JP5171759B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5171759B2
JP5171759B2 JP2009192455A JP2009192455A JP5171759B2 JP 5171759 B2 JP5171759 B2 JP 5171759B2 JP 2009192455 A JP2009192455 A JP 2009192455A JP 2009192455 A JP2009192455 A JP 2009192455A JP 5171759 B2 JP5171759 B2 JP 5171759B2
Authority
JP
Japan
Prior art keywords
air
temperature
blown
air temperature
blown air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009192455A
Other languages
Japanese (ja)
Other versions
JP2011043300A (en
Inventor
潔 吉村
太郎 服部
聡 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009192455A priority Critical patent/JP5171759B2/en
Publication of JP2011043300A publication Critical patent/JP2011043300A/en
Application granted granted Critical
Publication of JP5171759B2 publication Critical patent/JP5171759B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は空気調和機に係り、特に吹出口周辺の結露の発生を抑制できる風向制御に関する。   The present invention relates to an air conditioner, and more particularly to wind direction control that can suppress the occurrence of condensation around a blowout port.

従来の空気調和機は、結露の発生を抑制するために室内温度と設定温度の差から空気調和機の負荷を算出し、所定条件を満たしたときに風向制御羽根の位置を変更することで結露の発生を防止している(例えば、特許文献1参照)。   A conventional air conditioner calculates the load of the air conditioner from the difference between the room temperature and the set temperature in order to suppress the occurrence of condensation, and changes the position of the wind direction control blade when a predetermined condition is satisfied. Is prevented (for example, see Patent Document 1).

特開2005−257192号公報(第1頁、図2)Japanese Patent Laying-Open No. 2005-257192 (first page, FIG. 2)

従来の空気調和機では、室内温度と設定温度の差から空気調和機の負荷を算出し、所定条件を満たしたときに風向制御羽根の角度を変更することで結露の発生を防止しているが、この場合に制御までの時間を分けており、低温時には長い時間通常風向角度であり、低温高湿時には湿度を見ていないために対応できない。
結露は、吹出口周辺の空気条件が露点以下であれば発生するが、周辺の湿度条件を検出する手段を持たない場合には、吹出温度が低い時には発生しうると考えた方が結露を防止するという目的上は安全であり、さらに結露の発生を確実に防止するためには、低温高湿といった状態も考慮する必要がある。
In a conventional air conditioner, the load of the air conditioner is calculated from the difference between the room temperature and the set temperature, and condensation is prevented by changing the angle of the wind direction control blade when a predetermined condition is satisfied. In this case, the time until the control is divided, it is a normal wind direction angle for a long time at a low temperature, and the humidity is not observed at a low temperature and high humidity, so it cannot be handled.
Condensation occurs when the air condition around the outlet is below the dew point, but if there is no means to detect the surrounding humidity condition, it is better to think that it can occur when the outlet temperature is low. In order to prevent the occurrence of dew condensation, it is necessary to consider the conditions such as low temperature and high humidity.

また、結露の発生防止のための制御の条件を高負荷・中負荷・低負荷と分けているが、これらの条件が同時に検出できるようにはなっていないため、例えば、低負荷条件と中負荷条件を所定時間を満たさない間隔で行き来すれば、結露発生防止の制御は働かず、結露が生じてしまうおそれがあるという問題があった。
本発明はかかる問題を解決するためになされたもので、結露の発生が予測される条件の時に風向制御羽根を結露発生防止位置に変更することができ、吹出口周辺の結露の発生を防止して使用者に快適な空間を提供できる空気調和機を得ることを目的とする。
In addition, although the control conditions for preventing the occurrence of condensation are divided into high load, medium load, and low load, these conditions cannot be detected at the same time, so for example, low load conditions and medium loads There is a problem that if the condition is changed at an interval that does not satisfy the predetermined time, the control for preventing the occurrence of condensation does not work and there is a possibility that the condensation may occur.
The present invention has been made to solve such a problem, and the wind direction control blade can be changed to a dew condensation prevention position under conditions where the occurrence of dew condensation is predicted, thereby preventing the occurrence of dew condensation around the outlet. The purpose is to obtain an air conditioner that can provide a comfortable space for the user.

本発明に係る空気調和機は、凝縮器、蒸発器並びに前記凝縮器及び前記蒸発器内を流れる冷媒を圧縮する圧縮機を有する冷凍サイクルと、吸込口から吸い込んだ空気を前記蒸発器で熱交換した後に吹出口に送風する送風機と、前記吹出口に回動可能に設けられ、前記送風機によって前記吹出口から吹き出す空気の吹出方向に対して異なる方向に送風する風向制御羽根と、該風向制御羽根を回動させる風向制御羽根アクチュエータとを備えた空気調和機において、前記吹出口から吹き出される空気の温度を検出する吹出空気温度検出手段と、該吹出空気温度検出手段が検出した吹出空気温度と前記吹出口周辺で結露を生じないときの予め設定された複数の吹出空気温度閾値とを比較し、前記吹出空気温度検出手段が検出した吹出空気温度が前記複数の吹出空気温度閾値のうち、少なくとも1つの吹出空気温度閾値以下で、該吹出空気温度閾値以下の積算時間が結露を発生させるよう設定された上限時間に達したときに前記風向制御羽根アクチュエータを駆動制御して前記風向制御羽根を結露の発生を防止できる所定位置に変更するようにした風向板制御装置とを備えて構成されている。   The air conditioner according to the present invention includes a condenser, an evaporator, a refrigeration cycle having a compressor that compresses the refrigerant flowing through the condenser and the evaporator, and heat exchange between the air sucked from the suction port by the evaporator. A blower that blows air to the air outlet, and a wind direction control blade that is rotatably provided to the air outlet and that blows air in a direction different from the direction of air blown from the air outlet by the air blower, and the air direction control blade An air conditioner including a wind direction control blade actuator for rotating the air outlet, a blown air temperature detecting means for detecting a temperature of air blown from the blowout port, and a blown air temperature detected by the blown air temperature detecting means; Comparing a plurality of preset air temperature thresholds when no condensation occurs around the air outlet, the air temperature detected by the air temperature detecting means is Among the plurality of blown air temperature thresholds, the wind direction control blade actuator is set when an integrated time less than or equal to at least one blown air temperature threshold reaches an upper limit time set to generate dew condensation. And a wind direction plate control device configured to change the wind direction control blade to a predetermined position capable of preventing the occurrence of condensation by driving control.

本発明の空気調和機は、風向板制御装置が吹出空気温度検出手段により検出した吹出空気温度と前記吹出口周辺で結露を生じないときの吹出空気温度の複数の吹出空気温度閾値とを比較し、前記吹出空気温度検出手段が検出した吹出空気温度が前記複数の吹出空気温度閾値のうち、少なくとも1つの吹出空気温度閾値以下で、該吹出空気温度閾値以下の積算時間が結露を発生させるよう設定された上限時間に達したときに風向制御羽根アクチュエータを駆動制御して風向制御羽根を結露の発生を防止できる所定位置に変更するようにしたので、結露の発生が予測される条件の時に、風向制御羽根を結露の発生が防止できる所定位置に変更して吹出口周辺の結露の発生を防止でき、使用者に快適な空間を提供できるという効果がある。   The air conditioner of the present invention compares the blown air temperature detected by the blown air temperature detection means by the wind direction plate control device with a plurality of blown air temperature threshold values of the blown air temperature when no condensation occurs around the blower outlet. The blown air temperature detected by the blown air temperature detecting means is set to be at least one of the plurality of blown air temperature thresholds or less, and an accumulated time that is less than or equal to the blown air temperature threshold is set to generate condensation. The wind direction control vane actuator is driven and controlled when the upper limit time is reached, and the wind direction control vane is changed to a predetermined position where condensation can be prevented. There is an effect that the control blade can be changed to a predetermined position where condensation can be prevented to prevent condensation around the air outlet, and a comfortable space can be provided to the user.

本発明の実施の形態1に係る空気調和機の冷媒回路を示す模式図。The schematic diagram which shows the refrigerant circuit of the air conditioner which concerns on Embodiment 1 of this invention. 同空気調和機の室内機を示す構成図。The block diagram which shows the indoor unit of the air conditioner. 同空気調和機の室内機の吹出口周辺を示す構成図。The block diagram which shows the blower outlet periphery of the indoor unit of the air conditioner. 同空気調和機の室内機における配管温度の遷移フローチャート。The transition flowchart of the piping temperature in the indoor unit of the air conditioner. 同空気調和機の室内機における結露防止の制御フローチャート。The control flowchart of the dew condensation prevention in the indoor unit of the air conditioner.

実施の形態1.
図1は本発明の実施の形態1に係る空気調和機の冷媒回路を示す模式図、図2は同空気調和機の室内機を示す構成図、図3は同空気調和機の室内機の吹出口周辺を示す構成図、図4は同空気調和機の室内機における配管温度の遷移フローチャート、図5は同空気調和機の室内機における結露防止の制御フローチャートである。
図1において、本発明の実施の形態1に係る空気調和機の冷媒回路は、2つの熱交換器30a、30bと、熱交換器30a、30b内を流れる冷媒を圧縮させる圧縮機50と、空気を冷房、暖房する冷媒回路に切り換える四方弁51と、電子式膨張弁(以下、LEVと記す)52を有し、それぞれを図に示すように冷媒配管で接続して冷媒を循環させて冷凍サイクルを構成する。この冷媒回路全体を、空気調和機の室内機100aと室外機100bに分離して格納している。
Embodiment 1 FIG.
1 is a schematic diagram illustrating a refrigerant circuit of an air conditioner according to Embodiment 1 of the present invention, FIG. 2 is a configuration diagram illustrating an indoor unit of the air conditioner, and FIG. 3 is a blower of the indoor unit of the air conditioner. FIG. 4 is a flow chart showing a transition of piping temperature in the indoor unit of the air conditioner, and FIG. 5 is a control flowchart for preventing condensation in the indoor unit of the air conditioner.
In FIG. 1, the refrigerant circuit of the air conditioner according to Embodiment 1 of the present invention includes two heat exchangers 30a and 30b, a compressor 50 that compresses refrigerant flowing in the heat exchangers 30a and 30b, and air Refrigeration cycle having a four-way valve 51 for switching to a refrigerant circuit for cooling and heating and an electronic expansion valve (hereinafter referred to as LEV) 52, which are connected by a refrigerant pipe as shown in the figure to circulate the refrigerant Configure. The entire refrigerant circuit is separated and stored in an indoor unit 100a and an outdoor unit 100b of the air conditioner.

空気調和機の冷房運転では、四方弁51内で実線に示すように冷媒配管が接続され、熱交換器30aを蒸発器、熱交換器30bを凝縮器として動作させる。このとき、冷媒回路の内部を流れる低温低圧のガス冷媒は、圧縮機50で圧縮されて高温高圧のガス冷媒となる。
その高温高圧となったガス冷媒は、熱交換器30bで室外空気と熱交換して冷媒自身は凝縮して高圧低温の液冷媒になり、LEV52で断熱膨張して低圧低温の二相冷媒となる。そして、熱交換器30aで室内空気と熱交換して蒸発ガス化し、圧縮機50に戻る。
この熱交換器30aを蒸発器として機能させて冷媒が蒸発することで、室内空気に冷熱を与えて室内が冷房される。
In the cooling operation of the air conditioner, refrigerant piping is connected in the four-way valve 51 as shown by a solid line, and the heat exchanger 30a is operated as an evaporator and the heat exchanger 30b is operated as a condenser. At this time, the low-temperature and low-pressure gas refrigerant flowing inside the refrigerant circuit is compressed by the compressor 50 to become a high-temperature and high-pressure gas refrigerant.
The high-temperature and high-pressure gas refrigerant exchanges heat with outdoor air in the heat exchanger 30b, and the refrigerant itself condenses into a high-pressure and low-temperature liquid refrigerant, and adiabatic expansion in the LEV 52 becomes a low-pressure and low-temperature two-phase refrigerant. . The heat exchanger 30 a exchanges heat with room air to evaporate and returns to the compressor 50.
The heat exchanger 30a functions as an evaporator to evaporate the refrigerant, so that the indoor air is cooled and the room is cooled.

また、四方弁51内で点線のように冷媒配管を接続し、室内機100a側の熱交換器30aを凝縮器として機能させて冷媒が凝縮することで、室内空気に温熱を与えて室内が暖房される。 また、図1には図示していないが、空気調和機の室内機100a、室外機100bはそれぞれ1つずつ、または共通に1つの制御装置を備え、圧縮機50の回転数、四方弁51の接続、LEV52の開度、熱交換器30a、30bの近傍に配置されている送風機3の回転数などを制御する。ここで、圧縮機50は制御装置により少なくとも2段階以上の圧縮機運転回転数を有する。
なお、四方弁51で冷房運転と暖房運転とを切り換え可能なものを示しているが、これに限定するものではなく、少なくとも吸い込んだ空気に対し温度が低い冷気を室内に吹き出すような冷房運転や除湿運転を行う空気調和機にも適用がある。
In addition, refrigerant piping is connected within the four-way valve 51 as indicated by a dotted line, and the refrigerant is condensed by causing the heat exchanger 30a on the indoor unit 100a side to function as a condenser, so that the indoor air is heated and the room is heated. Is done. Although not shown in FIG. 1, each of the indoor unit 100 a and the outdoor unit 100 b of the air conditioner includes one or a common control device, and the number of rotations of the compressor 50 and the four-way valve 51 The connection, the opening degree of the LEV 52, the rotational speed of the blower 3 arranged in the vicinity of the heat exchangers 30a and 30b, and the like are controlled. Here, the compressor 50 has at least two stages of compressor operating rotational speeds by the control device.
Although the four-way valve 51 is shown to be capable of switching between cooling operation and heating operation, the present invention is not limited to this, and at least a cooling operation in which cool air having a low temperature with respect to the sucked air is blown into the room or It is also applicable to air conditioners that perform dehumidifying operation.

図2において、空気調和機の室内機100aは、蒸発器30aと、吸込口1と、吸込口1から吸い込まれる空気の温度を検出する吸込温度センサ2と、室内機内部に配設された送風機3と、蒸発器30aの配管温度を検出する配管温度センサ4と、吹出口7から吹き出す空気の向きを変える風向制御羽根5と、風向制御羽根5を回動させる風向制御羽根アクチュエータ6と、吹出口7とを備えており、白抜きの矢印で空気調和機の室内機100a内を流れる気流の方向を示している。   In FIG. 2, the indoor unit 100a of the air conditioner includes an evaporator 30a, a suction port 1, a suction temperature sensor 2 that detects the temperature of air sucked from the suction port 1, and a blower disposed inside the indoor unit. 3, a pipe temperature sensor 4 that detects the pipe temperature of the evaporator 30 a, a wind direction control blade 5 that changes the direction of the air blown from the outlet 7, a wind direction control blade actuator 6 that rotates the wind direction control blade 5, The direction of the airflow which flows through the inside unit 100a of the air conditioner is shown by a white arrow.

送風機3により、吸込口1から吸い込まれた空気が、蒸発器30aを経由し、吹出口7から冷房時には冷風が、暖房時には暖風が吹き出される。その間、配管温度センサ4により、蒸発器30aの配管の温度を検出し、また吸込温度センサ2により吸込口1から吸い込まれる空気の温度を検出する。
さらに、吹出口7において、風向制御羽根5と該風向制御羽根5を回動自在に制御できる風向制御羽根アクチュエータ6を備えているため、吹出口7から吹き出す空気の角度を変更することができる。ここでは、使用者により風向制御羽根5の位置は、図3に示す通常の吹出位置P1に設定されている。この風向制御羽根5の通常の吹出位置P1は、吹出口7から吹き出す空気の流れと平行な角度を0度とすると、それを基準に外向きに20度〜30度の角度で傾いた空気の流れを遮る位置である。
Air blown from the suction port 1 is blown by the blower 3 through the evaporator 30a, and cool air is blown out from the air outlet 7 during cooling and warm air is blown out during heating. Meanwhile, the temperature of the piping of the evaporator 30 a is detected by the piping temperature sensor 4, and the temperature of the air sucked from the suction port 1 is detected by the suction temperature sensor 2.
Further, since the air outlet 7 is provided with the air direction control blade 5 and the air direction control blade actuator 6 that can control the air direction control blade 5 to be rotatable, the angle of the air blown out from the air outlet 7 can be changed. Here, the position of the wind direction control blade 5 by the user is set to the normal blowing position P1 shown in FIG. The normal blowing position P1 of the wind direction control blade 5 is defined as an angle of air inclined at an angle of 20 degrees to 30 degrees outward with reference to the angle parallel to the flow of air blown out from the blowout port 7 as 0 degrees. It is a position that blocks the flow.

次に、図4を用いて配管温度閾値と積算時間の関係について説明する。
その前に、吹出口7から吹き出される空気の吹出温度と結露との関係、吹出温度と配管温度の関係について説明する。
吹出口7に結露が発生するのは、吹出口7に冷えた吹出空気が流れ、吹出口7が周囲空気の露点以下に達し、その吹出口7に周囲空気が流れる場合であり、結露を生じさせる吹出口7周辺の温度低下は、吹出口7の温度とその時間に依存する。
その時間をカウントしている場合に、吹出口7の温度は変化して結露を生じさせる温度以上のこともあるため、連続時間をカウントするのではなく、結露を生じさせる温度だけを積算してカウントするようにしたものである。
また、吹出口7の空気の吹出温度は蒸発器30aの配管温度に依存し、配管温度の方が吹出口7の空気の温度より何度か低いため、配管温度が分かれば、吹出口7の温度も推定することができる。
そして、配管温度センサ4は通例設けられているが、吹出口7から吹き出される空気の温度を検出する吹出温度センサが吹出口7に設けられていないため、配管温度と時間との関係を示す図4のグラフに基づいて説明する。
Next, the relationship between the piping temperature threshold and the integration time will be described with reference to FIG.
Before that, the relationship between the blowing temperature of the air blown out from the blower outlet 7 and dew condensation, and the relationship between the blowing temperature and the piping temperature will be described.
Condensation occurs at the air outlet 7 when cold air flows through the air outlet 7, the air outlet 7 reaches a dew point below the ambient air, and the ambient air flows through the air outlet 7. The temperature drop around the outlet 7 is dependent on the temperature of the outlet 7 and its time.
When the time is counted, the temperature of the air outlet 7 changes and may be higher than the temperature that causes condensation. Therefore, instead of counting the continuous time, only the temperature that causes condensation is accumulated. It is to be counted.
Moreover, since the blowing temperature of the air of the blower outlet 7 depends on the piping temperature of the evaporator 30a, and the piping temperature is several times lower than the temperature of the air of the blowing outlet 7, if the piping temperature is known, The temperature can also be estimated.
And although the piping temperature sensor 4 is usually provided, since the blowing temperature sensor which detects the temperature of the air blown out from the blower outlet 7 is not provided in the blower outlet 7, the relationship between piping temperature and time is shown. This will be described based on the graph of FIG.

図4において、横軸に時間、縦軸に配管温度を記し、時系列順に区間t1、t2、t3としている。
また、配管温度閾値をTa、Tb(Ta≧Tb)とする。この配管温度閾値では結露を生じさせないが、該配管温度閾値以下の温度で所定の時間が経過すると結露を生じさせるので、所定の温度を配管温度閾値としたものである。
空気調和機の室内機100aに、配管温度閾値Ta以下である積算時間H1をカウントするタイマーTM1と、配管温度閾値Tb以下である積算時間H2をカウントするタイマーTM2と、風向制御羽根アクチュエータ6と、該風向制御羽根アクチュエータ6を制御する風向板制御装置(図示省略)とが設けられている。
また、タイマーTM1がカウントした配管温度閾値Ta以下である積算時間H1の上限時間をH1max、タイマーTM2がカウントした配管温度閾値Tb以下である積算時間H2の上限時間をH2maxとする。
なお、上限時間H1maxは、上限時間H2maxに比べて配管温度閾値Taが配管温度閾値Tbより高いために長い。
これら上限時間H1max又は上限時間H2maxは、それに達すると、吹出口7に結露が発生し始める時間であり、これら上限時間H1max又は上限時間H2maxは配管温度との関係で実験により求めている。
In FIG. 4, time is plotted on the horizontal axis, pipe temperature is plotted on the vertical axis, and sections t1, t2, and t3 are shown in time series order.
The pipe temperature thresholds are Ta and Tb (Ta ≧ Tb). The pipe temperature threshold value does not cause condensation, but condensation occurs after a predetermined time at a temperature equal to or lower than the pipe temperature threshold value. Therefore, the predetermined temperature is used as the pipe temperature threshold value.
In the air conditioner indoor unit 100a, a timer TM1 that counts an accumulated time H1 that is less than or equal to the pipe temperature threshold Ta, a timer TM2 that counts an accumulated time H2 that is less than or equal to the pipe temperature threshold Tb, a wind direction control blade actuator 6, A wind direction plate control device (not shown) for controlling the wind direction control blade actuator 6 is provided.
Further, the upper limit time of the integrated time H1 that is less than or equal to the pipe temperature threshold Ta counted by the timer TM1 is H1max, and the upper limit time of the accumulated time H2 that is less than or equal to the pipe temperature threshold Tb counted by the timer TM2 is H2max.
The upper limit time H1max is longer than the upper limit time H2max because the pipe temperature threshold Ta is higher than the pipe temperature threshold Tb.
When the upper limit time H1max or the upper limit time H2max reaches that time, dew condensation starts to occur at the air outlet 7, and the upper limit time H1max or the upper limit time H2max is obtained by experiments in relation to the piping temperature.

風向板制御装置に設けられたタイマーTM1、TM2に、それぞれ上記のように上限時間H1max、上限時間H2maxを設定しておく。
まず、t1期間においては、配管温度センサ4が検出した配管温度が、配管温度閾値Ta以下であるからタイマーTM1は積算時間H1をカウントし、配管温度閾値Tb以下でないからタイマーTM2はカウントしていない。
次の、t2期間においては、配管温度センサ4が検出した配管温度が、配管温度閾値Ta以下であり、且つ配管温度閾値Tb以下であるから、タイマーTM1及びタイマーTM2は同時に積算時間H1、H2をカウントしている。
さらに、t3期間においては、配管温度センサ4が検出した配管温度が、配管温度閾値Ta以下でなく、且つ配管温度閾値Tb以下でないから、タイマーTM1及びタイマーTM2はカウントしていない。
このt1期間 からt3期間までの間、タイマーTM1がカウントした積算時間が上限時間H1maxに達するまでカウントし続け、タイマーTM2も上限時間H2maxに達するまで、積算カウントし続ける。
As described above, the upper limit time H1max and the upper limit time H2max are set in the timers TM1 and TM2 provided in the wind direction plate control device, respectively.
First, in the period t1, since the pipe temperature detected by the pipe temperature sensor 4 is equal to or less than the pipe temperature threshold Ta, the timer TM1 counts the accumulated time H1, and since it is not less than the pipe temperature threshold Tb, the timer TM2 does not count. .
In the next period t2, since the pipe temperature detected by the pipe temperature sensor 4 is equal to or lower than the pipe temperature threshold Ta and equal to or lower than the pipe temperature threshold Tb, the timer TM1 and the timer TM2 simultaneously calculate the accumulated times H1 and H2. Counting.
Furthermore, in the period t3, the pipe temperature detected by the pipe temperature sensor 4 is not lower than the pipe temperature threshold Ta and not lower than the pipe temperature threshold Tb, so the timer TM1 and the timer TM2 do not count.
From the period t1 to the period t3, the counting continues until the accumulated time counted by the timer TM1 reaches the upper limit time H1max, and the timer TM2 also continues counting until the upper limit time H2max is reached.

そして、風向板制御装置は、例えば、t1期間において、タイマーTM1がカウントした積算時間H1が上限時間H1maxに達したら、風向制御羽根アクチュエータ6を動作させて風向制御羽根5を通常の吹出位置P1から結露発生防止位置P2に変更させる。
この結露発生防止位置P2は、吹出口7から吹き出す空気の流れと平行な角度を0度とすると、その0度に近い角度で、吹き出す空気の流れをスムーズに流すようにして最も結露が発生しにくい位置であり、予め実験により求めておく。
また、風向板制御装置は、t2期間において、タイマーTM1がカウントした積算時間H1が上限時間H1maxに達したり、タイマーTM2がカウントした積算時間H2が上限時間H2maxに達したときにも、風向制御羽根アクチュエータ6を動作させて風向制御羽根5を結露発生防止位置P2に変更する。
Then, for example, when the accumulated time H1 counted by the timer TM1 reaches the upper limit time H1max in the period t1, the wind direction plate control device operates the wind direction control blade actuator 6 to move the wind direction control blade 5 from the normal blowing position P1. Change to the dew condensation prevention position P2.
In this dew condensation prevention position P2, when the angle parallel to the air flow blown out from the blowout port 7 is 0 degree, the most dew condensation occurs so that the blown air flow smoothly flows at an angle close to 0 degree. This is a difficult position and is obtained in advance by experiments.
Further, the wind direction control device also controls the wind direction control blade when the accumulated time H1 counted by the timer TM1 reaches the upper limit time H1max or the accumulated time H2 counted by the timer TM2 reaches the upper limit time H2max in the period t2. The actuator 6 is operated to change the wind direction control blade 5 to the dew condensation prevention position P2.

次に、本発明の実施の形態1に係る空気調和機の室内機における結露発生防止の制御を図5のフローチャートに基づいて説明する。
始めに、ステップST1において、冷房運転を開始したところから、風向板制御装置による結露発生防止の制御は始まる。
次に、ステップST2において、配管温度センサ4で配管温度を検出している。この検出は次のステップに進んでも継続して検出し続ける。
次に、ステップST3aにおいて、配管温度が配管温度閾値Ta以下である場合、ステップST4aにて、タイマーTM1がカウントを開始している。同時に、ステップST3bにおいて、配管温度が配管温度閾値Tb以下であった場合は、ステップST4bにおいて、タイマーTM2がカウントを開始する。
次に、ステップST5aにおいて、タイマーTM1がカウントした積算時間H1が上限時間H1maxに達した場合、又はタイマーTM2がカウントした積算時間H2が上限時間H2maxに達した場合には、ステップST6において、風向板制御装置は風向制御羽根アクチュエータ6を動作させて風向制御羽根5を結露発生防止位置P2に変更させる。
最後に、ステップST7において、タイマーTM1及びタイマーTM2のカウントをクリアしている。
Next, control for preventing the occurrence of condensation in the indoor unit of the air conditioner according to Embodiment 1 of the present invention will be described based on the flowchart of FIG.
First, in step ST1, the control for preventing the occurrence of condensation by the wind direction plate control device starts from the start of the cooling operation.
Next, in step ST2, the pipe temperature sensor 4 detects the pipe temperature. This detection continues to be detected even if it proceeds to the next step.
Next, when the pipe temperature is equal to or lower than the pipe temperature threshold Ta in step ST3a, the timer TM1 starts counting in step ST4a. At the same time, if the pipe temperature is equal to or lower than the pipe temperature threshold value Tb in step ST3b, the timer TM2 starts counting in step ST4b.
Next, in step ST5a, when the accumulated time H1 counted by the timer TM1 has reached the upper limit time H1max, or when the accumulated time H2 counted by the timer TM2 has reached the upper limit time H2max, in step ST6, the wind direction plate The control device operates the wind direction control blade actuator 6 to change the wind direction control blade 5 to the dew condensation prevention position P2.
Finally, in step ST7, the counts of the timer TM1 and the timer TM2 are cleared.

このように、配管温度センサ4が検出した配管温度が配管温度閾値Ta、Tb以下で上限時間H1max、上限時間H2maxにそれぞれ達する積算時間H1、H2を別々にカウントすることで、結露が発生しやすい吹出温度の低い時には、短い時間で風向制御羽根5を結露発生防止位置P2に変更でき、結露が発生しにくい吹出温度が高い時には、長い時間で風向制御羽根5を結露防止位置P2に変更することで、条件に合わせて結露発生を防止することができ、且つ運転状況に合わせて、可能な限り使用者の設定した風向制御羽根の位置を維持するため、直接風に当たりたくない使用者に風が当たり不快感を与えるといった問題が無くなる。   In this way, condensation is likely to occur by separately counting the accumulated times H1 and H2 that reach the upper limit time H1max and the upper limit time H2max when the pipe temperature detected by the pipe temperature sensor 4 is below the pipe temperature thresholds Ta and Tb, respectively. When the blowing temperature is low, the wind direction control blade 5 can be changed to the dew condensation prevention position P2 in a short time. When the blowing temperature at which condensation is difficult to occur is high, the wind direction control blade 5 is changed to the dew condensation prevention position P2 in a long time. Therefore, it is possible to prevent the occurrence of condensation according to the conditions, and to maintain the position of the wind direction control blade set by the user as much as possible according to the operating conditions. The problem of giving a sense of discomfort is eliminated.

なお、図3、4では配管温度閾値Ta、Tb及びこれら配管温度閾値Ta、Tbに対する上限時間をH1maxとH2maxと2つ設けたが、配管温度閾値の数をさらに増やし、細かな運転状況に対応することも可能である。   3 and 4, the pipe temperature thresholds Ta and Tb and the upper limit times for these pipe temperature thresholds Ta and Tb are set to two, H1max and H2max, but the number of pipe temperature thresholds is further increased to cope with detailed operating conditions. It is also possible to do.

また、上記実施の形態1において吹出温度検出手段が検出する吹出温度を、配管温度センサ4が検出した配管温度から風向板制御装置の演算手段により演算して用いているが、吹出口7に吹出空気温度センサを設け、吹出温度を直接検出するようにしたり、圧縮器の回転数を検出する回転数検出手段が検出した圧縮器の回転数から風向板制御装置の演算手段により吹出温度を演算して用いるようにしてもよい。   Moreover, although the blowing temperature detected by the blowing temperature detecting means in the first embodiment is calculated and used by the calculating means of the wind direction plate controller from the pipe temperature detected by the pipe temperature sensor 4, An air temperature sensor is provided to directly detect the blowout temperature, or the blowout temperature is calculated by the calculation means of the wind direction plate controller from the rotation speed of the compressor detected by the rotation speed detection means for detecting the rotation speed of the compressor. May be used.

1 吸込口、2 吸込温度センサ、3 送風機、4 配管温度センサ、5 風向制御羽根、6 風向制御羽根アクチュエータ、7 吹出口、8 通常位置、9 結露防止位置、30a 蒸発器、30b 凝縮器、50 圧縮機、51 四方弁、52 電子膨張弁(LEV)、100a 空気調和機の室内機、100b 空気調和機の室外機。     DESCRIPTION OF SYMBOLS 1 Suction port, 2 Suction temperature sensor, 3 Blower, 4 Piping temperature sensor, 5 Air direction control blade, 6 Air direction control blade actuator, 7 Air outlet, 8 Normal position, 9 Condensation prevention position, 30a Evaporator, 30b Condenser, 50 Compressor, 51 Four-way valve, 52 Electronic expansion valve (LEV), 100a Air conditioner indoor unit, 100b Air conditioner outdoor unit.

Claims (5)

凝縮器、蒸発器並びに前記凝縮器及び前記蒸発器内を流れる冷媒を圧縮する圧縮機を有する冷凍サイクルと、吸込口から吸い込んだ空気を前記蒸発器で熱交換した後に吹出口に送風する送風機と、前記吹出口に回動可能に設けられ、前記送風機によって前記吹出口から吹き出す空気の吹出方向に対して異なる方向に送風する風向制御羽根と、該風向制御羽根を回動させる風向制御羽根アクチュエータとを備えた空気調和機において、
前記吹出口から吹き出させる空気の温度を検出する吹出空気温度検出手段と、
該吹出空気温度検出手段が検出した吹出空気温度と前記吹出口周辺で結露を生じないときの予め設定された複数の吹出空気温度閾値とを比較し、前記吹出空気温度検出手段が検出した吹出空気温度が前記複数の吹出空気温度閾値のうち、少なくとも1つの吹出空気温度閾値以下で、該吹出空気温度閾値以下の積算時間が結露を発生させるよう設定された上限時間に達したときに前記風向制御羽根アクチュエータを駆動制御して前記風向制御羽根を結露の発生を防止できる所定位置に変更するようにした風向板制御装置と、
を備えたことを特徴とする空気調和機。
A condenser, an evaporator, and a refrigeration cycle having a compressor that compresses the refrigerant flowing in the condenser and the evaporator; and a blower that blows air sucked from the suction port to the outlet after heat exchange with the evaporator A wind direction control blade that is rotatably provided at the air outlet and that blows air in a direction different from the direction of air blown from the air outlet by the blower, and a wind direction control blade actuator that rotates the air direction control blade. In an air conditioner equipped with
Blown air temperature detection means for detecting the temperature of the air blown from the blowout port;
The blown air detected by the blown air temperature detecting means is compared with the blown air temperature detected by the blown air temperature detecting means and a plurality of preset blown air temperature threshold values when no condensation occurs around the blower outlet. The wind direction control when the temperature is equal to or lower than at least one of the plurality of blown air temperature thresholds and an accumulated time equal to or less than the blown air temperature threshold has reached an upper limit time set to cause condensation. A wind direction plate control device that drives and controls a blade actuator to change the wind direction control blade to a predetermined position that can prevent the occurrence of condensation; and
An air conditioner characterized by comprising:
前記複数の吹出空気温度閾値と、それぞれの吹出空気温度閾値に対応する前記上限時間との関係は、前記各吹出空気温度閾値が大小あるとき、前記各吹出空気温度閾値が高いほど前記上限時間は長く、前記各吹出空気温度閾値が低いほど前記上限時間は短く設定されていることを特徴とする請求項1記載の空気調和機。   The relationship between the plurality of blown air temperature thresholds and the upper limit time corresponding to each blown air temperature threshold is such that when each of the blown air temperature thresholds is large or small, the higher the blown air temperature threshold is, the higher the upper limit time is. 2. The air conditioner according to claim 1, wherein the upper limit time is set shorter as the air temperature threshold value is longer and lower. 前記吹出空気温度検出手段は、前記吹出口に設けられ、該吹出口を通過する空気温度を検出する吹出空気温度センサであることを特徴とする請求項1又は2記載の空気調和機。   The air conditioner according to claim 1 or 2, wherein the blown air temperature detecting means is a blown air temperature sensor that is provided at the blower outlet and detects an air temperature passing through the blower outlet. 前記吹出空気温度検出手段は、前記蒸発器に設けられ、該蒸発器の配管温度を検出する配管温度センサと、該配管温度センサが検出する配管温度から前記吹出口を通過する空気温度を演算する演算手段とを備えることを特徴とする請求項1又は2記載の空気調和機。   The blown air temperature detection means is provided in the evaporator and calculates a pipe temperature sensor for detecting a pipe temperature of the evaporator and a temperature of the air passing through the outlet from the pipe temperature detected by the pipe temperature sensor. The air conditioner according to claim 1, further comprising a calculation unit. 前記吹出空気温度検出手段は、前記圧縮機の回転数を検出する回転数検出手段と、該回転数検出手段が検出した圧縮機の回転数から前記吹出口を通過する空気温度を演算する演算手段とを備えることを特徴とする請求項1又は2記載の空気調和機。   The blown air temperature detection means includes a rotation speed detection means for detecting the rotation speed of the compressor, and a calculation means for calculating an air temperature passing through the outlet from the rotation speed of the compressor detected by the rotation speed detection means. The air conditioner according to claim 1 or 2, further comprising:
JP2009192455A 2009-08-21 2009-08-21 Air conditioner Expired - Fee Related JP5171759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009192455A JP5171759B2 (en) 2009-08-21 2009-08-21 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009192455A JP5171759B2 (en) 2009-08-21 2009-08-21 Air conditioner

Publications (2)

Publication Number Publication Date
JP2011043300A JP2011043300A (en) 2011-03-03
JP5171759B2 true JP5171759B2 (en) 2013-03-27

Family

ID=43830854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009192455A Expired - Fee Related JP5171759B2 (en) 2009-08-21 2009-08-21 Air conditioner

Country Status (1)

Country Link
JP (1) JP5171759B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107560084A (en) * 2017-09-13 2018-01-09 珠海格力电器股份有限公司 Air conditioner control method and air conditioner

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103453616B (en) * 2012-06-04 2016-03-30 珠海格力电器股份有限公司 Control method and device for preventing air conditioner condensation
JP6723799B2 (en) 2016-04-08 2020-07-15 三菱電機ビルテクノサービス株式会社 Air-conditioning outlet temperature estimation device and program
CN105910174B (en) * 2016-04-13 2019-06-25 珠海格力电器股份有限公司 Anti-condensation control method and device for fixed frequency machine and air conditioning system
CN114543346A (en) * 2022-01-21 2022-05-27 青岛海尔空调器有限总公司 Anti-condensation control method and control device for air conditioner and air conditioner
CN115342444B (en) * 2022-08-18 2024-06-28 珠海格力电器股份有限公司 Cabinet air conditioner and control method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003185225A (en) * 2001-12-20 2003-07-03 Fujitsu General Ltd Air conditioner control method
JP3620540B1 (en) * 2003-07-24 2005-02-16 松下電器産業株式会社 Control method of multi-room air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107560084A (en) * 2017-09-13 2018-01-09 珠海格力电器股份有限公司 Air conditioner control method and air conditioner
CN107560084B (en) * 2017-09-13 2018-12-28 珠海格力电器股份有限公司 Air conditioner control method and air conditioner

Also Published As

Publication number Publication date
JP2011043300A (en) 2011-03-03

Similar Documents

Publication Publication Date Title
US9599379B2 (en) Integral air conditioning system for heating and cooling
EP3301376B1 (en) Air conditioner and method for controlling the same
JP6225776B2 (en) Multi-type air conditioner
JP5171759B2 (en) Air conditioner
WO2015087606A1 (en) Indoor unit and air conditioning device
JP2008202908A (en) Air conditioner
JP2008224210A (en) Air conditioner and operation control method of air conditioner
JP4270274B2 (en) Outdoor unit
JP2010096474A (en) Air-conditioning control device and air conditioning system
JP2008281247A (en) Operation control method of air conditioner
JP2011144996A (en) Air conditioner
JP2009058222A (en) Outdoor unit
JP5071100B2 (en) Air conditioner
JP2016070575A (en) Air conditioning device
JP6578695B2 (en) Air conditioner
JP2010007996A (en) Trial operation method of air conditioner and air conditioner
JP2009243842A (en) Operation method of multiple-type air conditioner and outdoor unit
JP2014085078A (en) Air conditioner
JP6045400B2 (en) Heat source unit of refrigeration cycle apparatus and control method thereof
KR20120050325A (en) Method for removing water of air conditioner
JP2016020784A (en) Air conditioning device
JP2011149646A (en) Air conditioner
JP2005016884A (en) Air conditioner
JP5994317B2 (en) Refrigeration cycle equipment
JP5195135B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121225

R150 Certificate of patent or registration of utility model

Ref document number: 5171759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees