JP2011127737A - Rotary damper and robot joint driving device including the same - Google Patents

Rotary damper and robot joint driving device including the same Download PDF

Info

Publication number
JP2011127737A
JP2011127737A JP2009289144A JP2009289144A JP2011127737A JP 2011127737 A JP2011127737 A JP 2011127737A JP 2009289144 A JP2009289144 A JP 2009289144A JP 2009289144 A JP2009289144 A JP 2009289144A JP 2011127737 A JP2011127737 A JP 2011127737A
Authority
JP
Japan
Prior art keywords
robot
pressing force
rotation
joint
rotary damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009289144A
Other languages
Japanese (ja)
Other versions
JP5239098B2 (en
Inventor
Mitsuaki Nakahata
光明 中畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawada Industries Inc
Original Assignee
Kawada Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawada Industries Inc filed Critical Kawada Industries Inc
Priority to JP2009289144A priority Critical patent/JP5239098B2/en
Publication of JP2011127737A publication Critical patent/JP2011127737A/en
Application granted granted Critical
Publication of JP5239098B2 publication Critical patent/JP5239098B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary damper quickly damping vibration caused by fluctuation of a driving torque while stopping operation without hampering normal operation of a robot and shortening a task time of work, even if it is used for a joint of the robot with reduced output and having a flexible structure. <P>SOLUTION: The rotary damper includes a base member, a rotary member rotatably arranged around a predetermined axis with respect to the base member, a friction member fixed to at least either the base member or the rotary member and pressed to the other to slidably contact the other for giving frictional braking force to relative rotation of the rotary member with respect to the base member, a pressing means for applying pressing force on the friction member toward the other, and a pressing force changing means for reducing the pressing force applied on the friction member when rotation speed of the rotary member is increased. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、ロボットの関節等に用いて好適な回転ダンパーに関し、特には、回転速度が低いほど回転抵抗が高い回転ダンパーに関するものである。またこの発明は、その回転ダンパーを具える回転系のロボット関節駆動装置にも関するものである。   The present invention relates to a rotary damper suitable for use in a joint of a robot and the like, and particularly to a rotary damper having a higher rotational resistance as the rotational speed is lower. The present invention also relates to a rotary robot joint drive device including the rotary damper.

ロボットに作業を実行させる場合、ワークにロボットのハンドを近づける工程やワークからロボットのハンドを離す工程においてワークとハンドとの距離を所定の精度に入れる必要がある。一方、回転系のロボット関節駆動装置には負荷慣性モーメントと構造上のねじれ剛性とが存在し、作動停止時や作動開始時の駆動トルクの変動により振動が発生する。このため従来は、ロボットの構造を高剛性にすることによりこの振動を抑制してきた。   When causing the robot to perform work, it is necessary to set the distance between the workpiece and the hand within a predetermined accuracy in the step of bringing the robot hand close to the workpiece and the step of separating the robot hand from the workpiece. On the other hand, a rotary system robot joint drive device has a load moment of inertia and a structural torsional rigidity, and vibration is generated due to fluctuations in drive torque when the operation is stopped or started. For this reason, conventionally, this vibration has been suppressed by making the robot structure highly rigid.

ところで近年、人とロボットとが共存・協調作業する場合が増加しており、かかる場合の人に対するロボットの安全性のためには、ロボットを小出力化することが本質的解決になる。しかしながら、ロボットを小出力化すると構造上剛性が小さくならざるを得ず、いわゆる柔構造のロボットとなって振動振幅が大きくなる。   By the way, in recent years, cases where people and robots coexist and collaborate are increasing, and in order to ensure the safety of robots against such people, reducing the output of the robot is an essential solution. However, if the output of the robot is reduced, the rigidity of the structure is inevitably reduced, and the vibration amplitude increases as a so-called flexible robot.

特に、ワークとハンドとの距離を所定の精度に入れるためにワークの位置確認を撮像装置によって高精度に行う場合には、撮像装置をロボットのハンドまたはその近傍に装備することが望ましいが、その場合にはハンドの振動を撮像装置が要求する振幅以下に納める必要があり、作業のタスクタイムからは、振動の整定時間を許容時間以内としなければならない。そこで、ハンドの振動を減衰させるためにロボット関節駆動装置の振動を減衰させる機構が必要となる。このような回転系の振動減衰機構としては従来、例えば、非特許文献1記載のオイル式の回転ダンパー(ロータリーダンパー)が知られている。   In particular, when the position of the workpiece is confirmed with high accuracy by the imaging device in order to set the distance between the workpiece and the predetermined accuracy, it is desirable to equip the imaging device with or near the robot hand. In some cases, it is necessary to keep the vibration of the hand below the amplitude required by the imaging device, and from the task time of the work, the vibration settling time must be within an allowable time. Therefore, in order to attenuate the vibration of the hand, a mechanism for attenuating the vibration of the robot joint drive device is required. Conventionally, for example, an oil-type rotary damper (rotary damper) described in Non-Patent Document 1 is known as such a vibration damping mechanism of a rotating system.

2009年10月19日ダウンロードの不二ラテックス株式会社ホームページ中、精密機器事業部 製品情報 ロータリーダンパー・ヒンジダンパー 参照(http://www.fujilatex.co.jp/seimitsukiki/data/product/r-dumper-structure.pdf)Refer to the product information Rotary Damper and Hinge Damper of Precision Equipment Division on Fuji Latex Co., Ltd. homepage downloaded on October 19, 2009 (http://www.fujilatex.co.jp/seimitsukiki/data/product/r-dumper -structure.pdf)

しかしながら上述した従来の回転ダンパーは、オイルの粘性抵抗によって発生する制動力を利用していることから、回転速度が上がるほど回転抵抗が大きくなり、このため、回転系のロボット関節駆動装置に設けると、ロボットの作動速度が上がる通常の作動中に回転抵抗が大きくなってエネルギー損失が大きくなり、ロボットを小出力化した場合に通常作動が妨げられてしまうという問題があった。   However, since the conventional rotary damper described above uses the braking force generated by the viscous resistance of oil, the rotational resistance increases as the rotational speed increases. For this reason, if it is provided in a robot joint drive device of a rotating system. However, there is a problem that during normal operation in which the operation speed of the robot increases, the rotational resistance increases and energy loss increases, and the normal operation is hindered when the output of the robot is reduced.

それゆえこの発明は、小出力化した柔構造のロボットの関節に用いても、ロボットの通常作動を妨げることなしに、作動停止時や作動開始時の駆動トルクの変動による振動を速やかに減衰させ、作業のタスクタイムを短縮し得る回転ダンパーおよび、その回転ダンパーを具える回転系のロボット関節駆動装置を提供することを目的としている。   Therefore, the present invention quickly attenuates vibrations caused by fluctuations in drive torque at the time of stopping or at the start of operation without interfering with the normal operation of the robot even when used for the joints of flexible robots with reduced output. An object of the present invention is to provide a rotary damper capable of shortening the task time of work, and a rotary robot joint drive device including the rotary damper.

この発明は上記課題を有利に解決するものであり、この発明の回転ダンパーは、基部材と、前記基部材に対し所定軸線周りに回転可能に配置された回転部材と、前記基部材と前記回転部材との少なくとも一方に固設されるとともに他方へ向けて押圧されて前記他方に摺接し、前記基部材に対する前記回転部材の相対回転に摩擦制動力を与える摩擦部材と、前記摩擦部材に前記他方へ向けて押圧力を加える押圧手段と、前記回転部材の回転速度が上がると前記摩擦部材に加わる押圧力を減少させる押圧力変更手段と、を具えてなるものである。   The present invention advantageously solves the above-described problems, and a rotary damper according to the present invention includes a base member, a rotary member arranged to be rotatable around a predetermined axis with respect to the base member, the base member, and the rotation A friction member fixed to at least one of the members and pressed toward the other to be in sliding contact with the other, and applying a friction braking force to the relative rotation of the rotating member with respect to the base member; and the other to the friction member A pressing means for applying a pressing force toward the head, and a pressing force changing means for reducing the pressing force applied to the friction member when the rotational speed of the rotating member increases.

また、この発明のロボット関節駆動装置は、ロボットの二つのリンク部材を連結する関節に設けられた駆動装置であって、モータと、入力軸を前記モータの出力軸に駆動結合され、前記モータの出力軸の回転を減速した出力回転で前記二つのリンク部材の一方を他方に対し回動させる減速機と、前記モータの出力軸または前記減速機の入力軸と前記二つのリンク部材の一方との間に設けられてその軸の回転をその一方のリンク部材に対し制動する前記回転ダンパーと、を具えてなるものである。   The robot joint drive device according to the present invention is a drive device provided at a joint connecting two link members of a robot, wherein a motor and an input shaft are drivingly coupled to an output shaft of the motor, A speed reducer that rotates one of the two link members with respect to the other by an output rotation obtained by reducing the rotation of the output shaft, and an output shaft of the motor or an input shaft of the speed reducer and one of the two link members. The rotary damper provided between them to brake the rotation of the shaft against one of the link members.

上述したこの発明の回転ダンパーにあっては、基部材とその基部材に対し所定軸線周りに回転可能に配置された回転部材との少なくとも一方に固設された摩擦部材が、それら基部材と回転部材とのうちの他方へ向けて押圧手段により押圧されてその他方に摺接して基部材に対する回転部材の相対回転に摩擦制動力を与え、そして押圧力変更手段が、回転部材の回転速度が上がると摩擦部材に加わる押圧力を減少させて、摩擦部材の摩擦制動力を減少させる。   In the above-described rotary damper of the present invention, the friction member fixed to at least one of the base member and the rotary member arranged to be rotatable around a predetermined axis with respect to the base member is rotated with the base member. Pressed by the pressing means toward the other of the members and slidably contacted in the other direction to give a friction braking force to the relative rotation of the rotating member with respect to the base member, and the pressing force changing means increases the rotation speed of the rotating member And the pressing force applied to the friction member is reduced to reduce the friction braking force of the friction member.

従って、この発明の回転ダンパーによれば、回転系のロボット関節駆動装置に設けた場合に、関節の作動速度が低い作動停止時や作動開始時には高い制動力で振動を抑え、一方、関節の作動速度が上がる通常の作動中には制動力が減少し、回転抵抗が小さくなってエネルギー損失が小さくなるので、小出力化した柔構造のロボットの関節に用いても、ロボットの通常作動を妨げずに作動停止時の駆動トルクの変動による振動を速やかに減衰させ、作業のタスクタイムを短縮することができる。また、関節の作動停止中も関節に制動力を与えるので、別途ブレーキを設けなくてもロボットの腕等を停止位置に維持することができる。   Therefore, according to the rotary damper of the present invention, when it is provided in a rotary system robot joint drive device, vibration is suppressed with a high braking force at the time of operation stop and operation start when the operation speed of the joint is low, while the operation of the joint is During normal operation at higher speeds, the braking force decreases, and the rotational resistance decreases and energy loss decreases, so even if it is used for a flexible robot joint with reduced output, normal operation of the robot is not hindered. In addition, it is possible to quickly attenuate the vibration due to the fluctuation of the driving torque when the operation is stopped, and to shorten the task time of the work. In addition, since the braking force is applied to the joint even when the joint is stopped, the arm of the robot can be maintained at the stop position without providing a separate brake.

なお、この発明の回転ダンパーにおいては、前記押圧力変更手段は、前記回転部材の回転に伴って前記軸線周りに旋回する錘部材に加わる遠心力を用いて前記押圧力を減少させてもよく、このようにすれば、押圧手段の押圧力を機械的な構成によって減少させることができるので、押圧力変更手段を安価に構成することができる。   In the rotary damper of the present invention, the pressing force changing means may reduce the pressing force using a centrifugal force applied to a weight member that rotates around the axis as the rotating member rotates. In this way, the pressing force of the pressing means can be reduced by a mechanical configuration, so that the pressing force changing means can be configured at low cost.

また、この発明の回転ダンパーにおいては、前記押圧手段は、前記摩擦部材に前記軸線方向で前記他方へ向けて押圧力を加え、前記押圧力変更手段は、前記錘部材としての鋼球と、前記鋼球と当接する、前記軸線を中心とした裁頭円錐状の凹面を持つ、前記基部材としての円盤状部材と、を有し、前記円盤状部材は、前記鋼球に加わる遠心力を前記凹面で前記軸線方向の力に変換し、その軸線方向力で前記回転部材を当該円盤状部材から離間する方向へ押圧しても良く、このようにすれば、押圧力変更手段を簡易かつ安価に構成することができる。   In the rotary damper of the present invention, the pressing means applies a pressing force to the friction member toward the other in the axial direction, and the pressing force changing means includes a steel ball as the weight member, A disk-shaped member as a base member having a frustoconical concave surface centered on the axis, which is in contact with a steel ball, and the disk-shaped member exerts a centrifugal force applied to the steel ball The concave surface may be converted into the axial force, and the axial force may be used to press the rotating member in a direction away from the disk-shaped member. Can be configured.

一方、上述したこの発明のロボット関節駆動装置にあっては、ロボットの二つのリンク部材を連結する関節に設けられたモータの出力軸または、その関節に設けられて入力軸をそのモータの出力軸に駆動結合され、そのモータの出力軸の回転を減速した出力回転で二つのリンク部材の一方を他方に対し回動させる減速機の入力軸と、二つのリンク部材の一方との間に設けられた上記発明の回転ダンパーが、モータの出力軸または減速機の入力軸の回転速度が上がると、その軸に加える上記一方のリンク部材に対する制動力を減少させる。   On the other hand, in the robot joint drive device of the present invention described above, the output shaft of the motor provided at the joint connecting the two link members of the robot or the input shaft provided at the joint is used as the output shaft of the motor. Is provided between an input shaft of a speed reducer that rotates one of the two link members with respect to the other by an output rotation reduced in rotation of the output shaft of the motor and one of the two link members. When the rotational speed of the output shaft of the motor or the input shaft of the speed reducer increases, the rotary damper of the above invention reduces the braking force applied to the one link member on the shaft.

従って、この発明のロボット関節駆動装置によれば、ロボットの二つのリンク部材を連結する関節の作動速度が低い作動停止時や作動開始時には高い制動力で振動を抑え、作動速度が上がる通常の作動中には制動力が減少し、回転抵抗が小さくなってエネルギー損失が小さくなるので、小出力化した柔構造のロボットの関節に用いても、ロボットの通常作動を妨げずに作動停止時や作動開始時の駆動トルクの変動による振動を速やかに減衰させ、作業のタスクタイムを短縮することができる。また、関節の作動停止中も関節に制動力を与えるので、別途ブレーキを設けなくてもロボットの腕等を停止位置に維持することができる。   Therefore, according to the robot joint drive device of the present invention, the normal operation of increasing the operation speed by suppressing vibration with a high braking force when the operation speed of the joint connecting the two link members of the robot is low or at the start of the operation is suppressed. Since the braking force is reduced and the rotational resistance is reduced and the energy loss is reduced, even when used for flexible robot joints with reduced output, normal operation of the robot is not interrupted or activated without interfering with normal operation of the robot. The vibration due to the fluctuation of the driving torque at the start can be quickly attenuated, and the task time of the work can be shortened. In addition, since the braking force is applied to the joint even when the joint is stopped, the arm of the robot can be maintained at the stop position without providing a separate brake.

この発明の回転ダンパーの一実施例を示す断面図である。It is sectional drawing which shows one Example of the rotation damper of this invention. (a)および(b)は、上記実施例の回転ダンパーの外観を裏側および表側からそれぞれ示す斜視図である。(A) And (b) is a perspective view which shows the external appearance of the rotary damper of the said Example from the back side and a front side, respectively. (a)および(b)は、上記実施例の回転ダンパーの外観を一部切欠いて裏側および表側からそれぞれ示す斜視図である。(A) And (b) is a perspective view which cuts off some external appearances of the rotary damper of the said Example, and each shows from a back side and a front side. (a)および(b)は、上記実施例の回転ダンパーを裏側および表側からそれぞれ示す分解斜視図である。(A) And (b) is a disassembled perspective view which shows the rotary damper of the said Example from the back side and the front side, respectively. 上記実施例の回転ダンパーの回転数とダンピングトルクとの関係を示す特性図である。It is a characteristic view which shows the relationship between the rotation speed of the rotation damper of the said Example, and damping torque. (a),(b)および(c)は、上記実施例の回転ダンパーを装着した、この発明のロボット関節駆動装置の一実施例としての肩関節駆動装置を具える作業ロボットを例示する正面図、側面図および斜視図である。(A), (b) and (c) are front views illustrating a working robot equipped with a shoulder joint drive device as an embodiment of the robot joint drive device of the present invention, to which the rotary damper of the above embodiment is mounted. FIG. 2 is a side view and a perspective view. (a),(b)および(c)は、上記実施例の肩関節駆動装置の構成を示す腕全体の側面図、正面図および斜視図である。(A), (b) and (c) are the side view of the whole arm which shows the structure of the shoulder joint drive device of the said Example, a front view, and a perspective view. 上記実施例の肩関節駆動装置の構成を示す、図7(a)のD−D線に沿う断面図である。It is sectional drawing which follows the DD line | wire of Fig.7 (a) which shows the structure of the shoulder joint drive device of the said Example.

以下、この発明の実施の形態を図面に基づく実施例によって詳細に説明する。ここに、図1は、この発明の回転ダンパーの一実施例を示す断面図、図2(a),(b)は、上記実施例の回転ダンパーの外観を裏側および表側からそれぞれ示す斜視図、図3(a),(b)は、上記実施例の回転ダンパーの外観を一部切欠いて裏側および表側からそれぞれ示す斜視図、そして図4(a),(b)は、上記実施例の回転ダンパーを裏側および表側からそれぞれ示す分解斜視図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of the rotary damper according to the present invention, and FIGS. 2A and 2B are perspective views showing the appearance of the rotary damper of the embodiment from the back side and the front side, respectively. 3 (a) and 3 (b) are perspective views showing the appearance of the rotary damper of the above embodiment with a part cut away from the back side and the front side, respectively, and FIGS. 4 (a) and 4 (b) are views of the rotation of the above embodiment. It is a disassembled perspective view which shows a damper from a back side and a front side, respectively.

この実施例の回転ダンパーは、図1に示すように、基部材および円盤状部材としての制御ディスク1と、その制御ディスク1に対し所定中心軸線C周りに回転可能に配置された、回転部材としての回転ディスク2と、それら制御ディスク1と回転ディスク2とのうちここでは回転ディスク2に固設されるとともに制御ディスク1へ向けて押圧されてその制御ディスク1に摺接し、制御ディスク1に対する回転ディスク2の相対回転に摩擦制動力を与える、摩擦部材としての摺動リング3と、その摺動リング3に制御ディスク1へ向けて押圧力を加える、押圧手段としての高弾性ワッシャー4と、回転ディスク2の回転速度が上がると摺動リング3に加わる押圧力を減少させる、押圧力変更手段としての押圧力変更機構5とを具えている。   As shown in FIG. 1, the rotary damper of this embodiment includes a control disk 1 as a base member and a disk-shaped member, and a rotary member disposed so as to be rotatable around a predetermined central axis C with respect to the control disk 1. The rotating disk 2 and the control disk 1 and the rotating disk 2 are fixed to the rotating disk 2 and pressed against the control disk 1 so as to be in sliding contact with the control disk 1 and rotate relative to the control disk 1. A sliding ring 3 as a friction member that gives a friction braking force to the relative rotation of the disk 2, a highly elastic washer 4 as a pressing means that applies a pressing force to the sliding ring 3 toward the control disk 1, and rotation A pressing force changing mechanism 5 is provided as pressing force changing means for reducing the pressing force applied to the sliding ring 3 when the rotational speed of the disk 2 increases.

図2〜図4に示すように、制御ディスク1は、略円形の蓋状のカバー6内に嵌め込まれて、そのカバー6に図示しない留めネジで固定されている。また回転ディスク2の外側面には、後述のように歯付きベルトを掛け回される歯付きプーリー7がボルト8で固定されており、摺動リング3は、回転ディスク2の内側面に形成された環状溝2a内に嵌め込まれて位置決めされた状態で回転ディスク2に接着固定されている。この摺動リング3は、この実施例では合成ゴムからなる軸線方向弾性変形量の多いものとしているが、カーボンリング等の軸線方向弾性変形量の少ない或いは殆どないものとしても良い。   As shown in FIGS. 2 to 4, the control disk 1 is fitted into a substantially circular lid-like cover 6 and fixed to the cover 6 with a fastening screw (not shown). Further, a toothed pulley 7 around which a toothed belt is wound is fixed by bolts 8 on the outer surface of the rotating disk 2, and the sliding ring 3 is formed on the inner surface of the rotating disk 2. It is fixed to the rotary disk 2 in a state of being fitted and positioned in the annular groove 2a. In this embodiment, the sliding ring 3 has a large amount of elastic deformation in the axial direction made of synthetic rubber. However, the sliding ring 3 may have a small or little amount of elastic deformation in the axial direction, such as a carbon ring.

回転ディスク2の外周部分には、中心軸線Cの軸線方向に並んで各々半径方向外方へ延在する二枚の外周フランジ2b,2cが形成されており、それらのうち内側面側の外周フランジ2bには、半径方向外方へ開いたU字状のボール受け溝2dが周方向に間隔を空けて多数形成されている。そして、これらボール受け溝2d内にはそれぞれ、錘としての鋼球9が収容されており、これらの鋼球9は、カバー6によって半径方向外方から覆われて、半径方向に外れ止めされるとともに、外側面側の外周フランジ2cによって中心軸線Cの軸線方向外方から覆われている。   Two outer peripheral flanges 2b and 2c are formed on the outer peripheral portion of the rotary disk 2 so as to be aligned in the axial direction of the central axis C and extend outward in the radial direction. In 2b, a large number of U-shaped ball receiving grooves 2d opened outward in the radial direction are formed at intervals in the circumferential direction. Steel balls 9 as weights are accommodated in the ball receiving grooves 2d, respectively. These steel balls 9 are covered from the outside in the radial direction by the cover 6 and are prevented from coming off in the radial direction. At the same time, the outer peripheral flange 2c on the outer surface side covers the center axis C from the outside in the axial direction.

制御ディスク1の内側面側の外周部分には、中心軸線Cを中心とした浅い裁頭円錐状の凹面1aが形成されており、各鋼球9はボール受け溝2d内で、この凹面1aに当接しつつ中心軸線Cに対し半径方向内外方へ移動することができる。また制御ディスク1の内側面側の、摺動リング3に対向する部分には、中心軸線Cを中心として半径方向へ延在する環状の摺接面1bが形成されており、摺動リング3は、鋼球9に遠心力が作用しない回転ディスク2の静止状態ではその摺接面1bに当接している。   A shallow frustoconical concave surface 1a centering on the central axis C is formed on the outer peripheral portion of the inner surface side of the control disk 1, and each steel ball 9 is formed in the concave surface 1a in the ball receiving groove 2d. It can move inward and outward in the radial direction with respect to the central axis C while abutting. Further, an annular sliding contact surface 1b extending in the radial direction about the central axis C is formed at a portion facing the sliding ring 3 on the inner surface side of the control disk 1, and the sliding ring 3 is In the stationary state of the rotating disk 2 where the centrifugal force does not act on the steel ball 9, the steel ball 9 is in contact with the sliding contact surface 1b.

制御ディスク1の中心部分には、内方端部に内周フランジを持つ貫通孔1cが形成され、その貫通孔1c内にはベアリング10のアウターレース10aが嵌挿されている。また回転ディスク2の中心部分には、回転ディスク2の外側面から凹陥した凹部2eと、貫通孔2fとが形成され、その貫通孔2f内には、凹部2e内に収容される外周フランジ11aを一端部に持つ押圧軸11が中心軸線C方向へ摺動自在に嵌挿されており、その押圧軸11の他端部は、ベアリング10のインナーレース10b内に中心軸線C方向へ摺動自在に嵌挿されるとともに、中心部に雌ネジ11bを形成されている。   A through hole 1c having an inner peripheral flange at the inner end is formed in the central portion of the control disk 1, and an outer race 10a of the bearing 10 is fitted into the through hole 1c. Further, a concave portion 2e recessed from the outer surface of the rotary disk 2 and a through hole 2f are formed in the central portion of the rotary disk 2, and an outer peripheral flange 11a accommodated in the concave portion 2e is formed in the through hole 2f. A pressing shaft 11 having one end portion is slidably inserted in the central axis C direction, and the other end portion of the pressing shaft 11 is slidable in the inner race 10b of the bearing 10 in the central axis C direction. While being inserted, a female screw 11b is formed at the center.

押圧軸11の上記他端部には、その雌ネジ11bに螺合された位置決めネジ12を介して押さえワッシャー13が取り付けられており、その押さえワッシャー13は、ベアリング10のインナーレース10bの外側端面に当接している。そして上述した高弾性ワッシャー4は、押圧軸11の外周フランジ11aと回転ディスク2の凹部2eとの間に介挿されている。   A pressing washer 13 is attached to the other end portion of the pressing shaft 11 via a positioning screw 12 screwed to the female screw 11 b. The pressing washer 13 is an outer end surface of the inner race 10 b of the bearing 10. Abut. The high-elastic washer 4 described above is interposed between the outer peripheral flange 11 a of the pressing shaft 11 and the recess 2 e of the rotary disk 2.

これにより、位置決めネジ12を押圧軸11の雌ネジ11bにねじ込んでゆくと、そのネジ推力により押圧軸11が押さえワッシャー13およびベアリング10を介して制御ディスク1に引き寄せられて、押圧軸11の外周フランジ11aが回転ディスク2の凹部2eとの間で高弾性ワッシャー4を圧縮するとともに、その圧縮反力により回転ディスク2が制御ディスク1の摺接面1bへ向けて摺動リング3を押圧して摺動リング3を摺接面1bに当接させ、摺動リング3を弾性的に圧縮するので、鋼球9に遠心力が作用しない回転ディスク2の静止状態で、制御ディスク1の摺接面1bに対し摺動リング3を押圧する押圧力(所期推力)ひいては制御ディスク1の摺接面1bに対する摺動リング3の摩擦制動力が所望の値になるように、押圧軸11への位置決めネジ12のねじ込み量を調節する。   As a result, when the positioning screw 12 is screwed into the female screw 11 b of the pressing shaft 11, the pressing shaft 11 is attracted to the control disk 1 by the screw thrust via the pressing washer 13 and the bearing 10, and the outer periphery of the pressing shaft 11. The flange 11a compresses the highly elastic washer 4 with the recess 2e of the rotating disk 2, and the rotating disk 2 presses the sliding ring 3 toward the sliding contact surface 1b of the control disk 1 by the compression reaction force. Since the sliding ring 3 is brought into contact with the sliding contact surface 1b and the sliding ring 3 is elastically compressed, the sliding contact surface of the control disk 1 is maintained in a stationary state of the rotating disk 2 where no centrifugal force acts on the steel ball 9. The pressing force (predetermined thrust) for pressing the sliding ring 3 against 1b, and the pressing force of the sliding ring 3 against the sliding contact surface 1b of the control disk 1 is set to a desired value. Adjusting the screwing amount of screw 12 to the shaft 11.

一方、回転ディスク2が中心軸線C周りに回転して鋼球9に遠心力が作用すると、鋼球9は、回転ディスク2の外周フランジ2cの内側面および制御ディスク1の凹面1aに沿って中心軸線Cに対し半径方向外方へ移動しつつ、回転ディスク2を制御ディスク1から離間する方向(図1では右方)へ押し出して、高弾性ワッシャー4をさらに圧縮するとともに、摺動リング3の圧縮量を減少させ、制御ディスク1の摺接面1bへ向けて摺動リング3に加わる押圧力ひいては制御ディスク1の摺接面1bに対する摺動リング3の摩擦制動力を減少させる。従って、鋼球9と、回転ディスク2の外周フランジ2cの内側面と、制御ディスク1の凹面1aとは、押圧力変更機構5を構成している。   On the other hand, when the rotating disk 2 rotates around the central axis C and centrifugal force acts on the steel ball 9, the steel ball 9 is centered along the inner surface of the outer peripheral flange 2 c of the rotating disk 2 and the concave surface 1 a of the control disk 1. While moving radially outward with respect to the axis C, the rotary disk 2 is pushed away from the control disk 1 (to the right in FIG. 1) to further compress the highly elastic washer 4 and The amount of compression is reduced, and the pressing force applied to the sliding ring 3 toward the sliding contact surface 1b of the control disk 1, and hence the friction braking force of the sliding ring 3 against the sliding contact surface 1b of the control disk 1 is decreased. Therefore, the steel ball 9, the inner surface of the outer peripheral flange 2 c of the rotating disk 2, and the concave surface 1 a of the control disk 1 constitute a pressing force changing mechanism 5.

なお、この実施例では、回転ディスク2の静止状態で、図1に示すように、外側面側の外周フランジ2cに当接した鋼球9と制御ディスク1の凹面1aとの間に僅かなクリアランスCLが空くように、上記所期推力下での摺動リング3の軸線方向厚さを設定しており、それゆえ、回転ディスク2の回転速度がある程度上昇して鋼球9に作用する遠心力がある程度大きくなり、鋼球9が継続的に凹面1aと接触するまでは、制御ディスク1の摺接面1bへの摺動リング3の押圧力は減少しない。   In this embodiment, when the rotating disk 2 is stationary, a slight clearance is provided between the steel ball 9 abutting on the outer peripheral flange 2c on the outer surface side and the concave surface 1a of the control disk 1 as shown in FIG. The axial thickness of the sliding ring 3 under the above-mentioned desired thrust is set so that CL is free. Therefore, the centrifugal force acting on the steel ball 9 with a certain increase in the rotational speed of the rotating disk 2 Until the steel ball 9 continuously contacts the concave surface 1a, the pressing force of the sliding ring 3 on the sliding contact surface 1b of the control disk 1 does not decrease.

かかる実施例の回転ダンパーにあっては、回転ディスク2に固設された摺動リング3が、制御ディスク1へ向けて高弾性ワッシャー4により押圧されてその制御ディスク1の摺接面1bに摺接して制御ディスク1に対する回転ディスク2の相対回転に摩擦制動力を与え、そして鋼球9と回転ディスク2の外周フランジ2cの内側面と制御ディスク1の凹面1aとが、回転ディスク2の回転速度が上がると鋼球9に作用する遠心力により上述の如くして摺動リング3に加わる押圧力を減少させて、摺動リング3の摩擦制動力を減少させる。   In the rotary damper of this embodiment, the sliding ring 3 fixed to the rotary disk 2 is pressed by the high elastic washer 4 toward the control disk 1 and slides on the sliding contact surface 1b of the control disk 1. Friction braking force is applied to the relative rotation of the rotating disk 2 with respect to the control disk 1 in contact with the steel ball 9, the inner surface of the outer peripheral flange 2 c of the rotating disk 2, and the concave surface 1 a of the control disk 1. Is raised, the pressing force applied to the sliding ring 3 is reduced as described above by the centrifugal force acting on the steel ball 9, and the frictional braking force of the sliding ring 3 is reduced.

従って、この実施例の回転ダンパーによれば、回転系のロボット関節駆動装置に設けた場合に、関節の作動速度が低い作動停止時や作動開始時には高い制動力で振動を抑え、一方、関節の作動速度が上がる通常の作動中には制動力が減少し、回転抵抗が小さくなってエネルギー損失が小さくなるので、小出力化した柔構造のロボットの関節に用いても、ロボットの通常作動を妨げずに作動停止時の駆動トルクの変動による振動を速やかに減衰させ、作業のタスクタイムを短縮することができる。また、関節の作動停止中も関節に制動力を与えるので、別途ブレーキを設けなくてもロボットの腕等を停止位置に維持することができる。   Therefore, according to the rotary damper of this embodiment, when it is provided in a rotary robot joint drive device, vibration is suppressed with a high braking force when the operation speed of the joint is low or when the operation is started, During normal operation, which increases the operating speed, the braking force decreases, the rotational resistance decreases, and the energy loss decreases, so even if it is used for a flexible robot joint with reduced output, normal operation of the robot is hindered. Therefore, it is possible to quickly attenuate the vibration caused by the fluctuation of the driving torque when the operation is stopped, and to shorten the task time of the work. In addition, since the braking force is applied to the joint even when the joint is stopped, the arm of the robot can be maintained at the stop position without providing a separate brake.

しかも、この実施例の回転ダンパーによれば、押圧力変更手段は、回転ディスク2の回転に伴って中心軸線C周りに旋回する鋼球9に加わる遠心力を用いて摺動リング3に加わる押圧力を減少させるので、高弾性ワッシャー4の押圧力を機械的な構成によって減少させ得て、押圧力変更手段を安価に構成することができる。   In addition, according to the rotary damper of this embodiment, the pressing force changing means is configured so that the pressing force applied to the sliding ring 3 using the centrifugal force applied to the steel ball 9 turning around the central axis C as the rotating disk 2 rotates. Since the pressure is reduced, the pressing force of the highly elastic washer 4 can be reduced by a mechanical configuration, and the pressing force changing means can be configured at low cost.

また、この実施例の回転ダンパーによれば、高弾性ワッシャー4は、摺動リング3に中心軸線C方向で制御ディスク1へ向けて押圧力を加え、押圧力変更手段は、鋼球9と、その鋼球9と当接する裁頭円錐状の凹面1aを持つ制御ディスク1と、その鋼球9と内側面で当接する外周フランジ2cを持つ回転ディスク2とを有し、制御ディスク1は、鋼球9に加わる遠心力を凹面1aで中心軸線C方向の力に変換し、その軸線方向力で回転ディスク1を制御ディスク2から離間する方向へ押圧するので、押圧力変更手段を簡易かつ安価に構成することができる。   Further, according to the rotary damper of this embodiment, the highly elastic washer 4 applies a pressing force toward the control disk 1 in the direction of the central axis C to the sliding ring 3, and the pressing force changing means includes the steel ball 9, The control disk 1 has a concave conical concave surface 1a that comes into contact with the steel ball 9, and the rotary disk 2 has an outer peripheral flange 2c that comes into contact with the steel ball 9 on the inner surface. The centrifugal force applied to the sphere 9 is converted into a force in the direction of the central axis C by the concave surface 1a, and the rotary disk 1 is pressed in a direction away from the control disk 2 by the axial force, so that the pressing force changing means can be simply and inexpensively. Can be configured.

図5は、上記実施例の回転ダンパーの回転ディスク2の回転数(回転速度)と、制御ディスク1と回転ディスク2との間のダンピングトルク(摩擦制動力)との関係を例示する特性図であり、図中曲線Aは、所期推力35Nを摺動リング3に加えた場合、また曲線Bは、所期推力50Nを摺動リング3に加えた場合をそれぞれ示す。何れの場合も約500rpm(回転/分)までは、鋼球9の遠心力が小さいためダンピングトルクは変化せず、約500rpmを超えると、曲線Aでは、約2000rpmまで上昇する間にダンピングトルクが約40mNmから約5mNmまで減少し、約2000rpmを超えると図では明らかでないが摺動リング3が制御ディスク1の摺接面1bから離間してダンピングトルクが実質上ゼロになる。また曲線Bでは、約2500rpmまで上昇する間にダンピングトルクが約56mNmから約2mNmまで減少し、約2500rpmを超えると図では明らかでないが摺動リング3が制御ディスク1の摺接面1bから離間してダンピングトルクが実質上ゼロになる。   FIG. 5 is a characteristic diagram illustrating the relationship between the rotational speed (rotational speed) of the rotary disk 2 of the rotary damper of the above embodiment and the damping torque (friction braking force) between the control disk 1 and the rotary disk 2. In the figure, a curve A shows a case where an intended thrust 35N is applied to the sliding ring 3, and a curve B shows a case where an intended thrust 50N is applied to the sliding ring 3, respectively. In any case, up to about 500 rpm (rotation / min), the damping torque does not change because the centrifugal force of the steel ball 9 is small, and when it exceeds about 500 rpm, in the curve A, the damping torque is increased to about 2000 rpm. When it decreases from about 40 mNm to about 5 mNm and exceeds about 2000 rpm, the sliding ring 3 is separated from the sliding contact surface 1b of the control disk 1 and the damping torque becomes substantially zero although it is not apparent in the figure. In curve B, the damping torque decreases from about 56 mNm to about 2 mNm while increasing to about 2500 rpm, and when it exceeds about 2500 rpm, the sliding ring 3 moves away from the sliding contact surface 1b of the control disk 1 although it is not apparent in the figure. As a result, the damping torque becomes substantially zero.

従ってこの図からも、上記実施例の回転ダンパーを回転系のロボット関節駆動装置に設けた場合に、関節の作動速度が低い作動停止時や作動開始時には高い制動力で振動を抑え、一方、関節の作動速度が上がる通常の作動中には制動力が減少し、回転抵抗が小さくなってエネルギー損失が小さくなることは明らかである。なお、上記のように摺動リング3を、合成ゴムからなる軸線方向弾性変形量の多いものとした場合には、回転ディスク2の回転数変化の広い範囲に亘ってダンピングトルク(摩擦制動力)が穏やかに変化するが、摺動リング3を、カーボンリング等の弾性変形量の少ない或いは殆どないものとした場合には、回転ディスク2の僅かな回転数変化でダンピングトルクを実質的にゼロまで急激に減少させることができる。また、使用する鋼球9の数を減少させれば、回転数の上昇に対するダンピングトルクの減少の傾きを小さくすることができる。   Therefore, also from this figure, when the rotary damper of the above embodiment is provided in the robot joint drive device of the rotary system, vibration is suppressed with a high braking force when the operation speed of the joint is low or when the operation is started, It is clear that during normal operation when the operating speed of the engine increases, the braking force decreases, the rotational resistance decreases, and the energy loss decreases. If the sliding ring 3 is made of a synthetic rubber and has a large amount of elastic deformation in the axial direction as described above, a damping torque (friction braking force) over a wide range of changes in the rotational speed of the rotating disk 2 is achieved. However, if the sliding ring 3 is made of a carbon ring or the like with little or no elastic deformation, the damping torque can be reduced to substantially zero with a slight change in the rotational speed of the rotating disk 2. It can be reduced rapidly. Moreover, if the number of steel balls 9 to be used is decreased, the inclination of the decrease in the damping torque with respect to the increase in the rotational speed can be reduced.

図6(a),(b)および(c)は、上記実施例の回転ダンパーを装着した、この発明のロボット関節駆動装置の一実施例としての肩関節駆動装置を具える作業ロボットを例示する正面図、側面図および斜視図、図7(a),(b)および(c)は、上記実施例の肩関節駆動装置の構成を示す腕全体の側面図、正面図および斜視図、そして図8は、上記実施例の肩関節駆動装置の構成を示す、図7(a)のD−D線に沿う断面図であり、図中、符号20は上記作業ロボット、30は上記実施例の回転ダンパーを示す。   6 (a), 6 (b) and 6 (c) exemplify a working robot equipped with a shoulder joint drive device as an embodiment of the robot joint drive device of the present invention equipped with the rotary damper of the above embodiment. Front view, side view and perspective view, FIGS. 7A, 7B and 7C are a side view, a front view and a perspective view of the entire arm showing the configuration of the shoulder joint drive device of the above embodiment, and FIG. 8 is a cross-sectional view taken along the line DD in FIG. 7A showing the configuration of the shoulder joint drive device of the above embodiment. In the figure, reference numeral 20 denotes the work robot, and 30 denotes the rotation of the embodiment. Shows the damper.

この作業ロボット20は、セル生産現場等において人と共存、協調して作業を行うためのもので、図6に示すように、箱状の上部21aと柱状の下部21bとを有する胴体21と、その胴体21の上部21aの上端に設けられた頭22と、胴体21の上部21aのロボット自身から見て左右側部に設けられた二本の腕23と、それらの腕23の先端に設けられたエンドエフェクタの一例としての図示しない手と、胴体21の下部21bを脚の代わりに支持する図示しない台車とを具えている。   The work robot 20 is for coexisting and cooperating with a person at a cell production site or the like, and as shown in FIG. 6, a body 21 having a box-shaped upper part 21a and a columnar lower part 21b, A head 22 provided at the upper end of the upper portion 21 a of the body 21, two arms 23 provided on the left and right sides when viewed from the robot itself of the upper portion 21 a of the body 21, and provided at the tips of these arms 23. A hand (not shown) as an example of the end effector and a cart (not shown) for supporting the lower portion 21b of the body 21 instead of the legs are provided.

また、この作業ロボット20は、頭22に撮像手段としての二台のビデオカメラ24を搭載するとともに、胴体21の上部21aと頭22との間に首関節25を具えており、その首関節25は、頭22を軸線P1周りに前後に傾動させる首ピッチ軸駆動装置と、頭22を軸線Y1周りに左右に回動させる首ヨー軸駆動装置とからなる首関節駆動装置を有している。加えてこの作業腕ロボット20は、胴体21の上部21aと下部21bとの間に腰関節26を具えており、その腰関節26は、胴体21の上部21aを下部21bひいては上記台車に対して軸線Y1周りに左右に回動させる腰ヨー軸駆動装置からなる腰関節駆動装置を有している。   The work robot 20 has two video cameras 24 as imaging means mounted on the head 22 and a neck joint 25 between the upper part 21 a of the body 21 and the head 22, and the neck joint 25. Has a neck joint drive device composed of a neck pitch shaft drive device that tilts the head 22 back and forth about the axis P1 and a neck yaw shaft drive device that rotates the head 22 left and right around the axis Y1. In addition, the working arm robot 20 includes a waist joint 26 between an upper portion 21a and a lower portion 21b of the body 21, and the waist joint 26 is an axis line with respect to the upper portion 21a of the body 21 and the lower carriage 21b. A hip joint drive device including a waist yaw axis drive device that rotates left and right around Y1 is provided.

さらに、この作業ロボット20は、図7にも併せて示すように、胴体21と各腕23の上腕23aとの間の肩関節27と、各腕23の上腕23aと下腕23bとの間の肘関節28と、各腕23の下腕23bと上記手との間の手首関節29とをそれぞれ具えており、各肩関節27は、胴体21の左右に突出して略ハ字状をなす肩ブラケット31上にそれぞれ配置され、胴体21に対して腕23全体を軸線Y2周りに相対的に左右に回動させる肩ヨー軸駆動装置27aと、その肩ヨー軸駆動装置27aの軸線Y2と直交する軸線P2周りに胴体21に対して腕23全体を相対的に前後に傾動させる肩ピッチ軸駆動装置27bとからなる上記実施例の肩関節駆動装置を有している。なお、図中左肩の肩ピッチ軸駆動装置27bについては、ベルト式伝動機構のカバーを外した状態で示している。   Further, as shown in FIG. 7 as well, the work robot 20 includes a shoulder joint 27 between the trunk 21 and the upper arm 23a of each arm 23, and between the upper arm 23a and the lower arm 23b of each arm 23. An elbow joint 28, a lower arm 23 b of each arm 23, and a wrist joint 29 between the above hands are provided, and each shoulder joint 27 protrudes to the left and right of the body 21 to form a substantially bracketed shoulder bracket 31. A shoulder yaw axis driving device 27a that is arranged on the upper side and pivots the entire arm 23 to the left and right relatively around the axis Y2 with respect to the body 21, and an axis P2 orthogonal to the axis Y2 of the shoulder yaw axis driving device 27a The shoulder joint drive device according to the above-described embodiment, which includes a shoulder pitch axis drive device 27b that tilts the entire arm 23 back and forth relative to the body 21, is provided. In the figure, the shoulder pitch shaft drive device 27b on the left shoulder is shown with the belt-type transmission mechanism cover removed.

ここで、肩ブラケット31の上面は、上記軸線Y1に対して斜め下方に傾いていることから、各軸線Y2は、胴体21の上下方向に対して傾いて、下方へ行くほど胴体21に近くなるように延在しており、これに伴い、その軸線Y2と互いに直交する軸線P2も、床面に対して傾いている。そして腕23の上腕23aは、下に下げた状態で肘関節28に近い部分ほど胴体21に近くなるように傾いて延在している。これにより各腕23は、図6に示す正面向きの状態では胴体21の側方への揺動を規制されているため、人がこの作業ロボット20の横に並んでも人と各腕23とが干渉する可能性が少ないので、この作業ロボット20は、人と共存、協調して安全に作業を行うことができる。   Here, since the upper surface of the shoulder bracket 31 is inclined obliquely downward with respect to the axis Y1, each axis Y2 is inclined with respect to the vertical direction of the trunk 21 and becomes closer to the trunk 21 as it goes downward. Along with this, the axis P2 perpendicular to the axis Y2 is also inclined with respect to the floor surface. The upper arm 23a of the arm 23 extends so as to be closer to the body 21 as the portion closer to the elbow joint 28 is lowered. Thus, each arm 23 is restricted from swinging to the side of the body 21 in the front-facing state shown in FIG. 6, so that even if a person is lined up next to the work robot 20, Since there is little possibility of interference, the work robot 20 can work safely with coexistence and cooperation with people.

さらに、各肘関節28は、上腕23aに対し下腕23bを、軸線P2に平行な軸線P3周りに上下に傾動させる肘ピッチ軸駆動装置からなる肘関節駆動装置を有し、また各手首関節29は、下腕23bに対して上記手を軸線P4周りに相対的に上下に傾動させる手首ピッチ駆動装置と、その手を軸線P4に直交する軸線Y3周りに相対的に左右に回動させる手首ヨー軸駆動装置と、下腕23bに対して手首ピッチ軸駆動装置と手首ヨー軸駆動装置とを軸線R周りにねじる手首ロール軸駆動装置とからなる手首関節駆動装置を有している。この結果各腕23は、合計6つの可動軸駆動装置ひいては6自由度を有し、これらの可動軸駆動装置の軸配置により、この二本の腕23は特異点がなく自由な姿勢を作ることができる。   Furthermore, each elbow joint 28 has an elbow joint drive device including an elbow pitch axis drive device that tilts the lower arm 23b up and down around an axis P3 parallel to the axis P2 with respect to the upper arm 23a, and each wrist joint 29 Is a wrist pitch driving device that tilts the hand relatively up and down around the axis P4 with respect to the lower arm 23b, and a wrist yaw that rotates the hand relatively left and right around the axis Y3 orthogonal to the axis P4. The wrist joint driving device includes a shaft driving device and a wrist roll shaft driving device that twists the wrist pitch shaft driving device and the wrist yaw shaft driving device around the axis R with respect to the lower arm 23b. As a result, each arm 23 has a total of six movable shaft driving devices and thus six degrees of freedom, and the two arms 23 have a singularity and have a free posture by the axial arrangement of these movable shaft driving devices. Can do.

加えて、この作業ロボット20は上記台車内に、通常のコンピュータを有する図示しない制御装置を搭載しており、これにより作業ロボット20は、その台車で自走し、あるいは人手により移動されて作業場所に位置すると、あらかじめ与えられたプログラムに従って、頭22の二台のビデオカメラ24からの画像に基づき、例えば画像処理により作業対象物の種類を認識するとともにカメラ測量により作業対象物の位置を認識して、作業対象物に対する作業を行うので、人と共存、協調して自動的に組立や検査等の作業を行うことができる。   In addition, the work robot 20 is equipped with a control device (not shown) having a normal computer in the cart, whereby the work robot 20 is self-propelled by the cart or moved manually by the work place. , Based on images from the two video cameras 24 of the head 22, for example, the type of the work object is recognized by image processing and the position of the work object is recognized by camera surveying according to a program given in advance. In addition, since the work on the work object is performed, work such as assembly and inspection can be automatically performed in cooperation with a person and in cooperation.

ここで、上述した関節25〜29の可動軸駆動装置は各々、周知のように例えばサーボモータ等のモータの出力回転を例えば商品名ハーモニックドライブ等の減速機で減速して出力する回動機構で構成されており、例えば上記実施例の肩関節駆動装置における肩ヨー軸駆動装置27aは、肩ブラケット31の上面に外周フランジ32aを固定される略円筒状のケーシング32と、そのケーシング32の軸線方向一端部(図8では下端部)に取り付けられたサーボモータ33と、そのケーシング32内に収容されたハーモニックドライブ34と、ケーシング32の他端部(図8では上端部)にベアリングを介して軸線Y2周りに回動可能に支持されるとともに軸線方向一端部(図8では上端部)で肩ピッチ軸駆動装置27bを支持する基部材35とを有している。   Here, each of the above-described movable shaft driving devices for the joints 25 to 29 is, as is well known, a rotation mechanism that decelerates and outputs the output rotation of a motor such as a servo motor with a speed reducer such as a brand name harmonic drive. For example, the shoulder yaw axis driving device 27a in the shoulder joint driving device of the above embodiment includes a substantially cylindrical casing 32 having an outer peripheral flange 32a fixed to the upper surface of the shoulder bracket 31, and the axial direction of the casing 32. A servo motor 33 attached to one end (the lower end in FIG. 8), a harmonic drive 34 accommodated in the casing 32, and an axis line via a bearing on the other end (the upper end in FIG. 8) of the casing 32. A base member 35 that is rotatably supported around Y2 and supports the shoulder pitch shaft drive device 27b at one axial end (upper end in FIG. 8). And have.

ハーモニックドライブ34は、ケーシング32に固定された内歯歯車34aと、軸線方向の一端部(図8では下端部)に半径方向に弾性変形可能な外歯歯車を内歯歯車34aよりも多少少ない歯数で形成されるとともに他端部(図8では上端部)を基部材35の他端部(図8では下端部)に結合された略カップ状のフレクスプライン34bと、半径方向に弾性変形可能なベアリングを介してフレクスプライン34bの外歯歯車を周方向に部分的に半径方向外方へ押し広げてその外歯歯車を内歯歯車34aに周方向に部分的に噛合させる駆動ディスク34cとを有しており、サーボモータ33はその出力軸33aを駆動ディスク34cに結合されて駆動ディスク34cを回転させ、これにより駆動ディスク34cは、フレクスプライン34bの外歯歯車と内歯歯車34aとの噛合箇所を周方向に移動させて、内歯歯車34aひいてはケーシング32に対しフレクスプライン34bひいては基部材35を、サーボモータ33の出力軸33aひいては駆動ディスク34cの回転数に対しフレクスプライン34bの外歯歯車と内歯歯車34aとの歯数に応じた大減速比で軸線Y2周りに回動させ、胴体21に対して腕23全体を軸線Y2周りに相対的に左右に回動させる。   The harmonic drive 34 has an internal gear 34a fixed to the casing 32 and an external gear that can be elastically deformed in the radial direction at one end in the axial direction (lower end in FIG. 8). A substantially cup-shaped flexspline 34b formed with a number and having the other end (upper end in FIG. 8) coupled to the other end (lower end in FIG. 8) of the base member 35, and elastically deformable in the radial direction A drive disk 34c that pushes and spreads the external gear of the flex spline 34b in the circumferential direction partially radially outward through a simple bearing and partially meshes the external gear with the internal gear 34a in the circumferential direction. The servo motor 33 has its output shaft 33a coupled to the drive disk 34c to rotate the drive disk 34c, so that the drive disk 34c is located outside the flex spline 34b. The meshing position of the toothed gear and the internal gear 34a is moved in the circumferential direction, and the internal gear 34a and then the flex spline 34b and then the base member 35 with respect to the casing 32, and the output shaft 33a of the servomotor 33 and the rotation of the drive disk 34c. Is rotated around the axis Y2 with a large reduction ratio corresponding to the number of teeth of the external gear and the internal gear 34a of the flexspline 34b with respect to the number, and the entire arm 23 is relatively moved around the axis Y2 with respect to the body 21. Turn left and right.

また、上記実施例の肩関節駆動装置における肩ピッチ軸駆動装置27bは、基部材35の上端部に側面を固定される略円筒状のケーシング36と、そのケーシング36の軸線方向一端部(図8では左端部)に取り付けられるとともに図示しないカバーの装着用のフランジ37aを折曲形成された板状のブラケット37と、そのブラケット37に支持されたサーボモータ38と、ケーシング36内に収容されたハーモニックドライブ39と、それらサーボモータ38とハーモニックドライブ39とを駆動結合するベルト式伝動機構40と、ケーシング32の他端部(図8では右端部)にベアリングを介して軸線P2周りに回動可能に支持されるとともに軸線方向一端部(図8では右端部)で腕23の上腕23aを支持する略筒状の支持部材41とを有するとともに、ここでは作業ロボット20の二つのリンク部材としての胴体21と腕23との間に位置する上記実施例の回転ダンパー30を有している。   Further, the shoulder pitch axis driving device 27b in the shoulder joint driving device of the above embodiment includes a substantially cylindrical casing 36 whose side surface is fixed to the upper end portion of the base member 35, and one axial end portion of the casing 36 (FIG. 8). The left end) and a plate-like bracket 37 formed by bending a cover mounting flange 37a (not shown), a servo motor 38 supported by the bracket 37, and a harmonic housed in the casing 36. The drive 39, a belt-type transmission mechanism 40 that drives and connects the servo motor 38 and the harmonic drive 39, and the other end (right end in FIG. 8) of the casing 32 can be rotated around the axis P2 via a bearing. A substantially cylindrical support member 41 that is supported and supports the upper arm 23a of the arm 23 at one end in the axial direction (right end in FIG. 8); Here, the rotary damper 30 according to the above-described embodiment is provided between the body 21 and the arm 23 as two link members of the work robot 20.

ベルト式伝動機構40は、サーボモータ38の出力軸38aに結合された歯付きプーリー42と、回転ダンパー30に設けられた前述の歯付きプーリー7と、それらの歯付きプーリー42,7間に掛け回された環状の歯付きベルト43とを有し、サーボモータ38の出力軸38aの回転を歯付きプーリー42から歯付きベルト43を経て歯付きプーリー7ヘ、歯付きプーリー42と歯付きプーリー7との歯数に応じた減速比で伝達する。   The belt-type transmission mechanism 40 includes a toothed pulley 42 coupled to the output shaft 38a of the servo motor 38, the above-described toothed pulley 7 provided in the rotary damper 30, and the toothed pulleys 42, 7 between them. The rotation of the output shaft 38a of the servo motor 38 from the toothed pulley 42 through the toothed belt 43 to the toothed pulley 7 and the toothed pulley 42 and the toothed pulley 7 It transmits with the reduction ratio according to the number of teeth.

ハーモニックドライブ39は、ケーシング36に固定された内歯歯車39aと、軸線方向一端部(図8では左端部)に半径方向に弾性変形可能な外歯歯車を内歯歯車39aよりも多少少ない歯数で形成されるとともに他端部(図8では右端部)を支持部材41の他端部(図8では左端部)に結合された略カップ状のフレクスプライン39bと、半径方向に弾性変形可能なベアリングを介してフレクスプライン39bの外歯歯車を周方向に部分的に半径方向外方へ押し広げてその外歯歯車を内歯歯車39aに周方向に部分的に噛合させる駆動ディスク39cと、ケーシング36の上記一端部にベアリングを介して軸線P2周りに回転可能に支持されるとともに軸線方向一端部(図8では右端部)を駆動ディスク39cに結合され、他端部(図8では左端部)を歯付きプーリー7に結合された入力軸39dとを有しており、サーボモータ38はその出力軸38aをベルト式伝動機構40および入力軸39dを介して駆動ディスク39cに駆動結合されて駆動ディスク39cを回転させ、これにより駆動ディスク39cは、フレクスプライン39bの外歯歯車と内歯歯車39aとの噛合箇所を周方向に移動させて、内歯歯車39aひいてはケーシング36に対しフレクスプライン39bひいては支持部材35を、サーボモータ38の出力軸38aひいては駆動ディスク39cの回転数に対しフレクスプライン39bの外歯歯車と内歯歯車39aとの歯数に応じた大減速比で軸線P2周りに回動させ、胴体21に対して腕23全体を軸線P2周りに相対的に前後に傾動させる。   The harmonic drive 39 includes an internal gear 39a fixed to the casing 36, and an external gear that is elastically deformable in the radial direction at one end in the axial direction (left end in FIG. 8). The number of teeth is slightly smaller than that of the internal gear 39a. And a substantially cup-shaped flexspline 39b in which the other end (the right end in FIG. 8) is coupled to the other end (the left end in FIG. 8) of the support member 41, and is elastically deformable in the radial direction. A drive disk 39c for enlarging the external gear of the flex spline 39b in the circumferential direction partially radially outward via the bearing and partially engaging the external gear with the internal gear 39a in the circumferential direction; and a casing The one end of 36 is rotatably supported around the axis P2 via a bearing, and one end in the axial direction (right end in FIG. 8) is coupled to the drive disk 39c and the other end (in FIG. 8). The left end) has an input shaft 39d coupled to the toothed pulley 7, and the servo motor 38 is coupled to the drive disk 39c via the belt-type transmission mechanism 40 and the input shaft 39d. Then, the drive disk 39c is rotated, whereby the drive disk 39c is moved flexibly with respect to the internal gear 39a and thus the casing 36 by moving the meshing position of the external gear and the internal gear 39a of the flex spline 39b in the circumferential direction. The spline 39b and the support member 35 are rotated around the axis P2 with a large reduction ratio according to the number of teeth of the external gear and the internal gear 39a of the flexspline 39b with respect to the rotational speed of the output shaft 38a of the servo motor 38 and the drive disk 39c. The entire arm 23 is tilted back and forth relative to the body 21 about the axis P2.

そして上記実施例の回転ダンパー30は、前述のようにその回転ディスク2の外側面に固定された歯付きプーリー7をハーモニックドライブ39の入力軸39dに結合されるとともに、そのカバー6の外周面に周方向に間隔を空けて複数設けられた突起に形成された固定孔6a(図2,4参照)にそれぞれ固定ピン44の先端部を螺着され、それらの固定ピン44の基端部をブラケット37に図示しないネジで固定されて、カバー6をケーシング36に結合されており、これによりカバー6は、ケーシング36および肩ヨー軸駆動装置27aを介して肩ブラケット31ひいては胴体21に結合されている。   In the rotary damper 30 of the above embodiment, the toothed pulley 7 fixed to the outer surface of the rotary disk 2 is coupled to the input shaft 39d of the harmonic drive 39 as described above, and the cover 6 has an outer peripheral surface. The distal end portions of the fixing pins 44 are screwed into the fixing holes 6a (see FIGS. 2 and 4) formed in a plurality of protrusions provided at intervals in the circumferential direction, and the base end portions of the fixing pins 44 are bracketed. 37, the cover 6 is coupled to the casing 36 by screws (not shown), whereby the cover 6 is coupled to the shoulder bracket 31 and thus the body 21 via the casing 36 and the shoulder yaw axis driving device 27a. .

かかるこの実施例の肩関節駆動装置にあっては、作業ロボット20の二つのリンク部材としての胴体21と腕23とを連結する肩関節27の肩ピッチ軸駆動装置27bに設けられて入力軸39dをそのサーボモータ38の出力軸38aに駆動結合され、その出力軸38aの回転を減速した出力回転で腕23を胴体21に対し傾動させるハーモニックドライブ39の入力軸39dと、上記二つのリンク部材の一方としての胴体21との間に設けられた上記実施例の回転ダンパー30が、ハーモニックドライブ39の入力軸39dの回転速度が上がると、その入力軸39dに加える胴体21に対する制動力を減少させる。   In the shoulder joint driving device of this embodiment, the input shaft 39d is provided on the shoulder pitch axis driving device 27b of the shoulder joint 27 that connects the body 21 and the arm 23 as two link members of the work robot 20. Is connected to the output shaft 38a of the servo motor 38, and the input shaft 39d of the harmonic drive 39 for tilting the arm 23 with respect to the body 21 by the output rotation obtained by reducing the rotation of the output shaft 38a, and the two link members When the rotational speed of the input shaft 39d of the harmonic drive 39 increases, the rotary damper 30 of the above embodiment provided between the body 21 as one side reduces the braking force applied to the body 21 to the input shaft 39d.

従って、この実施例の肩関節駆動装置によれば、肩関節27の肩ピッチ軸駆動装置27bの作動速度が低い作動停止時や作動開始時には高い制動力で腕23の振動を抑え、作動速度が上がる通常の作動中には制動力が減少し、回転抵抗が小さくなってエネルギー損失が小さくなるので、小出力化した柔構造の作業ロボット20において、その通常作動を妨げずに作動停止時や作動開始時の駆動トルクの変動による腕23の振動を速やかに減衰させ、作業のタスクタイムを短縮することができる。また、肩関節27の肩ピッチ軸駆動装置27bの作動停止中も肩関節27に制動力を与えるので、別途ブレーキを設けなくても腕23を持ち上げた状態の停止位置に維持することができる。   Therefore, according to the shoulder joint drive device of this embodiment, when the operation speed of the shoulder pitch shaft drive device 27b of the shoulder joint 27 is low or at the start of operation, the vibration of the arm 23 is suppressed with a high braking force and the operation speed is reduced. Since the braking force decreases during the normal operation that rises, and the rotational resistance decreases and energy loss decreases, the flexible work robot 20 with a small output can be operated or stopped without disturbing the normal operation. The vibration of the arm 23 due to the fluctuation of the driving torque at the start can be quickly attenuated, and the task time of the work can be shortened. In addition, since the braking force is applied to the shoulder joint 27 even while the operation of the shoulder pitch axis driving device 27b of the shoulder joint 27 is stopped, the arm 23 can be maintained at the stopped position in a state where the arm 23 is lifted without providing a separate brake.

以上、図示例に基づき説明したが、この発明は上述した実施例に限定されるものでなく、特許請求の範囲の記載範囲内で適宜変更することができるものであり、例えば、この発明の回転ダンパーにおいては、摩擦部材は基部材側に固設されるとともに回転部材へ向けて押圧されて回転部材に摺接し、基部材に対する回転部材の相対回転に摩擦制動力を与えても良い。また、摩擦部材を基部材および回転部材の互いに半径方向に整列する部分の一方に設け、押圧手段はそれらの部分のうち半径方向外方に位置する部分に半径方向内方へ向けて押圧力を加えて他方の部分に摩擦部材を摺接させ、押圧力変更手段は回転部材の回転速度が上がるとその半径方向外方に位置する部分に作用して摩擦部材に加わる押圧力を減少させても良い。   Although the present invention has been described based on the illustrated examples, the present invention is not limited to the above-described embodiments, and can be appropriately changed within the scope of the claims, for example, rotation of the present invention. In the damper, the friction member may be fixed to the base member side, pressed against the rotating member and slidably contacted with the rotating member, and a friction braking force may be applied to the relative rotation of the rotating member with respect to the base member. Also, the friction member is provided on one of the base member and the rotating member that are aligned in the radial direction, and the pressing means applies a pressing force toward the radially inward portion of the portion positioned radially outward. In addition, the friction member is slidably brought into contact with the other portion, and the pressing force changing means acts on the portion located radially outward when the rotational speed of the rotating member increases, and the pressing force applied to the friction member can be reduced. good.

また、この発明のロボット関節駆動装置においては、回転ダンパーはモータの出力軸とリンク部材との間に設けても良く、また回転ダンパーを設ける、ロボットの二つのリンク部材を連結する関節は、肩ピッチ軸駆動装置27bと同様に作動停止中に荷重が加わっている肘関節や手首関節でも良い。   In the robot joint drive device according to the present invention, the rotation damper may be provided between the output shaft of the motor and the link member, and the joint connecting the two link members of the robot provided with the rotation damper is a shoulder. Similarly to the pitch axis drive device 27b, an elbow joint or a wrist joint to which a load is applied during operation stop may be used.

かくしてこの発明の回転ダンパーによれば、回転系のロボット関節駆動装置に設けた場合に、関節の作動速度が低い作動停止時や作動開始時には高い制動力で振動を抑え、一方、関節の作動速度が上がる通常の作動中には制動力が減少し、回転抵抗が小さくなってエネルギー損失が小さくなるので、小出力化した柔構造のロボットの関節に用いても、ロボットの通常作動を妨げずに作動停止時の駆動トルクの変動による振動を速やかに減衰させ、作業のタスクタイムを短縮することができる。また、関節の作動停止中も関節に制動力を与えるので、別途ブレーキを設けなくてもロボットの腕等を停止位置に維持することができる。   Thus, according to the rotary damper of the present invention, when provided in a rotary system robot joint drive device, vibration is suppressed with a high braking force at the time of operation stop or operation start when the joint operation speed is low, while the joint operation speed is During normal operation, the braking force is reduced, and the rotational resistance is reduced and energy loss is reduced, so even if it is used for a flexible robot joint with reduced output, it does not interfere with the normal operation of the robot. It is possible to quickly attenuate the vibration due to the fluctuation of the driving torque when the operation is stopped, and to shorten the task time of the work. In addition, since the braking force is applied to the joint even when the joint is stopped, the arm of the robot can be maintained at the stop position without providing a separate brake.

またこの発明のロボット関節駆動装置によれば、ロボットの二つのリンク部材を連結する関節の作動速度が低い作動停止時や作動開始時には高い制動力で振動を抑え、作動速度が上がる通常の作動中には制動力が減少し、回転抵抗が小さくなってエネルギー損失が小さくなるので、小出力化した柔構造のロボットの関節に用いても、ロボットの通常作動を妨げずに作動停止時や作動開始時の駆動トルクの変動による振動を速やかに減衰させ、作業のタスクタイムを短縮することができる。また、関節の作動停止中も関節に制動力を与えるので、別途ブレーキを設けなくてもロボットの腕等を停止位置に維持することができる。   Further, according to the robot joint driving device of the present invention, during a normal operation in which the operation speed of the joint that connects the two link members of the robot is low, when the operation is stopped or when the operation is started, the vibration is suppressed with a high braking force and the operation speed is increased. Since the braking force is reduced and the rotational resistance is reduced, energy loss is reduced, even when used in a flexible robot joint with reduced output, normal operation of the robot is not interrupted or started without interruption. It is possible to quickly attenuate the vibration due to the fluctuation of the driving torque at the time and to shorten the task time of the work. In addition, since the braking force is applied to the joint even when the joint is stopped, the arm of the robot can be maintained at the stop position without providing a separate brake.

1 制御ディスク
1a 凹面
1b 摺接面
1c 貫通孔
2 回転ディスク
2a 環状溝
2b,2c 外周フランジ
2d ボール受け溝
2e 凹部
2f 貫通孔
3 摺動リング(摩擦部材)
4 高弾性ワッシャー(押圧手段)
5 押圧力変更機構(押圧力変更手段)
6 カバー
6a 固定孔
7,42 歯付きプーリー
8 ボルト
9 鋼球
10 ベアリング
10a アウターレース
10b インナーレース
11 押圧軸
11a 外周フランジ
11b 雌ネジ
12 位置決めネジ
13 押さえワッシャー
20 作業ロボット
21 胴体
21a 上部
21b 下部
22 頭
23 腕
23a 上腕
23b 下腕
24 ビデオカメラ
25 首関節
26 腰関節
27 肩関節
27a 肩ヨー軸駆動装置(関節駆動装置)
27b 肩ピッチ軸駆動装置(関節駆動装置)
28 肘関節
29 手首関節
30 回転ダンパー
31 肩ブラケット
32,36 ケーシング
32a 外周フランジ
33,38 サーボモータ
33a,38a 出力軸
34,39 ハーモニックドライブ
34a,39a 内歯歯車
34b,39b フレクスプライン
34c,39c 駆動ディスク
35 基部材
37 ブラケット
37a フランジ
39d 入力軸
40 ベルト式伝動機構
41 支持部材
43 歯付きベルト
44 固定ピン
C 中心軸線
CL クリアランス
P1,P2,P3,P4 軸線
R 軸線
Y1,Y2,Y3 軸線
DESCRIPTION OF SYMBOLS 1 Control disk 1a Concave surface 1b Sliding contact surface 1c Through hole 2 Rotating disk 2a Annular groove 2b, 2c Outer peripheral flange 2d Ball receiving groove 2e Recess 2f Through hole 3 Sliding ring (friction member)
4 High elastic washer (pressing means)
5 Pressing force changing mechanism (Pressing force changing means)
6 Cover 6a Fixing hole 7, 42 Toothed pulley 8 Bolt 9 Steel ball 10 Bearing 10a Outer race 10b Inner race 11 Press shaft 11a Outer flange 11b Female screw 12 Positioning screw 13 Holding washer 20 Work robot 21 Body 21a Upper part 21b Lower part 22 Head 23 arm 23a upper arm 23b lower arm 24 video camera 25 neck joint 26 waist joint 27 shoulder joint 27a shoulder yaw axis drive device (joint drive device)
27b Shoulder pitch axis drive (joint drive)
28 Elbow joint 29 Wrist joint 30 Rotation damper 31 Shoulder bracket 32, 36 Casing 32a Outer flange 33, 38 Servo motor 33a, 38a Output shaft 34, 39 Harmonic drive 34a, 39a Internal gear 34b, 39b Flex spline 34c, 39c Drive disk 35 Base member 37 Bracket 37a Flange 39d Input shaft 40 Belt type transmission mechanism 41 Support member 43 Toothed belt 44 Fixed pin C Center axis CL Clearance P1, P2, P3, P4 Axis R Axis Y1, Y2, Y3 Axis

Claims (4)

基部材と、
前記基部材に対し所定軸線周りに回転可能に配置された回転部材と、
前記基部材と前記回転部材との少なくとも一方に固設されるとともに他方へ向けて押圧されて前記他方に摺接し、前記基部材に対する前記回転部材の相対回転に摩擦制動力を与える摩擦部材と、
前記摩擦部材に前記他方へ向けて押圧力を加える押圧手段と、
前記回転部材の回転速度が上がると前記摩擦部材に加わる押圧力を減少させる押圧力変更手段と、
を具えてなる回転ダンパー。
A base member;
A rotating member arranged to be rotatable around a predetermined axis with respect to the base member;
A friction member fixed to at least one of the base member and the rotation member and pressed toward the other to be in sliding contact with the other, and applying a friction braking force to the relative rotation of the rotation member with respect to the base member;
A pressing means for applying a pressing force to the friction member toward the other;
A pressing force changing means for reducing the pressing force applied to the friction member when the rotational speed of the rotating member increases;
Rotating damper with
前記押圧力変更手段は、前記回転部材の回転に伴って前記軸線周りに旋回する錘部材に加わる遠心力を用いて前記押圧力を減少させることを特徴とする、請求項1記載の回転ダンパー。   2. The rotary damper according to claim 1, wherein the pressing force changing unit reduces the pressing force by using a centrifugal force applied to a weight member rotating around the axis along with the rotation of the rotating member. 前記押圧手段は、前記摩擦部材に前記軸線方向で前記他方へ向けて押圧力を加え、
前記押圧力変更手段は、
前記錘部材としての鋼球と、
前記鋼球と当接する、前記軸線を中心とした裁頭円錐状の凹面を持つ、前記基部材としての円盤状部材と、
を有し、
前記円盤状部材は、前記鋼球に加わる遠心力を前記凹面で前記軸線方向の力に変換し、その軸線方向力で前記回転部材を当該円盤状部材から離間する方向へ押圧することを特徴とする、請求項2記載の回転ダンパー。
The pressing means applies a pressing force to the friction member toward the other side in the axial direction,
The pressing force changing means is
A steel ball as the weight member;
A disc-like member as the base member having a conical concave surface centered on the axis and in contact with the steel ball;
Have
The disk-shaped member converts a centrifugal force applied to the steel ball into the axial force on the concave surface, and presses the rotating member in a direction away from the disk-shaped member with the axial force. The rotary damper according to claim 2.
ロボットの二つのリンク部材を連結する関節に設けられた駆動装置であって、
モータと、
入力軸を前記モータの出力軸に駆動結合され、前記モータの出力軸の回転を減速した出力回転で前記二つのリンク部材の一方を他方に対し回動させる減速機と、
前記モータの出力軸または前記減速機の入力軸と前記二つのリンク部材の一方との間に設けられてその軸の回転をその一方のリンク部材に対し制動する請求項1から3までの何れか1項記載の回転ダンパーと、
を具えてなるロボット関節駆動装置。
A drive device provided at a joint connecting two link members of a robot,
A motor,
A reduction gear coupled to the output shaft of the motor for driving the input shaft and rotating one of the two link members with respect to the other by an output rotation obtained by reducing the rotation of the output shaft of the motor;
4. The device according to claim 1, wherein the motor is provided between an output shaft of the motor or an input shaft of the speed reducer and one of the two link members, and brakes the rotation of the shaft with respect to the one link member. 5. The rotary damper according to 1;
Robot joint drive device comprising
JP2009289144A 2009-12-21 2009-12-21 Rotating damper and robot joint drive device having the same Expired - Fee Related JP5239098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009289144A JP5239098B2 (en) 2009-12-21 2009-12-21 Rotating damper and robot joint drive device having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009289144A JP5239098B2 (en) 2009-12-21 2009-12-21 Rotating damper and robot joint drive device having the same

Publications (2)

Publication Number Publication Date
JP2011127737A true JP2011127737A (en) 2011-06-30
JP5239098B2 JP5239098B2 (en) 2013-07-17

Family

ID=44290525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009289144A Expired - Fee Related JP5239098B2 (en) 2009-12-21 2009-12-21 Rotating damper and robot joint drive device having the same

Country Status (1)

Country Link
JP (1) JP5239098B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018191632A1 (en) 2017-04-13 2018-10-18 Sa08700334 Ultra-light and ultra-accurate portable coordinate measurement machine
KR20180123793A (en) * 2017-05-10 2018-11-20 주식회사 엔티로봇 Meal assistance device
CN112518797A (en) * 2020-11-21 2021-03-19 北京理工大学 Joint marble disc type friction shock absorber for foot type robot
CN117695015A (en) * 2024-02-05 2024-03-15 武汉联影智融医疗科技有限公司 Rotary joint, mechanical arm and surgical robot

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157135A (en) * 1991-11-29 1993-06-22 Toyoda Mach Works Ltd Rotation type shock absorber
JPH06190774A (en) * 1993-07-09 1994-07-12 Yamaha Motor Co Ltd Arm control device of industrial robot
JPH06320471A (en) * 1993-05-18 1994-11-22 Hitachi Ltd Joint for manipulator
JP2006035405A (en) * 2004-07-30 2006-02-09 Sanko Gosei Ltd Joint device for robot
JP2009287729A (en) * 2008-05-30 2009-12-10 Toyota Motor Corp Damper device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157135A (en) * 1991-11-29 1993-06-22 Toyoda Mach Works Ltd Rotation type shock absorber
JPH06320471A (en) * 1993-05-18 1994-11-22 Hitachi Ltd Joint for manipulator
JPH06190774A (en) * 1993-07-09 1994-07-12 Yamaha Motor Co Ltd Arm control device of industrial robot
JP2006035405A (en) * 2004-07-30 2006-02-09 Sanko Gosei Ltd Joint device for robot
JP2009287729A (en) * 2008-05-30 2009-12-10 Toyota Motor Corp Damper device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018191632A1 (en) 2017-04-13 2018-10-18 Sa08700334 Ultra-light and ultra-accurate portable coordinate measurement machine
EP3610221A4 (en) * 2017-04-13 2021-01-27 Sa08700334 Ultra-light and ultra-accurate portable coordinate measurement machine
KR20180123793A (en) * 2017-05-10 2018-11-20 주식회사 엔티로봇 Meal assistance device
KR102037309B1 (en) * 2017-05-10 2019-10-28 주식회사 엔티로봇 Passive type meal assistance device
CN112518797A (en) * 2020-11-21 2021-03-19 北京理工大学 Joint marble disc type friction shock absorber for foot type robot
CN117695015A (en) * 2024-02-05 2024-03-15 武汉联影智融医疗科技有限公司 Rotary joint, mechanical arm and surgical robot

Also Published As

Publication number Publication date
JP5239098B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5239098B2 (en) Rotating damper and robot joint drive device having the same
US7698968B2 (en) Method for reducing input-side holding torque of wave gear device, and rotary actuator
WO2010101203A1 (en) Articulation unit for robot and robot
JP6658877B2 (en) Actuator
JP6708684B2 (en) Structure of joint part of robot equipped with drive motor and speed reducer
JP2010076024A (en) Wrist shaft rotating and driving mechanism for scara robot
JPH1193970A (en) Torque limiter
JP6305076B2 (en) Gear mechanism, transmission, and articulated robot arm
JP5750029B2 (en) Joint mechanism and work attachment
EP3470704A1 (en) Link operating device
JP2020133813A (en) Rotary device
KR101642036B1 (en) Power take off shaft
KR20140108420A (en) A reducer
US8833195B2 (en) Gear backlash adjusting mechanism and robot arm assembly having the same
JP7129267B2 (en) reduction gear
JP7263066B2 (en) Torque fluctuation suppressor and torque converter
JP2009275837A (en) Fixing structure for bearing
JP4749697B2 (en) Eccentric rocking speed reducer
JP5568722B2 (en) Deceleration mechanism, joint device for robot
US8511196B2 (en) Traction drive system
JP2021162055A (en) Reduction gear and reduction gear with motor
JP4294424B2 (en) Rotation driving force transmission structure and motor device
JP2010214527A (en) Arm structure of industrial robot
TWI426011B (en) Robot arm assembly
TWI468274B (en) Scara type robot

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130315

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees