閉弁V7、対空調用熱交換器流路第2開閉弁Vdd及び熱交換器間流路開閉弁Veにより構成されている。
The air conditioning side connection flow path R and the air conditioning side flow state switching unit T will be described.
As in the fourth embodiment, a fifth communication channel P5, a fifth communication channel on / off valve V5, a sixth communication channel P6, and a sixth communication channel on / off valve V6 are provided.
In addition, the flow between the location of the air conditioning heat exchanger 4 and the location of the second refrigerant circuit Cb in the second refrigerant circuit Cb with respect to the location of connection of the fifth communication channel P5 in the heat exchanger channel 5d for air conditioning of the first refrigerant circuit Ca. A seventh communication channel P7 that connects the location of the air-conditioning heat exchanger 4 to a location closer to the connection with the sixth communication channel P6 in the path 5e, and a seventh communication that opens and closes the seventh communication channel P7. A flow path opening / closing valve V7 is provided.
Furthermore, the air-conditioning heat exchanger channel 5d is connected between the connection points of the fifth communication channel P5 and the seventh communication channel P7 in the air-conditioning heat exchanger channel 5d of the first refrigerant circuit Ca. An air conditioning heat exchanger channel second open / close valve Vdd that opens and closes is provided, and each of the sixth communication channel P6 and the seventh communication channel P7 is connected to the channel 5e between the heat exchangers of the second refrigerant circuit Cb. Between them, an inter-heat exchanger channel opening / closing valve Ve that opens and closes the inter-heat exchanger channel 5e is provided.
That is, the air-conditioning side connection flow path R is configured by the fifth communication flow path P5, the sixth communication flow path P6, and the seventh communication flow path P7, and the air-conditioning side flow condition switching unit T is opened and closed by the fifth communication flow path. The valve V5, the sixth communication flow path opening / closing valve V6, the seventh communication flow path opening / closing valve V7, the air conditioner heat exchanger flow path second opening / closing valve Vdd, and the heat exchanger flow path opening / closing valve Ve.

次に、空調側通流状態切換部Tの通常通流状態及び部分負荷通流状態夫々における各弁の開閉作動状態について説明する。
図示を省略するが、通常通流状態では、第5連通流路開閉弁V5、第6連通流路開閉弁V6及び第7連通流路開閉弁V7を閉弁し、対空調用熱交換器流路第2開閉弁Vdd及び熱交換器間流路開閉弁Veを開弁する。
図15及び図16に示すように、第1冷媒回路Caの圧縮機1が運転対象に設定されて、室外側通流状態切換部Sが単一膨張弁通過形態の第1部分負荷通流状態に切り換えられた状態で、第5連通流路開閉弁V5及び第7連通流路開閉弁V7を開弁し、第6連通流路開閉弁V6、対空調用熱交換器流路第2開閉弁Vdd及び熱交換器間流路開閉弁Veを閉弁すると、第1冷媒回路Caの圧縮機1が運転対象に設定されたときに対応する単一膨張弁通過形態の第1部分負荷通流状態に空調側通流状態切換部Tが切り換えられる。
又、図17及び図18に示すように、第2冷媒回路Cbの圧縮機1が運転対象に設定されて、室外側通流状態切換部Sが単一膨張弁通過形態の第2部分負荷通流状態に切り換えられた状態で、第6連通流路開閉弁V6及び第7連通流路開閉弁V7を開弁し、第5連通流路開閉弁V5、対空調用熱交換器流路第2開閉弁Vdd及び熱交換器間流路開閉弁Veを閉弁すると、第2冷媒回路Cbの圧縮機1が運転対象に設定されたときに対応する単一膨張弁通過形態の第2部分負荷通流状態に空調側通流状態切換部Tが切り換えられる。
Next, the opening / closing operation states of the valves in the normal flow state and the partial load flow state of the air conditioning side flow state switching unit T will be described.
Although not shown in the figure, in the normal flow state, the fifth communication flow path on-off valve V5, the sixth communication flow path on-off valve V6, and the seventh communication flow path on-off valve V7 are closed, and the heat exchanger flow for air conditioning The path second opening / closing valve Vdd and the heat exchanger flow path opening / closing valve Ve are opened.
As shown in FIGS. 15 and 16, the compressor 1 of the first refrigerant circuit Ca is set as an operation target, and the outdoor partial flow state switching unit S is in the first partial load flow state in which the single expansion valve is passed. In the state switched to, the fifth communication channel on-off valve V5 and the seventh communication channel on-off valve V7 are opened, the sixth communication channel on-off valve V6, the heat exchanger channel second on-off valve for air conditioning. When the Vdd and the heat exchanger flow path opening / closing valve Ve are closed, the first partial load flow state of the single expansion valve passing configuration corresponding to when the compressor 1 of the first refrigerant circuit Ca is set as the operation target. The air-conditioning-side flow state switching unit T is switched.
Also, as shown in FIGS. 17 and 18, the compressor 1 of the second refrigerant circuit Cb is set as the operation target, and the outdoor flow state switching unit S is configured to pass the second partial load through the single expansion valve. In the state switched to the flow state, the sixth communication channel on-off valve V6 and the seventh communication channel on-off valve V7 are opened, the fifth communication channel on-off valve V5, the second heat exchanger channel for air conditioning. When the on-off valve Vdd and the heat exchanger flow path on-off valve Ve are closed, the second partial load passage of the single expansion valve passage configuration corresponding to the case where the compressor 1 of the second refrigerant circuit Cb is set as the operation target. The air conditioning side flow state switching unit T is switched to the flow state.

又、図19及び図20に示すように、図15及び図16に示す状態において、第2連通流路開閉弁V2を閉じ、且つ、2台の冷媒回路C夫々の膨張弁2を開弁して、室外側通流状態切換部Sを複数膨張弁通過形態の第1部分負荷通流状態に切り換えたときは、第6連通流路開閉弁V6を開弁すると、空調側通流状態切換部Tが複数膨張弁通過形態の第1部分負荷通流状態に切り換えられる。
又、図21及び図22に示すように、図17及び図18に示す状態において、第2連通流路開閉弁V2を閉じ、且つ、2台の冷媒回路C夫々の膨張弁2を開弁して、第2冷媒回路Cbの圧縮機1が運転対象に設定されて、室外側通流状態切換部Sを複数膨張弁通過形態の第2部分負荷通流状態に切り換えたときは、上述の単一膨張弁通過形態の第2部分負荷通流状態に切り換える場合と同様に各弁を作動させると、空調側通流状態切換部Tが複数膨張弁通過形態の第2部分負荷通流状態に切り換えられる。
Further, as shown in FIGS. 19 and 20, in the state shown in FIGS. 15 and 16, the second communication flow path opening / closing valve V2 is closed and the expansion valves 2 of the two refrigerant circuits C are opened. Then, when the outdoor flow state switching unit S is switched to the first partial load flow state of the plurality of expansion valve passage forms, the air conditioning side flow state switching unit is opened when the sixth communication flow path opening / closing valve V6 is opened. T is switched to the first partial load flow state in which a plurality of expansion valves pass through.
Further, as shown in FIGS. 21 and 22, in the state shown in FIGS. 17 and 18, the second communication flow path opening / closing valve V2 is closed, and the expansion valves 2 of the two refrigerant circuits C are opened. Thus, when the compressor 1 of the second refrigerant circuit Cb is set as an operation target and the outdoor-side flow state switching unit S is switched to the second partial load flow state of the plurality of expansion valve passage modes, When each valve is operated in the same manner as when switching to the second partial load flow state of the single expansion valve passage configuration, the air conditioning side flow state switching portion T switches to the second partial load flow state of the multiple expansion valve passage configuration. It is done.

次に、室外側通流状態切換部S及び空調側通流状態切換部Tが部分負荷通流状態に切り換えられたときの冷媒の通流形態について説明する。
尚、部分負荷通流状態での冷媒の通流形態は、複数の冷媒回路Cの空調用熱交換器4を通過するときの通流形態が異なる以外は第3実施形態と同様であるので、第3実施形態と同様の形態で通流する部分の説明を省略する。
冷媒回路Cが冷房運転状態に切り換えられた状態で、室外側通流状態切換部Sが単一膨張弁通過形態の第1部分負荷通流状態に切り換えられ且つ空調側通流状態切換部Tが単一膨張弁通過形態の第1部分負荷通流状態に切り換えられたときの冷媒の通流形態は、図15に示す通りである。
つまり、第3実施形態と同様に第1冷媒回路Caの膨張弁2を通過した冷媒は、第7連通流路P7及び第5連通流路P5により第1冷媒回路Caの空調用熱交換器4、第2冷媒回路Cbの空調用熱交換器4を順に通流したのち、第1冷媒回路Caの対空調用熱交換器流路5dを通流し、以降、第3実施形態と同様に通流する。
冷媒回路Cが冷房運転状態に切り換えられた状態で、室外側通流状態切換部Sが単一膨張弁通過形態の第2部分負荷通流状態に切り換えられ且つ空調側通流状態切換部Tが単一膨張弁通過形態の第2部分負荷通流状態に切り換えられたときは、冷媒は図17に示すように通流する。即ち、第3実施形態と同様に第2冷媒回路Cbの膨張弁2を通過した冷媒は、第6連通流路P6及び第7連通流路P7により第1冷媒回路Caの空調用熱交換器4、第2冷媒回路Cbの空調用熱交換器4を順に通流したのち、第2冷媒回路Cbの対空調用熱交換器流路5dを通流し、以降、第3実施形態と同様に通流する。
Next, the refrigerant flow mode when the outdoor flow state switching unit S and the air conditioning side flow state switching unit T are switched to the partial load flow state will be described.
In addition, since the flow mode of the refrigerant in the partial load flow state is the same as that of the third embodiment except that the flow mode when passing through the heat exchanger 4 for air conditioning of the plurality of refrigerant circuits C is different, The description of the part that flows in the same form as the third embodiment is omitted.
In a state where the refrigerant circuit C is switched to the cooling operation state, the outdoor flow state switching unit S is switched to the first partial load flow state of the single expansion valve passing configuration and the air conditioning side flow state switching unit T is The flow mode of the refrigerant when switched to the first partial load flow state of the single expansion valve passage form is as shown in FIG.
That is, as in the third embodiment, the refrigerant that has passed through the expansion valve 2 of the first refrigerant circuit Ca passes through the seventh communication channel P7 and the fifth communication channel P5, and the air conditioner heat exchanger 4 of the first refrigerant circuit Ca. After passing through the air conditioning heat exchanger 4 of the second refrigerant circuit Cb in order, the air refrigerant heat exchanger channel 5d of the first refrigerant circuit Ca is passed through, and thereafter the same flow as in the third embodiment. To do.
With the refrigerant circuit C switched to the cooling operation state, the outdoor flow state switching unit S is switched to the second partial load flow state of the single expansion valve passing configuration and the air conditioning side flow state switching unit T is When switched to the second partial load flow state of the single expansion valve passing configuration, the refrigerant flows as shown in FIG. That is, as in the third embodiment, the refrigerant that has passed through the expansion valve 2 of the second refrigerant circuit Cb passes through the sixth communication channel P6 and the seventh communication channel P7, and the air conditioner heat exchanger 4 of the first refrigerant circuit Ca. After passing through the air conditioning heat exchanger 4 of the second refrigerant circuit Cb in order, the air conditioning heat exchanger flow path 5d of the second refrigerant circuit Cb is passed through, and thereafter the flow is the same as in the third embodiment. To do.

冷媒回路Cが冷房運転状態に切り換えられた状態で、室外側通流状態切換部Sが複数膨張弁通過形態の第1部分負荷通流状態に切り換えられ且つ空調側通流状態切換部Tが複数膨張弁通過形態の第1部分負荷通流状態に切り換えられたときは、冷媒は図19に示すように通流する。即ち、第2冷媒回路Cbの膨張弁2を通過した冷媒は、第6連通流路P6により、第1冷媒回路Caの膨張弁2を通過して熱交換器間流路5eを通流する冷媒に合流し、その合流した冷媒は、第1冷媒回路Caの空調用熱交換器4、第2冷媒回路Cbの空調用熱交換器4を順に通流したのち、第5連通流路P5から第1冷媒回路Caの対空調用熱交換器流路5dを通流し、以降、第3実施形態と同様に通流する。
又、冷媒回路Cが冷房運転状態に切り換えられた状態で、室外側通流状態切換部Sが複数膨張弁通過形態の第2部分負荷通流状態に切り換えられ且つ空調側通流状態切換部Tが複数膨張弁通過形態の第2部分負荷通流状態に切り換えられたときは、冷媒は図21に示すように通流する。即ち、第2冷媒回路Cbの膨張弁2を通過した冷媒は、第6連通流路P6により、第1冷媒回路Caの膨張弁2を通過して熱交換器間流路5eを通流する冷媒に合流し、その合流した冷媒は、第1冷媒回路Caの空調用熱交換器4、第2冷媒回路Cbの空調用熱交換器4を順に通流したのち、そのまま第2冷媒回路Cbの対空調用熱交換器流路5dを通流し、以降、第3実施形態と同様に通流する。
In a state where the refrigerant circuit C is switched to the cooling operation state, the outdoor flow state switching unit S is switched to the first partial load flow state of the plurality of expansion valve passage forms and the air conditioning side flow state switching unit T When switched to the first partial load flow state of the expansion valve passing configuration, the refrigerant flows as shown in FIG. That is, the refrigerant that has passed through the expansion valve 2 of the second refrigerant circuit Cb passes through the expansion valve 2 of the first refrigerant circuit Ca and flows through the inter-heat exchanger channel 5e through the sixth communication channel P6. The combined refrigerant flows through the air conditioning heat exchanger 4 of the first refrigerant circuit Ca and the air conditioning heat exchanger 4 of the second refrigerant circuit Cb in this order, and then passes through the fifth communication channel P5. The refrigerant circuit Ca passes through the heat exchanger channel 5d for air conditioning, and thereafter flows in the same manner as in the third embodiment.
Further, in a state where the refrigerant circuit C is switched to the cooling operation state, the outdoor-side flow state switching unit S is switched to the second partial load flow state of the plural expansion valve passage type and the air-conditioning side flow state switching unit T. Is switched to the second partial load flow state of the plural expansion valve passage form, the refrigerant flows as shown in FIG. That is, the refrigerant that has passed through the expansion valve 2 of the second refrigerant circuit Cb passes through the expansion valve 2 of the first refrigerant circuit Ca and flows through the inter-heat exchanger channel 5e through the sixth communication channel P6. The combined refrigerant passes through the air-conditioning heat exchanger 4 of the first refrigerant circuit Ca and the air-conditioning heat exchanger 4 of the second refrigerant circuit Cb in this order, and then is directly coupled to the second refrigerant circuit Cb. The air-conditioning heat exchanger flow path 5d flows, and then flows in the same manner as in the third embodiment.

冷媒回路Cが暖房運転状態に切り換えられた状態で、室外側通流状態切換部Sが単一膨張弁通過形態の第1部分負荷通流状態に切り換えられ且つ空調側通流状態切換部Tが単一膨張弁通過形態の第1部分負荷通流状態に切り換えられたときの冷媒の通流形態は、図16に示す通りである。
つまり、第3実施形態と同様に第1冷媒回路Caの対空調用熱交換器流路5dを通流する冷媒は、第5連通流路P5及び第7連通流路P7により第2冷媒回路Cbの空調用熱交換器4、第1冷媒回路Caの空調用熱交換器4を順に通流したのち、第1冷媒回路Caの熱交換器間流路5eを通流し、以降、第3実施形態と同様に通流する。
冷媒回路Cが暖房運転状態に切り換えられた状態で、室外側通流状態切換部Sが単一膨張弁通過形態の第2部分負荷通流状態に切り換えられ且つ空調側通流状態切換部Tが単一膨張弁通過形態の第2部分負荷通流状態に切り換えられたときは、冷媒は図18に示すように通流する。即ち、第3実施形態と同様に第2冷媒回路Cbの対空調用熱交換器流路5dを通流する冷媒は、第7連通流路P7及び第6連通流路P6により第2冷媒回路Cbの空調用熱交換器4、第1冷媒回路Cの空調用熱交換器4を順に通流したのち、第2冷媒回路Cbの熱交換器間流路5eを通流し、以降、第3実施形態と同様に通流する。
With the refrigerant circuit C switched to the heating operation state, the outdoor flow state switching unit S is switched to the first partial load flow state of the single expansion valve passing configuration and the air conditioning side flow state switching unit T is The flow mode of the refrigerant when switched to the first partial load flow state of the single expansion valve passage form is as shown in FIG.
That is, similarly to the third embodiment, the refrigerant flowing through the heat exchanger flow path 5d for the air conditioning of the first refrigerant circuit Ca passes through the second refrigerant circuit Cb by the fifth communication path P5 and the seventh communication path P7. The air conditioner heat exchanger 4 and the air conditioner heat exchanger 4 of the first refrigerant circuit Ca are sequentially flowed, and then the flow path 5e between the heat exchangers of the first refrigerant circuit Ca is passed. Thereafter, the third embodiment It flows in the same way.
In the state where the refrigerant circuit C is switched to the heating operation state, the outdoor-side flow state switching unit S is switched to the second partial load flow state of the single expansion valve passing mode and the air-conditioning side flow state switching unit T is When switched to the second partial load flow state of the single expansion valve passing configuration, the refrigerant flows as shown in FIG. That is, as in the third embodiment, the refrigerant flowing through the air-conditioning heat exchanger flow path 5d of the second refrigerant circuit Cb is transferred to the second refrigerant circuit Cb by the seventh communication path P7 and the sixth communication path P6. The air conditioning heat exchanger 4 and the air conditioning heat exchanger 4 of the first refrigerant circuit C are sequentially passed, and then the flow path 5e between the heat exchangers of the second refrigerant circuit Cb is passed. Thereafter, the third embodiment It flows in the same way.

冷媒回路Cが暖房運転状態に切り換えられた状態で、室外側通流状態切換部Sが複数膨張弁通過形態の第1部分負荷通流状態に切り換えられ且つ空調側通流状態切換部Tが複数膨張弁通過形態の第1部分負荷通流状態に切り換えられたときは、冷媒は図20に示すように通流する。即ち、第1冷媒回路Caの対空調用熱交換器流路5dを通った冷媒は、第5連通流路P5及び第7連通路P7により第2及び第1冷媒回路Cb,Caの空調用熱交換器4を順に通流した後、第1及び第2冷媒回路Ca,Cb夫々の熱交換器間流路5eを並行に通流し、以降、第3実施形態と同様に通流する。
又、冷媒回路Cが暖房運転状態に切り換えられた状態で、室外側通流状態切換部Sが複数膨張弁通過形態の第2部分負荷通流状態に切り換えられ且つ空調側通流状態切換部Tが複数膨張弁通過形態の第2部分負荷通流状態に切り換えられたときは、冷媒は図22に示すように通流する。即ち、第2冷媒回路Cbの対空調用熱交換器流路5dを通った冷媒は、第7連通路P7により第2及び第1冷媒回路Cb,Caの空調用熱交換器4を順に通流した後、第1及び第2冷媒回路Ca,Cb夫々の熱交換器間流路5eを並行に通流し、以降、第3実施形態と同様に通流する。
In a state where the refrigerant circuit C is switched to the heating operation state, the outdoor flow state switching unit S is switched to the first partial load flow state of a plurality of expansion valve passage configurations and the air conditioning side flow state switching unit T is a plurality of. When switched to the first partial load flow state of the expansion valve passing configuration, the refrigerant flows as shown in FIG. That is, the refrigerant that has passed through the heat exchanger flow path 5d for the air conditioning of the first refrigerant circuit Ca passes through the heat for air conditioning of the second and first refrigerant circuits Cb and Ca by the fifth communication path P5 and the seventh communication path P7. After flowing through the exchanger 4 in order, the flow paths 5e between the heat exchangers of the first and second refrigerant circuits Ca and Cb are passed in parallel, and thereafter flowed in the same manner as in the third embodiment.
In addition, in the state where the refrigerant circuit C is switched to the heating operation state, the outdoor-side flow state switching unit S is switched to the second partial load flow state of the multiple expansion valve passing configuration and the air-conditioning side flow state switching unit T. Is switched to the second partial load flow state in which the plurality of expansion valves pass through, the refrigerant flows as shown in FIG. That is, the refrigerant that has passed through the second air conditioning heat exchanger channel 5d of the second refrigerant circuit Cb sequentially flows through the air conditioning heat exchanger 4 of the second and first refrigerant circuits Cb and Ca through the seventh communication path P7. After that, the flow paths 5e between the heat exchangers of the first and second refrigerant circuits Ca and Cb are flowed in parallel, and thereafter flowed in the same manner as in the third embodiment.

第5連通流路P5、第6連通流路P6及び第7連通流路P7が、複数の冷媒回路Cの夫々に備えられた空調用熱交換器4を直列状に接続する空調側直列接続流路Rsとして機能し、空調側通流状態切換部Tが、部分負荷通流状態においては空調側直列接続流路Rsを通して冷媒を通流させるように構成されている。   The fifth communication flow path P5, the sixth communication flow path P6, and the seventh communication flow path P7 connect the air-conditioning heat exchanger 4 provided in each of the plurality of refrigerant circuits C in series. The air conditioning side flow state switching unit T functions as the path Rs and is configured to flow the refrigerant through the air conditioning side serial connection flow path Rs in the partial load flow state.

次に、制御部6の制御動作について、説明を加える。
制御部6は、上記の第3実施形態と同様に、室内ユニットUiの運転台数に応じて室外側通流状態切換部Sを切り換える。又、制御部6は、室外側通流状態切換部Sを通常通流状態に切り換えたときは、空調側通流状態切換部Tを通常通流状態に切り換え、室外側通流状態切換部Sを複数膨張弁通過形態の第1又は第2部分負荷通流状態に切り換えたときは、空調側通流状態切換部Tを複数膨張弁通過形態の第1又は第2部分負荷通流状態に切り換え、室外側通流状態切換部Sを単一膨張弁通過形態の第1又は第2部分負荷通流状態に切り換えたときは、空調側通流状態切換部Tを単一膨張弁通過形態の第1又は第2部分負荷通流状態に切り換える。
又、上記の第3実施形態と同様に、制御部6は、部分負荷運転状態においては、複数の冷媒回路Cの圧縮機1の積算運転時間を均等化すべく、運転対象の圧縮機1を複数の冷媒回路Cの圧縮機1から選択して設定し、そのように設定した運転対象の圧縮機1に応じて第1及び第2のうちのいずれかの部分負荷通流状態に切り換えるように室外側通流状態切換部S及び空調側通流状態切換部Tの作動を制御する。
つまり、制御部6が、部分負荷運転状態において運転対象の圧縮機1を変更設定自在に構成され、室外側通流状態切換部S及び空調側通流状態切換部Tが、変更設定される運転対象の圧縮機1を備えた冷媒回路Cを運転対象の冷媒回路Cとして部分負荷通流状態に切り換え自在に構成されている。
Next, the control operation of the control unit 6 will be described.
The control unit 6 switches the outdoor flow state switching unit S according to the number of operating indoor units Ui, as in the third embodiment. Further, when the outdoor-side flow state switching unit S is switched to the normal flow state, the control unit 6 switches the air-conditioning-side flow state switching unit T to the normal flow state, and the outdoor-side flow state switching unit S. Is switched to the first or second partial load flow state of the multiple expansion valve passage configuration, the air conditioning side flow state switching section T is switched to the first or second partial load flow state of the multiple expansion valve passage configuration. When the outdoor flow state switching unit S is switched to the first or second partial load flow state of the single expansion valve passage configuration, the air conditioning side flow state switching portion T is switched to the first expansion valve passage configuration of the first expansion valve passage configuration. Switch to the 1st or 2nd partial load flow state.
Similarly to the third embodiment, in the partial load operation state, the control unit 6 sets a plurality of compressors 1 to be operated in order to equalize the accumulated operation time of the compressors 1 of the plurality of refrigerant circuits C. The chamber is selected and set from the compressor 1 of the refrigerant circuit C, and switched to the partial load flow state of either the first or the second according to the compressor 1 to be operated set as such. The operation of the outer flow state switching unit S and the air conditioning side flow state switching unit T is controlled.
That is, the control unit 6 is configured to be able to change and set the compressor 1 to be operated in the partial load operation state, and the outdoor-side flow state switching unit S and the air-conditioning-side flow state switching unit T are changed and set. The refrigerant circuit C including the target compressor 1 is configured to be switched to a partial load flow state as the operation target refrigerant circuit C.

〔第7実施形態〕
以下、図23及び図24に基づいて、第7実施形態を説明する。
尚、図23は、マルチ型空調システムの全体構成、及び、冷房運転状態での部分負荷運転状態における冷媒の流れを示し、図24は、暖房運転状態での部分負荷運転状態における冷媒の流れを示す。
図23及び図24に示すように、この第7実施形態では、室外側接続流路Q及び室外側通流状態切換部Sの組み合わせ、並びに、空調側接続流路R及び空調側通流状態切換部Tの組み合わせ共に第4実施形態と異なり、室外側接続流路Q及び室外側通流状態切換部Sが上記の第1実施形態と同様であり、空調側接続流路R及び空調側通流状態切換部Tが新たな構成である。
[Seventh Embodiment]
Hereinafter, the seventh embodiment will be described with reference to FIGS. 23 and 24.
23 shows the overall configuration of the multi-type air conditioning system and the refrigerant flow in the partial load operation state in the cooling operation state, and FIG. 24 shows the refrigerant flow in the partial load operation state in the heating operation state. Show.
As shown in FIGS. 23 and 24, in the seventh embodiment, the combination of the outdoor side connection flow path Q and the outdoor side flow state switching unit S, and the air conditioning side connection flow path R and the air conditioning side flow state switching. The combination of the parts T differs from the fourth embodiment in that the outdoor connection channel Q and the outdoor flow state switching unit S are the same as those in the first embodiment, and the air conditioning side connection channel R and the air conditioning side flow. The state switching unit T has a new configuration.

空調側接続流路R及び空調側通流状態切換部Tについて説明を加えると、空調側接続流路Rは、第1冷媒回路Caの熱交換器間流路5eにおける膨張弁2よりも空調用熱交換器4側の箇所と第2冷媒回路Cbの対空調用熱交換器流路5dにおける対空調用熱交換器流路開閉弁Vdよりも空調用熱交換器4側の箇所とを連通接続する第8連通流路P8により構成され、空調側通流状態切換部Tは、第8連通流路P8を開閉する第8連通流路開閉弁V8により構成されている。   When the air conditioning side connection flow path R and the air conditioning side flow state switching unit T are described further, the air conditioning side connection flow path R is more for air conditioning than the expansion valve 2 in the heat exchanger flow path 5e of the first refrigerant circuit Ca. The location on the heat exchanger 4 side and the location on the air conditioning heat exchanger 4 side of the second air conditioning heat exchanger flow path 5d of the second refrigerant circuit Cb with respect to the air conditioning heat exchanger channel on / off valve Vd are connected in communication. The air-conditioning-side flow state switching unit T is composed of an eighth communication flow path opening / closing valve V8 that opens and closes the eighth communication flow path P8.

空調側通流状態切換部Tは、図23及び図24に示すように、第8連通流路開閉弁V8を開弁すると部分負荷通流状態に切り換えられ、図示を省略するが、第8連通流路開閉弁V8を閉弁すると通常通流状態に切り換えられる。   As shown in FIGS. 23 and 24, the air-conditioning-side flow state switching unit T is switched to a partial load flow state when the eighth communication flow path opening / closing valve V8 is opened. When the flow path opening / closing valve V8 is closed, it is switched to a normal flow state.

次に、室外側通流状態切換部S及び空調側通流状態切換部Tが部分負荷通流状態に切り換えられたときの冷媒の通流形態について説明する。
尚、部分負荷通流状態での冷媒の通流形態は、複数の冷媒回路Cの空調用熱交換器4を通過するときの通流形態が異なる以外は第1実施形態と同様であるので、第1実施形態と同様の形態で通流する部分の説明を省略する。
冷媒回路Cが冷房運転状態に切り換えられた状態では、図23に示すように、第2冷媒回路Cbの膨張弁2を通過して、その第2冷媒回路Cbの熱交換器間流路5eを通流する冷媒は、第8連通流路P8により第2冷媒回路Cbの空調用熱交換器4、第1冷媒回路Caの空調用熱交換器4を順に通過したのち、第1冷媒回路Caの対空調用熱交換器流路5dを通流し、以降、第1実施形態と同様に通流する。
冷媒回路Cが暖房運転状態に切り換えられた状態では、図24に示すように、第1冷媒回路Caの圧縮機1から吐出されて第1冷媒回路Caの対空調用熱交換器流路5dを通流する冷媒は、第8連通流路P8により第1冷媒回路Caの空調用熱交換器4、第2冷媒回路Cbの空調用熱交換器4を順に通過したのち、第2冷媒回路Cbの熱交換器間流路5eを通流し、以降、第1実施形態と同様に通流する。
Next, the refrigerant flow mode when the outdoor flow state switching unit S and the air conditioning side flow state switching unit T are switched to the partial load flow state will be described.
In addition, since the flow form of the refrigerant in the partial load flow state is the same as that of the first embodiment except that the flow form when passing through the heat exchanger 4 for air conditioning of the plurality of refrigerant circuits C is different, The description of the portion that flows in the same form as the first embodiment is omitted.
In a state where the refrigerant circuit C is switched to the cooling operation state, as shown in FIG. 23, the refrigerant circuit C passes through the expansion valve 2 of the second refrigerant circuit Cb and passes through the heat exchanger flow path 5e of the second refrigerant circuit Cb. The flowing refrigerant passes through the air-conditioning heat exchanger 4 of the second refrigerant circuit Cb and the air-conditioning heat exchanger 4 of the first refrigerant circuit Ca through the eighth communication flow path P8 in this order, and then passes through the first refrigerant circuit Ca. It flows through the heat exchanger flow path 5d for air conditioning, and thereafter flows in the same manner as in the first embodiment.
In a state where the refrigerant circuit C is switched to the heating operation state, as shown in FIG. 24, the refrigerant circuit C is discharged from the compressor 1 of the first refrigerant circuit Ca and flows through the heat exchanger flow path 5d for air conditioning of the first refrigerant circuit Ca. The flowing refrigerant passes through the air-conditioning heat exchanger 4 of the first refrigerant circuit Ca and the air-conditioning heat exchanger 4 of the second refrigerant circuit Cb through the eighth communication flow path P8 in this order, and then passes through the second refrigerant circuit Cb. The flow path between the heat exchangers 5e is flowed, and then flows in the same manner as in the first embodiment.

つまり、第8連通流路P8が空調側直列接続流路Rsとして機能し、空調側通流状態切換部Tが、部分負荷通流状態においては空調側直列接続流路Rsを通して冷媒を通流させるように構成されている。   That is, the eighth communication flow path P8 functions as the air conditioning side serial connection flow path Rs, and the air conditioning side flow state switching unit T allows the refrigerant to flow through the air conditioning side serial connection flow path Rs in the partial load flow state. It is configured as follows.

〔第8実施形態〕
以下、図25及び図26に基づいて、第8実施形態を説明する。
尚、図25は、マルチ型空調システムの全体構成、及び、冷房運転状態において第1冷媒回路Caの圧縮機1が運転対象に設定された第1部分負荷運転状態のときの冷媒の流れを示し、図26は、冷房運転状態において第2冷媒回路Cbの圧縮機1が運転対象に設定された第2部分負荷運転状態のときの冷媒の流れを示す。
図25及び図26に示すように、この第8実施形態では、室外側接続流路Q及び室外側通流状態切換部Sの組み合わせ、並びに、空調側接続流路R及び空調側通流状態切換部Tの組み合わせ共に第4実施形態と異なり、室外側接続流路Q及び室外側通流状態切換部Sが上記の第2実施形態と同様であり、空調側接続流路R及び空調側通流状態切換部Tが新たな構成である。
[Eighth Embodiment]
Hereinafter, the eighth embodiment will be described with reference to FIGS. 25 and 26.
FIG. 25 shows the overall configuration of the multi-type air conditioning system and the refrigerant flow in the first partial load operation state in which the compressor 1 of the first refrigerant circuit Ca is set as the operation target in the cooling operation state. FIG. 26 shows the refrigerant flow in the second partial load operation state in which the compressor 1 of the second refrigerant circuit Cb is set as the operation target in the cooling operation state.
As shown in FIGS. 25 and 26, in the eighth embodiment, the combination of the outdoor connection flow path Q and the outdoor flow state switching unit S, and the air conditioning side connection flow path R and the air conditioning side flow state switching. The combination of the parts T differs from the fourth embodiment in that the outdoor connection channel Q and the outdoor flow state switching unit S are the same as those in the second embodiment, and the air conditioning side connection channel R and the air conditioning side flow. The state switching unit T has a new configuration.

空調側接続流路R及び空調側通流状態切換部Tについて説明を加えると、空調側接続流路Rは、第6実施形態と同様の第7連通流路P7及び第7実施形態と同様の第8連通流路P8にて構成され、空調側通流状態切換部Tは、第7連通流路P7を開閉する第7連通流路開閉弁V7及び第8連通流路P8を開閉する第8連通流路開閉弁V8にて構成されている。
図示を省略するが、第7連通流路開閉弁V7及び第8連通流路開閉弁V8を閉弁すると、空調側通流状態切換部Tが通常通流状態に切り換えられる。
空調側通流状態切換部Tは、図25に示すように、第8連通流路開閉弁V8を開弁し、第7連通流路開閉弁V7を閉弁すると、第1冷媒回路Caの圧縮機1が運転対象に設定されたときに対応する第1部分負荷通流状態に切り換えられ、図26に示すように、第7連通流路開閉弁V7を開弁し、第8連通流路開閉弁V8を閉弁すると、第2冷媒回路Cbの圧縮機1が運転対象に設定されたときに対応する第2部分負荷通流状態に切り換えられる。
When the air conditioning side connection flow path R and the air conditioning side flow state switching unit T are described further, the air conditioning side connection flow path R is the same as the seventh communication flow path P7 and the seventh embodiment similar to the sixth embodiment. The air-conditioning-side flow state switching unit T includes an eighth communication channel P8, and an eighth communication channel P8 that opens and closes the seventh communication channel P8 and the eighth communication channel P8 that opens and closes the seventh communication channel P7. The communication flow path opening / closing valve V8 is used.
Although illustration is omitted, when the seventh communication channel on-off valve V7 and the eighth communication channel on-off valve V8 are closed, the air-conditioning-side communication state switching unit T is switched to the normal communication state.
As shown in FIG. 25, the air-conditioning-side flow state switching unit T opens the eighth communication channel on-off valve V8 and closes the seventh communication channel on-off valve V7, thereby compressing the first refrigerant circuit Ca. When the machine 1 is set as the operation target, it is switched to the first partial load flow state, and as shown in FIG. 26, the seventh communication flow path opening / closing valve V7 is opened, and the eighth communication flow path opening / closing is performed. When the valve V8 is closed, the second partial load flow state corresponding to when the compressor 1 of the second refrigerant circuit Cb is set as the operation target is switched.

つまり、この第8実施形態では、空調側接続流路Rとして空調側直列接続流路Rsが設けられ、空調側通流状態切換部Tが、部分負荷通流状態においては空調側直列接続流路Rsを通して冷媒を通流させるように構成されている。   That is, in the eighth embodiment, the air conditioning side serial connection flow path Rs is provided as the air conditioning side connection flow path R, and the air conditioning side flow state switching unit T is in the partial load flow state. The refrigerant is configured to flow through Rs.

上記の第3実施形態と同様に、制御部6は、部分負荷運転状態においては、複数の冷媒回路Cの圧縮機1の積算運転時間を均等化すべく、運転対象の圧縮機1を複数の冷媒回路Cの圧縮機1から選択して設定し、そのように設定した運転対象の圧縮機1に応じて第1及び第2のうちのいずれかの部分負荷通流状態に切り換えるように室外側通流状態切換部S及び空調側通流状態切換部Tの作動を制御する。
つまり、制御部6が、部分負荷運転状態において運転対象の圧縮機1を変更設定自在に構成され、室外側通流状態切換部S及び空調側通流状態切換部Tが、変更設定される運転対象の圧縮機1を備えた冷媒回路Cを運転対象の冷媒回路Cとして部分負荷通流状態に切り換え自在に構成されている。
As in the third embodiment, in the partial load operation state, the control unit 6 sets the operation target compressor 1 to a plurality of refrigerants in order to equalize the accumulated operation time of the compressors 1 of the plurality of refrigerant circuits C. It selects and sets from the compressor 1 of the circuit C, and it changes to the partial load flow state of either the 1st or 2nd according to the compressor 1 of the operation object set as such, The operation of the flow state switching unit S and the air conditioning side flow state switching unit T is controlled.
That is, the control unit 6 is configured to be able to change and set the compressor 1 to be operated in the partial load operation state, and the outdoor-side flow state switching unit S and the air-conditioning-side flow state switching unit T are changed and set. The refrigerant circuit C including the target compressor 1 is configured to be switched to a partial load flow state as the operation target refrigerant circuit C.

〔第9実施形態〕
以下、図27及び図28に基づいて、第9実施形態を説明する。
この第9実施形態のマルチ型空調システムには、上記の第1実施形態と同様の冷媒回路Cが3台設けられている。
尚、各図では、3台の冷媒回路Cを区別するため、冷媒回路を示す符号Cに添え字a,b,cを付し、又、以下の説明において、3台の冷媒回路Cを区別して説明するときは、冷媒回路を示す符号Cに添え字a,b,cを付して、第1冷媒回路Ca、第2冷媒回路Cb、第3冷媒回路Ccと記載する。
[Ninth Embodiment]
The ninth embodiment will be described below with reference to FIGS.
In the multi-type air conditioning system of the ninth embodiment, three refrigerant circuits C similar to those of the first embodiment are provided.
In each figure, in order to distinguish the three refrigerant circuits C, the subscripts a, b, and c are added to the symbol C indicating the refrigerant circuit, and in the following description, the three refrigerant circuits C are divided. When described separately, the subscripts a, b, and c are added to the symbol C indicating the refrigerant circuit, and are described as the first refrigerant circuit Ca, the second refrigerant circuit Cb, and the third refrigerant circuit Cc.

この第9実施形態では、上記の第3実施形態と同構成の室外側並列接続流路Qp及び室外側通流状態切換部Sが設けられている。
つまり、第9実施形態では、第3実施形態と同様に、室外側接続流路Qとして室外側並列接続流路Qpが設けられ、室外側通流状態切換部Sが、部分負荷通流状態においては室外側並列接続流路Qpを通して冷媒を通流させるように構成されている。
又、複数の冷媒回路Cが、異なる冷媒回路Cに備えられた膨張弁2に冷媒を通流可能とする膨張弁用接続流路Qbにて連結されており、室外側通流状態切換部Sが、部分負荷通流状態において、冷媒を通流させる膨張弁2の数を変更自在に構成されている。
そして、制御部6が、定格運転状態においては、室外側通流状態切換部Sを通常通流状態に切り換え、部分負荷運転状態においては、室外側通流状態切換部Sを部分負荷通流状態に切り換えると共に、空調負荷に応じて冷媒を通流させる膨張弁2の数を変更すべく室外側通流状態切換部Sを作動させるように構成されている。
In the ninth embodiment, an outdoor parallel connection flow path Qp and an outdoor flow state switching unit S having the same configuration as that of the third embodiment are provided.
That is, in the ninth embodiment, as in the third embodiment, the outdoor parallel connection flow path Qp is provided as the outdoor connection flow path Q, and the outdoor flow state switching unit S is in the partial load flow state. Is configured to allow the refrigerant to flow through the outdoor parallel connection flow path Qp.
A plurality of refrigerant circuits C are connected to expansion valves 2 provided in different refrigerant circuits C through expansion valve connection channels Qb that allow refrigerant to flow, and the outdoor flow state switching unit S However, in the partial load flow state, the number of the expansion valves 2 through which the refrigerant flows can be changed.
The control unit 6 switches the outdoor flow state switching unit S to the normal flow state in the rated operation state, and switches the outdoor flow state switching unit S to the partial load flow state in the partial load operation state. And the outdoor flow state switching unit S is operated to change the number of expansion valves 2 through which the refrigerant flows according to the air conditioning load.

室外側接続流路Qは、第1及び第2冷媒回路Ca,Cb夫々の対室外用熱交換器流路5cを連通接続する第1連通流路P1、及び、第2及び第3冷媒回路Cb,Cc夫々の対室外用熱交換器流路5cを連通接続する第1連通流路P1、並びに、第1及び第2冷媒回路Ca,Cb夫々の熱交換器間流路5eを連通接続する第2連通流路P2、及び、第2及び第3冷媒回路Cb,Cc夫々の熱交換器間流路5eを連通接続する第2連通流路P2にて構成されている。
室外側通流状態切換部Sは、各第1連通流路P1を開閉する第1連通流路開閉弁V1、及び、各第2連通流路P2を開閉する第2連通流路開閉弁V2、並びに、各冷媒回路Ca,Cb,Ccの膨張弁2、対室外用熱交換器流路開閉弁Vc及び対空調用熱交換器流路開閉弁Vdにより構成されている。
The outdoor connection flow path Q includes a first communication flow path P1 that communicates and connects the outdoor heat exchanger flow paths 5c of the first and second refrigerant circuits Ca and Cb, and the second and third refrigerant circuits Cb. , Cc, the first communication flow path P1 that connects the outdoor heat exchanger flow paths 5c, and the first and second refrigerant circuits Ca, Cb, the heat exchanger flow paths 5e. The second communication flow path P2 and the second communication flow path P2 that connects the heat exchanger flow paths 5e of the second and third refrigerant circuits Cb and Cc to each other.
The outdoor-side flow state switching unit S includes a first communication channel on-off valve V1 that opens and closes each first communication channel P1, and a second communication channel on-off valve V2 that opens and closes each second communication channel P2. In addition, each refrigerant circuit Ca, Cb, Cc includes an expansion valve 2, an outdoor heat exchanger channel opening / closing valve Vc, and an air conditioning heat exchanger channel opening / closing valve Vd.

この第9実施形態では、制御部6が、部分負荷運転状態において、運転対象に設定する圧縮機1の台数を空調負荷に応じて変更するように構成されている。
第9実施形態では冷媒回路Cが3台設けられているので、3台の冷媒回路Ca,Cb,Ccのうちの任意の1台の冷媒回路Cの圧縮機1を運転対象に設定する部分負荷運転状態、及び、3台の冷媒回路Ca,Cb,Ccのうちの任意の2台の冷媒回路Cの圧縮機1を運転対象に設定する部分負荷運転状態との2種類の部分負荷運転状態に切り換え自在に構成されている。
In the ninth embodiment, the control unit 6 is configured to change the number of the compressors 1 set as the operation target in accordance with the air conditioning load in the partial load operation state.
In the ninth embodiment, since three refrigerant circuits C are provided, a partial load that sets the compressor 1 of any one refrigerant circuit C among the three refrigerant circuits Ca, Cb, Cc as an operation target. There are two types of partial load operation states: an operation state and a partial load operation state in which the compressors 1 of any two refrigerant circuits C among the three refrigerant circuits Ca, Cb, and Cc are set as operation targets. It is configured to be switchable.

図27及び図28は、室外側通流状態切換部Sの部分負荷通流状態における各弁の開閉作動状態を示すものであり、図27は、第2冷媒回路Cbの1台の圧縮機1が運転対象に設定された部分負荷運転状態を例にして示すものであり、図28は、第1、第2冷媒回路Ca,Cbの2台の圧縮機1が運転対象に設定された部分負荷運転状態を例にして示すものである。尚、図27及び図28は、各冷媒回路Cが冷房運転状態に切り換えられた状態における各弁の開閉作動状態を示すが、各冷媒回路Cが暖房運転状態に切り換えられた状態でも同様である。   27 and 28 show the open / close operation state of each valve in the partial load flow state of the outdoor flow state switching unit S, and FIG. 27 shows one compressor 1 of the second refrigerant circuit Cb. FIG. 28 shows an example of the partial load operation state set as the operation target, and FIG. 28 shows the partial load in which the two compressors 1 of the first and second refrigerant circuits Ca and Cb are set as the operation target. An operation state is shown as an example. 27 and 28 show the open / close operation state of each valve in a state where each refrigerant circuit C is switched to the cooling operation state, but the same applies to the state where each refrigerant circuit C is switched to the heating operation state. .

3台の冷媒回路Cのうちの1台の冷媒回路Cの圧縮機1が運転対象に設定された部分負荷運転状態の場合、図27に示すように、3台の冷媒回路Cのうちの2台の冷媒回路Cの室外用熱交換器3に並行して冷媒を通流させる部分負荷通流状態の他に、図示を省略するが、3台の冷媒回路C全ての室外用熱交換器3に並行して冷媒を通流させる部分負荷通流状態も選択することができる。
つまり、室外側通流状態切換部Sが、運転対象の圧縮機1と、運転対象の圧縮機1が備えられた運転対象の冷媒回路Cの室外用熱交換器3及び運転対象の冷媒回路Cとは異なる一部の冷媒回路Cの室外用熱交換器3とにわたって冷媒を通流させる部分負荷通流状態、及び、運転対象の圧縮機1と、運転対象の圧縮機1が備えられた運転対象の冷媒回路Cの室外用熱交換器3及び運転対象の冷媒回路Cとは異なる全ての冷媒回路Cの室外用熱交換器3とにわたって冷媒を通流させる部分負荷通流状態のいずれかに選択的に切り換え自在なように構成されている。
In the partial load operation state in which the compressor 1 of one refrigerant circuit C of the three refrigerant circuits C is set as the operation target, two of the three refrigerant circuits C are shown in FIG. In addition to the partial load flow state in which the refrigerant flows in parallel with the outdoor heat exchanger 3 of the three refrigerant circuits C, the outdoor heat exchangers 3 of all three refrigerant circuits C are omitted although illustration is omitted. It is also possible to select a partial load flow state in which the refrigerant flows in parallel.
In other words, the outdoor flow state switching unit S includes the operation target compressor 1, the outdoor heat exchanger 3 of the operation target refrigerant circuit C provided with the operation target compressor 1, and the operation target refrigerant circuit C. The partial load flow state in which the refrigerant flows through the outdoor heat exchanger 3 of a part of the refrigerant circuit C different from the operation mode, and the operation including the operation target compressor 1 and the operation target compressor 1 Either the outdoor heat exchanger 3 of the target refrigerant circuit C and the outdoor heat exchanger 3 of all the refrigerant circuits C different from the operation target refrigerant circuit C are in any of the partial load flow states in which the refrigerant flows. It is configured to be selectively switchable.

つまり、この第9実施形態では、上記の第3実施形態と同様に、制御部6が、部分負荷運転状態において運転対象の圧縮機1を変更設定自在に構成され、室外側通流状態切換部Sが、変更設定される運転対象の圧縮機1を備えた冷媒回路Cを運転対象の冷媒回路Cとして部分負荷通流状態に切り換え自在に構成されている。   That is, in the ninth embodiment, as in the third embodiment, the control unit 6 is configured to be able to change and set the compressor 1 to be operated in the partial load operation state, and the outdoor flow state switching unit. S is configured such that the refrigerant circuit C including the operation target compressor 1 to be changed and set can be switched to the partial load flow state as the operation target refrigerant circuit C.

又、上記の第3実施形態と同様に、部分負荷通流状態において、各第2連通流路開閉弁V2及び各冷媒回路Cの膨張弁2夫々の開弁を制御することにより、冷媒を通流させる膨張弁2の数を変更することが可能である。
例えば、図27に示す部分負荷通流状態は、3台の冷媒回路Cのうちの第2冷媒回路Cbの圧縮機1が運転対象に設定され、且つ、3台の冷媒回路Cのうちの第2、第3冷媒回路Cb、Ccの室外用熱交換器3に並行して冷媒を通流させる状態の部分負荷運転状態において、運転対象の第2冷媒回路Cbの膨張弁2にのみ冷媒を通流させる状態であるが、全ての第2連通流路開閉弁V2を閉じ、第3冷媒回路Ccの膨張弁2を開弁すると、第2、第3冷媒回路Cb、Ccの膨張弁2に冷媒を通流させる状態に切り換えることができる。
Similarly to the third embodiment, in the partial load flow state, by controlling the opening of each of the second communication flow path opening / closing valve V2 and the expansion valve 2 of each refrigerant circuit C, the refrigerant is passed. It is possible to change the number of expansion valves 2 to be flowed.
For example, in the partial load flow state shown in FIG. 27, the compressor 1 of the second refrigerant circuit Cb of the three refrigerant circuits C is set as the operation target, and the first of the three refrigerant circuits C is set. 2. In the partial load operation state in which the refrigerant flows in parallel to the outdoor heat exchanger 3 of the third refrigerant circuit Cb, Cc, the refrigerant is passed only to the expansion valve 2 of the second refrigerant circuit Cb to be operated. When all the second communication flow path opening / closing valves V2 are closed and the expansion valves 2 of the third refrigerant circuit Cc are opened, the refrigerant is supplied to the expansion valves 2 of the second and third refrigerant circuits Cb and Cc. It is possible to switch to a state of passing through.

〔第10実施形態〕
以下、図29及び図30に基づいて、第10実施形態を説明する。
この第10実施形態のマルチ型空調システムは、上記の第9実施形態と同様の構成である。
そして、上記の第1実施形態と同構成の室外側直列接続流路Qs及び室外側通流状態切換部Sが設けられて、室外側通流状態切換手段Sが、部分負荷通流状態においては室外側直列接続流路Qsを通して冷媒を通流させるように構成され、制御部6が、定格運転状態においては、室外側通流状態切換部Sを通常通流状態に切り換え、部分負荷運転状態においては、室外側通流状態切換部Sを部分負荷通流状態に切り換えるように構成されている。
つまり、室外側接続流路Qは、第1冷媒回路Caの熱交換器間流路5eと第2冷媒回路Cbの対室外用熱交換器流路5cとを連通接続する第3連通流路P3、及び、第2冷媒回路Cbの熱交換器間流路5eと第3冷媒回路Ccの対室外用熱交換器流路5cとを連通接続する第3連通流路P3により構成されている。
室外側通流状態切換部Sは、各第3連通流路P3を開閉する第3連通流路開閉弁V3、並びに、各冷媒回路Ca,Cb,Ccの膨張弁2、対室外用熱交換器流路開閉弁Vc及び対空調用熱交換器流路開閉弁Vdにより構成されている。
[Tenth embodiment]
Hereinafter, the tenth embodiment will be described with reference to FIGS. 29 and 30.
The multi-type air conditioning system of the tenth embodiment has the same configuration as that of the ninth embodiment.
And the outdoor side serial connection flow path Qs of the same structure as said 1st Embodiment and the outdoor side flow state switching part S are provided, and the outdoor side flow state switching means S is in a partial load flow state. The refrigerant is allowed to flow through the outdoor series connection channel Qs, and the control unit 6 switches the outdoor flow state switching unit S to the normal flow state in the rated operation state, and in the partial load operation state. Is configured to switch the outdoor flow state switching unit S to the partial load flow state.
That is, the outdoor connection flow path Q is a third communication flow path P3 that connects the heat exchanger flow path 5e of the first refrigerant circuit Ca and the outdoor heat exchanger flow path 5c of the second refrigerant circuit Cb. And a third communication channel P3 that connects the inter-heat exchanger channel 5e of the second refrigerant circuit Cb and the outdoor heat exchanger channel 5c of the third refrigerant circuit Cc in communication.
The outdoor-side flow state switching unit S includes a third communication flow path opening / closing valve V3 that opens and closes each third communication flow path P3, the expansion valves 2 of the refrigerant circuits Ca, Cb, and Cc, and an outdoor heat exchanger. It is comprised by the flow-path on-off valve Vc and the heat exchanger flow-path on-off valve Vd for an air conditioning.

この第10実施形態でも、第9実施形態と同様に、制御部6が、部分負荷運転状態において、運転対象に設定する圧縮機1の台数を空調負荷に応じて変更するように構成されている。
第10実施形態では冷媒回路Cが3台設けられているので、3台の冷媒回路Ca,Cb,Ccのうちの1台の冷媒回路Cの圧縮機1を運転対象に設定する部分負荷運転状態、及び、3台の冷媒回路Ca,Cb,Ccのうちの2台の冷媒回路Cの圧縮機1を運転対象に設定する部分負荷運転状態との2種類の部分負荷通流状態に切り換え自在に構成されている。
尚、1台の冷媒回路Cの圧縮機1を運転対象に設定する部分負荷運転状態では、第1冷媒回路Ca又は第2冷媒回路Cbの圧縮機1を運転対象に選択することができ、2台の冷媒回路Cの圧縮機1を運転対象に設定する部分負荷運転状態では、第1及び第2冷媒回路Ca,Cb又は第1及び第3冷媒回路Ca,Ccの圧縮機1を運転対象に選択することができる。
Also in the tenth embodiment, similarly to the ninth embodiment, the control unit 6 is configured to change the number of compressors 1 set as the operation target in accordance with the air conditioning load in the partial load operation state. .
In the tenth embodiment, since three refrigerant circuits C are provided, the partial load operation state in which the compressor 1 of one refrigerant circuit C among the three refrigerant circuits Ca, Cb, Cc is set as an operation target. , And can be switched to two types of partial load flow states, ie, a partial load operation state in which the compressors 1 of the two refrigerant circuits C out of the three refrigerant circuits Ca, Cb, and Cc are set as operation targets. It is configured.
In the partial load operation state where the compressor 1 of one refrigerant circuit C is set as the operation target, the compressor 1 of the first refrigerant circuit Ca or the second refrigerant circuit Cb can be selected as the operation target. In the partial load operation state in which the compressor 1 of the refrigerant circuit C is set as the operation target, the compressor 1 of the first and second refrigerant circuits Ca and Cb or the first and third refrigerant circuits Ca and Cc is set as the operation target. You can choose.

図29及び図30は、室外側通流状態切換部Sの部分負荷通流状態における各弁の開閉作動状態を示すものであり、図29は、第1冷媒回路Caの1台の圧縮機1が運転対象に設定された部分負荷運転状態を例にして示すものであり、図30は、第1及び第3冷媒回路Ca,Ccの2台の圧縮機1が運転対象に設定された部分負荷運転状態を例にして示すものである。尚、図29及び図30は、各冷媒回路Cが冷房運転状態に切り換えられた状態における各弁の開閉作動状態を示すが、各冷媒回路Cが暖房運転状態に切り換えられた状態でも同様である   29 and 30 show the opening / closing operation state of each valve in the partial load flow state of the outdoor flow state switching unit S. FIG. 29 shows one compressor 1 of the first refrigerant circuit Ca. FIG. 30 shows an example of the partial load operation state set as the operation target, and FIG. 30 shows the partial load in which the two compressors 1 of the first and third refrigerant circuits Ca and Cc are set as the operation target. An operation state is shown as an example. 29 and 30 show the open / close operation state of each valve in the state where each refrigerant circuit C is switched to the cooling operation state, but the same applies to the state where each refrigerant circuit C is switched to the heating operation state.

第1冷媒回路Caの1台の圧縮機1を運転対象に設定する部分負荷運転状態の場合、図29に示すように、第1、第2及び第3の3台の冷媒回路Ca,Cb,Ccの室外用熱交換器3を順に通流させる部分負荷通流状態の他に、図示を省略するが、第1及び第2の2台の冷媒回路Ca,Cbの室外用熱交換器3を順に通流させる部分負荷通流状態も選択することができる。
つまり、室外側通流状態切換部Sが、運転対象の圧縮機1と、運転対象の圧縮機1が備えられた運転対象の冷媒回路Cの室外用熱交換器3及び運転対象の冷媒回路Cとは異なる一部の冷媒回路Cの室外用熱交換器3とにわたって冷媒を通流させる部分負荷通流状態、及び、運転対象の圧縮機1と、運転対象の圧縮機1が備えられた運転対象の冷媒回路Cの室外用熱交換器3及び運転対象の冷媒回路Cとは異なる全ての冷媒回路Cの室外用熱交換器3とにわたって冷媒を通流させる部分負荷通流状態のいずれかに選択的に切り換え自在なように構成されている。
In the partial load operation state where one compressor 1 of the first refrigerant circuit Ca is set as an operation target, as shown in FIG. 29, the first, second and third three refrigerant circuits Ca, Cb, In addition to the partial load flow state in which the Cc outdoor heat exchanger 3 is sequentially flowed, the outdoor heat exchanger 3 of the first and second refrigerant circuits Ca and Cb is omitted. It is also possible to select a partial load flow state that allows flow in order.
In other words, the outdoor flow state switching unit S includes the operation target compressor 1, the outdoor heat exchanger 3 of the operation target refrigerant circuit C provided with the operation target compressor 1, and the operation target refrigerant circuit C. The partial load flow state in which the refrigerant flows through the outdoor heat exchanger 3 of a part of the refrigerant circuit C different from the operation mode, and the operation including the operation target compressor 1 and the operation target compressor 1 Either the outdoor heat exchanger 3 of the target refrigerant circuit C and the outdoor heat exchanger 3 of all the refrigerant circuits C different from the operation target refrigerant circuit C are in any of the partial load flow states in which the refrigerant flows. It is configured to be selectively switchable.

又、図30に示すように、第1及び第3冷媒回路Ca,Ccの2台の圧縮機1を運転対象に設定する部分負荷運転状態の場合、第1冷媒回路Caの室外用熱交換器3、第2冷媒回路Cbの室外用熱交換器3を順に冷媒を通流させ、第3の冷媒回路Ccの室外用熱交換器3は独立して冷媒を通流させるように、室外側通流状態切換部Sの各弁を開閉作動する。
図示を省略するが、第1及び第2冷媒回路Ca,Cbの2台の圧縮機1を運転対象に設定する部分負荷運転状態の場合、第2冷媒回路Cbの室外用熱交換器3、第3冷媒回路Ccの室外用熱交換器3を順に冷媒を通流させ、第1の冷媒回路Caの室外用熱交換器3は独立して冷媒を通流させるように、室外側通流状態切換部Sの各弁を開閉作動する。
In addition, as shown in FIG. 30, in the partial load operation state in which the two compressors 1 of the first and third refrigerant circuits Ca and Cc are set as operation targets, the outdoor heat exchanger of the first refrigerant circuit Ca 3. The outdoor heat exchanger 3 of the second refrigerant circuit Cb is allowed to flow through the refrigerant in order, and the outdoor heat exchanger 3 of the third refrigerant circuit Cc is allowed to flow independently of the refrigerant. Each valve of the flow state switching unit S is opened and closed.
Although not shown, in the partial load operation state where the two compressors 1 of the first and second refrigerant circuits Ca and Cb are set as operation targets, the outdoor heat exchanger 3 and the second refrigerant circuit Cb of the second refrigerant circuit Cb 3 The outdoor heat exchanger 3 of the refrigerant circuit Cc is passed through the refrigerant in order, and the outdoor heat exchanger 3 of the first refrigerant circuit Ca is switched so that the refrigerant flows independently. Each valve of the part S is opened and closed.

〔別実施形態〕
次に別実施形態を説明する。
(イ) 上記の第1実施形態において例示した冷媒回路Cを3台以上設けて、室外側接続流路Q及び室外側通流状態切換部Sとして、第1〜第3の各実施形態において説明したもののいずれかを適用しても良い。
又、上記の第4実施形態において例示した冷媒回路Cを3台以上設けて、上記の第4〜第8実施形態のいずれかで説明した室外側接続流路Q及び室外側通流状態切換部S並びに空調側接続流路R及び空調側通流状態切換部Tを設けても良い。
[Another embodiment]
Next, another embodiment will be described.
(A) Three or more refrigerant circuits C illustrated in the first embodiment are provided, and the outdoor connection flow path Q and the outdoor flow state switching unit S are described in the first to third embodiments. Any of these may be applied.
Further, three or more refrigerant circuits C exemplified in the fourth embodiment are provided, and the outdoor connection flow path Q and the outdoor flow state switching unit described in any of the fourth to eighth embodiments are provided. S, the air conditioning side connection flow path R, and the air conditioning side flow state switching unit T may be provided.

(ロ) 上記の第4実施形態において、空調側接続流路R及び空調側通流状態切換部Tを省略して、運転対象の冷媒回路C以外の冷媒回路Cの空調用熱交換器4を冷媒が通流しないように構成しても良い。又、それらの場合、冷媒回路Cを3台以上設けても良い。 (B) In the fourth embodiment, the air conditioning side connection flow path R and the air conditioning side flow state switching unit T are omitted, and the air conditioner heat exchanger 4 of the refrigerant circuit C other than the refrigerant circuit C to be operated is installed. You may comprise so that a refrigerant may not flow. In these cases, three or more refrigerant circuits C may be provided.

(ハ) 上記の各実施形態では、冷媒回路Cを冷房運転状態と暖房運転状態とに切り換え可能なように構成したが、冷房運転状態と暖房運転状態とのうちのいずれか一方の運転状態にて運転するように構成しても良い。 (C) In each of the above-described embodiments, the refrigerant circuit C is configured to be switchable between the cooling operation state and the heating operation state. However, the refrigerant circuit C is set to any one of the cooling operation state and the heating operation state. You may comprise so that it may drive.

(ニ) 上記の第1〜第3の各実施形態では、各冷媒回路Cに,膨張弁2を、冷房運転状態と暖房運転状態で共用するように1台設ける場合について例示したが、図31〜図34に示すように、上記の第1〜第3の各実施形態において、各冷媒回路Cに、膨張弁2として、冷房運転状態において使用する冷房用膨張弁2cと暖房運転状態において使用する暖房用膨張弁2wとを設けても良い。ちなみに、図31及び図32は、この膨張弁設置に係る別実施形態を上記の第3実施形態に適用した場合を示し、図33及び図34は、この膨張弁設置に係る別実施形態を、上記の第2実施形態に適用した場合を示すが、第1実施形態にも適用することができる。
そして、図31は、冷媒回路Cが冷房運転状態に切り換えられ且つ室外側通流状態切換部Sが単一膨張弁通過形態の第1部分負荷運転状態に切り換えられた状態、及び、その状態での冷媒の流れを示し、図32は、冷媒回路Cが暖房運転状態に切り換えられ且つ室外側通流状態切換部Sが単一膨張弁通過形態の第1部分負荷運転状態に切り換えられた状態、及び、その状態での冷媒の流れを示す。又、図33は、冷媒回路Cが冷房運転状態に切り換えられ且つ室外側通流状態切換部Sが第2部分負荷運転状態に切り換えられた状態、及び、その状態での冷媒の流れを示し、図34は、冷媒回路Cが暖房運転状態に切り換えられ且つ室外側通流状態切換部Sが第2部分負荷運転状態に切り換えられた状態、及び、その状態での冷媒の流れを示す。
(D) In each of the first to third embodiments, the case where one expansion valve 2 is provided in each refrigerant circuit C so as to be shared in the cooling operation state and the heating operation state is illustrated. 34. As shown in FIG. 34, in each of the first to third embodiments, the refrigerant circuit C is used as the expansion valve 2 in the cooling operation state and the expansion valve 2c for cooling operation in the heating operation state. You may provide the expansion valve 2w for heating. Incidentally, FIG.31 and FIG.32 shows the case where another embodiment which concerns on this expansion valve installation is applied to said 3rd Embodiment, FIG.33 and FIG.34 shows another embodiment which concerns on this expansion valve installation, Although the case where it applies to said 2nd Embodiment is shown, it is applicable also to 1st Embodiment.
FIG. 31 shows a state in which the refrigerant circuit C is switched to the cooling operation state and the outdoor flow state switching unit S is switched to the first partial load operation state of the single expansion valve passing configuration. FIG. 32 shows a state in which the refrigerant circuit C is switched to the heating operation state and the outdoor flow state switching unit S is switched to the first partial load operation state of the single expansion valve passing configuration, And the flow of the refrigerant in the state is shown. FIG. 33 shows a state in which the refrigerant circuit C is switched to the cooling operation state and the outdoor flow state switching unit S is switched to the second partial load operation state, and the refrigerant flow in that state. FIG. 34 shows a state in which the refrigerant circuit C is switched to the heating operation state and the outdoor flow state switching unit S is switched to the second partial load operation state, and the refrigerant flow in that state.

図31〜図34に示すように、冷房用膨張弁2cは、熱交換器間流路5eのうちの各空調用熱交換器4に対する分岐部分夫々における空調用熱交換器4の冷媒出入口近くに設けられ、暖房用膨張弁2wは、上記の第1〜第3の各実施形態における冷暖共用の膨張弁2と同様に、熱交換器間流路5eのうち、室外用熱交換器3に接続される側の部分に設けられる。   As shown in FIGS. 31 to 34, the cooling expansion valve 2c is located near the refrigerant inlet / outlet of the air-conditioning heat exchanger 4 at each branch portion of the inter-heat exchanger channel 5e with respect to each air-conditioning heat exchanger 4. The heating expansion valve 2w is connected to the outdoor heat exchanger 3 in the inter-heat exchanger channel 5e, similarly to the cooling / heating expansion valve 2 in the first to third embodiments. It is provided in the part of the side to be.

次に、冷房運転状態及び暖房運転状態夫々において、冷房用膨張弁2c及び暖房用膨張弁2w夫々の開閉作動状態を説明する。
図31及び図33に示すように、冷房運転状態では、複数の冷房用膨張弁2cのうち、運転される空調用熱交換器4に対応するものを開弁すると共に負荷に応じて開度を調整し、運転されない空調用熱交換器4に対応するものを閉弁する。又、複数の冷媒回路Cの暖房用膨張弁2wのうち、冷媒通流対象の暖房用膨張弁2w(図では第1冷媒回路Caの暖房用膨張弁2w)を全開して冷媒の圧力低下を抑制し、冷媒通流停止対象の暖房用膨張弁2w(図では第2冷媒回路Cbの暖房用膨張弁2w)を閉弁する。
図32及び図34に示すように、暖房運転状態では、複数の冷媒回路Cの暖房用膨張弁2wのうち、冷媒通流対象の暖房用膨張弁2w(図では第1冷媒回路Caの暖房用膨張弁2w)を開弁すると共に負荷に応じて開度を調整し、冷媒通流停止対象の暖房用膨張弁2w(図では第2冷媒回路Cbの暖房用膨張弁2w)を閉弁する。
又、複数の冷房用膨張弁2cのうち、運転される空調用熱交換器4に対応するものを全開して冷媒の圧力低下を抑制し、運転されない空調用熱交換器4に対応するものを閉弁する。
Next, the opening / closing operation states of the cooling expansion valve 2c and the heating expansion valve 2w will be described in the cooling operation state and the heating operation state, respectively.
As shown in FIGS. 31 and 33, in the cooling operation state, among the plurality of cooling expansion valves 2c, the one corresponding to the operated air conditioner heat exchanger 4 is opened and the opening degree is set according to the load. The one corresponding to the heat exchanger 4 for air conditioning that is not operated is closed. Further, among the heating expansion valves 2w of the plurality of refrigerant circuits C, the heating expansion valve 2w (the heating expansion valve 2w of the first refrigerant circuit Ca in the drawing) that is the refrigerant flow target is fully opened to reduce the refrigerant pressure. The heating expansion valve 2w (in the figure, the heating expansion valve 2w of the second refrigerant circuit Cb) to be stopped is closed.
As shown in FIGS. 32 and 34, in the heating operation state, among the heating expansion valves 2w of the plurality of refrigerant circuits C, the heating expansion valve 2w to be circulated through the refrigerant (in the drawing, for heating the first refrigerant circuit Ca). The expansion valve 2w) is opened and the opening degree is adjusted in accordance with the load, and the heating expansion valve 2w (the heating expansion valve 2w of the second refrigerant circuit Cb in the figure) that is a refrigerant flow stop target is closed.
Further, among the plurality of cooling expansion valves 2c, the one corresponding to the operated air conditioner heat exchanger 4 is fully opened to suppress the pressure drop of the refrigerant, and the one corresponding to the not operated air conditioner heat exchanger 4 is selected. Close the valve.

各冷房用膨張弁2cに対応して、冷房用膨張弁2cを迂回させて冷媒を流すように冷房用バイパス路を設けると共に、その冷房用バイパス路に冷房用バイパス弁を設け、各暖房用膨張弁2wに対応して、暖房用膨張弁2wを迂回させて冷媒を流すように暖房用バイパス路を設けると共に、その暖房用バイパス路に暖房用バイパス弁を設けても良い。この場合、これら、冷房用バイパス弁及び暖房用バイパス弁も室外側通流状態切換部Sを構成するものである。
そして、冷房運転状態では、複数の冷房用バイパス弁全てを閉弁し、複数の暖房用バイパス弁のうち、冷媒通流対象の暖房用膨張弁2wに対応するものを開弁し、冷媒通流停止対象の暖房用膨張弁2wに対応するものを閉弁することになる。この場合、暖房用膨張弁2wは全て閉弁することになる。
又、暖房運転状態では、複数の暖房用バイパス弁全てを閉弁し、複数の冷房用バイパス弁のうち、運転される空調用熱交換器4に対応するものを開弁し、運転されない空調用熱交換器4に対応するものを閉弁することになる。この場合、冷房用膨張弁2cは全て閉弁することになる。
Corresponding to each cooling expansion valve 2c, a cooling bypass path is provided so as to bypass the cooling expansion valve 2c and flow the refrigerant, and a cooling bypass valve is provided in the cooling bypass path, and each heating expansion valve is provided. Corresponding to the valve 2w, a heating bypass path may be provided so as to bypass the heating expansion valve 2w and flow the refrigerant, and a heating bypass valve may be provided in the heating bypass path. In this case, these cooling bypass valve and heating bypass valve also constitute the outdoor flow state switching unit S.
In the cooling operation state, all the plurality of cooling bypass valves are closed, and among the plurality of heating bypass valves, the one corresponding to the refrigerant expansion target heating expansion valve 2w is opened, and the refrigerant flow The valve corresponding to the heating expansion valve 2w to be stopped is closed. In this case, all the heating expansion valves 2w are closed.
Further, in the heating operation state, all of the plurality of heating bypass valves are closed, and among the plurality of cooling bypass valves, the one corresponding to the operated air conditioning heat exchanger 4 is opened, and the air conditioning is not operated. The one corresponding to the heat exchanger 4 is closed. In this case, all the cooling expansion valves 2c are closed.

図32に示す暖房運転状態おいて、第2連通流路開閉弁V2を閉弁し、運転されない第2冷媒回路Cbの暖房用膨張弁2wを開弁すると、複数膨張弁通過形態の部分負荷通流状態とすることができる。
つまり、図31及び図32に示す別実施形態では、上記の第3実施形態と同様に、室外側接続流路Qとして室外側並列接続流路Qpが設けられ、室外側通流状態切換部Sが、部分負荷通流状態においては室外側並列接続流路Qpを通して冷媒を通流させるように構成されている。又、複数の冷媒回路Cが、異なる冷媒回路Cに備えられた暖房用膨張弁2wに冷媒を通流可能とする膨張弁用接続流路Qbにて連結されており、室外側通流状態切換部Sが、暖房運転状態での部分負荷通流状態において、冷媒を通流させる暖房用膨張弁2wの数を変更自在に構成されている。これにより、空調負荷が小さくなって冷媒の通流量が少なくなっても、冷媒を通流させる暖房用膨張弁2wの数を少なくして、暖房用膨張弁2w1台当たりの冷媒流量を増やすことにより、暖房用膨張弁2wを通流する冷媒流量が暖房用膨張弁2wでの制御可能流量範囲の下限よりも少なくなるのを回避することができる。
In the heating operation state shown in FIG. 32, when the second communication flow path opening / closing valve V2 is closed and the heating expansion valve 2w of the second refrigerant circuit Cb that is not operated is opened, the partial load passage of the multiple expansion valve passing configuration is performed. It can be a flow state.
That is, in another embodiment shown in FIGS. 31 and 32, the outdoor side parallel connection flow path Qp is provided as the outdoor side connection flow path Q as in the third embodiment, and the outdoor flow state switching unit S is provided. However, the refrigerant is caused to flow through the outdoor parallel connection flow path Qp in the partial load flow state. Further, the plurality of refrigerant circuits C are connected to the expansion valve 2w provided for the different refrigerant circuits C by the expansion valve connection flow path Qb that allows the refrigerant to flow, and the outdoor flow state switching is performed. The part S is configured to freely change the number of heating expansion valves 2w through which the refrigerant flows in the partial load flow state in the heating operation state. As a result, even if the air conditioning load decreases and the refrigerant flow rate decreases, the number of heating expansion valves 2w through which the refrigerant flows is reduced and the refrigerant flow rate per heating expansion valve 2w is increased. It can be avoided that the flow rate of the refrigerant flowing through the heating expansion valve 2w is less than the lower limit of the controllable flow rate range in the heating expansion valve 2w.

図33及び図34に示す別実施形態では、室外側接続流路Qとして室外側直列接続流路Qsが設けられ、室外側通流状態切換部Sが、部分負荷通流状態においては室外側直列接続流路Qsを通して冷媒を通流させるように構成されている。   In another embodiment shown in FIGS. 33 and 34, an outdoor series connection flow path Qs is provided as the outdoor connection flow path Q, and the outdoor flow state switching unit S is arranged in the outdoor series in the partial load flow state. The refrigerant is made to flow through the connection channel Qs.

(ホ) 複数の冷媒回路C夫々における室外用熱交換器3と空調用熱交換器4との接続形態は、上記の第1〜第3実施形態にて説明した形態、及び、上記の第4〜第8実施形態で説明した形態に限定されるものではない。
例えば、図35及び図36に示すように、複数の冷媒回路Cの夫々を、各冷媒回路C専用の室外用熱交換器3を複数の冷媒回路Cで共通の1個又は複数(図35及び図36では1個)の空調用熱交換器4に並列接続して構成し、前記1個又は複数(図35及び図36では1個)の空調用熱交換器4を、空調対象空間に設置される室内用熱交換器12に循環される複数の熱搬送用流体と冷媒とを熱交換させるように構成しても良い。ちなみに、図35及び図36では、室外側通流状態切換部Sとして、上記の第2実施形態と同様の構成のものを設ける場合を一例として示すが、室外側通流状態切換部Sとしては、第1又は第3実施形態と同様の構成のものを設けることができる。
尚、図35は、冷媒回路Cが冷房運転状態に切り換えられ且つ室外側通流状態切換部Sが第2部分負荷運転状態に切り換えられた状態、及び、その状態での冷媒の流れを示し、図36は、冷媒回路Cが暖房運転状態に切り換えられ且つ室外側通流状態切換部Sが第2部分負荷運転状態に切り換えられた状態、及び、その状態での冷媒の流れを示す。
(E) The connection form between the outdoor heat exchanger 3 and the air conditioning heat exchanger 4 in each of the plurality of refrigerant circuits C is the form described in the first to third embodiments and the fourth part. It is not limited to the form described in the eighth embodiment.
For example, as shown in FIG. 35 and FIG. 36, each of the plurality of refrigerant circuits C is replaced by one or a plurality of outdoor heat exchangers 3 dedicated to each refrigerant circuit C shared by the plurality of refrigerant circuits C (FIGS. 35 and 36). 36 is connected in parallel to one air conditioning heat exchanger 4, and one or a plurality (one in FIGS. 35 and 36) of the air conditioning heat exchanger 4 is installed in the air conditioning target space. The plurality of heat transfer fluids circulated through the indoor heat exchanger 12 and the refrigerant may be configured to exchange heat. Incidentally, in FIG. 35 and FIG. 36, the outdoor-side flow state switching unit S is shown as an example in the case where a configuration similar to that of the second embodiment is provided. The thing of the structure similar to 1st or 3rd embodiment can be provided.
FIG. 35 shows the state in which the refrigerant circuit C is switched to the cooling operation state and the outdoor flow state switching unit S is switched to the second partial load operation state, and the refrigerant flow in that state. FIG. 36 shows a state in which the refrigerant circuit C is switched to the heating operation state and the outdoor flow state switching unit S is switched to the second partial load operation state, and the refrigerant flow in that state.

この場合、上記の第4実施形態と同様に、室内用熱交換器12を複数設けて、それら複数の室内用熱交換器12と1個又は複数(図35及び図36では1個)の空調用熱交換器4とを流体往き路13及び流体戻り路14により並列状に接続することになる。   In this case, as in the fourth embodiment, a plurality of indoor heat exchangers 12 are provided, and the plurality of indoor heat exchangers 12 and one or a plurality (one in FIGS. 35 and 36) of air conditioning are provided. The heat exchanger 4 for use is connected in parallel by the fluid outgoing path 13 and the fluid return path 14.

又、図31〜図34にて説明した別実施形態と同様に、膨張弁2として、冷房運転状態において使用する冷房用膨張弁2cと暖房運転状態において使用する暖房用膨張弁2wとを設けても良い。
暖房用膨張弁2wは、図31〜図34にて説明した別実施形態と同様に設けられる。
又、冷房用膨張弁2cは、複数の冷媒回路C夫々の室外用熱交換器3に接続された熱交換器間流路5eが合流される合流部分における空調用熱交換器4の冷媒出入口近くに設けられる。
Further, similarly to the other embodiments described in FIGS. 31 to 34, as the expansion valve 2, a cooling expansion valve 2c used in the cooling operation state and a heating expansion valve 2w used in the heating operation state are provided. Also good.
The heating expansion valve 2w is provided in the same manner as in the other embodiments described with reference to FIGS.
The cooling expansion valve 2c is close to the refrigerant inlet / outlet of the air conditioner heat exchanger 4 at the junction where the heat exchanger flow paths 5e connected to the outdoor heat exchangers 3 of the refrigerant circuits C are joined. Provided.

次に、冷房運転状態及び暖房運転状態夫々において、冷房用膨張弁2c及び暖房用膨張弁2w夫々の開閉作動状態を説明する。
図35に示すように、冷房運転状態で、室外側通流状態切換部Sが第2部分負荷通流状態に切り換えられた状態では、冷房用膨張弁2cを開弁すると共に負荷に応じて開度を調整し、第1冷媒回路Caの暖房用膨張弁2wを全開し、第2冷媒回路Cbの暖房用膨張弁2wを閉弁して、冷媒の圧力低下を抑制する。
図36に示すように、暖房運転状態で、室外側通流状態切換部Sが第2部分負荷通流状態に切り換えられた状態では、第1冷媒回路Caの暖房用膨張弁2wを開弁すると共に負荷に応じて開度を調整し、第2冷媒回路Cbの暖房用膨張弁2wを閉弁し、冷房用膨張弁2cを全開して冷媒の圧力低下を抑制する。
Next, the opening / closing operation states of the cooling expansion valve 2c and the heating expansion valve 2w will be described in the cooling operation state and the heating operation state, respectively.
As shown in FIG. 35, in the cooling operation state, when the outdoor flow state switching unit S is switched to the second partial load flow state, the cooling expansion valve 2c is opened and opened according to the load. The heating expansion valve 2w of the first refrigerant circuit Ca is fully opened, and the heating expansion valve 2w of the second refrigerant circuit Cb is closed to suppress the refrigerant pressure drop.
As shown in FIG. 36, the heating expansion valve 2w of the first refrigerant circuit Ca is opened in a state where the outdoor flow state switching unit S is switched to the second partial load flow state in the heating operation state. At the same time, the opening degree is adjusted according to the load, the heating expansion valve 2w of the second refrigerant circuit Cb is closed, and the cooling expansion valve 2c is fully opened to suppress the pressure drop of the refrigerant.

冷房用膨張弁2cを迂回させて冷媒を流すように、冷房用バイパス路を設けると共に、その冷房用バイパス路に冷房用バイパス弁を設け、各暖房用膨張弁2wに対応して、暖房用膨張弁2wを迂回して冷媒を流すように暖房用バイパス路を設けると共に、その暖房用バイパス路に暖房用バイパス弁を設けても良い。この場合、これら冷房用バイパス弁及び暖房用バイパス弁も室外側通流状態切換部Sを構成するものである。
そして、冷房運転状態では、冷房用バイパス弁を閉弁し、複数の冷媒回路C全ての暖房用バイパス弁を開弁することになる。この場合、複数の冷媒回路C全ての暖房用膨張弁2wを閉弁することになる。
又、暖房運転状態では、複数の冷媒回路C全ての暖房用バイパス弁を閉弁し、冷房用バイパス弁を開弁することになる。この場合、冷房用膨張弁2cは、閉弁することになる。
A cooling bypass passage is provided so as to bypass the cooling expansion valve 2c and the refrigerant flows, and a cooling bypass valve is provided in the cooling bypass passage, corresponding to each heating expansion valve 2w. A heating bypass passage may be provided so as to flow the refrigerant bypassing the valve 2w, and a heating bypass valve may be provided in the heating bypass passage. In this case, the cooling bypass valve and the heating bypass valve also constitute the outdoor flow state switching unit S.
In the cooling operation state, the cooling bypass valve is closed and all the heating bypass valves of the plurality of refrigerant circuits C are opened. In this case, the heating expansion valves 2w of all the refrigerant circuits C are closed.
Further, in the heating operation state, all the heating bypass valves of the plurality of refrigerant circuits C are closed, and the cooling bypass valves are opened. In this case, the cooling expansion valve 2c is closed.

図示を省略するが、図35及び図36に示す如き空調用熱交換器4の別実施形態を採用した構成において、室外側通流状態切換部Sとして第3実施形態と同様の構成のものを設けると、上記の図31及び図32に示す別実施形態と同様に、室外側通流状態切換部Sが、暖房運転状態での部分負荷通流状態において、冷媒を通流させる暖房用膨張弁2wの数を変更自在に構成されることになる。   Although illustration is omitted, in the configuration adopting another embodiment of the heat exchanger 4 for air conditioning as shown in FIGS. 35 and 36, the outdoor passage state switching unit S having the same configuration as that of the third embodiment is used. When provided, as in the other embodiments shown in FIG. 31 and FIG. 32 described above, the outdoor flow state switching unit S allows the refrigerant to flow in the partial load flow state in the heating operation state. The number of 2w can be changed freely.

(ヘ) 室外用熱交換器3において冷媒と熱交換させる熱媒体は、上記の各実施形態において例示した外気に限定されるものではない。例えば、クーリングタワーやヒーティングタワーを設けて、冷媒をそれらクーリングタワーやヒーティングタワーにおいて通流される熱媒体と熱交換させても良い。 (F) The heat medium to exchange heat with the refrigerant in the outdoor heat exchanger 3 is not limited to the outside air exemplified in the above embodiments. For example, a cooling tower or a heating tower may be provided, and the refrigerant may exchange heat with a heat medium passed through the cooling tower or the heating tower.

(ト) 圧縮機1を駆動するエンジンとしては、上記の実施形態において例示したガスエンジン9に限定されるものではない。又、エンジンにて駆動する圧縮機1に代えて、電動モータにて駆動する圧縮機1を設けても良い。 (G) The engine for driving the compressor 1 is not limited to the gas engine 9 exemplified in the above embodiment. Further, instead of the compressor 1 driven by the engine, a compressor 1 driven by an electric motor may be provided.

(チ) 本発明は、上記の実施形態の如き空調用のマルチ型温調システム以外に、冷熱や温熱を必要とする種々の用途のマルチ型温調システムに適用することができる。 (H) The present invention can be applied to a multi-type temperature control system for various uses that require cooling and heating, in addition to the multi-type temperature control system for air conditioning as in the above embodiment.

以上説明したように、冷媒と外気との伝熱を改善させて空調効率を向上し得るマルチ型温調システムを提供することができる。   As described above, it is possible to provide a multi-type temperature control system that can improve the air conditioning efficiency by improving the heat transfer between the refrigerant and the outside air.

1 圧縮機
2 膨張弁
3 第1熱交換器
4 第2熱交換器
5 冷媒流路
6 制御手段
7 冷暖切換手段
9 エンジン
12 室内用熱交換器
C 冷媒回路
Q 接続流路
Qb 膨張弁用接続流路
Qp 並列接続流路
Qs 直列接続流路
R 空調側接続流路
Rp 空調側並列接続流路
Rs 空調側直列接続流路
S 通流状態切換手段
T 空調側通流状態切換手段
Ui 室内ユニット
DESCRIPTION OF SYMBOLS 1 Compressor 2 Expansion valve 3 1st heat exchanger 4 2nd heat exchanger 5 Refrigerant flow path 6 Control means 7 Cooling / heating switching means 9 Engine 12 Indoor heat exchanger C Refrigerant circuit Q Connection flow path Qb Expansion flow connection flow Path Qp Parallel connection flow path Qs Series connection flow path R Air conditioning side connection flow path Rp Air conditioning side parallel connection flow path Rs Air conditioning side serial connection flow path S Flow state switching means T Air conditioning side flow condition switching means Ui Indoor unit

Claims (10)

冷媒を圧縮する圧縮機と冷媒を減圧膨張させる膨張弁と第1熱交換器と温調対象空間を温調するための第2熱交換器とが冷媒流路で接続された冷媒回路が複数設けられ、
運転を制御する制御手段が、前記複数の圧縮機を全て運転させる定格運転状態と、前記複数の圧縮機のうちの一部の運転対象の圧縮機を運転させる部分負荷運転状態とに運転状態を切り換え自在に構成されたマルチ型温調システムであって、
前記複数の冷媒回路が、異なる冷媒回路に備えられた前記第1熱交換器に冷媒を通流可能とする接続流路にて連結されており、
前記複数の冷媒回路の夫々において同一の冷媒回路の圧縮機と第1熱交換器とにわたって冷媒を通流させる通常通流状態、及び、前記複数の圧縮機のうちの前記運転対象の圧縮機と、その運転対象の圧縮機が備えられた運転対象の冷媒回路の第1熱交換器及び前記運転対象の冷媒回路とは異なる一部又は全ての冷媒回路の第1熱交換器とにわたって冷媒を通流させる部分負荷通流状態に切り換え自在な通流状態切換手段が設けられ、
前記接続流路として、前記複数の冷媒回路の夫々に備えられた前記第1熱交換器を直列状に接続する直列接続流路が設けられ、
前記通流状態切換手段が、前記部分負荷通流状態においては前記直列接続流路を通して冷媒を通流させるように構成され、
前記制御手段が、前記定格運転状態においては、前記通流状態切換手段を前記通常通流状態に切り換え、前記部分負荷運転状態においては、前記通流状態切換手段を前記部分負荷通流状態に切り換えるように構成されているマルチ型温調システム。
There are provided a plurality of refrigerant circuits in which a compressor that compresses refrigerant, an expansion valve that decompresses and expands the refrigerant, a first heat exchanger, and a second heat exchanger that regulates the temperature of the temperature control target space are connected by a refrigerant flow path. And
The control means for controlling the operation changes the operation state into a rated operation state in which all of the plurality of compressors are operated and a partial load operation state in which some of the plurality of compressors to be operated are operated. A multi-type temperature control system configured to be switchable,
The plurality of refrigerant circuits are connected to each other through a connection channel that allows the refrigerant to flow to the first heat exchanger provided in different refrigerant circuits.
A normal flow state in which the refrigerant flows through the compressor and the first heat exchanger in the same refrigerant circuit in each of the plurality of refrigerant circuits, and the compressor to be operated among the plurality of compressors, and The refrigerant is passed through the first heat exchanger of the refrigerant circuit to be operated provided with the compressor to be operated and the first heat exchanger of a part or all of the refrigerant circuits different from the refrigerant circuit to be operated. A flow state switching means that can be switched to a partial load flow state to be flown is provided,
As the connection flow path, a series connection flow path for connecting the first heat exchangers provided in each of the plurality of refrigerant circuits in series is provided,
The flow state switching means is configured to flow the refrigerant through the series connection flow path in the partial load flow state.
The control means switches the flow state switching means to the normal flow state in the rated operation state, and switches the flow state switching means to the partial load flow state in the partial load operation state. Multi-type temperature control system configured as follows.
冷媒を圧縮する圧縮機と冷媒を減圧膨張させる膨張弁と第1熱交換器と温調対象空間を温調するための第2熱交換器とが冷媒流路で接続された冷媒回路が複数設けられ、
運転を制御する制御手段が、前記複数の圧縮機を全て運転させる定格運転状態と、前記複数の圧縮機のうちの一部の運転対象の圧縮機を運転させる部分負荷運転状態とに運転状態を切り換え自在に構成されたマルチ型温調システムであって、
前記複数の冷媒回路が、異なる冷媒回路に備えられた前記第1熱交換器に冷媒を通流可能とする接続流路にて連結されており、
前記複数の冷媒回路の夫々において同一の冷媒回路の圧縮機と第1熱交換器とにわたって冷媒を通流させる通常通流状態、及び、前記複数の圧縮機のうちの前記運転対象の圧縮機と、その運転対象の圧縮機が備えられた運転対象の冷媒回路の第1熱交換器及び前記運転対象の冷媒回路とは異なる一部又は全ての冷媒回路の第1熱交換器とにわたって冷媒を通流させる部分負荷通流状態に切り換え自在な通流状態切換手段が設けられ、
前記接続流路として、前記複数の冷媒回路の夫々に備えられた前記第1熱交換器を並列状に接続する並列接続流路が設けられ、
前記通流状態切換手段が、前記部分負荷通流状態においては前記並列接続流路を通して冷媒を通流させるように構成され、
前記複数の冷媒回路が、異なる冷媒回路に備えられた膨張弁に冷媒を通流可能とする膨張弁用接続流路にて連結されており、
前記通流状態切換手段が、前記部分負荷通流状態において、冷媒を通流させる膨張弁の数を変更自在に構成され、
前記制御手段が、前記定格運転状態においては、前記通流状態切換手段を前記通常通流状態に切り換え、前記部分負荷運転状態においては、前記通流状態切換手段を前記部分負荷通流状態に切り換えると共に、空調負荷に応じて冷媒を通流させる膨張弁の数を変更すべく前記通流状態切換手段を作動させるように構成されているマルチ型温調システム。
There are provided a plurality of refrigerant circuits in which a compressor that compresses refrigerant, an expansion valve that decompresses and expands the refrigerant, a first heat exchanger, and a second heat exchanger that regulates the temperature of the temperature control target space are connected by a refrigerant flow path. And
The control means for controlling the operation changes the operation state into a rated operation state in which all of the plurality of compressors are operated and a partial load operation state in which some of the plurality of compressors to be operated are operated. A multi-type temperature control system configured to be switchable,
The plurality of refrigerant circuits are connected to each other through a connection channel that allows the refrigerant to flow to the first heat exchanger provided in different refrigerant circuits.
A normal flow state in which the refrigerant flows through the compressor and the first heat exchanger in the same refrigerant circuit in each of the plurality of refrigerant circuits, and the compressor to be operated among the plurality of compressors, and The refrigerant is passed through the first heat exchanger of the refrigerant circuit to be operated provided with the compressor to be operated and the first heat exchanger of a part or all of the refrigerant circuits different from the refrigerant circuit to be operated. A flow state switching means that can be switched to a partial load flow state to be flown is provided,
As the connection flow path, a parallel connection flow path for connecting the first heat exchangers provided in each of the plurality of refrigerant circuits in parallel is provided,
The flow state switching means is configured to flow the refrigerant through the parallel connection flow path in the partial load flow state.
The plurality of refrigerant circuits are connected by an expansion valve connection flow path that allows refrigerant to flow through expansion valves provided in different refrigerant circuits,
The flow state switching means is configured to freely change the number of expansion valves through which the refrigerant flows in the partial load flow state,
The control means switches the flow state switching means to the normal flow state in the rated operation state, and switches the flow state switching means to the partial load flow state in the partial load operation state. A multi-type temperature control system configured to operate the flow state switching means so as to change the number of expansion valves through which the refrigerant flows according to the air conditioning load.
前記制御手段が、前記部分負荷運転状態において前記運転対象の圧縮機を変更設定自在に構成され、
前記通流状態切換手段が、前記変更設定される運転対象の圧縮機を備えた冷媒回路を前記運転対象の冷媒回路として前記部分負荷通流状態に切り換え自在に構成されている請求項1又は2に記載のマルチ型温調システム。
The control means is configured to freely change and set the compressor to be operated in the partial load operation state,
The said flow state switching means is comprised so that it can switch to the said partial load flow state as a refrigerant circuit of the said operation object refrigerant circuit provided with the said operation target compressor as the said operation target refrigerant circuit. Multi-type temperature control system described in 1.
前記複数の冷媒回路の夫々が、各冷媒回路専用の第1熱交換器と前記複数の冷媒回路で共通の複数の第2熱交換器とを並列状に接続するように構成され、
前記複数の第2熱交換器が、温調対象空間に設置される複数の室内ユニットに分散して設けられている請求項1〜3のいずれか1項に記載のマルチ型温調システム。
Each of the plurality of refrigerant circuits is configured to connect, in parallel, a first heat exchanger dedicated to each refrigerant circuit and a plurality of second heat exchangers common to the plurality of refrigerant circuits,
The multi-type temperature control system according to any one of claims 1 to 3, wherein the plurality of second heat exchangers are distributed and provided in a plurality of indoor units installed in a temperature control target space.
前記複数の冷媒回路の夫々が、各冷媒回路専用の第1熱交換器と各冷媒回路専用の第2交換器とを接続して構成され、
前記複数の冷媒回路の第2熱交換器夫々が、温調対象空間に設置される室内用熱交換器に循環される熱搬送用流体と冷媒とを熱交換させるように構成されている請求項1〜3のいずれか1項に記載のマルチ型温調システム。
Each of the plurality of refrigerant circuits is configured by connecting a first heat exchanger dedicated to each refrigerant circuit and a second exchanger dedicated to each refrigerant circuit,
The second heat exchanger of each of the plurality of refrigerant circuits is configured to exchange heat between the heat transfer fluid and the refrigerant circulated through the indoor heat exchanger installed in the temperature control target space. The multi-type temperature control system according to any one of 1 to 3.
前記複数の冷媒回路が、異なる冷媒回路に備えられた前記第2熱交換器に冷媒を通流可能とする空調側接続流路にて連結されており、
前記複数の冷媒回路の夫々において同一の冷媒回路の圧縮機と第2熱交換器とにわたって冷媒を通流させる通常通流状態、及び、前記複数の圧縮機のうちの前記運転対象の圧縮機と、その運転対象の圧縮機が備えられた運転対象の冷媒回路の第2熱交換器及び前記運転対象の冷媒回路とは異なる一部又は全ての冷媒回路の第2熱交換器とにわたって冷媒を通流させる部分負荷通流状態に切り換え自在な空調側通流状態切換手段が設けられ、
前記制御手段が、前記定格運転状態においては、前記空調側通流状態切換手段を前記通常通流状態に切り換え、前記部分負荷運転状態においては、前記空調側通流状態切換手段を前記部分負荷通流状態に切り換えるように構成されている請求項5に記載のマルチ型温調システム。
The plurality of refrigerant circuits are connected to the second heat exchanger provided in different refrigerant circuits by an air conditioning side connection flow path that allows the refrigerant to flow therethrough,
A normal flow state in which the refrigerant flows through the compressor and the second heat exchanger in the same refrigerant circuit in each of the plurality of refrigerant circuits, and the compressor to be operated among the plurality of compressors; The refrigerant is passed through the second heat exchanger of the refrigerant circuit to be operated provided with the compressor to be operated and the second heat exchanger of a part or all of the refrigerant circuits different from the refrigerant circuit to be operated. Air-conditioning side flow state switching means that can be switched to a partial load flow state to be flown is provided,
The control means switches the air conditioning side flow state switching means to the normal flow state in the rated operation state, and switches the air conditioning side flow state switching means to the partial load passage in the partial load operation state. The multi-type temperature control system according to claim 5, which is configured to switch to a flow state.
前記空調側接続流路として、前記複数の冷媒回路の夫々に備えられた前記第2熱交換器を並列状に接続する空調側並列接続流路が設けられ、
前記空調側通流状態切換手段が、前記部分負荷通流状態においては前記空調側並列接続流路を通して冷媒を通流させるように構成されている請求項6に記載のマルチ型温調システム。
As the air conditioning side connection flow path, an air conditioning side parallel connection flow path for connecting the second heat exchangers provided in each of the plurality of refrigerant circuits in parallel is provided,
The multi-type temperature control system according to claim 6, wherein the air-conditioning-side flow state switching means is configured to cause a refrigerant to flow through the air-conditioning-side parallel connection flow path in the partial load flow state.
前記空調側接続流路として、前記複数の冷媒回路の夫々に備えられた前記第2熱交換器を直列状に接続する空調側直列接続流路が設けられ、
前記空調側通流状態切換手段が、前記部分負荷通流状態においては前記空調側直列接続流路を通して冷媒を通流させるように構成されている請求項6に記載のマルチ型温調システム。
As the air conditioning side connection flow path, an air conditioning side series connection flow path for connecting the second heat exchangers provided in each of the plurality of refrigerant circuits in series is provided,
The multi-type temperature control system according to claim 6, wherein the air-conditioning-side flow state switching means is configured to cause the refrigerant to flow through the air-conditioning-side serial connection flow path in the partial load flow state.
前記複数の冷媒回路の夫々に、前記圧縮機、凝縮器として機能する前記第1熱交換器、前記膨張弁、蒸発器として機能する前記第2熱交換器の順に冷媒を通流させる冷房用通流状態と、前記圧縮機、凝縮器として機能する前記第2熱交換器、前記膨張弁、蒸発器として機能する前記第1熱交換器の順に冷媒を通流させる暖房用通流状態とに冷媒の通流状態を切り換え自在な冷暖切換手段が設けられている請求項1〜8のいずれか1項に記載のマルチ型温調システム。   A cooling passage in which the refrigerant flows in the order of the compressor, the first heat exchanger functioning as a condenser, the expansion valve, and the second heat exchanger functioning as an evaporator through each of the plurality of refrigerant circuits. Refrigerant in the flow state and in the heating flow state in which the refrigerant flows in the order of the compressor, the second heat exchanger functioning as a condenser, the expansion valve, and the first heat exchanger functioning as an evaporator. The multi-type temperature control system according to any one of claims 1 to 8, wherein a cooling / heating switching means capable of switching the flow state is provided. 前記圧縮機がエンジンにて駆動される請求項1〜9のいずれか1項に記載のマルチ型温調システム。   The multi-type temperature control system according to claim 1, wherein the compressor is driven by an engine.
JP2010255055A 2009-11-17 2010-11-15 Multi-type temperature control system Expired - Fee Related JP5498359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010255055A JP5498359B2 (en) 2009-11-17 2010-11-15 Multi-type temperature control system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009262176 2009-11-17
JP2009262176 2009-11-17
JP2010255055A JP5498359B2 (en) 2009-11-17 2010-11-15 Multi-type temperature control system

Publications (2)

Publication Number Publication Date
JP2011127889A true JP2011127889A (en) 2011-06-30
JP5498359B2 JP5498359B2 (en) 2014-05-21

Family

ID=44290653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010255055A Expired - Fee Related JP5498359B2 (en) 2009-11-17 2010-11-15 Multi-type temperature control system

Country Status (1)

Country Link
JP (1) JP5498359B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038470A1 (en) * 2012-09-06 2014-03-13 ヤンマー株式会社 Engine-driven heat pump chiller

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04324075A (en) * 1991-04-23 1992-11-13 Sanyo Electric Co Ltd Air conditioning apparatus
JPH07174427A (en) * 1993-12-20 1995-07-14 Matsushita Refrig Co Ltd Multiroom cooling heating device
JPH07234038A (en) * 1994-02-18 1995-09-05 Sanyo Electric Co Ltd Multiroom type cooling-heating equipment and operating method thereof
JP2001174097A (en) * 1999-12-14 2001-06-29 Sanyo Electric Co Ltd Air conditioner
JP2007113830A (en) * 2005-10-20 2007-05-10 Mitsubishi Heavy Ind Ltd Gas heat pump type air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04324075A (en) * 1991-04-23 1992-11-13 Sanyo Electric Co Ltd Air conditioning apparatus
JPH07174427A (en) * 1993-12-20 1995-07-14 Matsushita Refrig Co Ltd Multiroom cooling heating device
JPH07234038A (en) * 1994-02-18 1995-09-05 Sanyo Electric Co Ltd Multiroom type cooling-heating equipment and operating method thereof
JP2001174097A (en) * 1999-12-14 2001-06-29 Sanyo Electric Co Ltd Air conditioner
JP2007113830A (en) * 2005-10-20 2007-05-10 Mitsubishi Heavy Ind Ltd Gas heat pump type air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038470A1 (en) * 2012-09-06 2014-03-13 ヤンマー株式会社 Engine-driven heat pump chiller

Also Published As

Publication number Publication date
JP5498359B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP3858015B2 (en) Refrigerant circuit and heat pump water heater
US11506430B2 (en) Air conditioning system with capacity control and controlled hot water generation
US10830502B2 (en) Air conditioner
US20130167559A1 (en) Heat pump and control method thereof
JP4776511B2 (en) Refrigeration equipment
JPWO2018047331A1 (en) Air conditioner
KR100589913B1 (en) Air conditioning apparatus
JP2009198060A (en) Air-conditioning system
JP2007322024A (en) Large temperature difference air conditioning system
JP7034251B2 (en) Heat source equipment and refrigeration cycle equipment
EP3666565B1 (en) Automotive air conditioning system
JP2006317063A (en) Air conditioner
KR20080047242A (en) Air conditioning apparatus
JP4698256B2 (en) Air conditioner
JP5498359B2 (en) Multi-type temperature control system
CN216644619U (en) Convertible heat exchange assemblies, air conditioning system and air conditioner
KR100784845B1 (en) Air conditioner for cooling and heating having multiple 4-way valve
KR100696718B1 (en) Air Conditioner System for Heating and Dehumidificaton
JP2010243005A (en) Dehumidification system
JP2005147409A (en) Heat pump type cooler/heater
KR100953766B1 (en) Heat pump
JP5150225B2 (en) Heat pump system
JP5166840B2 (en) Heat pump system
WO2013046723A1 (en) Hot-water-supplying, air-conditioning system
JP2006145098A (en) Heat storage type air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140307

R150 Certificate of patent or registration of utility model

Ref document number: 5498359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees