JP2011127807A - Outdoor unit, air conditioner and method of operating the air conditioner - Google Patents

Outdoor unit, air conditioner and method of operating the air conditioner Download PDF

Info

Publication number
JP2011127807A
JP2011127807A JP2009285101A JP2009285101A JP2011127807A JP 2011127807 A JP2011127807 A JP 2011127807A JP 2009285101 A JP2009285101 A JP 2009285101A JP 2009285101 A JP2009285101 A JP 2009285101A JP 2011127807 A JP2011127807 A JP 2011127807A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
blower
compressor
partial load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009285101A
Other languages
Japanese (ja)
Other versions
JP5493813B2 (en
Inventor
Yutaka Aoyama
豊 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009285101A priority Critical patent/JP5493813B2/en
Publication of JP2011127807A publication Critical patent/JP2011127807A/en
Application granted granted Critical
Publication of JP5493813B2 publication Critical patent/JP5493813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an outdoor unit capable of efficiently suppressing temperature increase of a control substrate even when the outdoor unit includes a fan stopped during partial load operation. <P>SOLUTION: A fan 6a is provided on the upper side of a heat source side heat exchanger 1a in which a refrigerant is made to flow during both the partial load operation and maximum load operation. A heat sink 5 is arranged below an end of a blade of the fan 6a. The fan 6b is provided on the upper side of a heat source side heat exchanger 1b in which a refrigerant is made to flow during the maximum load operation and is not made to flow during the partial load operation, and is stopped or reversely rotated during the partial load operation. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、制御装置を冷却するヒートシンクを有する室外機を備えた空気調和装置及び空気調和装置の運転方法に関する。   The present invention relates to an air conditioner including an outdoor unit having a heat sink for cooling a control device, and a method for operating the air conditioner.

空気調和装置は、圧縮機、熱交換器等を備えた室外機と室内を冷暖房する利用側熱交換器等を備える室内機とを冷媒配管で接続して冷媒回路を構成する。空気調和装置では操作部で設定される室内設定温度や風量設定に対応して、熱交換器にて周囲空気とで熱交換する熱量を調整する必要がある。熱交換する熱量は圧縮機の容量や熱交換器の近傍に設けられた送風機の回転数によって調整され、近年、制御装置に設けられたインバータ回路で圧縮機や送風機を駆動してその容量や回転数を調整することが多い。その場合、制御装置のインバータ回路おいて熱損失が発生して発熱する。そのため、制御装置を冷却するためにヒートシンクを取り付ける。尚、ヒートシンクの放熱は周囲温度とヒートシンクとの温度差と風速により決まる。   The air conditioner configures a refrigerant circuit by connecting an outdoor unit including a compressor, a heat exchanger, and the like and an indoor unit including a use-side heat exchanger that cools and heats the room with a refrigerant pipe. In the air conditioner, it is necessary to adjust the amount of heat exchanged with ambient air in the heat exchanger in accordance with the indoor set temperature and the air volume setting set in the operation unit. The amount of heat exchanged is adjusted by the capacity of the compressor and the rotational speed of the blower provided near the heat exchanger. In recent years, the capacity and rotation of the compressor and blower are driven by an inverter circuit provided in the control device. Often adjust the number. In that case, heat loss occurs in the inverter circuit of the control device and heat is generated. Therefore, a heat sink is attached to cool the control device. The heat dissipation of the heat sink is determined by the temperature difference between the ambient temperature and the heat sink and the wind speed.

従来の室外機として、筐体の上部に送風機が2台並べて設けられ、筐体の内部に側壁から対向する他方の側壁に渡って熱交換器が設けられ、ヒートシンクを備えた制御装置が筐体の内壁の一部に設けられた室外機が記載されている。(特許文献1参照)   As a conventional outdoor unit, two blowers are provided side by side on the top of the housing, a heat exchanger is provided in the housing across the other side wall facing the side wall, and a control device including a heat sink is installed in the housing. The outdoor unit provided in a part of the inner wall of the is described. (See Patent Document 1)

特開2006−138573号公報(0012〜0015欄、図1)JP 2006-138573 A (columns 0012 to 0015, FIG. 1)

従来の室外機では、部分負荷運転時に2台の送風機をそれぞれ独立して駆動すると、ヒートシンクの設置場所によっては送風機の風を有効に利用できずに制御装置の温度が過剰に上がってしまう問題があった。   In the conventional outdoor unit, when the two fans are driven independently during partial load operation, depending on where the heat sink is installed, the wind of the fan cannot be used effectively and the temperature of the control device rises excessively. there were.

本発明は、部分負荷運転時に複数の送風機をそれぞれ独立に駆動しても、送風機の風が常に当たる位置にヒートシンクを配置して制御装置の温度上昇を防止できる室外機、空気調和装置を提供することを目的とする。   The present invention provides an outdoor unit and an air conditioner that can prevent a temperature rise of a control device by disposing a heat sink at a position where the wind of the blower always hits even if a plurality of blowers are independently driven during partial load operation. For the purpose.

また、本発明は部分負荷運転時にヒートシンクに効率よく風を送風して制御装置の温度上昇を防止できる空気調和装置の運転方法を提供することを目的とする。   It is another object of the present invention to provide an operation method of an air conditioner that can efficiently blow air to a heat sink during partial load operation to prevent a temperature rise of a control device.

上記の課題を解決するために、本発明の室外機は側面に開口を有する筐体と、筐体の内部に設置された圧縮機と、インバータ回路を有して圧縮機を制御する制御装置と、圧縮機の運転容量が所定値以下の部分負荷運転時に冷媒が流れる第1の熱交換器と、部分負荷運転時に冷媒が流れない第2の熱交換器と、第1の熱交換器の上方に設けられて部分負荷運転時に第1の熱交換器に送風する第1の送風機と、第2の熱交換器の上方に設けられて部分負荷運転時に停止する第2の送風機と、第1の送風機の翼の端部の下方であって、筐体の上部に設けられた制御装置を冷却するヒートシンクと、を備えたことを特徴とする。   In order to solve the above problems, an outdoor unit of the present invention includes a housing having an opening on a side surface, a compressor installed inside the housing, a control device that has an inverter circuit and controls the compressor. A first heat exchanger through which refrigerant flows during partial load operation with a compressor operating capacity equal to or less than a predetermined value, a second heat exchanger through which refrigerant does not flow during partial load operation, and an upper portion of the first heat exchanger A first blower that blows air to the first heat exchanger during partial load operation, a second blower that is provided above the second heat exchanger and stops during partial load operation, A heat sink that cools the control device provided below the end of the blade of the blower and above the housing is provided.

また、側面に開口を有する筐体と、筐体の内部に設置された圧縮機と、インバータ回路を有して圧縮機を制御する制御装置と、圧縮機の運転容量が所定値以下の部分負荷運転時に冷媒が流れる第1の熱交換器と、部分負荷運転時に冷媒が流れない第2の熱交換器と、第1の熱交換器の上方に設けられて部分負荷運転時に順回転で下から上に送風する第1の送風機と、第2の熱交換器の上方に設けられて部分負荷運転時に逆回転で上から下に送風する第2の送風機と、第1の送風機の翼の端部の下方であって、筐体の上部に設けられた制御装置を冷却するヒートシンクと、を備えたことを特徴とする。   In addition, a housing having an opening on the side surface, a compressor installed inside the housing, a control device that has an inverter circuit to control the compressor, and a partial load in which the operating capacity of the compressor is a predetermined value or less A first heat exchanger through which refrigerant flows during operation, a second heat exchanger in which refrigerant does not flow during partial load operation, and a first heat exchanger provided above the first heat exchanger and rotating forward from below during partial load operation A first blower that blows upward, a second blower that is provided above the second heat exchanger and blows from top to bottom in reverse rotation during partial load operation, and an end of a blade of the first blower And a heat sink for cooling the control device provided at the upper part of the housing.

また、側面に開口を有する筐体と、筐体の内部に設置された圧縮機と、インバータ回路を有して圧縮機を制御する制御装置と、圧縮機の運転容量が所定値以下の部分負荷運転時に圧縮機で圧縮された高温高圧冷媒が流れる第1の熱交換器と、部分負荷運転時に第1の熱交換器で熱交換されて低温高圧となった冷媒を減圧する減圧手段と、部分負荷運転時に減圧手段を通過して低温低圧となった冷媒が流れる第2の熱交換器と、第1の熱交換器の上方に設けられて部分負荷運転時に第1の熱交換器に送風する第1の送風機と、第2の熱交換器の上方に設けられて部分負荷運転時に第2の熱交換器に送風する第2の送風機と、第1の送風機の回転する翼の端部の下方であって、筐体の上部に設けられた制御装置を冷却するヒートシンクと、を備えたことを特徴とする。   In addition, a housing having an opening on the side surface, a compressor installed inside the housing, a control device that has an inverter circuit to control the compressor, and a partial load in which the operating capacity of the compressor is a predetermined value or less A first heat exchanger through which a high-temperature and high-pressure refrigerant compressed by a compressor during operation flows, a decompression means for depressurizing a refrigerant that has been subjected to heat exchange by the first heat exchanger during partial load operation and has become a low-temperature and high-pressure, and a part A second heat exchanger through which the refrigerant that has passed through the decompression means during load operation and has become low-temperature and low-pressure flows, and is provided above the first heat exchanger and blows air to the first heat exchanger during partial load operation. A first blower, a second blower that is provided above the second heat exchanger and blows air to the second heat exchanger during partial load operation, and below the end of the rotating blade of the first blower A heat sink for cooling the control device provided at the top of the housing. It is characterized in.

本発明の空気調和装置の運転方法は、側面に開口を有する筐体と、筐体の内部に設置された圧縮機と、第1の熱交換器の上方に設けられて第1の熱交換器に送風する第1の送風機と、第2の熱交換器の上方に設けられて第2の熱交換器に送風する第2の送風機と、第1の送風機の翼の端部の下方であって、筐体の上部に設けられた制御装置を冷却するヒートシンクと、第2の熱交換器を流れる冷媒の流路を開閉する開閉弁と、冷房運転と暖房運転を切替える四方弁と、圧縮機、第1の送風機、第2の送風機、開閉弁及び四方弁を制御する制御装置と四方弁と接続されて室内を冷暖房する利用側熱交換器と、を備えた空気調和装置の運転方法において、制御装置が開閉弁を開いて第1の熱源側熱交換器と第2の熱源側熱交換器に冷媒を流し、第1の送風機と第2の送風機を駆動する最大負荷運転工程と、制御装置が開閉弁を閉じて第1の熱源側熱交換器に冷媒を流し第2の、第1の送風機を駆動して第2の送風機を停止若しくは逆回転させる部分負荷運転工程と、を備えたことを特徴とする。   The operation method of the air conditioner of the present invention includes a housing having an opening on a side surface, a compressor installed inside the housing, and a first heat exchanger provided above the first heat exchanger. A first blower that blows air, a second blower that is provided above the second heat exchanger and blows air to the second heat exchanger, and below the wing end of the first blower. A heat sink that cools the control device provided in the upper part of the housing, an on-off valve that opens and closes the flow path of the refrigerant flowing through the second heat exchanger, a four-way valve that switches between cooling operation and heating operation, a compressor, In a method for operating an air conditioner, comprising: a control device that controls a first blower, a second blower, an on-off valve, and a four-way valve; The apparatus opens the on-off valve, causes the refrigerant to flow through the first heat source side heat exchanger and the second heat source side heat exchanger, The maximum load operation step of driving the blower and the second blower, and the control device closes the on-off valve to flow the refrigerant through the first heat source side heat exchanger to drive the second and first blowers to And a partial load operation step of stopping or reversely rotating the blower.

また、側面に開口を有する筐体と、筐体の内部に設置されて高温高圧冷媒を吐出する圧縮機と、圧縮機に接続されて冷房運転と暖房運転を切替える四方弁と、インバータ回路を有して圧縮機を制御する制御装置と、第1の熱交換器の上方に設けられて第1の熱交換器に送風する第1の送風機と、第2の熱交換器の上方に設けられて第2の熱交換器に送風する第2の送風機と、第1の送風機の回転する翼の端部の下方であって、筐体の上部に設けられた制御装置を冷却するヒートシンクと、部分負荷運転時に第1の熱交換器で熱交換されて低温高圧冷媒が第2の熱交換器に流れる分岐配管と、分岐配管に設けられて低温高圧冷媒を減圧する減圧手段と、第2の熱交換器を流れる冷媒の流路を開閉する開閉弁と、圧縮機、第1の送風機、第2の送風機、開閉弁及び四方弁を制御する制御装置と、四方弁と接続されて室内を冷暖房する利用側熱交換器と、を備えた空気調和装置の運転方法において、制御装置が開閉弁を開いて第1の熱源側熱交換器と第2の熱源側熱交換器に冷媒を流し、第1の送風機と第2の送風機を駆動する最大負荷運転工程と、制御装置が開閉弁を制御して低温低圧冷媒を第1の熱交換器に流し、第1の送風機と第2の送風機を駆動する部分負荷運転工程と、を備えたことを特徴とする。   It also has a housing having an opening on the side surface, a compressor installed inside the housing and discharging high-temperature and high-pressure refrigerant, a four-way valve connected to the compressor to switch between cooling operation and heating operation, and an inverter circuit. A control device that controls the compressor, a first blower that is provided above the first heat exchanger and blows air to the first heat exchanger, and is provided above the second heat exchanger. A second fan that blows air to the second heat exchanger, a heat sink that cools the control device provided on the upper part of the housing, below the end of the rotating blade of the first fan, and a partial load A branch pipe in which heat is exchanged in the first heat exchanger during operation and the low-temperature high-pressure refrigerant flows to the second heat exchanger, a decompression means provided in the branch pipe for decompressing the low-temperature high-pressure refrigerant, and a second heat exchange An open / close valve that opens and closes the refrigerant flow path, the compressor, the first blower, and the second feed In the operation method of an air conditioner comprising: a control device that controls a machine, an on-off valve, and a four-way valve; and a use side heat exchanger that is connected to the four-way valve to cool and heat the room, the control device opens the on-off valve A maximum load operation process in which the refrigerant flows through the first heat source side heat exchanger and the second heat source side heat exchanger to drive the first blower and the second blower, and the controller controls the on-off valve to control the temperature. A partial load operation step of flowing a low-pressure refrigerant through the first heat exchanger and driving the first blower and the second blower is provided.

本発明の室外機と空気調和装置は、最大負荷運転時と部分負荷運転時のどちらの運転時にも駆動しているファンの下方にヒートシンクを配置しているので制御基板の温度上昇を防止することができる効果を奏する。   In the outdoor unit and the air conditioner of the present invention, since the heat sink is arranged below the fan that is driven during both the maximum load operation and the partial load operation, the temperature rise of the control board is prevented. There is an effect that can.

また、本発明の空気調和装置の運転方法は、最大負荷運転時と部分負荷運転時のどちらの運転時にもヒートシンクの上方に配置された送風機を駆動するので制御基板の温度上昇を防止することができる効果を奏する。   Further, the operation method of the air conditioner according to the present invention drives the blower disposed above the heat sink during both the maximum load operation and the partial load operation, thereby preventing the temperature rise of the control board. There is an effect that can be done.

本発明の実施の形態1の室外機の正面図である。It is a front view of the outdoor unit of Embodiment 1 of the present invention. 本発明の実施の形態1の室外機の上面図である。It is a top view of the outdoor unit according to Embodiment 1 of the present invention. 本発明の実施の形態1の室外機の側面図である。It is a side view of the outdoor unit of Embodiment 1 of the present invention. 本発明の実施の形態1の制御箱及びヒートシンクの断面図である。It is sectional drawing of the control box and heat sink of Embodiment 1 of this invention. 本発明の実施の形態1のファンの位置と風量の関係図である。It is a relationship figure of the position of the fan and air volume of Embodiment 1 of this invention. 本発明の実施の形態1の空気調和装置の冷媒配管図である。It is a refrigerant | coolant piping figure of the air conditioning apparatus of Embodiment 1 of this invention. 本発明の実施の形態2の室外機の正面図である。It is a front view of the outdoor unit of Embodiment 2 of the present invention. 本発明の実施の形態2の室外機の上面図である。It is a top view of the outdoor unit according to Embodiment 2 of the present invention. 本発明の実施の形態1、2の空気調和装置の運転方法のフローチャートである。It is a flowchart of the operating method of the air conditioning apparatus of Embodiment 1, 2 of this invention. 本発明の実施の形態3の空気調和装置の冷暖房運転時の冷媒の流れを示す冷媒配管図である。It is a refrigerant | coolant piping figure which shows the flow of the refrigerant | coolant at the time of the air conditioning operation | movement of the air conditioning apparatus of Embodiment 3 of this invention. 本発明の実施の形態3の空気調和装置の冷房運転時の冷媒配管図である。It is a refrigerant | coolant piping figure at the time of the air_conditionaing | cooling operation of the air conditioning apparatus of Embodiment 3 of this invention. 本発明の実施の形態3の空気調和装置の運転方法のフローチャートである。It is a flowchart of the operating method of the air conditioning apparatus of Embodiment 3 of this invention.

実施の形態1.
図1乃至図3に基づいて本発明にかかる室外機10の構成について説明する。図1は本実施の形態1における室外機10の正面図、図2は室外機の上面図、図3は室外機10の側面図である。尚、図1は前面パネルを取外して室外機10の内部が前方から見える状態の正面図であり、図2は天板を取外して室外機10の内部が上から見える状態の上面図である。図中の矢印は風向きを表している。室外機10は略直方体形状をしており、底部に略長方形の底板12aであって、底板12aの上に熱源側熱交換器1a、1bや圧縮機2等が載っている。底板12aの四隅には4本の柱11aと、室外機10の前面中央部に柱11bが設けられており、4本の柱11aと柱11bの上に設置される天板12bを支持している。天板12bにはファンガード7a、7bが設けられおり、そのファンガード7a、7bの内側にファン6a、6bが配置されている。ファンガード7a、7bは上下に開口を有し通風可能であり、ファン6a、6bは順回転時には下から上に風を送風し、逆回転時には上から下に風を送風する。室外機10の側面は前面、左側面、右側面、背面とから構成されており、前面には前面パネル13が設けられている。左側面14a、右側面14b、背面15にはパネルが設けられておらず通風可能である。ファン6a、6bが順回転すると左側面14a、右側面14b、背面15から風を吸い込む。吸い込まれた風は熱源側熱交換器1a、1bを通過してファン6a、6bの上方へ送風する。尚、本実施の形態1では前面以外の側面にはパネルを設けていないが、フェンスやスリットなどの開口を有して通風可能なパネル等を設けてもよい。
Embodiment 1 FIG.
Based on FIG. 1 thru | or FIG. 3, the structure of the outdoor unit 10 concerning this invention is demonstrated. FIG. 1 is a front view of the outdoor unit 10 according to the first embodiment, FIG. 2 is a top view of the outdoor unit, and FIG. 3 is a side view of the outdoor unit 10. 1 is a front view of a state in which the front panel is removed and the inside of the outdoor unit 10 can be seen from the front, and FIG. 2 is a top view of a state in which the top plate is removed and the inside of the outdoor unit 10 can be seen from above. The arrow in the figure represents the wind direction. The outdoor unit 10 has a substantially rectangular parallelepiped shape, and is a bottom plate 12a having a substantially rectangular shape at the bottom, and the heat source side heat exchangers 1a and 1b, the compressor 2 and the like are placed on the bottom plate 12a. Four pillars 11a are provided at the four corners of the bottom plate 12a, and a pillar 11b is provided at the center of the front surface of the outdoor unit 10, and supports the top board 12b installed on the four pillars 11a and 11b. Yes. Fan guards 7a and 7b are provided on the top plate 12b, and the fans 6a and 6b are arranged inside the fan guards 7a and 7b. The fan guards 7a and 7b have openings at the top and bottom and can be ventilated. The fans 6a and 6b blow wind from the bottom to the top during forward rotation, and blow wind from the top to bottom during reverse rotation. The side surface of the outdoor unit 10 includes a front surface, a left side surface, a right side surface, and a back surface, and a front panel 13 is provided on the front surface. No panels are provided on the left side surface 14a, the right side surface 14b, and the back surface 15 so that ventilation is possible. When the fans 6a and 6b rotate forward, wind is sucked from the left side surface 14a, the right side surface 14b, and the back surface 15. The sucked wind passes through the heat source side heat exchangers 1a and 1b and is blown above the fans 6a and 6b. In the first embodiment, no panel is provided on the side surface other than the front surface, but a panel or the like having an opening such as a fence or a slit may be provided.

ファン6aの下方に熱源側熱交換器1a、ファン6bの下方に熱源側熱交換器1bが設置されている。熱源側熱交換器1a、1bは水平断面略コ字状をしており、開口面が前方を向いて2台並んで配置されている。図1では図中の左側に熱源側熱交換器1aが配置されており、熱源側熱交換器1bが右側に配置されている。室外機10の右側であって熱源側熱交換器1bのコ字状の内側空間には底板12bの上に圧縮機2が配置されており、圧縮機2には四方弁21が接続されている。冷房運転時には圧縮機2から吐出された高温高圧冷媒は四方弁21から熱源側熱交換器1a、1bへ流れ、暖房運転時には冷媒は圧縮機2から四方弁21を介して室内の利用側熱交換器へ流れる。熱源側熱交換器1aと熱源側熱交換器1bの間には四方弁21と接続されたヘッダ3が設けられており、冷媒は熱源側熱交換器1aと熱源側熱交換器1bにヘッダ3で分配され、また熱源側熱交換器1a、1bを流れた冷媒は暖房運転時にはヘッダ3から室内の利用側熱交換器へ流れ、冷房運転時にはヘッダ3から四方弁21を介して圧縮機2へ流れる。   A heat source side heat exchanger 1a is installed below the fan 6a, and a heat source side heat exchanger 1b is installed below the fan 6b. The heat source side heat exchangers 1a and 1b have a substantially U-shaped horizontal cross section, and two of the heat source side heat exchangers 1a and 1b are arranged side by side facing forward. In FIG. 1, the heat source side heat exchanger 1a is arranged on the left side in the drawing, and the heat source side heat exchanger 1b is arranged on the right side. The compressor 2 is disposed on the bottom plate 12b on the right side of the outdoor unit 10 and in the U-shaped inner space of the heat source side heat exchanger 1b, and a four-way valve 21 is connected to the compressor 2. . During the cooling operation, the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows from the four-way valve 21 to the heat source side heat exchangers 1a and 1b, and during the heating operation, the refrigerant exchanges indoor use-side heat via the four-way valve 21. It flows to the vessel. A header 3 connected to the four-way valve 21 is provided between the heat source side heat exchanger 1a and the heat source side heat exchanger 1b, and the refrigerant is transferred to the header 3 of the heat source side heat exchanger 1a and the heat source side heat exchanger 1b. The refrigerant flowing through the heat source side heat exchangers 1a and 1b flows from the header 3 to the indoor use side heat exchanger during the heating operation, and from the header 3 to the compressor 2 via the four-way valve 21 during the cooling operation. Flowing.

略直方体の制御箱4が熱源側熱交換器1aの前方であって前面パネル13の内壁面と近接する位置に前面右側の柱11aと前面中央部の柱11bに挟持または前面右側の柱11aと前面中央部の柱11bで挟持された板の上に設置されている。制御箱4の内部には圧縮機2やファン6a、6bに可変周波数の交流電力を供給して駆動するインバータ回路を含む制御基板が設けられている。制御箱4の熱源側熱交換器1aと対面する面にはインバータ回路で発生する熱を放熱するヒートシンク5が貼り付けて設けられており、ヒートシンク5の上方をファン6aの回転する翼の端部が通過する。ファン6aの翼が最も制御箱4に近接したときにファン6aの翼の端部の下方近傍にヒートシンク5が位置している。   The substantially rectangular parallelepiped control box 4 is sandwiched between the front right column 11a and the front center column 11b at a position in front of the heat source side heat exchanger 1a and close to the inner wall surface of the front panel 13, or the front right column 11a. It is installed on a plate sandwiched between pillars 11b at the front center. Inside the control box 4 is provided a control board including an inverter circuit that is driven by supplying AC power of variable frequency to the compressor 2 and the fans 6a and 6b. A heat sink 5 that dissipates heat generated by the inverter circuit is attached to the surface of the control box 4 that faces the heat source side heat exchanger 1a, and the end of the rotating blade of the fan 6a is disposed above the heat sink 5 Pass through. When the blade of the fan 6a is closest to the control box 4, the heat sink 5 is located near the lower end of the blade 6a.

図4には図3の制御箱4のAA線断面図を図示している。制御箱4は略直方体でヒートシンクの設置穴や配線の取り出し口が開いた筐体4aの内部の空間に制御基板4bとその一部にインバータ回路4cとが設置されている。インバータ回路4cはヒートシンク5のベース5aと接しており、インバータ回路4cの熱がベース5aに伝わる。ベース5aには複数枚の放熱フィン5bが平行に一体に成形されており、ベース5aに伝わった熱が放熱フィン5bで放熱される。尚、筐体4aは前面パネル13と対向する前面4dが開閉可能に構成されており、前面パネル13を取外して前面4dを開くと制御基板4bのメンテナンスを行うことができる。   4 shows a cross-sectional view of the control box 4 of FIG. The control box 4 is a substantially rectangular parallelepiped, and a control board 4b and an inverter circuit 4c are partly installed in a space inside the housing 4a in which a heat sink installation hole and a wiring outlet are opened. The inverter circuit 4c is in contact with the base 5a of the heat sink 5, and the heat of the inverter circuit 4c is transmitted to the base 5a. A plurality of heat radiation fins 5b are integrally formed in parallel with the base 5a, and heat transmitted to the base 5a is radiated by the heat radiation fins 5b. The housing 4a is configured such that the front surface 4d facing the front panel 13 can be opened and closed. When the front panel 13 is removed and the front surface 4d is opened, maintenance of the control board 4b can be performed.

尚、制御基板4bは四方弁21の切り替え、ファン6a、6bの回転数や以下説明する減圧手段の開度や開閉弁の開閉などを制御する。さらに制御基板4bはインバータ回路から圧縮機2へ印加する電圧やその周波数やデューティー比から圧縮機2の回転数を制御して、圧縮機2から吐出される冷媒の流量やその圧力を変更する。   The control board 4b controls the switching of the four-way valve 21, the rotation speed of the fans 6a and 6b, the opening degree of the decompression means described below, and the opening and closing of the on-off valve. Furthermore, the control board 4b controls the rotation speed of the compressor 2 from the voltage applied to the compressor 2 from the inverter circuit, its frequency, and the duty ratio, and changes the flow rate of refrigerant discharged from the compressor 2 and its pressure.

図5にはファンの位置と風速の関係を図示している。図中の矢印の長さが風速を表しており、矢印が長いほど風速が大きい。図に示すとおり、ファンの翼の端ほど風速が大きい。また、ファンに近いほど風速が大きい。つまり、翼端の真下が最も風速が大きいので、ヒートシンク5を配置する位置は図3に図示するように底板12aから天板12bの間であって天板12bから1/2以内の高さであって、またファン6aの回転軸から翼の先端の間で翼の端から1/3以内の範囲であってファン6aの翼の直下にあることが望ましい。以上のような位置にヒートシンク5を配置することによりファン6aから送風される風を有効に利用してヒートシンク5を冷却することができる。   FIG. 5 illustrates the relationship between the fan position and the wind speed. The length of the arrow in the figure represents the wind speed, and the longer the arrow, the greater the wind speed. As shown in the figure, the wind speed increases toward the end of the fan blade. The closer to the fan, the higher the wind speed. That is, since the wind speed is the highest directly below the blade tip, the position where the heat sink 5 is disposed is between the bottom plate 12a and the top plate 12b and within a height within 1/2 of the top plate 12b as shown in FIG. In addition, it is desirable that the distance between the rotation axis of the fan 6a and the tip of the blade is within 1/3 of the end of the blade and directly below the blade of the fan 6a. By disposing the heat sink 5 at the position as described above, the heat sink 5 can be cooled by effectively using the air blown from the fan 6a.

尚、冷媒がハイドロフルオロカーボン(HFC)系の冷媒、例えばR410a冷媒である場合、圧縮機2から吐出される冷媒の温度は最高60.5℃(圧力38kg/cm)となるように予め定めている。制御基板4bの耐熱温度は75℃以上であり、冷媒の最高温度を制御基板4bの耐熱温度よりも低く設定しているので、冷房運転時に圧縮機2からの吐出される高温冷媒を熱源側熱交換器1a、1bに流しても、外部から熱源側熱交換器1aを通ってきた風でも耐熱温度以下に制御基板4bを冷却することができる。また、圧縮機2の吐出する冷媒の温度、圧力を検出するための温度、圧力検出センサが圧縮機2の冷媒の吐出口近傍の設置されており、その検出値を制御基板4bに出力する。制御基板4bは冷媒の温度、圧力が予め定めた最高値以上である場合は、異常であると判断して圧縮機2を停止させる。尚、使用する冷媒の種類に応じて設定する冷媒の温度、圧力の最高値は変更するものとする。 When the refrigerant is a hydrofluorocarbon (HFC) type refrigerant, for example, R410a refrigerant, the temperature of the refrigerant discharged from the compressor 2 is determined in advance so as to be 60.5 ° C. (pressure 38 kg / cm 2 ). Yes. Since the heat resistance temperature of the control board 4b is 75 ° C. or higher and the maximum temperature of the refrigerant is set lower than the heat resistance temperature of the control board 4b, the high temperature refrigerant discharged from the compressor 2 during the cooling operation is used as heat source side heat. Even if it flows through the exchangers 1a and 1b or the wind that has passed through the heat source side heat exchanger 1a from the outside, the control board 4b can be cooled to a heat resistant temperature or lower. Further, a temperature and pressure detection sensor for detecting the temperature and pressure of the refrigerant discharged from the compressor 2 are installed in the vicinity of the refrigerant discharge port of the compressor 2, and the detected value is output to the control board 4b. If the temperature and pressure of the refrigerant are equal to or higher than a predetermined maximum value, the control board 4b determines that the control board 4b is abnormal and stops the compressor 2. Note that the maximum temperature and pressure of the refrigerant set according to the type of refrigerant to be used are changed.

図6には本実施の形態1における空気調和装置の冷媒回路図を図示している。図中の実線矢印は暖房運転時の冷媒の流れを示しており、図中の破線矢印は冷房運転時の冷媒の流れを示している。図6には熱源側熱交換器1a、1bの両方に冷媒を流す最大負荷運転時の冷媒の流れを示している。尚、圧縮機2の運転容量が所定値以上になる場合を最大負荷運転とし、所定値以下になる場合を部分負荷運転とする。   FIG. 6 shows a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 1. The solid line arrows in the figure indicate the flow of the refrigerant during the heating operation, and the broken line arrows in the figure indicate the flow of the refrigerant during the cooling operation. FIG. 6 shows the flow of the refrigerant during the maximum load operation in which the refrigerant flows through both the heat source side heat exchangers 1a and 1b. The case where the operating capacity of the compressor 2 is equal to or greater than a predetermined value is referred to as maximum load operation, and the case where the operating capacity is equal to or less than the predetermined value is referred to as partial load operation.

圧縮機2の運転容量は以下の「数1」に基づいて制御装置10に組み込まれたインバータ回路4cが圧縮機2に印加する電圧の周波数から判断することができる。圧縮機2の予め定められた最大の仕事量を発揮する定格能力運転時に圧縮機2に印加する電圧の周波数を分母とし、運転時に圧縮機2に印加する電圧の周波数を分子として運転容量を求め、運転容量が所定値以下である場合に部分負荷運転とする。尚、周波数以外にインバータ回路のデューティー比からも最大負荷運転時を分母として同様に求めることができる。尚、圧縮機2に印加する印加電圧の周波数に運転容量が比例しない場合は「数1」の右辺に予め求めた周波数と運転容量のずれを補正する関数を掛けて判断してもよい。   The operating capacity of the compressor 2 can be determined from the frequency of the voltage applied to the compressor 2 by the inverter circuit 4 c incorporated in the control device 10 based on the following “Equation 1”. The operating capacity is obtained using the frequency of the voltage applied to the compressor 2 during the rated capacity operation at which the predetermined maximum work of the compressor 2 is operated as the denominator and the frequency of the voltage applied to the compressor 2 during the operation as the numerator. When the operating capacity is equal to or less than a predetermined value, the partial load operation is set. In addition to the frequency, the maximum load operation time can be similarly obtained from the duty ratio of the inverter circuit as a denominator. If the operating capacity is not proportional to the frequency of the applied voltage applied to the compressor 2, the right side of “Equation 1” may be determined by multiplying the frequency obtained in advance and a function for correcting the operating capacity deviation.

Figure 2011127807
Figure 2011127807

また、部分負荷運転の判断は圧縮機2が吐出する冷媒量からも判断することができ、圧縮機2の吐出口に流量センサを設けて「数1」と同様に運転中の圧縮機2が吐出する冷媒量を最大負荷運転時に圧縮機2が吐出する冷媒量で割った値から判断しても良い。また、圧縮機2が吐出する冷媒圧力の圧力値から判断することもできる。尚、圧縮機2に印加する印加電圧の周波数に運転容量が比例しない場合は「数1」の右辺に予め求めた周波数と運転容量のずれを補正する関数を掛けて判断してもよい。   The partial load operation can also be determined from the amount of refrigerant discharged from the compressor 2, and a flow rate sensor is provided at the discharge port of the compressor 2 so that the compressor 2 in operation can be You may judge from the value which divided the refrigerant | coolant amount discharged by the refrigerant | coolant amount which the compressor 2 discharges at the time of a maximum load driving | operation. It can also be determined from the pressure value of the refrigerant pressure discharged from the compressor 2. If the operating capacity is not proportional to the frequency of the applied voltage applied to the compressor 2, the right side of “Equation 1” may be determined by multiplying the frequency obtained in advance with a function for correcting the deviation of the operating capacity.

また、部分負荷運転の判断は、圧縮機2に流入前の低圧冷媒と吐出後の高圧冷媒の圧力値又はファン6a、6bの回転数から判断してもよい。冷房運転時に、例えば室外温度が低かった場合や使用者が室内の設定温度を高くした場合、高圧冷媒の圧力が低下してくるので、制御基板4bは高圧冷媒の圧力値を一定に維持するため、熱源側熱交換器1a、1bの熱交換量を下げるためにファン6a、6bの回転数を下げる制御を行う。制御基板4bは高圧冷媒の圧力値が所定値以下又はファン6a、6bの回転数が予め定めた最小回転数以下になると、部分負荷運転であると判断する。暖房運転時は室外温度が高い場合や使用者が室内の設定温度を低くした場合、低圧冷媒の圧力値が上昇してくるので、熱源側熱交換器1a、1bの熱交換量を下げるためにファン6a、6bの回転数を下げる制御を行う。制御基板4bは低圧冷媒の圧力値が所定値以上又はファン6a、6bの回転数が予め定めた最小回転数以下になると、部分負荷運転であると判断する。尚、圧縮機2の冷媒流入口と冷媒吐出口に圧力検出センサを設置して冷媒圧力を検出し、ファン6a、6bの回転数はインバータ回路4cが供給する交流電流の周波数やその電力値から制御基板4bが算出する。   The partial load operation may be determined from the pressure values of the low-pressure refrigerant before flowing into the compressor 2 and the high-pressure refrigerant after discharge, or the rotational speeds of the fans 6a and 6b. During the cooling operation, for example, when the outdoor temperature is low or when the user increases the indoor set temperature, the pressure of the high-pressure refrigerant decreases, so that the control board 4b maintains the pressure value of the high-pressure refrigerant constant. In order to reduce the heat exchange amount of the heat source side heat exchangers 1a and 1b, control is performed to reduce the rotational speed of the fans 6a and 6b. The control board 4b determines that the partial load operation is performed when the pressure value of the high-pressure refrigerant is equal to or lower than a predetermined value or the rotational speed of the fans 6a and 6b is equal to or lower than a predetermined minimum rotational speed. During the heating operation, if the outdoor temperature is high or the user lowers the indoor set temperature, the pressure value of the low-pressure refrigerant increases, so that the heat exchange amount of the heat source side heat exchangers 1a and 1b is decreased. Control is performed to reduce the rotational speed of the fans 6a, 6b. When the pressure value of the low-pressure refrigerant is equal to or higher than the predetermined value or the rotation speed of the fans 6a and 6b is equal to or lower than the predetermined minimum rotation speed, the control board 4b determines that the partial load operation is being performed. In addition, pressure detection sensors are installed at the refrigerant inlet and the refrigerant outlet of the compressor 2 to detect the refrigerant pressure, and the rotational speeds of the fans 6a and 6b are determined from the frequency of the alternating current supplied by the inverter circuit 4c and the power value thereof. The control board 4b calculates.

まず、冷房運転時に熱源側熱交換器1a、1bの両方に冷媒を流す最大負荷運転について説明する。圧縮機2で圧縮された高温高圧冷媒は四方弁21を介してヘッダ3aに流れる。ヘッダ3aで2本に分かれた冷媒配管を通じて冷媒が熱源側熱交換器1a、1bにそれぞれ流れて、ファン6a、6bがそれぞれ順回転で送風する空気と熱交換した低温高圧の冷媒がヘッダ3bで合流した後、室内機へ流れて行く。冷媒は減圧手段22aで減圧されて低温低圧となって利用側熱交換器22に流入する。一台の室外機に複数台の室内機が接続されているマルチユニット型の空気調和装置では冷媒がそれぞれの室内機に流れるように利用側熱交換器22と減圧手段22aの前後で冷媒配管が分岐している。利用側熱交換器22で熱交換して高温低圧となった冷媒は四方弁21を介して圧縮機2に流入する。尚、図1に図示するヘッダ3はヘッダ3aとヘッダ3bとから構成されている。減圧手段22aは毛細管や開度が調整可能な電磁弁である。   First, a description will be given of the maximum load operation in which the refrigerant flows through both the heat source side heat exchangers 1a and 1b during the cooling operation. The high-temperature and high-pressure refrigerant compressed by the compressor 2 flows to the header 3a via the four-way valve 21. The refrigerant flows into the heat source side heat exchangers 1a and 1b through the refrigerant pipe divided into two by the header 3a, and the low-temperature and high-pressure refrigerant that exchanges heat with the air that the fans 6a and 6b blow in forward rotation respectively is the header 3b. After joining, it flows to the indoor unit. The refrigerant is depressurized by the depressurization means 22a, becomes low temperature and low pressure, and flows into the use side heat exchanger 22. In a multi-unit type air conditioner in which a plurality of indoor units are connected to a single outdoor unit, refrigerant piping is provided before and after the use side heat exchanger 22 and the decompression means 22a so that the refrigerant flows to each indoor unit. Branched. The refrigerant that has been subjected to heat exchange in the use-side heat exchanger 22 and has become high temperature and low pressure flows into the compressor 2 through the four-way valve 21. The header 3 shown in FIG. 1 includes a header 3a and a header 3b. The decompression means 22a is an electromagnetic valve whose capillary tube and opening degree can be adjusted.

次に暖房運転時熱源側熱交換器1a、1bの両方に冷媒を流す最大負荷運転について説明する。圧縮機2で圧縮された高温高圧冷媒は四方弁21を介して室内機の利用側熱交換器22に流入し、室内空気と熱交換して低温高圧冷媒となる。その後冷媒は減圧手段22aにて低温低圧となり、ヘッダ3bで2本に分かれた冷媒配管を通じて熱源側熱交換器1a、1bにそれぞれ流入する。熱源側熱交換器1a、1bでファン6a、6bがそれぞれ順回転で送風する空気と熱交換した冷媒は高温低圧となり、ヘッダ3aで合流した後、四方弁21を介して圧縮機2に流入する。   Next, the maximum load operation in which the refrigerant flows through both the heat source side heat exchangers 1a and 1b during the heating operation will be described. The high-temperature and high-pressure refrigerant compressed by the compressor 2 flows into the use side heat exchanger 22 of the indoor unit via the four-way valve 21 and exchanges heat with the indoor air to become a low-temperature and high-pressure refrigerant. Thereafter, the refrigerant becomes low temperature and low pressure by the decompression means 22a, and flows into the heat source side heat exchangers 1a and 1b through the refrigerant pipe divided into two by the header 3b. The refrigerant that exchanges heat with the air blown by the fans 6a and 6b in the forward rotation in the heat source side heat exchangers 1a and 1b becomes high temperature and low pressure, merges in the header 3a, and then flows into the compressor 2 via the four-way valve 21. .

ここで、部分負荷運転時の冷房運転時と暖房運転時の冷媒の流れについて説明する。熱源側熱交換器1bとヘッダ3bの間の冷媒配管には開閉弁23が設けられている。開閉弁23が開くと冷媒は流れ、閉じると冷媒は流れない。部分負荷運転時には冷房運転時と暖房運転時ともに開閉弁23を閉じることにより熱源側熱交換器1bに流れる冷媒を止める。その場合ファン6bは停止しており、ファン6aは順回転で駆動している。尚、ヘッダ3aと熱源側熱交換器1bの間にさらに開閉弁を設けると部分負荷運転時に熱源側熱交換器1bでの冷媒のたまりこみを防ぐことができる。冷房運転時において部分負荷運転に切換えるときにヘッダ3aと熱源側熱交換器1bの間に設けた開閉弁を閉じた後に開閉弁23を閉じるとよく、暖房運転時では開閉弁23を先に閉じるとよい。   Here, the refrigerant flow during the cooling operation during the partial load operation and during the heating operation will be described. An opening / closing valve 23 is provided in the refrigerant pipe between the heat source side heat exchanger 1b and the header 3b. When the on-off valve 23 is opened, the refrigerant flows, and when it is closed, the refrigerant does not flow. During the partial load operation, the refrigerant flowing to the heat source side heat exchanger 1b is stopped by closing the on-off valve 23 during both the cooling operation and the heating operation. In this case, the fan 6b is stopped and the fan 6a is driven in forward rotation. In addition, if an on-off valve is further provided between the header 3a and the heat source side heat exchanger 1b, accumulation of refrigerant in the heat source side heat exchanger 1b can be prevented during partial load operation. When switching to partial load operation during cooling operation, it is preferable to close the on-off valve 23 after closing the on-off valve provided between the header 3a and the heat source side heat exchanger 1b, and close the on-off valve 23 first during heating operation. Good.

以上のように、本実施の形態1にかかる空気調和装置は最大負荷運転時と部分負荷運転時のどちらの運転時にも駆動しているファン6aの下方にヒートシンク5を配置しているので、制御基板4bの温度上昇を防止することができる。また、ファン6bを停止しているので、部分負荷運転時の空気調和装置の運転効率を上げることができる。   As described above, the air conditioner according to the first embodiment has the heat sink 5 disposed below the fan 6a that is driven during both the maximum load operation and the partial load operation. The temperature rise of the substrate 4b can be prevented. Moreover, since the fan 6b is stopped, the operating efficiency of the air conditioner during partial load operation can be increased.

また、部分負荷運転時は熱源側熱交換器1aにのみ冷媒を流して熱源側熱交換器1bに流れる冷媒を止めるので、熱源側熱交換器の熱交換量が大きすぎて、冷房運転では利用側熱交換器の入口で冷媒温度が極端に低下することで凍結したり、減圧手段22a周辺配管から冷媒流動音が発生したりすることを防止できる。また、暖房運転の場合には、圧縮機2が吐出する冷媒の圧力が過剰に上昇することを防止することができる。また、部分負荷運転時にはファン6bを停止させるので運転効率を上げることができる。   Further, during partial load operation, the refrigerant flows only to the heat source side heat exchanger 1a and stops the refrigerant flowing to the heat source side heat exchanger 1b, so that the heat exchange amount of the heat source side heat exchanger is too large and is used in the cooling operation. It is possible to prevent the refrigerant temperature from being extremely lowered at the inlet of the side heat exchanger and the refrigerant flow noise from being generated from the piping around the decompression means 22a. Further, in the case of heating operation, it is possible to prevent the refrigerant pressure discharged from the compressor 2 from rising excessively. Further, since the fan 6b is stopped during the partial load operation, the operation efficiency can be increased.

実施の形態2.
本実施の形態2では部分負荷運転時にファン6bを逆回転で駆動する場合の室外機10について図7と図8を用いて説明する。図7は本実施の形態2のファン6bを逆回転させた場合の空気調和装置の室外機10の正面図であり、図8は上面図である。尚、本実施の形態2における空気調和装置の構成は実施の形態1と同様であり、同一部分には同一符号を付している。
Embodiment 2. FIG.
In the second embodiment, the outdoor unit 10 when the fan 6b is driven in the reverse rotation during the partial load operation will be described with reference to FIGS. FIG. 7 is a front view of the outdoor unit 10 of the air conditioner when the fan 6b of the second embodiment is reversely rotated, and FIG. 8 is a top view. In addition, the structure of the air conditioning apparatus in this Embodiment 2 is the same as that of Embodiment 1, and attaches | subjects the same code | symbol to the same part.

部分負荷運転時には冷媒は熱源側熱交換器1aには流れているが熱源側熱交換器1bには流れていない。また、ファン6aは順回転で駆動され、本実施の形態2ではファン6bは逆回転で駆動されている。図7に示すようにファン6bを逆回転させるとファン6bによって送風される風が順回転の時は反対になり、ファン6bの上から吸気して下へ送風する。図8に示すようにファン6bの上から吸気された空気は熱源側熱交換器1bの内側から外側へ排気される。排気される空気の一部は室外機10の中央部を通過して熱源側熱交換器1aへ流れてからファン6aに送風されるので、熱源側熱交換器1aの内側を流れる空気の流量が増加する。   During the partial load operation, the refrigerant flows through the heat source side heat exchanger 1a but does not flow through the heat source side heat exchanger 1b. The fan 6a is driven by forward rotation, and in the second embodiment, the fan 6b is driven by reverse rotation. As shown in FIG. 7, when the fan 6b is rotated in the reverse direction, the wind blown by the fan 6b is reversed during forward rotation, and the air is sucked from above the fan 6b and blown downward. As shown in FIG. 8, the air sucked from above the fan 6b is exhausted from the inside to the outside of the heat source side heat exchanger 1b. Since a part of the exhausted air passes through the central portion of the outdoor unit 10 and flows to the heat source side heat exchanger 1a and then blown to the fan 6a, the flow rate of the air flowing inside the heat source side heat exchanger 1a is To increase.

熱源側熱交換器1bから熱源側熱交換器1aに風が流れるので、ヒートシンク5は制御箱4の中央より右側に配置すると熱源側熱交換器1bから流れてくる風が効率良くヒートシンク5に当て、ヒートシンク5の放熱量を増やすことができる。   Since wind flows from the heat source side heat exchanger 1b to the heat source side heat exchanger 1a, if the heat sink 5 is arranged on the right side of the center of the control box 4, the wind flowing from the heat source side heat exchanger 1b is efficiently applied to the heat sink 5. The heat radiation amount of the heat sink 5 can be increased.

尚、本実施の形態2では制御基板4bの温度を検出する温度検出回路を制御基板4bに内蔵したり、温度温度検出回路に代えてヒートシンク5にサーミスタ、熱電対等の温度検出手段を取り付け、部分負荷運転時に温度検出手段が検出する温度が所定値以下の場合はファン6bは停止しているが、所定値以上になると制御基板4bがファン6bを逆回転で駆動する構成としてもよい。   In the second embodiment, a temperature detection circuit for detecting the temperature of the control board 4b is built in the control board 4b, or a temperature detection means such as a thermistor or a thermocouple is attached to the heat sink 5 instead of the temperature / temperature detection circuit. The fan 6b is stopped when the temperature detected by the temperature detecting means during the load operation is equal to or lower than a predetermined value. However, the control board 4b may drive the fan 6b in the reverse rotation when the temperature is higher than the predetermined value.

また、ファン6bはインバータ回路が出力する交流電力ではなく制御基板4aの内蔵されたコンバータ回路が出力する直流電力によって駆動される構成とすると、ファン6bを駆動することによる制御基板4bの発熱量を下げることができる。   Further, if the fan 6b is driven by the DC power output from the converter circuit built in the control board 4a instead of the AC power output from the inverter circuit, the amount of heat generated by the control board 4b by driving the fan 6b is reduced. Can be lowered.

以上のように、本実施の形態2の空気調和装置は部分負荷運転時にファン6bを逆回転して熱源側熱交換器1b側から熱源側熱交換器1a側へ流れる気流を作るので、ヒートシンク5に当たる風量が増え、ヒートシンク5の放熱量を増やすことができる。   As described above, the air conditioner of the second embodiment creates the airflow that reversely rotates the fan 6b during the partial load operation and flows from the heat source side heat exchanger 1b side to the heat source side heat exchanger 1a side. The amount of air hitting the heat increases, and the heat dissipation amount of the heat sink 5 can be increased.

ここで、図9のフローチャートを用いて実施の形態1と実施の形態2の空気調和装置の運転方法について説明する。まず空気調和装置の運転が開始されると制御基板4bが圧縮機2の運転容量を算出して部分負荷運転か最大負荷運転かを判断する(S10)。S10で最大負荷運転であると判断されると、S11に移行する。S11では制御基板4bが制御してファン6aとファン6bを順回転で駆動し、開閉弁23を制御して開き熱源側熱交換器6aと熱源側熱交換器6bの両方に冷媒を流す。S10で部分負荷運転であると判断されると、S12に移行する。S12では制御基板4bが制御してファン6bを停止、ファン6aを順回転で駆動し、開閉弁23を制御して閉じて熱源側熱交換器6bに流れる冷媒を止める。S12の後、S13に移行する。S13では制御基板4b若しくはヒートシンク5の温度を検出する温度検出手段の検出値が所定値以上か所定値以下かを制御基板4bが判断する。S13で検出値が所定値以下であるとS10に戻り、所定値以上であると判断されるとS14に移行する。S14では制御基板4bが制御してファン6bを逆回転で駆動する。   Here, the operation method of the air conditioning apparatus of Embodiment 1 and Embodiment 2 is demonstrated using the flowchart of FIG. First, when the operation of the air conditioner is started, the control board 4b calculates the operation capacity of the compressor 2 to determine whether it is a partial load operation or a maximum load operation (S10). If it is determined that the maximum load operation is performed in S10, the process proceeds to S11. In S11, the control board 4b controls to drive the fan 6a and the fan 6b in forward rotation, and controls the on-off valve 23 to open and flow the refrigerant through both the heat source side heat exchanger 6a and the heat source side heat exchanger 6b. If it is determined that the partial load operation is performed in S10, the process proceeds to S12. In S12, the control board 4b controls to stop the fan 6b, drives the fan 6a by forward rotation, controls the on-off valve 23 to close, and stops the refrigerant flowing to the heat source side heat exchanger 6b. After S12, the process proceeds to S13. In S13, the control board 4b determines whether the detected value of the temperature detecting means for detecting the temperature of the control board 4b or the heat sink 5 is greater than or equal to a predetermined value. If the detected value is equal to or smaller than the predetermined value in S13, the process returns to S10. If it is determined that the detected value is equal to or larger than the predetermined value, the process proceeds to S14. In S14, the control board 4b controls to drive the fan 6b in the reverse rotation.

尚、S12では制御基板4bがファン6bを停止させずに逆回転させてS13に移行せずにS10に戻る運転方法でもよい。
尚、S14で制御基板4bが行う制御をS12で行い、S12の後S13を省略してS10に戻ってもよい。また、ファン6bはインバータ回路4cが出力する交流電力ではなく制御基板4aの内蔵されたコンバータ回路が出力する直流電力や商用交流電力によって駆動される構成とすると、ファン6bを駆動することによる制御基板4bの発熱量を下げることができる。
In S12, an operation method may be used in which the control board 4b rotates in the reverse direction without stopping the fan 6b and returns to S10 without shifting to S13.
Note that the control performed by the control board 4b in S14 may be performed in S12, and after S12, S13 may be omitted and the process may return to S10. Further, when the fan 6b is configured to be driven not by the AC power output from the inverter circuit 4c but by the DC power or commercial AC power output by the converter circuit built in the control board 4a, the control board by driving the fan 6b. The calorific value of 4b can be reduced.

以上のように、本実施の形態1と本実施の形態2の空気調和装置の運転方法は、最大負荷運転時と部分負荷運転時の両方の運転時にファン6aを駆動しているので、ファン6aの下に配置されたヒートシンク5の放熱を効率よく行うことができる。また、ファン6bを逆回転させてファン6aの送風量を増加させるので、ヒートシンク5の放熱量を増やすことができる。   As described above, since the operation method of the air conditioning apparatus according to the first and second embodiments drives the fan 6a during both the maximum load operation and the partial load operation, the fan 6a is driven. The heat sink 5 disposed below can be efficiently radiated. Moreover, since the fan 6b is reversely rotated to increase the amount of air blown by the fan 6a, the heat dissipation amount of the heat sink 5 can be increased.

実施の形態3.
本実施の形態3では冷房運転中の部分負荷運転時に熱源側熱交換器1bに低温の冷媒を流してファン6bを順回転で駆動する場合について図10と図11を用いて説明する。図10は本実施の形態3における冷暖房運転時の冷媒の流れを示す冷媒回路図である。図11は冷房運転の部分負荷運転時に熱源側熱交換器1bに冷媒を流す場合の冷媒の流れを示す冷媒回路図である。図中の実線矢印は冷房運転時の冷媒の流れを示しており、図中の破線矢印は暖房運転時の冷媒の流れを示している。尚、本実施の形態3における空気調和装置の構成と実施の形態1の同一部分には同一符号を付している。
Embodiment 3 FIG.
In the third embodiment, a case in which a low-temperature refrigerant is supplied to the heat source side heat exchanger 1b during partial load operation during cooling operation to drive the fan 6b in forward rotation will be described with reference to FIGS. FIG. 10 is a refrigerant circuit diagram showing a refrigerant flow during the cooling / heating operation in the third embodiment. FIG. 11 is a refrigerant circuit diagram illustrating the flow of the refrigerant when the refrigerant flows through the heat source side heat exchanger 1b during the partial load operation of the cooling operation. The solid line arrows in the figure indicate the refrigerant flow during the cooling operation, and the broken line arrows in the figure indicate the refrigerant flow during the heating operation. In addition, the same code | symbol is attached | subjected to the structure of the air conditioning apparatus in this Embodiment 3, and the same part of Embodiment 1. FIG.

本実施の形態3の空気調和装置は実施の形態1の構成に加えて、第2の四方弁24、第1の四方弁21から圧縮機2に冷媒が流れる配管と第2の四方弁24を接続した接続配管25、ヘッダ3bと減圧手段22aの配管と開閉弁23を繋ぐ分岐配管26、分岐配管26に設けられた減圧手段27が設けられている。尚、本実施の形態3の開閉弁23は熱源側熱交換器1bとヘッダ3bを繋ぐ配管と分岐配管26の接続箇所に設けられた三方弁とする。   In addition to the configuration of the first embodiment, the air conditioner of the third embodiment includes a second four-way valve 24, a pipe through which refrigerant flows from the first four-way valve 21 to the compressor 2, and a second four-way valve 24. A connecting pipe 25, a header 3b, a pipe of the pressure reducing means 22a, a branch pipe 26 connecting the on-off valve 23, and a pressure reducing means 27 provided in the branch pipe 26 are provided. The on-off valve 23 according to the third embodiment is a three-way valve provided at a connection point between a pipe connecting the heat source side heat exchanger 1b and the header 3b and the branch pipe 26.

まず、図10に基づいて本実施の形態3における冷房運転時と暖房運転時に熱源側熱交換器1a、1bの両方に冷媒を流す最大負荷運転の冷媒の流れについて説明する。
冷房運転時は、圧縮機2で圧縮された高温高圧冷媒は四方弁21を介してヘッダ3aへ流れる。ヘッダ3aで2本に分かれた冷媒配管のうち1本は熱源側熱交換器1aに繋がり、他方の1本は第2の四方弁24を介して熱源側熱交換器1bに繋がっている。熱源側熱交換器1a、1bに流入した冷媒がファン6a、6bがそれぞれ順回転で送風する空気と熱交換して低温高圧の冷媒となる。熱源側熱交換器1a、1bそれぞれから流出した冷媒がヘッダ3bで合流した後、室内機へ流れていく。この際、分岐配管26に冷媒が流れないように開閉弁23の分岐配管26側の弁と減圧手段27は閉じられている。冷媒は減圧手段22aで減圧されて低温低圧となって利用側熱交換器22に流入する。利用側熱交換器22で熱交換して高温低圧となった冷媒は四方弁21を介して圧縮機2に流入する。
First, the flow of the refrigerant in the maximum load operation in which the refrigerant is supplied to both the heat source side heat exchangers 1a and 1b during the cooling operation and the heating operation in the third embodiment will be described based on FIG.
During the cooling operation, the high-temperature and high-pressure refrigerant compressed by the compressor 2 flows to the header 3a via the four-way valve 21. One of the refrigerant pipes divided into two by the header 3 a is connected to the heat source side heat exchanger 1 a, and the other one is connected to the heat source side heat exchanger 1 b via the second four-way valve 24. The refrigerant that has flowed into the heat source side heat exchangers 1a and 1b exchanges heat with the air blown by the fans 6a and 6b in forward rotation, respectively, and becomes low-temperature and high-pressure refrigerant. The refrigerant flowing out from the heat source side heat exchangers 1a and 1b joins in the header 3b and then flows to the indoor unit. At this time, the valve on the branch pipe 26 side of the on-off valve 23 and the pressure reducing means 27 are closed so that the refrigerant does not flow into the branch pipe 26. The refrigerant is depressurized by the depressurization means 22a, becomes low temperature and low pressure, and flows into the use side heat exchanger 22. The refrigerant that has been subjected to heat exchange in the use-side heat exchanger 22 and has become high temperature and low pressure flows into the compressor 2 through the four-way valve 21.

暖房運転時は、圧縮機2で圧縮された高温高圧冷媒は四方弁21を介して室内機の利用側熱交換器22に流入し、室内空気と熱交換して低温高圧冷媒となる。その後冷媒は減圧手段22aにて低温低圧となり、ヘッダ3bで2本に分かれた冷媒配管を通じて熱源側熱交換器1a、1bにそれぞれ流入する。この際、分岐配管26に冷媒が流れないように開閉弁23の分岐配管26側の弁と減圧手段27は閉じられている。熱源側熱交換器1a、1bでファン6a、6bがそれぞれ順回転で送風する空気と熱交換した冷媒は高温低圧となる。熱源側熱交換器1aから流出する冷媒はヘッダ3aと四方弁21を介して圧縮機2に戻り、熱源側熱交換器1bから流出する冷媒は第2の四方弁24を介して接続配管25を通って圧縮機2に戻る。   At the time of heating operation, the high-temperature and high-pressure refrigerant compressed by the compressor 2 flows into the use side heat exchanger 22 of the indoor unit via the four-way valve 21 and exchanges heat with room air to become a low-temperature and high-pressure refrigerant. Thereafter, the refrigerant becomes low temperature and low pressure by the decompression means 22a, and flows into the heat source side heat exchangers 1a and 1b through the refrigerant pipe divided into two by the header 3b. At this time, the valve on the branch pipe 26 side of the on-off valve 23 and the pressure reducing means 27 are closed so that the refrigerant does not flow into the branch pipe 26. In the heat source side heat exchangers 1a and 1b, the refrigerants that exchange heat with the air that the fans 6a and 6b blow in forward rotation respectively have high temperature and low pressure. The refrigerant flowing out from the heat source side heat exchanger 1a returns to the compressor 2 via the header 3a and the four-way valve 21, and the refrigerant flowing out from the heat source side heat exchanger 1b passes through the connection pipe 25 via the second four-way valve 24. Return to the compressor 2 through.

本実施の形態3では実施の形態2と同様に制御基板4bの温度を検出する温度検出回路を制御基板4bに内蔵している。部分負荷運転時において温度検出回路が検出する温度が所定値以下の場合は冷房運転時と暖房運転時ともに開閉弁23のすべての弁が閉じることにより熱源側熱交換器1bに流れる冷媒を止めている。その場合ファン6bは停止または逆回転しており、ファン6aは順回転で駆動している。冷房運転時に部分負荷運転時に温度検出回路が検出する温度が所定値以上になると熱源側熱交換器1bに低温の冷媒を流して、ファン6bは順回転する。以下その動作について図11を用いて説明する。   In the third embodiment, as in the second embodiment, a temperature detection circuit for detecting the temperature of the control board 4b is built in the control board 4b. When the temperature detected by the temperature detection circuit during the partial load operation is below a predetermined value, the refrigerant flowing to the heat source side heat exchanger 1b is stopped by closing all the valves of the on-off valve 23 during both the cooling operation and the heating operation. Yes. In that case, the fan 6b is stopped or rotating in reverse, and the fan 6a is driven in forward rotation. When the temperature detected by the temperature detection circuit during the partial load operation during the cooling operation becomes equal to or higher than a predetermined value, a low-temperature refrigerant flows through the heat source side heat exchanger 1b, and the fan 6b rotates forward. The operation will be described below with reference to FIG.

温度検出回路が検出する温度が所定値以上なると開閉弁23の分岐配管26側の弁と熱源側熱交換器1b側の弁が開き冷媒が分岐配管26から熱源側熱交換器1bに冷媒が流れる。圧縮機2で圧縮された高温高圧の冷媒は四方弁21を介してヘッダ3aに流入する。ヘッダ3aで2本に分かれた冷媒配管のうち1本は熱源側熱交換器1aに繋がっている。他方の1本は四方弁24に繋がっているが四方弁24の先で冷媒配管が閉じているので熱源側熱交換器1aにしか冷媒が流れない。熱源側熱交換器1aを流れた冷媒はファン6aが順回転で送風する空気と熱交換して低温高圧の冷媒となる。その後冷媒はヘッダ3bを介して減圧手段22a、利用側熱交換器22へと流れていくが、ヘッダ3bと減圧手段22aの間で接続された分岐配管26へ冷媒の一部が流れる。分岐配管26を流れる冷媒は分岐配管26に設けられた減圧手段27で減圧されて低温低圧の冷媒となる。低温低圧の冷媒は熱源側熱交換器1bとヘッダ3bの間に設けられた開閉弁23を介して熱源側熱交換器1bへと流れる。熱源側熱交換器1bを流れた冷媒はファン6bが順回転で送風する空気と熱交換して高温低圧の冷媒となる。熱源側熱交換器1bから流出する冷媒は第2の四方弁24を介して接続配管25を流れて圧縮機2に戻る。また、ヘッダ3bから減圧手段22a、利用側熱交換器22を通過した冷媒は四方弁21を介して接続配管25から流れてくる冷媒と合流して圧縮機2に戻る。   When the temperature detected by the temperature detection circuit exceeds a predetermined value, the valve on the branch pipe 26 side of the on-off valve 23 and the valve on the heat source side heat exchanger 1b open, and the refrigerant flows from the branch pipe 26 to the heat source side heat exchanger 1b. . The high-temperature and high-pressure refrigerant compressed by the compressor 2 flows into the header 3a via the four-way valve 21. One of the refrigerant pipes divided into two by the header 3a is connected to the heat source side heat exchanger 1a. The other one is connected to the four-way valve 24. However, since the refrigerant pipe is closed at the tip of the four-way valve 24, the refrigerant flows only to the heat source side heat exchanger 1a. The refrigerant that has flowed through the heat source side heat exchanger 1a exchanges heat with air that is blown forward by the fan 6a to become a low-temperature and high-pressure refrigerant. Thereafter, the refrigerant flows to the decompression means 22a and the use side heat exchanger 22 via the header 3b, but a part of the refrigerant flows to the branch pipe 26 connected between the header 3b and the decompression means 22a. The refrigerant flowing through the branch pipe 26 is decompressed by the decompression means 27 provided in the branch pipe 26 to become a low-temperature and low-pressure refrigerant. The low-temperature and low-pressure refrigerant flows to the heat source side heat exchanger 1b through the on-off valve 23 provided between the heat source side heat exchanger 1b and the header 3b. The refrigerant flowing through the heat source side heat exchanger 1b exchanges heat with the air blown by the fan 6b in the forward rotation to become a high-temperature and low-pressure refrigerant. The refrigerant flowing out from the heat source side heat exchanger 1 b flows through the connection pipe 25 via the second four-way valve 24 and returns to the compressor 2. The refrigerant that has passed through the pressure reducing means 22 a and the use side heat exchanger 22 from the header 3 b joins with the refrigerant flowing from the connection pipe 25 via the four-way valve 21 and returns to the compressor 2.

以上のように、本実施の形態3の空気調和装置は冷房運転時であっても室外機10の熱源側熱交換器1bに低温の冷媒を流すことでき室外機10の内部の空気温度を下げるので、ヒートシンク5の放熱を増やし制御基板4bの温度上昇を防ぐことができる。また、ファン6bの回転数よりファン6aの回転数を上げることで、熱源側熱交換器1aに流れる風量を変えずに室外機10の中央部を通過する低温空気の風量を増やし、効率的にヒートシンクを冷やすことができる。   As described above, the air-conditioning apparatus according to Embodiment 3 can flow a low-temperature refrigerant to the heat source side heat exchanger 1b of the outdoor unit 10 even during the cooling operation, and lowers the air temperature inside the outdoor unit 10. Therefore, the heat dissipation of the heat sink 5 can be increased and the temperature rise of the control board 4b can be prevented. Further, by increasing the rotational speed of the fan 6a from the rotational speed of the fan 6b, the air volume of the low-temperature air passing through the central portion of the outdoor unit 10 is increased without changing the air volume flowing through the heat source side heat exchanger 1a, thereby efficiently The heat sink can be cooled.

次に本実施の形態3の空気調和装置の運転方法について図12を用いて説明する。まず、空気調和装置の運転が開始されて冷房運転が行われる(S2)とS20に移行する。S20では制御基板4b制御基板4bが圧縮機2の運転容量を算出して部分負荷運転か最大負荷運転かを判断する(S20)。S20で最大負荷運転であると判断されるとS21に移行する。S21では制御基板4bが制御してファン6aとファン6bを順回転で駆動する。さらに、制御基板4bが四方弁24を切替えてヘッダ3aと熱源側熱交換器1bを繋き、開閉弁23を開いて熱源側熱交換器6aと熱源側熱交換器6bの両方に冷媒を流す。S21の後、S20に戻る。S20で部分負荷運転であると判断されるとS22に移行する。S22では制御基板4bが制御してファン6bを停止、ファン6aを順回転で駆動し、開閉弁23を制御して閉じて熱源側熱交換器6bに流れる冷媒を止める。S22の後、S23に移行する。S23では制御基板4b若しくはヒートシンク5の温度を検出する温度検出手段の検出値が所定値以上か所定値以下かを制御基板4bが判断する。S23で検出値が所定値以下であるとS20に戻り、所定値以上であると判断されるとS24に移行する。S24では制御基板4bが制御してファン6aとファン6bを順回転で駆動する。また、制御基板4bが四方弁24を切替えて熱源側熱交換器1bと接続配管25を繋ぐ。さらに分岐配管26から熱源側熱交換器1bへ冷媒が流れるように制御基板4bが開閉弁23を開く。S24の制御により、圧縮機2から吐出された高温高圧冷媒が熱源側熱交換器1aで低温高圧冷媒となった後、分岐配管26に設けられた減圧手段27で減圧された低温低圧冷媒を熱源側熱交換器1bに流すことができる。   Next, the operation method of the air conditioner of Embodiment 3 will be described with reference to FIG. First, when the operation of the air conditioner is started and the cooling operation is performed (S2), the process proceeds to S20. In S20, the control board 4b calculates the operation capacity of the compressor 2 to determine whether the control board 4b is a partial load operation or a maximum load operation (S20). If it is determined in S20 that the operation is at the maximum load, the process proceeds to S21. In S21, the control board 4b controls to drive the fan 6a and the fan 6b in forward rotation. Further, the control board 4b switches the four-way valve 24 to connect the header 3a and the heat source side heat exchanger 1b, opens the on-off valve 23, and allows the refrigerant to flow through both the heat source side heat exchanger 6a and the heat source side heat exchanger 6b. . After S21, the process returns to S20. If it is determined that the partial load operation is performed in S20, the process proceeds to S22. In S22, the control board 4b controls to stop the fan 6b, drives the fan 6a by forward rotation, controls the on-off valve 23 to close, and stops the refrigerant flowing to the heat source side heat exchanger 6b. After S22, the process proceeds to S23. In S23, the control board 4b determines whether the detected value of the temperature detecting means for detecting the temperature of the control board 4b or the heat sink 5 is greater than or equal to a predetermined value. If the detected value is equal to or smaller than the predetermined value in S23, the process returns to S20. If it is determined that the detected value is equal to or larger than the predetermined value, the process proceeds to S24. In S24, the control board 4b controls to drive the fan 6a and the fan 6b by forward rotation. Further, the control board 4b switches the four-way valve 24 to connect the heat source side heat exchanger 1b and the connection pipe 25. Further, the control board 4b opens the on-off valve 23 so that the refrigerant flows from the branch pipe 26 to the heat source side heat exchanger 1b. Under the control of S24, the high-temperature and high-pressure refrigerant discharged from the compressor 2 becomes the low-temperature and high-pressure refrigerant in the heat source side heat exchanger 1a, and then the low-temperature and low-pressure refrigerant decompressed by the decompression means 27 provided in the branch pipe 26 is used as the heat source. It can flow to the side heat exchanger 1b.

尚、S24で制御基板4bが行う制御をS22で行い、S22の後S23を省略してS20に戻ってもよい。また、ファン6bはインバータ回路が出力する交流電力ではなく制御基板4aの内蔵されたコンバータ回路が出力する直流電力や商用交流電力によって駆動される構成とすると、ファン6bを駆動することによる制御基板4bの発熱量を下げることができる。   Note that the control performed by the control board 4b in S24 may be performed in S22, and S23 may be omitted after S22 and the process may return to S20. Further, when the fan 6b is configured to be driven not by the AC power output by the inverter circuit but by the DC power or the commercial AC power output by the converter circuit built in the control board 4a, the control board 4b by driving the fan 6b. The amount of heat generated can be reduced.

以上のように、本実施の形態3の空気調和装置の運転方法は、最大負荷運転時と部分負荷運転時の両方の運転時にファン6aを駆動しているので、ファン6aの下に配置されたヒートシンク5の放熱を効率よく行うことができる。また、冷房運転時に熱源側熱交換器6bに低温低圧の冷媒を流して室外機10の内部の温度を下げるので、ヒートシンク5の放熱量を増やすことができる。   As described above, the operation method of the air-conditioning apparatus according to Embodiment 3 is arranged under the fan 6a because the fan 6a is driven during both the maximum load operation and the partial load operation. Heat dissipation of the heat sink 5 can be performed efficiently. In addition, since the low-temperature and low-pressure refrigerant is caused to flow through the heat source side heat exchanger 6b during the cooling operation to lower the temperature inside the outdoor unit 10, the heat radiation amount of the heat sink 5 can be increased.

本願発明は、室外機を備えた空気調和装置に利用することができる。   The present invention can be used for an air conditioner including an outdoor unit.

1a、1b 熱源側熱交換器、 2 圧縮機、 3 ヘッダ、 4 制御箱、 4a 筐体、 4b 制御基板、 4c インバータ回路、 5 ヒートシンク、 5a ベース、 5b フィン、 6a、6b ファン、 6c 翼、 7a、7b ファンガード、 10 室外機、 11a、11b 柱、 12a 底板、 12b 天板、 13 前面パネル、 14a 左側面、 14b 右側面、 15 背面、 21 四方弁、 22 利用側熱交換器、 22a 減圧手段、 23 開閉弁、 24 第2の四方弁、 25 接続配管、 26 分離配管、 27 減圧手段。   1a, 1b Heat source side heat exchanger, 2 compressor, 3 header, 4 control box, 4a housing, 4b control board, 4c inverter circuit, 5 heat sink, 5a base, 5b fin, 6a, 6b fan, 6c blade, 7a , 7b Fan guard, 10 Outdoor unit, 11a, 11b Pillar, 12a Bottom plate, 12b Top plate, 13 Front panel, 14a Left side, 14b Right side, 15 Back, 21 Four-way valve, 22 Utilization side heat exchanger, 22a Pressure reducing means , 23 On-off valve, 24 Second four-way valve, 25 Connection pipe, 26 Separation pipe, 27 Pressure reducing means.

Claims (9)

側面に開口を有する筐体と、
前記筐体の内部に設置された圧縮機と、
インバータ回路を有して前記圧縮機を制御する制御装置と、
前記圧縮機の運転容量が所定値以下の部分負荷運転時に冷媒が流れる第1の熱交換器と、
前記部分負荷運転時に冷媒が流れない第2の熱交換器と、
前記第1の熱交換器の上方に設けられて前記部分負荷運転時に前記第1の熱交換器に送風する第1の送風機と、
前記第2の熱交換器の上方に設けられて前記部分負荷運転時に停止する第2の送風機と、
前記第1の送風機の翼の端部の下方であって、前記筐体の上部に設けられた前記制御装置を冷却するヒートシンクと、
を備えたことを特徴とする室外機。
A housing having an opening on a side surface;
A compressor installed inside the housing;
A control device having an inverter circuit to control the compressor;
A first heat exchanger through which refrigerant flows during partial load operation where the operating capacity of the compressor is a predetermined value or less;
A second heat exchanger in which refrigerant does not flow during the partial load operation;
A first blower that is provided above the first heat exchanger and blows air to the first heat exchanger during the partial load operation;
A second blower provided above the second heat exchanger and stopped during the partial load operation;
A heat sink that cools the controller provided below the end of the blade of the first blower and provided at the top of the housing;
An outdoor unit characterized by comprising:
側面に開口を有する筐体と、
前記筐体の内部に設置された圧縮機と、
インバータ回路を有して前記圧縮機を制御する制御装置と、
前記圧縮機の運転容量が所定値以下の部分負荷運転時に冷媒が流れる第1の熱交換器と、
前記部分負荷運転時に冷媒が流れない第2の熱交換器と、
前記第1の熱交換器の上方に設けられて前記部分負荷運転時に順回転で下から上に送風する第1の送風機と、
前記第2の熱交換器の上方に設けられて前記部分負荷運転時に逆回転で上から下に送風する第2の送風機と、
前記第1の送風機の翼の端部の下方であって、前記筐体の上部に設けられた前記制御装置を冷却するヒートシンクと、
を備えたことを特徴とする室外機。
A housing having an opening on a side surface;
A compressor installed inside the housing;
A control device having an inverter circuit to control the compressor;
A first heat exchanger through which refrigerant flows during partial load operation where the operating capacity of the compressor is a predetermined value or less;
A second heat exchanger in which refrigerant does not flow during the partial load operation;
A first blower which is provided above the first heat exchanger and blows air from the bottom to the top by forward rotation during the partial load operation;
A second blower that is provided above the second heat exchanger and blows from top to bottom in reverse rotation during the partial load operation;
A heat sink that cools the controller provided below the end of the blade of the first blower and provided at the top of the housing;
An outdoor unit characterized by comprising:
側面に開口を有する筐体と、
前記筐体の内部に設置された圧縮機と、
インバータ回路を有して前記圧縮機を制御する制御装置と、
前記圧縮機の運転容量が所定値以下の部分負荷運転時に前記圧縮機で圧縮された高温高圧冷媒が流れる第1の熱交換器と、
前記部分負荷運転時に前記第1の熱交換器で熱交換されて低温高圧となった冷媒を減圧する減圧手段と、
前記部分負荷運転時に前記減圧手段を通過して低温低圧となった冷媒が流れる第2の熱交換器と、
前記第1の熱交換器の上方に設けられて前記部分負荷運転時に前記第1の熱交換器に送風する第1の送風機と、
前記第2の熱交換器の上方に設けられて前記部分負荷運転時に前記第2の熱交換器に送風する第2の送風機と、
前記第1の送風機の回転する翼の端部の下方であって、前記筐体の上部に設けられた前記制御装置を冷却するヒートシンクと、
を備えたことを特徴とする室外機。
A housing having an opening on a side surface;
A compressor installed inside the housing;
A control device having an inverter circuit to control the compressor;
A first heat exchanger through which a high-temperature and high-pressure refrigerant compressed by the compressor flows during partial load operation in which the operation capacity of the compressor is a predetermined value or less;
Decompression means for decompressing the refrigerant that has been subjected to heat exchange in the first heat exchanger during the partial load operation to become a low temperature and high pressure;
A second heat exchanger through which the refrigerant that has passed through the pressure-reducing means and became low-temperature and low-pressure flows during the partial load operation;
A first blower that is provided above the first heat exchanger and blows air to the first heat exchanger during the partial load operation;
A second blower that is provided above the second heat exchanger and blows air to the second heat exchanger during the partial load operation;
A heat sink that cools the controller provided below the end of the rotating blade of the first blower and provided at the top of the housing;
An outdoor unit characterized by comprising:
前記制御装置又は前記ヒートシンクの温度を検出する温度検出手段を備え、
前記温度検出手段の検出値が所定値以下の場合は前記第2の送風機は停止し、所定値以上の場合に前記第2の送風機を逆回転することを特徴とする請求項1及び2に記載の室外機。
A temperature detecting means for detecting the temperature of the control device or the heat sink;
The said 2nd air blower stops when the detection value of the said temperature detection means is below a predetermined value, and reversely rotates the said 2nd air blower when it is more than a predetermined value. Outdoor unit.
前記第2の送風機は直流電力又は商用交流電力で駆動されることを特徴とする請求項2又は3に記載の空気調和装置の室外機。 The outdoor unit of an air conditioner according to claim 2 or 3, wherein the second blower is driven by DC power or commercial AC power. 前記制御装置は前記インバータ回路から前記圧縮機に印加する電圧の周波数が所定値以下の場合に部分負荷運転と判断することを特徴とする請求項1乃至3のいずれかに記載の室外機。 The outdoor unit according to any one of claims 1 to 3, wherein the control device determines that the partial load operation is performed when a frequency of a voltage applied from the inverter circuit to the compressor is a predetermined value or less. 冷房運転と暖房運転を切替える四方弁と、を有する請求項1乃至3のいずれかに記載の空気調和装置の室外機と、
前記四方弁と接続されて室内を冷暖房する利用側熱交換器と、
を備えたことを特徴とする空気調和装置。
An outdoor unit for an air conditioner according to any one of claims 1 to 3, comprising a four-way valve that switches between a cooling operation and a heating operation.
A user-side heat exchanger connected to the four-way valve to cool and heat the room;
An air conditioner comprising:
側面に開口を有する筐体と、
前記筐体の内部に設置された圧縮機と、
第1の熱交換器の上方に設けられて前記第1の熱交換器に送風する第1の送風機と、
第2の熱交換器の上方に設けられて前記第2の熱交換器に送風する第2の送風機と、
前記第1の送風機の翼の端部の下方であって、前記筐体の上部に設けられた前記制御装置を冷却するヒートシンクと、
前記第2の熱交換器を流れる冷媒の流路を開閉する開閉弁と、
冷房運転と暖房運転を切替える四方弁と、
前記圧縮機、前記第1の送風機、前記第2の送風機、前記開閉弁及び前記四方弁を制御する制御装置と、
前記四方弁と接続されて室内を冷暖房する利用側熱交換器と、
を備えた空気調和装置の運転方法において、
前記制御装置が前記開閉弁を開いて前記第1の熱源側熱交換器と前記第2の熱源側熱交換器に冷媒を流し、前記第1の送風機と前記第2の送風機を駆動する最大負荷運転工程と、
前記制御装置が前記開閉弁を閉じて前記第1の熱源側熱交換器に冷媒を流し前記第2の、前記第1の送風機を駆動して前記第2の送風機を停止若しくは逆回転させる部分負荷運転工程と、
を備えたことを特徴とする空気調和装置の運転方法。
A housing having an opening on a side surface;
A compressor installed inside the housing;
A first blower that is provided above the first heat exchanger and blows air to the first heat exchanger;
A second blower that is provided above the second heat exchanger and blows air to the second heat exchanger;
A heat sink that cools the controller provided below the end of the blade of the first blower and provided at the top of the housing;
An on-off valve that opens and closes the flow path of the refrigerant flowing through the second heat exchanger;
A four-way valve that switches between cooling operation and heating operation,
A control device for controlling the compressor, the first blower, the second blower, the on-off valve, and the four-way valve;
A user-side heat exchanger connected to the four-way valve to cool and heat the room;
In the operation method of the air conditioner equipped with
Maximum load for driving the first fan and the second fan by causing the control device to open the on-off valve to flow a refrigerant through the first heat source side heat exchanger and the second heat source side heat exchanger. Operation process;
A partial load in which the control device closes the on-off valve, causes a refrigerant to flow through the first heat source side heat exchanger, drives the second fan, and stops or reversely rotates the second fan. Operation process;
A method for operating an air conditioner, comprising:
側面に開口を有する筐体と、
前記筐体の内部に設置されて高温高圧冷媒を吐出する圧縮機と、
前記圧縮機に接続されて冷房運転と暖房運転を切替える四方弁と、
インバータ回路を有して前記圧縮機を制御する制御装置と、
第1の熱交換器の上方に設けられて前記第1の熱交換器に送風する第1の送風機と、
第2の熱交換器の上方に設けられて前記第2の熱交換器に送風する第2の送風機と、
前記第1の送風機の回転する翼の端部の下方であって、前記筐体の上部に設けられた前記制御装置を冷却するヒートシンクと、
前記部分負荷運転時に前記第1の熱交換器で熱交換されて低温高圧冷媒が前記第2の熱交換器に流れる分岐配管と、
前記分岐配管に設けられて前記低温高圧冷媒を減圧する減圧手段と、
前記第2の熱交換器を流れる冷媒の流路を開閉する開閉弁と、
前記圧縮機、前記第1の送風機、前記第2の送風機、前記開閉弁及び前記四方弁を制御する制御装置と、
前記四方弁と接続されて室内を冷暖房する利用側熱交換器と、
を備えた空気調和装置の運転方法において、
前記制御装置が前記開閉弁を開いて前記第1の熱源側熱交換器と前記第2の熱源側熱交換器に冷媒を流し、前記第1の送風機と前記第2の送風機を駆動する最大負荷運転工程と、
前記制御装置が前記開閉弁を制御して前記低温低圧冷媒を前記第1の熱交換器に流し、前記第1の送風機と前記第2の送風機を駆動する部分負荷運転工程と、
を備えたことを特徴とする空気調和装置の運転方法。
A housing having an opening on a side surface;
A compressor installed inside the housing and discharging a high-temperature and high-pressure refrigerant;
A four-way valve connected to the compressor to switch between cooling operation and heating operation;
A control device having an inverter circuit to control the compressor;
A first blower that is provided above the first heat exchanger and blows air to the first heat exchanger;
A second blower that is provided above the second heat exchanger and blows air to the second heat exchanger;
A heat sink that cools the controller provided below the end of the rotating blade of the first blower and provided at the top of the housing;
A branch pipe in which heat is exchanged in the first heat exchanger during the partial load operation and the low-temperature and high-pressure refrigerant flows into the second heat exchanger;
A decompression means provided in the branch pipe for decompressing the low-temperature high-pressure refrigerant;
An on-off valve that opens and closes the flow path of the refrigerant flowing through the second heat exchanger;
A control device for controlling the compressor, the first blower, the second blower, the on-off valve, and the four-way valve;
A user-side heat exchanger connected to the four-way valve to cool and heat the room;
In the operation method of the air conditioner equipped with
Maximum load for driving the first fan and the second fan by causing the control device to open the on-off valve to flow a refrigerant through the first heat source side heat exchanger and the second heat source side heat exchanger. Operation process;
A partial load operation step in which the control device controls the on-off valve to flow the low-temperature and low-pressure refrigerant through the first heat exchanger, and drives the first blower and the second blower;
A method for operating an air conditioner, comprising:
JP2009285101A 2009-12-16 2009-12-16 Outdoor unit, air conditioner, and operation method of air conditioner Active JP5493813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009285101A JP5493813B2 (en) 2009-12-16 2009-12-16 Outdoor unit, air conditioner, and operation method of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009285101A JP5493813B2 (en) 2009-12-16 2009-12-16 Outdoor unit, air conditioner, and operation method of air conditioner

Publications (2)

Publication Number Publication Date
JP2011127807A true JP2011127807A (en) 2011-06-30
JP5493813B2 JP5493813B2 (en) 2014-05-14

Family

ID=44290577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009285101A Active JP5493813B2 (en) 2009-12-16 2009-12-16 Outdoor unit, air conditioner, and operation method of air conditioner

Country Status (1)

Country Link
JP (1) JP5493813B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031944A (en) * 2012-08-03 2014-02-20 Hitachi Appliances Inc Refrigeration cycle device, and refrigerator and air conditioner including the same
EP3029397A1 (en) * 2013-08-01 2016-06-08 Mitsubishi Electric Corporation Heat source unit
WO2016151756A1 (en) * 2015-03-24 2016-09-29 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー (ホンコン) リミテッド Air conditioner
WO2016151751A1 (en) * 2015-03-24 2016-09-29 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー (ホンコン) リミテッド Air conditioner
JP2017011952A (en) * 2015-06-25 2017-01-12 株式会社デンソー Power conversion device
WO2018229829A1 (en) * 2017-06-12 2018-12-20 三菱電機株式会社 Outdoor unit
WO2019043771A1 (en) * 2017-08-29 2019-03-07 三菱電機株式会社 Heat exchange unit and refrigeration cycle device
CN117647008A (en) * 2023-12-06 2024-03-05 浙江佳偶环境科技有限公司 Air energy water heater with dehumidification function

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136273U (en) * 1984-08-07 1986-03-06 ダイキン工業株式会社 Refrigeration equipment
JPS63165457U (en) * 1987-04-14 1988-10-27
JPS6410052A (en) * 1987-06-30 1989-01-13 Toshiba Corp Coolant heating outdoor machine in air conditioning system
JPH02213660A (en) * 1989-02-14 1990-08-24 Sanyo Electric Co Ltd Cooling or heating device
JPH04340033A (en) * 1991-05-16 1992-11-26 Daikin Ind Ltd Operation control device for air conditioner
JPH0914790A (en) * 1995-06-27 1997-01-17 Hitachi Ltd Multi-chamber air conditioner
JPH09280632A (en) * 1996-04-09 1997-10-31 Mitsubishi Heavy Ind Ltd Outdoor unit of air conditioner
JP2003232554A (en) * 2002-02-07 2003-08-22 Daikin Ind Ltd Air conditioner
JP2007218534A (en) * 2006-02-17 2007-08-30 Daikin Ind Ltd Outdoor unit for refrigerating apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136273U (en) * 1984-08-07 1986-03-06 ダイキン工業株式会社 Refrigeration equipment
JPS63165457U (en) * 1987-04-14 1988-10-27
JPS6410052A (en) * 1987-06-30 1989-01-13 Toshiba Corp Coolant heating outdoor machine in air conditioning system
JPH02213660A (en) * 1989-02-14 1990-08-24 Sanyo Electric Co Ltd Cooling or heating device
JPH04340033A (en) * 1991-05-16 1992-11-26 Daikin Ind Ltd Operation control device for air conditioner
JPH0914790A (en) * 1995-06-27 1997-01-17 Hitachi Ltd Multi-chamber air conditioner
JPH09280632A (en) * 1996-04-09 1997-10-31 Mitsubishi Heavy Ind Ltd Outdoor unit of air conditioner
JP2003232554A (en) * 2002-02-07 2003-08-22 Daikin Ind Ltd Air conditioner
JP2007218534A (en) * 2006-02-17 2007-08-30 Daikin Ind Ltd Outdoor unit for refrigerating apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031944A (en) * 2012-08-03 2014-02-20 Hitachi Appliances Inc Refrigeration cycle device, and refrigerator and air conditioner including the same
EP3029397A1 (en) * 2013-08-01 2016-06-08 Mitsubishi Electric Corporation Heat source unit
EP3029397A4 (en) * 2013-08-01 2017-04-26 Mitsubishi Electric Corporation Heat source unit
WO2016151756A1 (en) * 2015-03-24 2016-09-29 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー (ホンコン) リミテッド Air conditioner
WO2016151751A1 (en) * 2015-03-24 2016-09-29 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー (ホンコン) リミテッド Air conditioner
JP2017011952A (en) * 2015-06-25 2017-01-12 株式会社デンソー Power conversion device
WO2018229829A1 (en) * 2017-06-12 2018-12-20 三菱電機株式会社 Outdoor unit
JPWO2018229829A1 (en) * 2017-06-12 2019-12-19 三菱電機株式会社 Outdoor unit
WO2019043771A1 (en) * 2017-08-29 2019-03-07 三菱電機株式会社 Heat exchange unit and refrigeration cycle device
GB2579476A (en) * 2017-08-29 2020-06-24 Mitsubishi Electric Corp Heat exchange unit and refrigeration cycle device
GB2579476B (en) * 2017-08-29 2021-08-04 Mitsubishi Electric Corp Heat exchanger unit and refrigeration cycle device
CN117647008A (en) * 2023-12-06 2024-03-05 浙江佳偶环境科技有限公司 Air energy water heater with dehumidification function

Also Published As

Publication number Publication date
JP5493813B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5493813B2 (en) Outdoor unit, air conditioner, and operation method of air conditioner
JP5581671B2 (en) Air conditioner outdoor unit
US6345667B1 (en) Ceiling embedded air conditioning unit
US10760812B2 (en) Indoor unit for air conditioning device
JP2011149648A (en) Electric component box for outdoor machine, outdoor machine unit, and air conditioner
KR20090029515A (en) Air-conditioner of the control method
US20170292732A1 (en) Air-conditioning-device indoor unit
JP2011117677A (en) Outdoor unit for air conditioning device
JP2011112333A5 (en)
JP2014102050A (en) Refrigeration device
JP5412161B2 (en) Air conditioner
JP6529600B2 (en) Outdoor unit of air conditioner
JP5677223B2 (en) Air conditioner
JP2012242041A (en) Air conditioning system
JP5171759B2 (en) Air conditioner
JP2005315498A (en) Refrigerating cycle device
JP5424706B2 (en) Refrigeration cycle equipment
JP2006258381A (en) Air conditioner
JP2010190484A (en) Electronic apparatus cooling device
US11137165B2 (en) Fan array for HVAC system
JP2012067932A (en) Ventilation air conditioning apparatus
JP2010211363A (en) Electronic equipment cooling device
JP6956903B2 (en) Air conditioner and its control method
JP2014009912A (en) Air-conditioning device
JP2010210222A (en) Air conditioner and its control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R151 Written notification of patent or utility model registration

Ref document number: 5493813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250