JP2011127273A - Sheet pile with water drainage function and water catchment function and wall body structure - Google Patents

Sheet pile with water drainage function and water catchment function and wall body structure Download PDF

Info

Publication number
JP2011127273A
JP2011127273A JP2009283765A JP2009283765A JP2011127273A JP 2011127273 A JP2011127273 A JP 2011127273A JP 2009283765 A JP2009283765 A JP 2009283765A JP 2009283765 A JP2009283765 A JP 2009283765A JP 2011127273 A JP2011127273 A JP 2011127273A
Authority
JP
Japan
Prior art keywords
sheet pile
drainage
drainage member
drainage function
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009283765A
Other languages
Japanese (ja)
Other versions
JP5251856B2 (en
Inventor
Kazutaka Otoshi
和孝 乙志
Yoichi Kobayashi
洋一 小林
Hiromasa Tanaka
宏征 田中
Yukio Saimura
幸生 才村
Akihisa Kameyama
彰久 亀山
Teruki Nishiyama
輝樹 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2009283765A priority Critical patent/JP5251856B2/en
Publication of JP2011127273A publication Critical patent/JP2011127273A/en
Application granted granted Critical
Publication of JP5251856B2 publication Critical patent/JP5251856B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Foundations (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel sheet pile with a water drainage function and a water catchment function capable of achieving excellent driving and construction performance when constructing the sheet pile and a water drainage member simultaneously, setting the optimum arrangement of the water drainage member, and reducing cost of materials and cost of construction and to provide a wall body structure constituted by installing the steel sheet piles continuously. <P>SOLUTION: In this sheet pile with the water drainage function including the water drainage members 3 along the longitudinal direction of the sheet pile 1 having effective width of 500 mm or more, an opening rate of the water drainage member 3 is 5% or more, more preferably 10% or more, and width of the water drainage member 3 is 170 mm or more. When constructing a sheet pile wall B by installing the sheet piles with the water drainage function continuously, a ratio of area of the water drainage member 3 to projected area of sheet pile wall body is set to be 15% or more, more preferably 20% or more. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、地震時に液状化の発生が懸念される地盤に施工される壁体や護岸等に用いられる排水機能付き矢板および該矢板を連続して設置してなる矢板壁に関するものである。   TECHNICAL FIELD The present invention relates to a sheet pile with a drainage function used for a wall body or a revetment constructed on the ground where liquefaction is a concern during an earthquake, and a sheet pile wall formed by continuously installing the sheet pile.

軟弱な砂層地盤など地震時に液状化の発生が懸念される地盤上に構造物を構築する場合、もしくは既存の構造物に液状化対策を施す場合には、従来から各種工法が開発されている。   Various methods have been developed in the past when constructing a structure on the ground where liquefaction may occur during an earthquake, such as a soft sand layer ground, or when taking measures against liquefaction on an existing structure.

例えば、地盤が液状化しないように地盤強度(密度)を増大させる締固め工法(サンドコンパクションパイル工法など)、薬液注入などによる地盤改良工法などが幅広く適用されている。   For example, a compaction method (such as a sand compaction pile method) that increases the strength (density) of the ground so that the ground does not liquefy, a ground improvement method using chemical injection, and the like are widely applied.

しかし、同工法では周辺地盤をかなり広い領域にわたって対策する必要があるため用地確保が必要なことや、確実に効果を発揮するためには構造物直下地盤を改良することが肝要である。既設構造物への適用を考えた場合、一旦構造物を撤去し、地盤を改良した後に再び構造物を設置するか、構造物周辺地盤から構造物直下地盤の改良を施す必要がある。   However, in this method, it is necessary to take measures for the surrounding ground over a considerably wide area, so it is necessary to secure the site, and it is important to improve the structure foundation ground board in order to exhibit the effect reliably. When considering application to an existing structure, it is necessary to remove the structure once and improve the ground, and then install the structure again, or improve the structure base ground from the ground around the structure.

しかし、施工スペ−スの制限や、低騒音・低振動施工が求められるなど適用の制限を受けることが考えられる。さらに、対策工法や地盤の改良範囲によっては多大な工期、工費が必要となり非合理的となることも考えられる。   However, it is conceivable that there are restrictions on the application such as construction space restrictions and low noise / low vibration construction. Furthermore, depending on the countermeasure construction method and the range of ground improvement, it may be irrational because a large construction period and cost are required.

一方、ドレ−ン工法など地震時に発生する過剰間隙水圧の発生を低減し液状化を抑制する工法、鋼材などを用いて構造的に地盤の変形を抑制する工法、さらにはこれらの技術要素を組み合わせて、より合理的かつ効果的な対策を可能にする工法も開発されている。一例としては、矢板や杭、H型鋼のような鋼材に排水材を取り付けた排水機能付き鋼矢板、鋼管矢板、鋼管杭、H型鋼を地中に連続して打設し壁体を構築する工法が挙げられる。   On the other hand, methods such as the drain method that reduce excessive pore water pressure generated during an earthquake to suppress liquefaction, methods that structurally suppress ground deformation using steel, etc., and combinations of these technical elements Therefore, construction methods that enable more rational and effective measures have been developed. For example, sheet piles with piles, steel sheet piles with drainage function, steel pipe sheet piles, steel pipe piles, and H-shaped steels with a drainage function attached to steel materials such as sheet piles, piles, and H-shaped steels. Is mentioned.

この工法は、主として水路や共同溝、盛土といった線状構造物の両側に設置される場合や、建築物をはじめ各種施設を取り囲むように設置される場合が多い。   This construction method is often installed mainly on both sides of a linear structure such as a waterway, a common ditch, and embankment, or is installed so as to surround various facilities including buildings.

これら構造物の周囲に壁体を構築することで、鋼材の強度・剛性に優れるといった特徴を活かして液状化した地盤の変形を抑制するとともに、鋼材表面もしくは近傍に設置された排水部材の効果により地震時に発生する過剰間隙水圧を低減し液状化が抑制され、構造物に生じる有害な変形や損傷が抑制されることが期待できる。   By constructing walls around these structures, the deformation of the liquefied ground is suppressed by taking advantage of the strength and rigidity of the steel, and the effect of the drainage member installed on or near the steel It can be expected that excessive pore water pressure generated during an earthquake is reduced and liquefaction is suppressed, and harmful deformation and damage occurring in the structure are suppressed.

矢板近傍の過剰間隙水圧の発生が抑制されると、矢板近傍の地盤強度が保持され鋼材自体の変形に抵抗する地盤からの反力が十分に期待でき、かつ鋼材に作用する地盤からの荷重が低減されるため、必要な鋼材の断面を低減することができコスト面での合理化も期待できる。   If the generation of excess pore water pressure near the sheet pile is suppressed, the ground strength in the vicinity of the sheet pile can be maintained, and the reaction force from the ground that resists deformation of the steel material itself can be expected sufficiently, and the load from the ground acting on the steel material can be expected. Therefore, the necessary cross section of the steel material can be reduced, and cost rationalization can be expected.

また、このような排水・集水機能が付与された鋼矢板、鋼管矢板などの鋼材は、護岸や道路擁壁などの擁壁構造物の構築にも適用することが可能で、擁壁構造物背面の水を効果的に排水することで静水圧を低減し擁壁構造物の変形を抑制することが期待される。これにより、擁壁構造物に適用する鋼材の断面が低減され、材料コストの縮減が可能となり合理的となる。   In addition, steel materials such as steel sheet piles and steel pipe sheet piles with drainage and water collection functions can be applied to the construction of retaining wall structures such as revetments and road retaining walls. By effectively draining the water on the back, it is expected to reduce the hydrostatic pressure and suppress the deformation of the retaining wall structure. Thereby, the cross section of the steel material applied to the retaining wall structure is reduced, and the material cost can be reduced, which is rational.

従来技術として、例えば、特許文献1には、振動を利用してケ−シングを砂質地盤にその砂質地盤を締固めつつ打ち込む工程と、地盤の所定圧力に対する耐圧性を有し、かつ周壁に透水用の孔を開設したパイプに透水性フィルターを被せてなるドレ−ンパイプをケ−シングに挿入する工程と、ケ−シングを砂質地盤から引き抜いて砂質地盤にドレ−ンパイプを残留させる工程とを有し、砂質地盤中の過剰間隙水圧をこのドレ−ンパイプを用いて低下させることを特徴とする砂質地盤の液状化対策工法が記載されている。   As a conventional technique, for example, Patent Document 1 discloses that a case where a casing is driven into a sandy ground using vibration while the sandy ground is compacted, a pressure resistance against a predetermined pressure of the ground, and a peripheral wall A drain pipe with a water permeable filter covered with a pipe having a hole for water permeability inserted in the casing, and pulling the casing from the sandy ground to leave the drain pipe on the sandy ground And a method for countermeasures against liquefaction of sandy ground, characterized in that the excess pore water pressure in the sandy ground is reduced by using this drain pipe.

また、特許文献2には、吸水性又は透水性を有する筒状のドレ−ン部材の先端部を矢板に固定すると共に、該矢板に前記ドレ−ン部材全体を覆う筒状のケ−シングを着脱可能に取り付けて前記矢板とケ−シングを同時に地盤中に打設し、前記ケ−シング内に注水してその上端開口部を閉塞し、前記矢板およびドレ−ン部材を地盤中に残した状態で前記ケ−シングを引き上げることを特徴とする地盤の液状化抑制工法が記載されている。   In Patent Document 2, a cylindrical casing member having water absorption or water permeability is fixed to a sheet pile, and a cylindrical casing that covers the entire drain member is attached to the sheet pile. Attach the sheet pile and casing to the ground at the same time in a detachable manner, pour water into the casing to close the upper end opening, and leave the sheet pile and drain member in the ground. A ground liquefaction suppression method characterized by pulling up the casing in a state is described.

また、本願の出願人による特許文献3には、矢板本体の長手方向に沿った所定区間に、多数の開口部と該開口部からの地盤の土砂の浸入を防ぐためのフィルターを備えた排水用部材を1条または複数条、少なくとも前記矢板本体の片面に設けたことを特徴とする排水機能付き鋼矢板が記載されている。   Moreover, in patent document 3 by the applicant of this application, in the predetermined area along the longitudinal direction of a sheet pile main body, it is for drainage provided with the filter for preventing intrusion of many earth openings and ground earth and sand from this opening part. A steel sheet pile with a drainage function is described in which one or a plurality of members are provided on at least one side of the sheet pile main body.

また、非特許文献1には、通常時に矢板壁体本体に通水用の開口孔が形成されていることで、地下水の円滑な流れが阻害されることなく、従来、課題であった壁体背後における井戸枯れや水位低下の問題が解決されることが記載されており、本文献では壁投影面積あたり約1%程度の開口孔を設ければ、通常状態での透水量の約90%程度が確保できることが解析で評価されている。   In addition, in Non-Patent Document 1, the wall body, which has been a problem in the past, is not hindered by the smooth flow of groundwater by forming an opening hole for water flow in the sheet pile wall body at normal times. It is described that the problem of well drainage and water level drop in the back can be solved. In this document, if an opening hole of about 1% per wall projection area is provided, about 90% of the water permeability in the normal state It is evaluated in the analysis that can be secured.

特公平06−011990号公報Japanese Patent Publication No. 06-011990 特開平11−158862号公報Japanese Patent Laid-Open No. 11-158862 特開平02−225712号公報Japanese Patent Laid-Open No. 02-225712

“地下水環境の保全にすぐれた透水性鋼矢板工法“、鋼管杭協会鋼矢板技術委員会パンフレット、鋼管杭協会“Permeable steel sheet pile construction method with excellent preservation of groundwater environment”, Steel Pipe Pile Association Steel Sheet Pile Technical Committee brochure, Steel Pipe Pile Association

特許文献1に記載された発明は、地震時にドレ−ンパイプ周辺の過剰間隙水圧消散効果は期待できるものの、ドレ−ンパイプの剛性は期待できず、地盤の変形や流動によりドレ−ンパイプが大きく変形することでドレ−ンパイプの機能を損なう恐れがあることや、対策を施す対象構造物も損傷する可能性がある。   Although the invention described in Patent Document 1 can be expected to dissipate excess pore water pressure around the drain pipe during an earthquake, the drain pipe cannot be expected to have rigidity, and the drain pipe deforms greatly due to ground deformation and flow. This may impair the function of the drain pipe and may damage the target structure to which measures are taken.

それを解決するために、鋼矢板など高い剛性が期待できる壁体構造物との併用も考えられるが、その場合にはドレ−ンパイプと鋼矢板を別々に施工する必要があり、施工時間がかかることによる施工コストが増大し合理的ではない。   In order to solve this problem, it is possible to use a wall structure such as a steel sheet pile that can be expected to have high rigidity. However, in that case, it is necessary to construct the drain pipe and the steel sheet pile separately, which requires construction time. This increases the construction cost and is not reasonable.

また、特許文献2に記載された発明は、ドレ−ン材および部材全体を覆うケ−シングと矢板を同時に施工が可能ではあるものの、ケ−シング管を引き抜く必要があり施工時間が長くなり施工コストが増大する。   In addition, although the invention described in Patent Document 2 can simultaneously construct the casing and the sheet pile covering the drain material and the entire member, it is necessary to pull out the casing tube, and the construction time becomes longer. Cost increases.

また、十分な排水効果を得ようとすると、ドレ−ン材の体積を大きくする必要があり、
それを設置する端面保護部材やドレ−ン材を覆う保護部材も大きくなる。これにより、施工時に地盤からの抵抗が大きくなり、打設時間が長くなることにより建設コストが増大する。また、打設時に矢板とケ−シング管の隙間の土砂が詰まり締固まると打設困難となることが危惧される。
In addition, in order to obtain a sufficient drainage effect, it is necessary to increase the volume of the drain material,
The protective member which covers the end surface protective member and drain material which installs it also becomes large. This increases the resistance from the ground during construction and increases the construction cost due to the longer placement time. In addition, there is a concern that it may become difficult to place if the earth and sand in the gap between the sheet pile and the casing tube are clogged and compacted.

さらに、打設後ケ−シング管を引き抜くために端面保護部材は着脱可能となっているが、打設時にケ−シング管内に万が一土砂が流入するとケ−シング管を引き抜く際に、ケ−シング管内に設置されたドレ−ン材が損傷し、十分な排水機能が確保されないことが危惧される。   Furthermore, the end face protection member is detachable in order to pull out the casing tube after placing, but if earth or sand flows into the casing tube during placement, the casing is removed when the casing tube is pulled out. There is a concern that the drain material installed in the pipe will be damaged and a sufficient drainage function will not be ensured.

また、特許文献3に記載された発明は、排水用部材を取り付けた鋼矢板を打設するようにしているため施工時間の短縮が可能であり、施工時の地盤抵抗も特許文献2に記載された工法に比べて縮減が可能であり効果的、かつ経済的であるが、排水部材の最適な配置については明確になっていない。   Moreover, since the invention described in Patent Document 3 is designed to place a steel sheet pile with a drainage member attached thereto, construction time can be shortened, and ground resistance during construction is also described in Patent Document 2. Although it is possible to reduce the size of the construction method, it is effective and economical, but the optimal arrangement of the drainage members is not clear.

一般的に排水用部材を矢板に取り付ける場合、壁方向に排水部材が設置される間隔は、矢板の形状、寸法および排水部材の材料や寸法、構造および強度に依存する傾向がある。そのため、排水部材の設置間隔や長さは経済性も考慮して設定する必要がある。   In general, when the drainage member is attached to the sheet pile, the interval at which the drainage member is installed in the wall direction tends to depend on the shape and size of the sheet pile and the material and size, structure, and strength of the drainage member. Therefore, it is necessary to set the installation interval and length of the drainage member in consideration of economy.

排水部材をかなり密に設置すれば、それだけ設置間隔による排水性の低下は低減されるが、その分排水部材コストは増加し経済性は劣る。反対に、排水部材をかなり疎に設置すれば、排水部材コストは縮減され経済性には優れるも、その分設置間隔は大きくなり排水性の低下が懸念される。   If the drainage members are installed fairly densely, the decrease in drainage due to the installation interval can be reduced, but the drainage member cost increases correspondingly and the economy is inferior. On the other hand, if drainage members are installed fairly sparsely, drainage member costs are reduced and the cost is excellent, but the installation interval is increased accordingly, and there is a concern that drainage performance will be reduced.

また、排水部材の長さについては、必要以上に長ければ、その分施工時に地盤から受ける抵抗が増加し施工時間が長くなり施工コストが増加することや部材コストの増加にも繋がる。反対に、必要以上に短ければ、その分地震時に必要な排水量を排水できず、対策効果が低減されることが懸念される。   Further, if the length of the drainage member is longer than necessary, the resistance received from the ground at the time of construction increases, the construction time becomes longer, the construction cost increases, and the member cost increases. On the other hand, if it is shorter than necessary, there is a concern that the amount of drainage required at the time of the earthquake cannot be drained, and the countermeasure effect is reduced.

また、非特許文献1では、矢板壁体本体に通水用の開口孔を壁投影面積あたり約1%程度設けることで、通常状態での透水量を約90%程度確保できることが解析で評価されているが、これは定常状態でのものである。   In addition, in Non-Patent Document 1, analysis is evaluated that it is possible to secure about 90% of the amount of water permeation in a normal state by providing about 1% of the aperture hole for water passage in the sheet pile wall body per wall projection area. However, this is in a steady state.

地震時に発生する過剰間隙水圧の消散を期待する排水機能付き矢板は、地震時の動的問題を取り扱うため定常状態と同程度の開口率では十分な排水が可能であるとは言えず、地震動特性や透水係数、地盤の圧縮係数などの地盤条件も考慮した排水解析や実験等によって必要開口率を設定することが必要となる。   The sheet pile with drainage function that expects the dissipation of excess pore water pressure generated during an earthquake handles dynamic problems during an earthquake, so it cannot be said that sufficient drainage is possible with an aperture ratio comparable to the steady state. It is necessary to set the required aperture ratio by drainage analysis and experiments that take into account ground conditions such as water permeability, ground compression coefficient, etc.

以上のように、従来の技術では、矢板とドレ−ン材を同時に施工が可能で打設性にも優れ、材料コスト、施工コストが安価であり、かつ排水部材が矢板に対して最適に配置された合理的で経済的な工法とはいえない。   As described above, in the conventional technology, it is possible to construct a sheet pile and a drain material at the same time, and it is excellent in placing characteristics, the material cost and the construction cost are low, and the drainage member is optimally arranged with respect to the sheet pile. It is not a reasonable and economical construction method.

そこで本発明は、このような課題の解決を図ったものであり、矢板と排水部材を同時に施工する際に打設性に優れ、排水部材の最適な配置を設定し、かつ材料コスト、施工コストが抑制可能な排水機能および集水機能を付与した鋼矢板および該鋼矢板を連続して設置した壁体構造を提供することを目的とする。   Therefore, the present invention is intended to solve such a problem, and is excellent in placing property when the sheet pile and the drainage member are constructed at the same time, sets the optimal arrangement of the drainage member, and material cost and construction cost. It aims at providing the wall structure which installed the steel sheet pile which gave the drainage function and water collection function which can suppress water, and this steel sheet pile continuously.

請求項1に係る排水機能付き矢板は、有効幅500mm以上の矢板の長手方向に沿って排水部材を設けた排水機能付き矢板において、前記排水部材の部材開口率が5%以上であ
り、かつ排水部材の幅が170mm以上であることを特徴とするものである。
The sheet pile with drainage function according to claim 1 is a sheet pile with drainage function in which a drainage member is provided along the longitudinal direction of the sheet pile having an effective width of 500 mm or more, and the member opening ratio of the drainage member is 5% or more, and drainage The width of the member is 170 mm or more.

請求項2は、請求項1に係る排水機能付き矢板において、前記排水部材の部材開口率が10%以上であることを特徴とするものである。   According to a second aspect of the present invention, in the sheet pile with a drainage function according to the first aspect, a member opening ratio of the drainage member is 10% or more.

請求項3に係る排水機能付き矢板は、請求項1または2に係る排水機能付き矢板を連続して設置し矢板壁を構築した場合に、前記排水部材の矢板壁体投影面積に占める割合が15%以上となることを特徴とするものである。   The sheet pile with drainage function according to claim 3 has a ratio of the drainage member to the sheet pile wall projection area of 15 when the sheet pile with drainage function according to claim 1 or 2 is continuously installed to construct the sheet pile wall. % Or more.

請求項4は、請求項3に係る排水機能付き矢板において、前記排水部材の矢板壁体投影面積に占める割合が20%以上となることを特徴とするものである。   According to a fourth aspect of the present invention, in the sheet pile with a drainage function according to the third aspect, a ratio of the drainage member to a sheet pile wall projection area is 20% or more.

請求項5は、請求項1〜4に係る排水機能付き矢板を連続して設置し矢板壁を構築した場合に、前記排水部材が設置されない壁方向長さが1.0m以下となることを特徴とするものである。   Claim 5 is characterized in that when the sheet pile with drainage function according to claims 1 to 4 is continuously installed to construct a sheet pile wall, the wall direction length in which the drainage member is not installed is 1.0 m or less. It is what.

請求項6は、請求項1〜5に係る排水機能付き矢板において、前記排水部材の部材断面積が20cm2以上であり、かつ該排水部材の軸直角方向の厚みが10mm以上であることを特徴とするものである。 Claim 6 is a sheet pile with a drainage function according to claims 1 to 5, wherein the drainage member has a sectional area of 20 cm 2 or more, and the drainage member has a thickness in the direction perpendicular to the axis of 10 mm or more. It is what.

請求項7に係る排水機能付き矢板は、請求項1〜6に係る排水機能付き矢板を連続して設置し矢板壁を構築した場合に、矢板本体に壁投影面積比0.5%以上となる地下水の円滑な流れを確保するための開口孔が設けられていることを特徴とするものであり、排水機能付き矢板に透水機能を持たせたものである。   The sheet pile with a drainage function according to claim 7 has a wall projection area ratio of 0.5% or more on the sheet pile main body when the sheet pile with drainage function according to claims 1 to 6 is continuously installed to construct a sheet pile wall. An opening hole for ensuring a smooth flow of groundwater is provided, and a sheet pile with a drainage function is provided with a water permeability function.

請求項8は、請求項1〜7に係る排水機能付き矢板において、前記排水部材を設置する位置が矢板ウェブ部であることを特徴とするものである。   According to an eighth aspect of the present invention, in the sheet pile with drainage function according to the first to seventh aspects, a position where the drainage member is installed is a sheet pile web portion.

請求項9は、請求項1〜8に係る排水機能付き矢板において、前記排水部材が、地震時に液状化の発生が懸念される層下端より上部のみに設置されることを特徴とするものである。   Claim 9 is characterized in that in the sheet pile with drainage function according to claims 1 to 8, the drainage member is installed only above the lower end of the layer where liquefaction is a concern during an earthquake. .

請求項10は、請求項1〜9に係る排水機能付き矢板において、前記排水部材がマット状の樹脂製網状構造体であり、かつ前記樹脂製網状構造体上に透水性を確保しつつ土砂の侵入を防止するフィルターが設けられていることを特徴とするものである。   Claim 10 is a sheet pile with a drainage function according to any one of claims 1 to 9, wherein the drainage member is a mat-like resin net-like structure, and water and sand are secured on the resin net-like structure while ensuring water permeability. A filter for preventing intrusion is provided.

請求項11は、請求項10に係る排水機能付き矢板において、前記フィルター上に、さらにフィルター破損防止用に該フィルターの網目よりも大きな透水孔を有する防護板が設けられていることを特徴とするものである。   An eleventh aspect of the present invention is the sheet pile with a drainage function according to the tenth aspect, wherein a protective plate having a water permeability hole larger than the mesh of the filter is further provided on the filter for preventing damage to the filter. Is.

請求項12は、請求項1〜11に係る排水機能付き矢板において、前記排水部材と矢板が、排水部材の先端部および矢板長手方向に沿って離散的に固定されていることを特徴とするものである。   Claim 12 is a sheet pile with a drainage function according to claims 1 to 11, wherein the drainage member and the sheet pile are discretely fixed along the distal end portion of the drainage member and the sheet pile longitudinal direction. It is.

請求項13に係る排水機能付き矢板壁体構造は、請求項1〜12に係る排水機能付き矢板を連続して設置し構築したことを特徴とするものである。   The sheet pile wall structure with a drainage function according to claim 13 is constructed by continuously installing and constructing a sheet pile with a drainage function according to claims 1 to 12.

請求項14は、請求項13に係る排水機能付き矢板壁体構造において、液状化性地盤上に設置される構造物に対する矢板締切りとして用いられ、少なくとも前記構造物の存在する矢板締切り内側に前記排水部材が位置するようにしたことを特徴とするものである。   A sheet pile wall structure with a drainage function according to claim 14 is used as a sheet pile cutoff for a structure installed on a liquefiable ground, and at least the drainage is disposed inside the sheet pile cutoff where the structure exists. The member is positioned.

本願発明は、有効幅500mm以上の矢板の長手方向に沿って排水部材を設けた排水機能付き矢板において、前記排水部材の部材開口率が5%以上であり、かつ排水部材の幅が170mm以上としたものであり、鋼矢板の大断面化による単位長さあたりの鋼材重量の縮減に伴う材料コストの低減、および施工延長あたりの打設枚数の縮減に伴う施工コストの低減による建設コストの縮減を図りつつ、発明を実施するための形態の項で詳述するように、合理的かつ強固な排水機能を有する壁体の構築が可能となる。   The present invention is a sheet pile with a drainage function in which a drainage member is provided along the longitudinal direction of a sheet pile having an effective width of 500 mm or more, the member opening ratio of the drainage member is 5% or more, and the width of the drainage member is 170 mm or more. The material cost is reduced by reducing the steel weight per unit length by making the steel sheet pile larger, and the construction cost is reduced by reducing the construction cost by reducing the number of placements per construction extension. As will be described in detail in the section of the embodiment for carrying out the invention, it is possible to construct a wall body having a rational and strong drainage function.

鋼矢板の断面形状例として、(a)は従来の有効幅400mmのU型鋼矢板、(b)は有効幅600mmのU型鋼矢板、(c)は有効幅900mmのハット型鋼矢板を接続した状態を示す断面図である。As an example of the cross-sectional shape of a steel sheet pile, (a) is a conventional U-type steel sheet pile with an effective width of 400 mm, (b) is a U-type steel sheet pile with an effective width of 600 mm, and (c) is a state in which a hat-type steel sheet pile with an effective width of 900 mm is connected. It is sectional drawing shown. 鋼矢板にH型鋼を組み合わせた排水機能を有する壁体の例を示したものであり、(a)は断面図、(b)は斜視図である。The example of the wall body which has the drainage function which combined H-shaped steel with the steel sheet pile is shown, (a) is sectional drawing, (b) is a perspective view. 鋼管および鋼管矢板にH型鋼を組み合わせた排水機能を有する壁体の例を示したものであり、(a)は断面図、(b)は斜視図である。The example of the wall body which has the drainage function which combined H-shaped steel with the steel pipe and the steel pipe sheet pile is shown, (a) is sectional drawing, (b) is a perspective view. 係数Tlが排水効果に及ぼす影響として、排水機能付き矢板前面の残留過剰間隙水圧比Ruと矢板からの距離Xの関係を示したグラフである。The impact of the coefficient T l is on the drainage effect is a graph showing the relationship between the distance X from the drainage function sheet pile front of residual excess pore water pressure ratio R u and sheet pile. 排水機能付き矢板前面の残留過剰間隙水圧比Ruと係数Tlの関係を示したグラフである。Is a graph showing the relationship between the residual excess pore water pressure ratio R u and coefficient T l drainage function sheet pile front. (a)、(b)はそれぞれ排水材の設置間隔P=800mm、1200mmについての解析結果における開口率と排水機能付き矢板前面からの水圧低減距離の関係を示したグラフである。(a), (b) is the graph which showed the relationship between the aperture ratio in the analysis result about the installation space | interval P = 800mm and 1200mm of a drainage material, and the water pressure reduction distance from the sheet pile front surface with a drainage function, respectively. 排水部材の幅と排水機能付き矢板前面の残留過剰間隙水圧比Ruの関係を示したグラフである。It is a graph showing the relationship between the residual excess pore water pressure ratio R u width and drainage function sheet pile front of the drainage member. (a)、(b)はそれぞれ係数Tl=100、400とし、排水部材の設置間隔をP=800mm、1000mm、1200mm、排水部材の幅をW=250mmとし、開口率αをα=1〜100%に設定したときの解析結果における残留過剰間隙水圧Ruと開口率αとの関係を示したグラフである。(a) and (b) are coefficients T l = 100 and 400, respectively, the installation intervals of the drainage members are P = 800 mm, 1000 mm and 1200 mm, the width of the drainage members is W = 250 mm, and the aperture ratio α is α = 1 to 1. it is a graph showing the relationship between the excess pore water pressure R u and the opening ratio α residual in the analysis results when set to 100%. (a)、(b)は排水部材の矢板壁体投影面積に占める割合を説明するための斜視図、(b)、(c)は排水効果の及ぶ距離(水圧低減距離)の概念図である。(a), (b) is a perspective view for demonstrating the ratio which the drainage member occupies for the sheet pile wall projection area, (b), (c) is a conceptual diagram of the distance (water pressure reduction distance) where the drainage effect reaches. . 排水解析により検討した排水部材の壁投影面積比率βと残留過剰間隙水圧Ru(水圧低減距離)の関係を示すグラフである。Is a graph showing the relationship between the wall projected area ratio β and residual excess pore water pressure R u drainage member was examined by drainage analysis (water pressure reducing distance). 排水部材の壁投影面積比βと排水部材の前面位置での過剰間隙水圧比Ruの関係を示すグラフである。Is a graph showing the relationship between the excess pore water pressure ratio R u of the front position of the wall projection area ratio β and drainage member of the drainage member. 排水部材の幅をW=200mm、250mm、300mmとした場合の、排水部材の壁投影面積比率と排水機能付き矢板前面の残留過剰間隙水圧比Ruとの関係を示すグラフである。The width of the drainage member W = 200mm, 250mm, in the case of a 300 mm, is a graph showing the relationship between the residual excess pore water pressure ratio R u wall projected area ratio and drainage function sheet pile front of the drainage member. 排水部材が設置されない長さRと排水部材前面の過剰間隙水圧比Ruの関係を示したグラフである。Drain member is a graph showing the relationship between the excess pore water pressure ratio R u drainage member front and length R is not installed. U型鋼矢板に200mm幅の排水部材を矢板に設置すると仮定した場合の矢板壁の状況を示す断面図である。It is sectional drawing which shows the condition of the sheet pile wall at the time of assuming that a 200 mm width drainage member is installed in a sheet pile in a U-shaped steel sheet pile. ハット型鋼矢板に200mm幅の排水部材を矢板に設置すると仮定した場合の矢板壁の状況を示す断面図である。It is sectional drawing which shows the condition of the sheet pile wall at the time of assuming that the drainage member of 200 mm width is installed in a sheet pile in a hat-type steel sheet pile. 排水部材の設置間隔P=1200mm、壁方向に排水部材が設置されない長さR=1000mm、排水部材の幅W=200mm、開口率α=5%、係数Tl=100の条件での排水解析結果を示したグラフである。Drainage analysis results under conditions of drainage member installation interval P = 1200 mm, length R = 1000 mm where drainage member is not installed in the wall direction, drainage member width W = 200 mm, opening ratio α = 5%, coefficient T l = 100 It is the graph which showed. (a)、(b)はそれぞれ矢板本体に開口孔を設けた矢板を連続して設置し矢板壁とする場合の実施形態を示す斜視図である。(a), (b) is a perspective view which shows embodiment in the case of installing continuously the sheet pile which provided the opening hole in the sheet pile main body, respectively, and making it a sheet pile wall. 開口率と流量比の関係を示すグラフである。It is a graph which shows the relationship between an aperture ratio and a flow ratio. (a)、(b)は排水部材の設置位置に関する説明図としての水平断面図である。(a), (b) is a horizontal sectional view as explanatory drawing regarding the installation position of a drainage member. 排水部材としてのマット状の樹脂製網状構造体の例を示す断面図である。It is sectional drawing which shows the example of the mat-shaped resin net-like structure as a drainage member. (a)、(b)はそれぞれ透水孔を設けた防護板の例としてのパンチングメタルおよびエキスパンドメタルの図である。(a), (b) is the figure of the punching metal and expanded metal as an example of the protection board which provided the water-permeable hole, respectively. 防護板の形状および矢板への取り付け方法の例を示す斜視図である。It is a perspective view which shows the example of the shape of a guard plate, and the attachment method to a sheet pile. (a)〜(d)はそれぞれ防護板の形状および矢板への取り付け方法の他の例を示す断面図である。(a)-(d) is sectional drawing which shows the other example of the shape of a guard plate, and the attachment method to a sheet pile, respectively. (a)、(b)はそれぞれ止め部材による防護板の取り付け方法の他の例を示す断面図である。(a), (b) is sectional drawing which shows the other example of the attachment method of the protection board by a stop member, respectively. (a)〜(d)はそれぞれ液状化性地盤上に設置される構造物に対する排水機能付き矢板壁の配置例を示す説明図である。(a)-(d) is explanatory drawing which shows the example of arrangement | positioning of the sheet pile wall with a drainage function with respect to the structure installed on a liquefiable ground, respectively.

以下、本発明の具体的な実施の形態、原理および作用効果を、図面を参照しながら各請求項との関係で説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。   Hereinafter, specific embodiments, principles, and effects of the present invention will be described in relation to each claim with reference to the drawings. Note that the present invention is not limited to the embodiments described below.

請求項1に係る排水機能付き矢板は、有効幅500mm以上の矢板の長手方向に沿って排水部材を設けた排水機能付き矢板において、排水部材の部材開口率が5%以上であり、かつ排水部材の幅が170mm以上であることを特徴とするものである。   The sheet pile with drainage function according to claim 1 is a sheet pile with drainage function in which a drainage member is provided along the longitudinal direction of the sheet pile having an effective width of 500 mm or more, and the member opening ratio of the drainage member is 5% or more, and the drainage member The width of is not less than 170 mm.

鋼矢板は、これまで有効幅400mmのU型鋼矢板が主に使用されてきた。図1に示すように、近年では鋼矢板1、2の大断面化が進み、単位長さあたりの鋼材重量の縮減に伴う材料コストの低減、および施工延長あたりの打設枚数の縮減に伴う施工コストの低減による建設コストの縮減が図られている。   As the steel sheet pile, a U-shaped steel sheet pile having an effective width of 400 mm has been mainly used so far. As shown in FIG. 1, in recent years, the steel sheet piles 1 and 2 have been increased in cross section, the material cost is reduced due to the reduction in the weight of the steel material per unit length, and the construction is accompanied by the reduction in the number of placements per construction extension. Construction costs are being reduced by reducing costs.

単位長さあたりの鋼材重量が縮減されても、大断面化を図っているため従来の鋼矢板と比べても壁体として同等の性能を発揮することができ、液状化した地盤が剛性を失い変形が生じたとしてもそれに抵抗し得る性能は保持される。   Even if the weight of the steel material per unit length is reduced, the cross-section is made large, so it can exhibit the same performance as a wall body compared to conventional steel sheet piles, and the liquefied ground loses rigidity. Even if deformation occurs, the ability to resist it is maintained.

そのため、排水機能付き矢板の材料に比較的広幅である有効幅500mm以上の鋼矢板を適用することで、合理的かつ強固な排水機能を有する壁体の構築が可能となり非常に効果的である。   Therefore, by applying a steel sheet pile having a relatively wide effective width of 500 mm or more to the material of the sheet pile with a drainage function, it is possible to construct a wall body having a rational and strong drainage function, which is very effective.

また、より強固な壁体が求められる場合は、図2、図3に示すように、鋼矢板にH型鋼4や鋼矢板、鋼管、その他鋼材をはじめ種々の部材を組み合わせることにより、排水機能を有する壁体としての断面性能を向上させることも可能である。   Moreover, when a stronger wall body is required, as shown in FIG. 2 and FIG. 3, the drainage function can be achieved by combining the steel sheet pile with various members including H-shaped steel 4, steel sheet pile, steel pipe, and other steel materials. It is also possible to improve the cross-sectional performance as the wall body having.

また、有効幅500mm以上の鋼管タイプの矢板5(以下、鋼管矢板と称する)へ排水部材3を設置し、排水機能付き壁体を構築することも効果的である。鋼管矢板5は鋼管に継手が設置された断面を有し、非常に大きな断面性能が発揮される鋼材である。   It is also effective to install the drainage member 3 on a steel pipe type sheet pile 5 (hereinafter referred to as a steel pipe sheet pile) having an effective width of 500 mm or more to construct a wall body with a drainage function. The steel pipe sheet pile 5 is a steel material having a cross section in which a joint is installed on the steel pipe and exhibiting a very large cross-sectional performance.

次に、排水部材の最適な配置についての検討結果を示す。
前述のように、通常状態であれば、矢板壁体本体に通水用の開口孔を壁投影面積あたり約1%程度設ければ、通常状態での透水量を約90%程度確保でき、地下水の円滑な流れが阻害されることなく、従来、課題であった壁体背後における井戸枯れや水位低下の問題が生じない。
Next, the examination result about the optimal arrangement | positioning of a drainage member is shown.
As described above, in the normal state, by providing about 1% of water perforated area on the sheet pile wall body with water passage holes, the amount of water permeation in the normal state can be secured by about 90%. The smooth flow of water is not hindered, and the problems of well drainage and water level reduction behind the wall, which have been problems in the past, do not occur.

ところが、排水機能付き矢板は地震時に発生する過剰間隙水圧を消散させることが重要な機能であり、動的問題を取り扱うため定常状態の水の流れとは異なる。   However, a sheet pile with a drainage function is an important function to dissipate excess pore water pressure generated during an earthquake, and is different from steady-state water flow because it deals with dynamic problems.

一般的に、地震の発生に伴い過剰間隙水圧が低減される領域は時々刻々と変化する。地盤が完全液状化に至った領域では水圧に変化が生じないために間隙水の流れが生じなくなり、過剰間隙水圧が低減される領域が急激に縮小し、最終的には排水機能付き矢板近傍の狭い範囲の地盤の体積圧縮によってのみ間隙水の流れが生じる状態となる。   Generally, the region where excess pore water pressure is reduced with the occurrence of an earthquake changes from moment to moment. Since the water pressure does not change in the area where the ground has completely liquefied, the flow of pore water does not occur, the area where excess pore water pressure is reduced rapidly shrinks, and finally the area near the sheet pile with drainage function Only by volume compression of the ground in a narrow range, the pore water flows.

そのため、排水機能付き矢板前面の動水勾配が高くなるため、液状化対策に係る必要排水量を確保するには定常状態に比べて開口率を大きくする必要がある。必要開口率について、定常状態での透水解析に地震時における地盤内の過剰間隙水圧の発生・消散を組み込んだ2次元排水解析にて検討を行った。排水解析手法を以下に述べる。   Therefore, since the dynamic water gradient of the front side of the sheet pile with the drainage function becomes high, it is necessary to increase the opening ratio as compared with the steady state in order to secure the necessary drainage amount related to liquefaction countermeasures. The required aperture ratio was examined by a two-dimensional drainage analysis that incorporated the generation and dissipation of excess pore water pressure in the ground during an earthquake into the permeability analysis in a steady state. The wastewater analysis method is described below.

地盤内の過剰間隙水圧の発生・消散に関する基礎方程式は、シード(Seed)らがグラベルドレ−ンの評価に用いた過剰間隙水圧の蓄積と消散を同時に考慮した式(1)を適用した。過剰間隙水圧の発生項にはデ・アルバ(De Alba)らによる非排水条件での飽和砂の繰返し試験結果に基づく式(2)を仮定した。   As the basic equation for the generation and dissipation of excess pore water pressure in the ground, Equation (1), which considered the accumulation and dissipation of excess pore water pressure used by Seed et al. In the evaluation of gravel drain, was applied. Equation (2) based on the repeated test results of saturated sand under non-drainage conditions by De Alba et al. Was assumed as the generation term of excess pore water pressure.

この式(1)および式(2)より地盤内の過剰間隙水圧の発生と消散に関する支配方程式が得られる。これを水平面内の2次元直交座標系で書き表し、さらに無次元化すると式(3)が得られる。これに、排水部材の設置位置では部材開口率を考慮した透過係数を考慮し、一方で、排水部材が設置されない位置では非排水境界を考慮して解析を行い、排水機能付き矢板の開口率に関する評価を行った。   From these equations (1) and (2), the governing equations for the generation and dissipation of excess pore water pressure in the ground can be obtained. When this is expressed in a two-dimensional orthogonal coordinate system in the horizontal plane and further dimensionless, Equation (3) is obtained. In addition, the permeation coefficient considering the member opening ratio is considered at the installation position of the drainage member, while the analysis is performed considering the non-drainage boundary at the position where the drainage member is not installed. Evaluation was performed.

u :過剰間隙水圧
t :時間
s :地盤透水係数
v :地盤の体積圧縮係数
γW :水の単位体積重量
a :砂の性質と試験条件によって決まる係数
N :繰返し回数
l :非排水状態で液状化に至るまでの繰返し回数
eq:等価一定振幅せん断応力波の繰返し回数
d :地震動の継続時間
σvo’:初期有効上載圧 (=u/σvo’)
u :過剰間隙水圧比
0 :基準長さ
u: excess pore water pressure t: time k s : ground permeability coefficient m v : ground volume compression coefficient γ W : unit volume weight a of water a: coefficient determined by sand properties and test conditions N: number of repetitions N l : non-drainage Number of repetitions until liquefaction in the state N eq : number of repetitions of equivalent constant-amplitude shear stress wave t d : duration of earthquake motion σ vo ': initial effective overload (= u / σ vo ')
R u : excess pore water pressure ratio l 0 : reference length

開口率の評価にあたり、注目すべき点は過剰間隙水圧が低減される排水機能付き矢板前面からの距離である。これは、地盤の完全液状化を抑制可能な距離であり、構造物の損傷度に影響するものである。   In the evaluation of the aperture ratio, the point to be noted is the distance from the front face of the sheet pile with a drainage function at which the excess pore water pressure is reduced. This is a distance that can suppress the complete liquefaction of the ground, and affects the degree of damage to the structure.

解析を行うにあたり、まずは地震動条件や地盤条件が地盤内の過剰間隙水圧の発生・消散に及ぼす影響を検討した。式(3)に示すように、地盤内の過剰間隙水圧の発生・消散は、地震動条件と地盤条件に依存する。   In the analysis, we first examined the effects of ground motion conditions and ground conditions on the generation and dissipation of excess pore water pressure in the ground. As shown in Equation (3), the generation and dissipation of excess pore water pressure in the ground depends on the ground motion and ground conditions.

これらのパラメ−タを1つの数値に置き換えたものを式(4)に示す。ここで設定したTl値を用いて解析・評価を行う。またTlを算出する際の基準長さloをここではlo=1cmとした。 Equation (4) shows what replaces these parameters with one numerical value. Analysis and evaluation are performed using the Tl value set here. In addition, the reference length l o for calculating T l is set to l o = 1 cm here.

まず、地震動条件、地盤条件の影響を見るため、開口率が100%の完全排水境界条件(排水部材が矢板壁方向全長に設置され、かつ当該排水部材の部材開口率が100%のイメージ)として、以下の解析を行った。   First, in order to see the effects of ground motion conditions and ground conditions, as a complete drainage boundary condition with an opening ratio of 100% (image of drainage members installed in the entire length in the sheet pile wall direction and the member opening ratio of the drainage members being 100%) The following analysis was performed.

係数Tlが排水効果に及ぼす影響として、排水機能付き矢板前面の残留過剰間隙水圧比Ruと矢板からの距離Xの関係を図4に、排水機能付き矢板前面の残留過剰間隙水圧比Ruと係数Tlの関係を図5に示す。 The impact of the coefficient T l is on the drainage effect, in Figure 4 the relationship between the distance X from the drainage function sheet pile front of residual excess pore water pressure ratio R u and sheet piles, residual excess pore water pressure ratio of sheet pile front with draining function R u FIG. 5 shows the relationship between and the coefficient T l .

残留過剰間隙水圧比Ruは、Ru=1.0となる時点で地盤が完全液状化に至ることを表す数値であり、ここではRu=0.95に至る時点までを記載している。図4に示すように、Tlが大きい程、排水効果のおよぶ範囲は広く、排水機能付き矢板前面位置での残留過剰間隙水圧比は小さくなり、Tl=100近辺を境界として排水効果に差異が見られる。 The residual excess pore water pressure ratio R u is a numerical value indicating that the ground is completely liquefied when R u = 1.0, and here, the time until R u = 0.95 is described. . As shown in FIG. 4, the larger the T l , the wider the range of drainage effect, the smaller the excess excess pore water pressure ratio at the front of the sheet pile with drainage function, and the difference in drainage effect around T l = 100 Is seen.

排水機能付き矢板は、施工条件などを勘案すると、一般的に構造物から約1〜2m程度離れた位置に設置されることが多い。共同溝の液状化対策に排水機能付き矢板を適用する場合、排水機能付き矢板と共同溝との間の地盤の液状化を抑制することが、共同溝の損傷の低減には重要である。   In general, the sheet pile with a drainage function is often installed at a position about 1 to 2 m away from the structure in consideration of construction conditions and the like. When applying a sheet pile with a drainage function as a countermeasure for liquefaction of the joint groove, it is important for reducing damage to the joint groove to suppress the liquefaction of the ground between the sheet pile with the drainage function and the joint groove.

l=100以下の条件でも排水機能付き矢板近傍の過剰間隙水圧の上昇は抑制されるため、構造物の対策としての効果は発揮されるが、Tl=約100以上が排水機能付き矢板にとってより適した条件であると考えられ、この条件下ではより効果的に構造物の対策を行うことが可能であると考えられる。 Even if T l = 100 or less, the increase in excess pore water pressure near the sheet pile with drainage function is suppressed, so that the effect as a countermeasure for the structure is exhibited. However, T l = about 100 or more is necessary for the sheet pile with drainage function. It is considered that the condition is more suitable, and it is considered that the structure can be more effectively taken under this condition.

次に、部材開口率が排水効果に及ぼす影響を検討した。地震動条件、地盤条件に関する前述の係数TlをTl=100、400とし、一例として排水材の幅W=250mm、排水材の設置間隔P=800mm、1200mm、開口率αを解析パラメ−タとした場合の解析結果を図6(a)、(b)に示す。なお、ここでは、開口率αを地盤部と排水材設置部の透水係数の比率に置き換えて解析を行った。 Next, the influence of the member opening ratio on the drainage effect was examined. The above-mentioned coefficient T l concerning the ground motion conditions and ground conditions is set to T l = 100, 400. As an example, the drainage material width W = 250 mm, the drainage material installation interval P = 800 mm, 1200 mm, and the aperture ratio α are analyzed parameters. The analysis results in this case are shown in FIGS. 6 (a) and 6 (b). Here, the analysis was performed by replacing the aperture ratio α with the ratio of the hydraulic conductivity of the ground part and the drainage material installation part.

図6(a)、(b)は、開口率と排水機能付き矢板前面からの水圧低減距離の関係を示している。開口率が大きい程、水圧低減距離が大きくなるが、Tl=100、400の両条件共に、開口率5%程度を境界として、それ以下の開口率では急激に水圧低減距離が短くなる傾向であった。また、Tl=400の条件下では、開口率を1%まで小さくしても、水圧低減距離は2.5m程度確保される。 6 (a) and 6 (b) show the relationship between the aperture ratio and the water pressure reduction distance from the front face of the sheet pile with a drainage function. The greater the aperture ratio, the greater the water pressure reduction distance. Under both conditions of T l = 100 and 400, the water pressure reduction distance tends to be abruptly shortened with an aperture ratio of about 5% as a boundary. there were. Further, under the condition of T l = 400, even if the aperture ratio is reduced to 1%, the water pressure reduction distance is secured about 2.5 m.

通常、排水機能付き矢板の設置位置が構造物から約1〜2m程度であることを考慮すると、前記解析条件では、開口率1%程度でも十分排水効果が期待でき、構造物の対策として機能すると考えられる。また、排水部材の設置間隔Pを変更しても各々同様の傾向が見られた。   Normally, considering that the installation position of the sheet pile with drainage function is about 1 to 2 m from the structure, the analysis condition can be expected to have a sufficient drainage effect even with an aperture ratio of about 1%. Conceivable. Moreover, even if it changed the installation space | interval P of the drainage member, the same tendency was seen respectively.

これらの解析結果より、地震動・地盤条件の厳しいTl=100の条件下において、開口率が水圧低減距離に及ぼす影響を勘案すると、排水機能付き矢板の排水部材開口率は5%以上とすることが望ましく、開口率が5%以上あれば、開口率100%時とさほど変わらない水圧低減距離が確保され、構造物の対策として十分機能すると考えられる。 From these analytical results, under the conditions of severe T l = 100 of ground motion, ground conditions, aperture ratio is In consideration of influence on the pressure reduction distance, the drainage member aperture ratio drainage function sheet piles to be 5% or more If the aperture ratio is 5% or more, it is considered that a water pressure reduction distance that is not so different from that when the aperture ratio is 100% is secured, and that it sufficiently functions as a countermeasure for the structure.

次に、排水部材の幅が排水効果に及ぼす影響を検討した。   Next, the influence of the width of the drainage member on the drainage effect was examined.

解析条件としては、排水部材の幅をW=50mm〜350mmまで設定し、係数Tl=100、排水部材の設置間隔P=800mm、開口率α=5%とした。解析結果を図7に示す。 As analysis conditions, the width of the drainage member was set to W = 50 mm to 350 mm, the coefficient T 1 = 100, the installation interval P of the drainage member P = 800 mm, and the aperture ratio α = 5%. The analysis results are shown in FIG.

図7は、排水部材の幅と排水機能付き矢板前面の残留過剰間隙水圧比Ruの関係を示しており、排水部材の幅W=170mmを境界として、残留過剰間隙水圧比Ruの勾配が変化した。 Figure 7 shows the relationship between the residual excess pore water pressure ratio R u width and drainage function sheet pile front of the drain member, as a boundary width W = 170 mm of the drain member, the gradient of the residual excess pore water pressure ratio R u changed.

そのため、液状化対策の機能をより効果的に発揮させるには排水部材の幅をW=170mm以上とすることが望ましいと考えられ、一般的に市販されている排水部材サイズである幅W=200mm以上とすることにより、汎用性が高く、十分な排水効果が期待できる。   Therefore, it is considered desirable to make the width of the drainage member W = 170 mm or more in order to exhibit the function of liquefaction countermeasures more effectively, and the width W = 200 mm, which is a generally available drainage member size. By setting it as the above, versatility is high and the sufficient drainage effect can be anticipated.

一方、排水部材の幅は大きければ大きい程排水効果が期待できるが、大きすぎると排水部材コストが増加し非合理的となる。そのため、排水部材の幅はW=200〜350mm程度とすることが望ましい。   On the other hand, the drainage effect can be expected as the width of the drainage member is larger. However, if the width is too large, the drainage member cost increases, which is irrational. Therefore, the width of the drainage member is desirably about W = 200 to 350 mm.

請求項2は、請求項1に係る排水機能付き矢板において、排水部材の部材開口率が10%以上であることを特徴とするものである。   According to a second aspect of the present invention, in the sheet pile with a drainage function according to the first aspect, the member opening ratio of the drainage member is 10% or more.

前述の解析手法を用いて、開口率が排水効果に及ぼす影響として、排水機能付き矢板前面の残留過剰間隙水圧Ruと開口率αとの関係を検討した。 Using an analysis technique described above, the aperture ratio is as effects on drainage effect was studied the relation between the residual excess pore water pressure R u and aperture ratio of the sheet pile front with draining function alpha.

解析条件としては、係数Tl=100、400とし、排水部材の設置間隔をP=800mm、1000mm、1200mm、排水部材の幅をW=250mmとし、開口率αをα=1〜100%に設定した。 As analysis conditions, coefficient T l = 100, 400, drainage member installation intervals P = 800 mm, 1000 mm, 1200 mm, drainage member width W = 250 mm, and aperture ratio α set to α = 1-100%. did.

解析結果として、前記残留過剰間隙水圧Ruと開口率αとの関係を図8(a)、(b)に示す。 As an analysis result shown in FIG. 8 (a) the relationship between the residual excess pore water pressure R u and aperture ratio alpha, shown in (b).

排水部材前面および排水部材間の中央位置共に、開口率α=10%付近を境界に残留過剰間隙水圧比の勾配が変化した。これは、排水部材の設置間隔によらず同様の傾向が見られた。   Both the front surface of the drainage member and the central position between the drainage members changed the gradient of the residual excess pore water pressure ratio with the opening ratio α = about 10% as a boundary. The same tendency was seen regardless of the installation interval of the drainage members.

先の解析検討で、水圧低減距離に関しては開口率α=5%程度以上あれば排水効果がほとんど損なわれず、液状化対策の機能を効果的に発揮できることが確認された。   In the previous analysis, it was confirmed that the drainage effect is hardly impaired and the function of liquefaction countermeasures can be effectively exhibited if the opening ratio α is about 5% or more with respect to the water pressure reduction distance.

液状化対策をより効果的に機能させるには、排水機能付き矢板の排水部材前面位置での残留過剰間隙水圧比RuをRu=0.5以下に抑えることが望ましく、これを満たすには、図8(a)に示す地震動・地盤条件が厳しいTl=100における開口率αと排水部材前面位置での残留過剰間隙比Ruの関係より、開口率α=約2.5%以上とすることが望ましいと考えられる。 In order to make liquefaction countermeasures function more effectively, it is desirable to keep the residual excess pore water pressure ratio R u at the front surface of the drainage member of the sheet pile with drainage function to R u = 0.5 or less. , the relationship of the residual excess pore ratio R u of the drainage member front position and the aperture ratio alpha in T l = 100 ground motion, ground conditions severe shown in FIG. 8 (a), the aperture ratio alpha = about 2.5% or more and It is considered desirable to do so.

つまり、先の検討結果より設定した開口率α=5%以上あれば、効果的に液状化対策の機能を発揮させることが可能と考えられ、さらに高い対策効果を期待するには開口率α=10%以上あることが望ましく、これを満たせば排水部材前面位置での残留過剰間隙水圧比を大幅に低減することが可能となる。   In other words, if the opening ratio α set from the previous examination result is 5% or more, it is considered that the function of the liquefaction countermeasure can be effectively exhibited. To expect a higher countermeasure effect, the opening ratio α = It is desirable that it is 10% or more, and if this is satisfied, the residual excess pore water pressure ratio at the front surface of the drainage member can be greatly reduced.

また、開口率α=10%以上あれば、開口率α=5%時よりも水圧低減距離が拡大し、より液状化対策の機能が効果的に発揮される。さらに、開口率α=20%以上あれば排水部材前面位置の残留過剰間隙水圧がほとんど無くなり、開口率α=100%の理想条件とほぼ同等となる。これに加えて、水圧低減距離も拡大するため、液状化対策の機能を非常に効果的に発揮させることが可能となる。   Further, if the opening ratio α = 10% or more, the water pressure reduction distance is expanded more than when the opening ratio α = 5%, and the function of liquefaction countermeasures is more effectively exhibited. Further, if the opening ratio α = 20% or more, the residual excess pore water pressure at the front surface of the drainage member is almost eliminated, which is almost equal to the ideal condition of the opening ratio α = 100%. In addition to this, since the water pressure reduction distance is increased, the function of liquefaction countermeasures can be exhibited very effectively.

請求項3に係る排水機能付き矢板は、請求項1または2に係る排水機能付き矢板を連続して設置し矢板壁を構築した場合に、排水部材の矢板壁体投影面積に占める割合が15%以上となることを特徴とするものである。   When the sheet pile with a drainage function according to claim 3 is installed by continuously installing the sheet pile with the drainage function according to claim 1 or 2, the ratio of the drainage member to the projected area of the sheet pile wall body is 15%. This is a feature.

ここで、壁投影面積に占める割合とは、図9に示すように、排水部材3が矢板1、2長手方向に設置されている範囲内において、排水部材3が壁方向に設置されている投影面積が単位面積当たりに占める割合を表している。   Here, the ratio to the wall projection area is a projection in which the drainage member 3 is installed in the wall direction within the range where the drainage member 3 is installed in the longitudinal direction of the sheet piles 1 and 2, as shown in FIG. It represents the ratio that the area occupies per unit area.

排水解析により検討した排水部材3の壁投影面積比率βと残留過剰間隙水圧Ru(水圧低減距離)の関係を図10に示す。ここでは、排水部材前面の矢板から50cm離れた位置における残留過剰間隙水圧Ruでの評価とした。 FIG. 10 shows the relationship between the wall projected area ratio β of the drainage member 3 examined by the drainage analysis and the residual excess pore water pressure R u (water pressure reduction distance). Here, the evaluation of the residual excess pore water pressure R u in spaced 50cm from the drainage member front face of the sheet pile position.

これは、前述のように、排水機能付き矢板は構造物から1m程度離れた位置に設置されることが多く、構造物と矢板間の地盤の液状化を抑制することが構造物の対策に効果的である。そこで、構造物と矢板間の地盤の平均的な過剰間隙水圧値での評価として、矢板から50cmの位置での過剰間隙水圧値を用いた。なお、ここでの解析は、係数Tl=100、ならびに壁投影面積比βの影響を明確にするため、排水部材の開口率αをα=100%とした。 This is because, as mentioned above, the sheet pile with a drainage function is often installed at a position about 1 m away from the structure, and suppressing the liquefaction of the ground between the structure and the sheet pile is effective as a countermeasure for the structure. Is. Therefore, as an evaluation with the average excess pore water pressure value of the ground between the structure and the sheet pile, the excess pore water pressure value at a position of 50 cm from the sheet pile was used. In this analysis, the aperture ratio α of the drainage member was set to α = 100% in order to clarify the influence of the coefficient T l = 100 and the wall projected area ratio β.

図10に示す解析結果から、壁投影面積比率β<15%では過剰間隙水圧比Ruの値がほとんど変化せず、β=15%を境界としてβ≧15%の範囲では、β値に応じた過剰間隙水圧比の低減が見られた。これより、壁投影面積比率βを15%以上とすることが、液
状化対策の機能の発揮には効果的であることが確認された。
From the analysis results shown in FIG. 10, little the value of the wall projected area ratio beta <At 15% excess pore water pressure ratio R u changes, beta = in the range of beta ≧ 15% of the boundary 15%, depending on the beta value The excess pore water pressure ratio was reduced. From this, it was confirmed that setting the wall projected area ratio β to 15% or more is effective in exerting the function of liquefaction countermeasures.

請求項4は、請求項3に係る排水機能付き矢板において、排水部材の矢板壁体投影面積に占める割合が20%以上となることを特徴とするものである。   According to a fourth aspect of the present invention, in the sheet pile with a drainage function according to the third aspect, the ratio of the drainage member to the sheet pile wall projection area is 20% or more.

排水部材へ向かう地盤からの排水流量に着目すると、排水部材前面位置での動水勾配が低い程、必要排水流量は小さく、排水部材の通水断面積を小さくすることができる。そのためには、排水部材の前面位置での過剰間隙水圧比を出来る限り小さくすることが必要である。   If attention is paid to the flow rate of drainage from the ground toward the drainage member, the lower the dynamic water gradient at the front surface of the drainage member, the smaller the required drainage flow rate, and the smaller the cross-sectional area of the drainage member. For this purpose, it is necessary to make the excess pore water pressure ratio at the front surface position of the drainage member as small as possible.

排水部材の壁投影面積比βと排水部材の前面位置での過剰間隙水圧比Ruの関係を図11に示す。ここでの解析は、係数Tl=100、ならびに排水部材の前面位置での過剰間隙水圧比を評価するため、排水部材の開口率αをα=5%とした。 The relationship between the excess pore water pressure ratio R u of the front position of the wall projection area ratio β and drainage member of the drainage member illustrated in FIG. 11. In this analysis, in order to evaluate the coefficient T l = 100 and the excess pore water pressure ratio at the front surface position of the drainage member, the drainage member opening ratio α was set to α = 5%.

図11に示す解析結果から、壁投影面積比β≒20%を境界として、排水部材の前面位置における過剰間隙水圧比Ruの勾配が変化した。 From the analysis results shown in FIG. 11, the wall projection area ratio beta ≒ 20% as a boundary, the gradient of the excess pore water pressure ratio R u at the front position of the drainage member is changed.

前述の解析結果より、排水部材の壁投影面積比β≧15%とすることで、液状化対策の機能が効果的に発揮され、構造物の対策に優位であることが確認されており、さらに壁投影面積比β≧20%とすることで、排水部材の前面位置での過剰間隙水圧比を効果的に低減し、排水部材の必要断面積を縮小し、部材コストの縮減や、施工時の地盤からの抵抗が低減されることによる施工コストの縮減が期待できる。   From the analysis results described above, it has been confirmed that by setting the wall projection area ratio β ≧ 15% of the drainage member, the function of liquefaction countermeasures can be effectively exhibited and superior to the countermeasures for structures. By setting the wall projected area ratio β ≧ 20%, the excess pore water pressure ratio at the front surface position of the drainage member is effectively reduced, the required sectional area of the drainage member is reduced, the member cost is reduced, and the construction cost is reduced. Construction costs can be reduced by reducing the resistance from the ground.

請求項5は、請求項1〜4に係る排水機能付き矢板を連続して設置し矢板壁を構築した場合に、排水部材が設置されない壁方向長さが1.0m以下となることを特徴とするものである。   Claim 5 is characterized in that when a sheet pile with drainage function according to claims 1 to 4 is continuously installed to construct a sheet pile wall, the length in the wall direction in which no drainage member is installed is 1.0 m or less. To do.

排水部材を矢板壁に設置する場合、排水部材が矢板壁面積に占める比率が同じであっても、幅の小さい排水部材を密な間隔で設置する場合と、幅の大きい排水部材を疎な間隔で設置する場合とでは排水効果に差異があると考えられる。   When the drainage member is installed on the sheet pile wall, even if the drainage member occupies the same ratio to the sheet pile wall area, the drainage member with a small width is installed at a close interval, and the drainage member with a large width is a loose interval. It is considered that there is a difference in drainage effect from the case where it is installed at the site.

排水解析の一例を図12に示す。これは、排水部材の幅をW=200mm、250mm、300mmとした場合の、排水部材の壁投影面積比率と排水機能付き矢板前面の残留過剰間隙水圧比Ruとの関係を示したものである。結果として、排水部材が同じ壁投影面積比率で設置されるなら、幅の小さい排水部材を密な間隔で設置した方が効果的であることが確認された。 An example of drainage analysis is shown in FIG. This shows the width of the drain member W = 200 mm, 250 mm, in the case of a 300 mm, the relationship between the residual excess pore water pressure ratio R u wall projected area ratio and drainage function sheet pile front of the drainage member . As a result, it was confirmed that if the drainage members are installed at the same wall projected area ratio, it is more effective to install the drainage members having a small width at a close interval.

矢板を連続して設置し矢板壁とした場合、排水部材の効果的な設置方法として、1箇所に幅の大きな排水部材を設置し設置間隔を大きくするよりも、壁方向に幅が小さい排水部材を密に設置することが効果的であることが先の検討結果で解明された。   When sheet piles are installed continuously and used as sheet pile walls, the drainage member has a smaller width in the wall direction than the installation of a wider drainage member at one location and the installation interval is increased as an effective installation method of the drainage member. It was clarified in the previous examination results that it is effective to install the sparsely.

一方で、排水部材の壁投影面積が同等となるように、幅の小さい排水部材を密な間隔で設置する場合、排水部材の幅が小さすぎるとそれだけ排水部材の数量が増加し、設置に係る加工コストが増加し非合理的となる。そのため、適度な幅の排水部材を、適度な間隔で矢板壁に設置することが効果的かつ合理的であると考えられ、それには、排水部材の設置間隔である、壁方向に排水部材を設置しない長さを制限することが重要である。   On the other hand, when installing drainage members with small widths at close intervals so that the wall projection areas of the drainage members are equal, if the width of the drainage members is too small, the quantity of drainage members will increase accordingly, and Processing costs increase and become irrational. Therefore, it is considered effective and rational to install drainage members with appropriate widths on the sheet pile wall at appropriate intervals. To do so, install drainage members in the wall direction, which is the interval between the drainage members. It is important to limit the length that does not.

そこで、係数Tl=100、排水部材の開口率α=5%、排水部材の幅をW≧170mmの範囲内かつ汎用性が高いサイズであるW=200mmとし、排水部材が設置されない長さRをパラメ−タとして排水解析を行った。解析結果として、排水部材が設置されない
長さRと排水部材前面の過剰間隙水圧比Ruの関係を図13に示す。
Therefore, the coefficient T l = 100, the drainage member opening ratio α = 5%, the drainage member width within the range of W ≧ 170 mm and the highly versatile size W = 200 mm, and the length R where the drainage member is not installed Drainage analysis was performed using the parameters. Analysis result shows the relationship between the excess pore water pressure ratio R u drainage member front and length R drainage member is not installed in FIG. 13.

図13に示すように、排水部材が設置されない長さR=1.0m(1000mm)を境界として、過剰間隙水圧比Ruの勾配が変化することが確認された。これより、排水部材を設置しない長さRを1.0m以下とすることで、液状化対策の機能を効果的に発揮できると考えられる。 As shown in FIG. 13, the length R = 1.0 m drainage member is not installed (1000 mm) as a boundary, the gradient of the excess pore water pressure ratio R u that changes was confirmed. From this, it is thought that the function of a countermeasure against liquefaction can be effectively exhibited by setting the length R where the drainage member is not installed to 1.0 m or less.

現在、一般的に用いられる有効幅500mm以上の矢板の有効幅は、500mm、600mm、900mmのサイズである。そこで、矢板の形状特性を勘案し、例えば部材幅が200mm以上の排水部材を、矢板のウェブ部に設置することを考えると、図14に示すように、壁方向に隣り合って設置される排水部材の設置間隔Pは、矢板有効幅Lを2倍した長さP=2Lとなる。さらに、排水部材の幅を考慮すると、壁方向に排水部材が設置されない長さRは矢板有効幅Lを2倍した値から排水部材幅Wを減じた値R=2L−Wとなる。   Currently, the effective widths of sheet piles with an effective width of 500 mm or more that are generally used are 500 mm, 600 mm, and 900 mm. Therefore, considering the shape characteristics of the sheet pile, for example, considering that the drainage member having a member width of 200 mm or more is installed in the web portion of the sheet pile, as shown in FIG. 14, the drainage installed adjacent to the wall direction. The member installation interval P is a length P = 2L, which is twice the sheet pile effective width L. Further, considering the width of the drainage member, the length R at which the drainage member is not installed in the wall direction is a value R = 2L−W obtained by subtracting the drainage member width W from the value obtained by doubling the sheet pile effective width L.

矢板の形状は、U型やハット型などがあり、現在では有効幅500mm、600mmの矢板はU型、有効幅900mmの矢板はハット型が一般的である。ここで、排水部材の必要最小幅と設定した200mm幅の排水部材を矢板に設置すると仮定した場合の矢板壁の状況を図14、図15に示す。   There are U-shaped and hat-shaped sheet piles. Currently, sheet piles having an effective width of 500 mm and 600 mm are generally U-shaped, and sheet piles having an effective width of 900 mm are generally hat-shaped. Here, the state of the sheet pile wall when it is assumed that the drainage member having a width of 200 mm set as the minimum required width of the drainage member is installed on the sheet pile is shown in FIGS.

ここでは、各矢板1、2のウェブ部に排水部材3を設置すると仮定している。有効幅500mmのU型鋼矢板では、排水部材の設置間隔が1000mm、排水部材が設置されない長さが800mmとなり、有効幅L=600mmのU型鋼矢板では、排水部材の設置間隔Pが1200mm、排水部材が設置されない長さRが1000mmとなる。   Here, it is assumed that the drainage member 3 is installed in the web part of each sheet pile 1,2. In the U-shaped steel sheet pile with an effective width of 500 mm, the installation interval of drainage members is 1000 mm, the length where the drainage member is not installed is 800 mm, and in the U-shaped steel sheet pile with an effective width L = 600 mm, the installation interval P of the drainage members is 1200 mm, The length R in which no is installed is 1000 mm.

一方、有効幅L=900mmのハット型鋼矢板では、ハット型形状特性から排水部材は壁の片側のみに設置される構造となり、排水部材の設置間隔Pが900mm、排水部材が設置されない長さRは700mmとなる。矢板ウェブ部に排水部材を設置する条件では、排水部材の設置間隔Pは最も長くて1200mmとなり、これに、排水部材の最小幅W=200mmを考慮すると、壁方向に排水部材が設置されない間隔はR=1000mm(1.0m)以下となる。   On the other hand, the hat-type steel sheet pile with an effective width L = 900 mm has a structure in which the drainage member is installed only on one side of the wall due to the hat-shaped characteristics, the installation interval P between drainage members is 900 mm, and the length R where the drainage member is not installed is 700 mm. In the condition of installing the drainage member on the sheet pile web part, the installation interval P of the drainage member is 1200 mm at the longest, and considering the minimum width W = 200 mm of the drainage member, the interval at which the drainage member is not installed in the wall direction is R = 1000 mm (1.0 m) or less.

これらより、排水機能付き矢板の対象として、一般的に使用されている有効幅500mm以上の鋼矢板を適用することは非常に効果的であると考えられる。   From these, it is considered that it is very effective to apply a steel sheet pile having an effective width of 500 mm or more that is generally used as a target of a sheet pile with a drainage function.

上記、排水部材の設置間隔P=1200mm、壁方向に排水部材が設置されない長さR=1000mm(1.0m)の妥当性を確認するため、排水部材の幅W=200mm、開口率α=5%、係数Tl=100の条件で排水解析を実施した。図16に示す解析結果より、排水部材前面位置での残留過剰間隙水圧比RuはRu=0.32≦0.5となり、設定した条件で十分な排水効果が得られることが確認できた。 In order to confirm the validity of the above-described distance P between the drainage members P = 1200 mm and the length R = 1000 mm (1.0 m) at which the drainage members are not installed in the wall direction, the drainage member width W = 200 mm and the aperture ratio α = 5 %, Drainage analysis was performed under the conditions of a coefficient T l = 100. From the analysis results shown in FIG. 16, the residual excess pore water pressure ratio R u at the front surface of the drainage member is R u = 0.32 ≦ 0.5, and it was confirmed that a sufficient drainage effect can be obtained under the set conditions. .

請求項6は、請求項1〜5に係る排水機能付き矢板において、排水部材の部材断面積が20cm2以上であり、かつ該排水部材の軸直角方向の厚みが10mm以上であることを特徴とするものである。 Claim 6 is a sheet pile with a drainage function according to claims 1 to 5, wherein the drainage member has a sectional area of 20 cm 2 or more, and the drainage member has a thickness in the direction perpendicular to the axis of 10 mm or more. To do.

排水部材の排水可能流量Q1は、一般的に式(5)で評価される。一方、地盤からの流入量Q2は式(6)で評価される。ここで、排水部材前面位置の動水勾配は式(7)で与えられる。 The drainable flow rate Q 1 of the drainage member is generally evaluated by equation (5). On the other hand, the inflow amount Q 2 from the ground is evaluated by the equation (6). Here, the hydraulic gradient at the front surface of the drainage member is given by equation (7).

排水部材の部材断面積は、この式(5)、式(6)、式(7)との関係より式(8)で示される範囲
が必要となり、種々検討した結果20cm2以上の排水部材断面積を有することが望ましい。
Member cross-sectional area of the drain member, the formula (5), equation (6), the range is required of the formula (8) from the relationship of the expression (7), a result of various studies 20 cm 2 or more drainage member cross It is desirable to have an area.

一方、排水部材断面積が大きすぎると、打設時に排水部材へ地盤からの抵抗力が働き、施工が困難となり施工コストが増加することに加え、排水部材コストが増加することで非合理的となる。そのため、排水部材の部材断面積は、20cm2〜200cm2程度とすることが望ましい。 On the other hand, if the cross-sectional area of the drainage member is too large, resistance from the ground will act on the drainage member at the time of placing, making construction difficult and increasing the construction cost, and increasing the drainage member cost will be irrational. . Therefore, member cross-sectional area of the drain member, it is desirable to 20cm 2 ~200cm 2 about.

1≦Q2を満たす必要があり、式を変形すると、 It is necessary to satisfy Q 1 ≦ Q 2 .

1 :排水部材の可能排水量
2 :地盤から排水される水量
V :流速
t :排水部材の通水断面積
s :地盤からの排水面積
N :粗度係数
R :動水半径
i :動水勾配
Q 1: drainage member can wastewater volume Q 2: water is drained from the ground V: flow rate A t: cross-sectional flow area A s of the drain member: drainage area from soil N: Roughness Factor R: Dosui radius i: Hydrodynamic gradient

また、排水部材は地中に設置するため、地中部では深度に応じて水平方向の土圧が排水部材に作用することになり、排水部材はその土圧に耐え得る強度を有することが必要となる。   In addition, since the drainage member is installed in the ground, the earth pressure in the horizontal direction acts on the drainage member according to the depth in the underground part, and the drainage member needs to have strength that can withstand the earth pressure. Become.

排水部材に水平方向の土圧が作用すると、排水部材は圧縮され、その分排水部材の通水断面積は低下することになる。そのため、排水部材の軸直角方向の厚みは10mm以上有
することが望ましい。
When the earth pressure in the horizontal direction acts on the drainage member, the drainage member is compressed, and the water flow cross-sectional area of the drainage member is reduced accordingly. Therefore, the thickness of the drainage member in the direction perpendicular to the axis is desirably 10 mm or more.

一方で、排水部材の軸直角方向の厚みが大きすぎると、打設時に排水部材へ地盤からの抵抗力が働き、施工が困難になることが懸念されることに加え、排水部材コストが増加し非合理的となる。そのため、排水部材の軸直角方向の厚みは10〜100mm程度とすることが望ましい。   On the other hand, if the thickness of the drainage member in the direction perpendicular to the axis is too large, there is a concern that the drainage member will have a resistance force from the ground at the time of placing, and the drainage member cost will increase. Be irrational. Therefore, the thickness of the drainage member in the direction perpendicular to the axis is preferably about 10 to 100 mm.

請求項7に係る排水機能付き矢板は、請求項1〜6に係る排水機能付き矢板を連続して設置し矢板壁を構築した場合に、矢板本体に壁投影面積比0.5%以上となる地下水の円滑な流れを確保するための開口孔が設けられていることを特徴とするものであり、排水機能付き矢板に透水機能を持たせたものである。   The sheet pile with a drainage function according to claim 7 has a wall projection area ratio of 0.5% or more on the sheet pile main body when the sheet pile with drainage function according to claims 1 to 6 is continuously installed to construct a sheet pile wall. An opening hole for ensuring a smooth flow of groundwater is provided, and a sheet pile with a drainage function is provided with a water permeability function.

図17(a)、(b)に示すように、矢板本体1、2に開口孔7、8を設けた矢板を連続して設置し矢板壁とすることで、地下水などの円滑な流れが確保され、壁体背後における井戸枯れや水位低下の問題が解決される。矢板に開口孔を設ける位置は矢板ウェブ部やフランジ部など限定はされず、また、孔の形状は円形や楕円形、四角形など限定されない。   As shown in Figs. 17 (a) and 17 (b), a sheet pile with openings 7 and 8 provided in the sheet pile main bodies 1 and 2 is continuously installed to form a sheet pile wall, thereby ensuring a smooth flow of groundwater and the like. This solves the problem of well withering and water level drop behind the wall. The position at which the opening hole is provided in the sheet pile is not limited to a sheet pile web portion or a flange portion, and the shape of the hole is not limited to a circle, an ellipse, or a rectangle.

また、図17(b)に示すように、矢板2に排水部材3が設置されている投影範囲内に開口孔8を設けることで、通常時は地下水などの流れを阻害しないための透水孔、地震時には発生する過剰間隙水圧を消散させる排水孔としての機能が期待できる。これにより、排水部材3が設置されている反対側の地盤にも液状化対策の機能が発揮されることになり非常に効果的である。   Moreover, as shown in FIG.17 (b), by providing the opening hole 8 in the projection range in which the waste_water | drain member 3 is installed in the sheet pile 2, the water-permeable hole for not inhibiting the flow of groundwater etc. normally, It can be expected to function as a drainage hole to dissipate excess pore water pressure generated during an earthquake. Thereby, the function of the countermeasure against liquefaction is exhibited also in the ground on the opposite side where the drainage member 3 is installed, which is very effective.

一方で、矢板に設ける開口孔7、8の壁投影面積比が大きくなりすぎると、地下水の流れを阻害しない面では有効であるが、開口孔7、8に応じた矢板断面性能の低下が懸念されることや、開口孔を設ける加工コストが増加し非合理的となる場合がある。   On the other hand, if the wall projected area ratio of the opening holes 7 and 8 provided in the sheet pile becomes too large, it is effective in terms of not inhibiting the flow of groundwater, but there is a concern that the sheet pile performance according to the opening holes 7 and 8 is deteriorated. And the processing cost for providing the opening hole may increase and become unreasonable.

また、図18に示すように、開口孔の面積比率が2.0%程度あれば通常状態の透水量の約95%が確保されるため、効果的かつ合理的な開口孔の壁投影面積比としては0.5〜2.0%程度が望ましい。   Further, as shown in FIG. 18, if the area ratio of the opening hole is about 2.0%, about 95% of the water permeation amount in the normal state is ensured. Is preferably about 0.5 to 2.0%.

請求項8は、請求項1〜7に係る排水機能付き矢板において、排水部材を設置する位置が矢板ウェブ部であることを特徴とするものである。   According to an eighth aspect of the present invention, in the sheet pile with drainage function according to the first to seventh aspects, the position where the drainage member is installed is a sheet pile web portion.

矢板の形状特性から、ウェブ部は平坦で水平長さが他の部位に比べて長く、排水部材の設置が容易であり加工コストを抑制できる。また、水平方向に平坦であるため、図19(a)に示すように、排水部材3を設置した際に排水部材幅を十分活用することが可能である。   Due to the shape characteristics of the sheet pile, the web part is flat and the horizontal length is longer than other parts, the installation of the drainage member is easy, and the processing cost can be suppressed. Moreover, since it is flat in the horizontal direction, as shown in FIG. 19A, the drainage member width can be fully utilized when the drainage member 3 is installed.

仮に、フランジ部に排水部材3を設置する場合は、図19(b)に示すように、同じ幅の排水部材3を設置しても壁方向の投影面積は低減され、排水部材3が壁投影面積に占める割合が減じられる。   If the drainage member 3 is installed on the flange portion, as shown in FIG. 19B, the projection area in the wall direction is reduced even if the drainage member 3 having the same width is installed, and the drainage member 3 is projected on the wall. The percentage of the area is reduced.

そのため、壁方向の投影面積を増加させるには、より幅の大きい排水部材を設置することが必要となり、排水部材コストが増加することに加え、施工時に地盤からの抵抗力も大きくなり、施工が困難となることで施工コストも増大し非合理的である。   Therefore, in order to increase the projected area in the wall direction, it is necessary to install a drainage member with a wider width, which increases the drainage member cost and also increases the resistance from the ground during construction, making construction difficult. This increases the construction cost and is irrational.

排水部材3の設置箇所を矢板ウェブ部とすることで、効果的かつ合理的な排水機能付き矢板壁の構築が可能となる。   By making the installation location of the drainage member 3 a sheet pile web part, it is possible to construct an effective and rational sheet pile wall with a drainage function.

請求項9は、請求項1〜8に係る排水機能付き矢板において、排水部材が、地震時に液状化の発生が懸念される層下端より上部のみに設置されることを特徴とするものである。   According to a ninth aspect of the present invention, in the sheet pile with drainage function according to the first to eighth aspects, the drainage member is installed only above the lower end of the layer where liquefaction is a concern during an earthquake.

これは、矢板長手方向の排水部材の設置位置を限定するものであり、設置位置を地震時に液状化の発生が懸念される層下端より上部のみとすることで、排水部材コストの低減や施工コストの低減が可能となり合理的である。   This is to limit the installation position of the drainage member in the longitudinal direction of the sheet pile. By setting the installation position only above the lower end of the layer where liquefaction may occur during an earthquake, the drainage member cost can be reduced and the construction cost can be reduced. Can be reduced and is reasonable.

請求項10は、請求項1〜9に係る排水機能付き矢板において、排水部材がマット状の樹脂製網状構造体であり、かつ樹脂製網状構造体上に透水性を確保しつつ土砂の侵入を防止するフィルターが設けられていることを特徴とするものである。   Claim 10 is a sheet pile with a drainage function according to claims 1 to 9, wherein the drainage member is a mat-like resin net-like structure, and intrusion of earth and sand while ensuring water permeability on the resin net-like structure. It is characterized in that a filter for preventing is provided.

排水部材は特に限定されないが、図20に示すようなマット状の樹脂製網状構造体3aを用いることで、矢板に設置しやすく加工コストの低減が図れることや、施工時の地盤からの抵抗を最小限に抑制でき、施工コストの低減が可能となる。   Although the drainage member is not particularly limited, by using a mat-like resin network structure 3a as shown in FIG. 20, it is easy to install on the sheet pile, and the processing cost can be reduced, and the resistance from the ground during construction can be reduced. It can be minimized and construction costs can be reduced.

さらに、樹脂製網状構造体3a上に透水性を確保しつつ土砂の侵入を防止するフィルター11が設けられることで、樹脂製網状構造体3aの目詰まりが防止でき十分な排水効果が発揮される。   Furthermore, by providing the filter 11 for preventing the intrusion of earth and sand while ensuring water permeability on the resin network structure 3a, the resin network structure 3a can be prevented from being clogged and a sufficient drainage effect is exhibited. .

請求項11は、請求項10に係る排水機能付き矢板において、フィルター上に、さらにフィルター破損防止用に該フィルターの網目よりも大きな透水孔を有する防護板が設けられていることを特徴とするものである。   The eleventh aspect is characterized in that in the sheet pile with drainage function according to the tenth aspect, a protective plate having a water permeability hole larger than the mesh of the filter is further provided on the filter for preventing damage to the filter. It is.

前記フィルター上に図21(a)、(b)に示すような透水孔を設けた防護板(図21(a)はパンチングメタル12a、図21(b)はエキスパンドメタル12bの例である。)を設けることによって、打設時の排水部材およびフィルター材の破損を防止できる。   A protective plate provided with water-permeable holes as shown in FIGS. 21 (a) and 21 (b) on the filter (FIG. 21 (a) is an example of a punching metal 12a and FIG. 21 (b) is an example of an expanded metal 12b). By providing, it is possible to prevent the drainage member and the filter material from being damaged at the time of placing.

防護板に設ける透水孔は、該フィルターの網目よりも大きなものであり、透水孔が大きい程、地震時に十分な排水量が確保されるため、透水孔の面積は防護板の面積の約10%以上であることが望ましい。   The permeation holes provided in the protection plate are larger than the mesh of the filter, and the larger the permeation hole, the more sufficient water drainage is ensured in the event of an earthquake, so the area of the permeation hole is about 10% or more of the area of the protection plate It is desirable that

一方で、透水孔が大きすぎると、透水孔を設ける加工コストが増大することや、打設時にフィルターが土砂と接触する面積が大きくなり破損すると、防護板を設ける意味をなさなくなり非合理的である。そのため、防護板に設ける透水孔の面積は、防護板の面積の約10%〜50%程度であることが望ましい。   On the other hand, if the water-permeable holes are too large, the processing cost for providing the water-permeable holes will increase, and if the area where the filter comes into contact with earth and sand becomes large during placement, it will not make sense to provide a protective plate, which is irrational. . Therefore, it is desirable that the area of the water permeable holes provided in the protection plate is about 10% to 50% of the area of the protection plate.

また、防護板に設ける透水孔は、少なくとも壁方向に対して法線方向の面に開いていればよい。また、防護板の形状や寸法、矢板への取り付け方法は限定されず、地盤へ排水機能付き矢板を設置後、防護板を引き抜いても良い。   Moreover, the water-permeable hole provided in a guard plate should just open on the surface of the normal line direction at least with respect to the wall direction. Further, the shape and size of the protection plate and the method of attaching to the sheet pile are not limited, and the protection plate may be pulled out after installing the sheet pile with drainage function on the ground.

防護板12の形状および矢板への取り付け方法の例を図22〜図23に示す。
図23(a)にあるように、鉄板などの平板で形成される防護板12を矢板1のフランジ間に設置する方法や、図23(b)にあるように、排水部材3を覆う凹型の防護板12を矢板1のウェブ部に設置する方法や、図23(c)にあるように、排水部材3を囲むロ型の防護板12を矢板1のウェブ部に設置する方法がある。
Examples of the shape of the protection plate 12 and the method of attaching it to the sheet pile are shown in FIGS.
As shown in FIG. 23 (a), a protective plate 12 formed of a flat plate such as an iron plate is installed between the flanges of the sheet pile 1, and as shown in FIG. 23 (b), a concave type covering the drainage member 3 is provided. There are a method of installing the protection plate 12 on the web portion of the sheet pile 1 and a method of installing a B-shaped protection plate 12 surrounding the drainage member 3 on the web portion of the sheet pile 1 as shown in FIG.

図23(b)、(c)にある凹型やロ型の防護板は、1枚の平板を曲げ加工することや、数枚の平板を組み合わせて作成することができる。また、図23(d)は、排水部材背面位置に透水孔としての開口孔8を設ける場合における防護板12の取り付け例を示したものである。   23 (b) and 23 (c) can be formed by bending one flat plate or combining several flat plates. FIG. 23 (d) shows an example of attachment of the protection plate 12 in the case where the opening hole 8 as a water permeable hole is provided in the back surface of the drainage member.

また、防護板12は必ずしも矢板と全長に渡り固定されている必要はなく、図24(a)、(b)に示すように、矢板1、2に離散的もしくは全長に渡り設けられた止め部材13で固定されてもよい。さらに、ガイドレ−ルのような止め部材で固定すれば、防護板が容易に外れることもなく、設置も容易いため、施工コストの縮減が可能となる。   Further, the protection plate 12 is not necessarily fixed to the sheet pile over the entire length, and as shown in FIGS. 24 (a) and 24 (b), stop members provided on the sheet piles 1 and 2 discretely or over the entire length. 13 may be fixed. Furthermore, if it is fixed with a stop member such as a guide rail, the protective plate is not easily detached, and the installation is easy, so that the construction cost can be reduced.

止め部材13と排水部材は必ずしも固定されている必要はない。この止め部材13は、いかなる材料、形状でもよく、コスト的に有利なもので形成することができる。一例としては、平板や丸鋼などで止め部材を設けることが考えられる。   The stop member 13 and the drainage member are not necessarily fixed. The stopper member 13 may be of any material and shape, and can be formed with a cost advantage. As an example, it is conceivable to provide the stop member with a flat plate or round steel.

請求項12は、請求項1〜11に係る排水機能付き矢板において、前記排水部材と矢板が、排水部材の先端部および矢板長手方向に沿って離散的に固定されていることを特徴とするものである。   Claim 12 is a sheet pile with a drainage function according to claims 1 to 11, wherein the drainage member and the sheet pile are discretely fixed along the distal end portion of the drainage member and the sheet pile longitudinal direction. It is.

排水部材はその全長が矢板に固定されている必要はなく、設置範囲は限定されない。また、設置方法や設置に用いる部材は限定されない。   The total length of the drainage member is not necessarily fixed to the sheet pile, and the installation range is not limited. Moreover, the installation method and the member used for installation are not limited.

排水部材の先端部を矢板に固定し防護することで、排水部材先端部からの土砂の侵入を防止でき、打設時に排水部材が損傷することを抑制できる。また、矢板長手方向に離散的に固定することで、施工が容易となり、施工コストが抑制される。また、全長を固定するよりも加工コストが低減される。   By fixing and protecting the front end portion of the drainage member to the sheet pile, it is possible to prevent intrusion of earth and sand from the front end portion of the drainage member, and it is possible to suppress damage to the drainage member at the time of placing. Moreover, by fixing in the sheet pile longitudinal direction discretely, construction becomes easy and construction cost is suppressed. Further, the processing cost is reduced as compared with the case where the entire length is fixed.

請求項13に係る排水機能付き矢板壁体構造は、請求項1〜12に係る排水機能付き矢板を連続して設置し構築したことを特徴とするものである。   The sheet pile wall structure with a drainage function according to claim 13 is constructed by continuously installing and constructing a sheet pile with a drainage function according to claims 1 to 12.

請求項14は、請求項13に係る排水機能付き矢板壁体構造において、液状化性地盤上に設置される構造物に対する矢板締切りとして用いられ、少なくとも前記構造物の存在する矢板締切り内側に前記排水部材が位置するようにしたことを特徴とするものである。   A sheet pile wall structure with a drainage function according to claim 14 is used as a sheet pile cutoff for a structure installed on a liquefiable ground, and at least the drainage is disposed inside the sheet pile cutoff where the structure exists. The member is positioned.

これは、図25(c)に示すように、矢板壁Bの構造物A側のみに排水部材Cを設置することで、排水部材コストの低減や施工コストの低減を図り、合理的に構造物の対策を行うものである。   As shown in FIG. 25 (c), by installing the drainage member C only on the structure A side of the sheet pile wall B, the drainage member cost and the construction cost can be reduced, and the structure can be rationalized. To take measures.

排水部材Cを構造物Aの反対側に設置しないことで、地震時には、その側の矢板近傍の過剰間隙水圧発生は低減されず液状化性地盤は液状化に至ることが懸念される。しかし、排水機能付き矢板で囲まれた構造物A側の地盤は、液状化に至ることが抑制され、十分な対策効果が期待できる。   By not installing the drainage member C on the opposite side of the structure A, at the time of an earthquake, the generation of excess pore water pressure near the sheet pile on that side is not reduced, and there is a concern that the liquefiable ground will be liquefied. However, the ground on the side of the structure A surrounded by the sheet pile with the drainage function is suppressed from being liquefied, and a sufficient countermeasure effect can be expected.

特に、共同溝などの対策では、矢板と共同溝との間の地盤の液状化対策が重要であり、図25(c)に示すように、少なくとも構造物A側(矢板締切り内側)に排水部材Cを設置しておけば、効果的かつ合理的に液状化対策の機能が発揮される。   In particular, in measures such as common grooves, it is important to take measures against liquefaction of the ground between the sheet pile and the common groove. As shown in FIG. 25 (c), at least the drainage member on the structure A side (inside the sheet pile cut-off) If C is installed, the function of liquefaction countermeasures can be demonstrated effectively and rationally.

排水部材Cの設置位置は、特に限定されず、共同溝など縦断方向に長い構造物の液状化対策を実施する際には、ある区間は矢板壁Bの内・外両側に排水部材Cを設置し(図25(a)参照)、ある区間は矢板締切り内側のみに排水部材Cを設置し、ある区間は片側の矢板壁Bは内・外両側、片側の矢板壁Bは内側のみに排水部材Cを設置し(図25(b)参照)、ある区間は全く排水部材Cを設置しない(図25(d)参照)など、構造物Aに要求される性能に応じて合理的な配置を選択することが可能である。   The installation position of the drainage member C is not particularly limited. When implementing countermeasures against liquefaction of a structure that is long in the longitudinal direction such as a common groove, the drainage member C is installed on both the inside and outside of the sheet pile wall B in a certain section. (See Fig. 25 (a)), in some sections, drainage members C are installed only inside the sheet pile cut-off, and in certain sections, one side sheet pile wall B is on both the inside and outside sides, and one side sheet pile wall B is on the inside only. Select a reasonable arrangement according to the performance required for the structure A, such as installing C (see Fig. 25 (b)) and not installing any drainage member C in some sections (see Fig. 25 (d)). Is possible.

1…U形鋼矢板、2…ハット形鋼矢板、3…排水部材、3a…樹脂製立体網状構造体、4…H形鋼、5…鋼管矢板、6…鋼管、7…開口孔、8…開口孔、
11…フィルター、12…防護板、12a…パンチングメタル、12b…エキスパンドメタル、13…止め部材、
A…構造物、B…矢板壁、C…排水部材
DESCRIPTION OF SYMBOLS 1 ... U-shaped steel sheet pile, 2 ... Hat-shaped steel sheet pile, 3 ... Drainage member, 3a ... Three-dimensional network structure made of resin, 4 ... H-shaped steel, 5 ... Steel pipe sheet pile, 6 ... Steel pipe, 7 ... Opening hole, 8 ... Opening hole,
DESCRIPTION OF SYMBOLS 11 ... Filter, 12 ... Guard plate, 12a ... Punching metal, 12b ... Expanded metal, 13 ... Stopping member,
A ... Structure, B ... Sheet pile wall, C ... Drainage member

Claims (14)

有効幅500mm以上の矢板の長手方向に沿って排水部材を設けた排水機能付き矢板において、前記排水部材の部材開口率が5%以上であり、かつ排水部材の幅が170mm以上であることを特徴とする排水機能付き矢板。   In the sheet pile with a drainage function in which a drainage member is provided along the longitudinal direction of the sheet pile having an effective width of 500 mm or more, the drainage member has an opening ratio of 5% or more, and the drainage member has a width of 170 mm or more. A sheet pile with drainage function. 前記排水部材の部材開口率が10%以上であることを特徴とする請求項1記載の排水機能付き矢板。   The sheet pile with a drainage function according to claim 1, wherein a member opening ratio of the drainage member is 10% or more. 請求項1または2記載の排水機能付き矢板を連続して設置し矢板壁を構築した場合に、前記排水部材の矢板壁体投影面積に占める割合が15%以上となることを特徴とする排水機能付き矢板。   When the sheet pile with drainage function according to claim 1 or 2 is continuously installed to construct a sheet pile wall, the drainage function is characterized in that a ratio of the drainage member to the sheet pile wall projection area is 15% or more. Attached sheet pile. 前記排水部材の矢板壁体投影面積に占める割合が20%以上となることを特徴とする請求項3記載の排水機能付き矢板。   4. The sheet pile with drainage function according to claim 3, wherein a ratio of the drainage member to a sheet pile wall projected area is 20% or more. 請求項1〜4のいずれか一項に記載の排水機能付き矢板を連続して設置し矢板壁を構築した場合に、前記排水部材が設置されない壁方向長さが1.0m以下となることを特徴とする排水機能付き矢板。   When the sheet pile with a drainage function according to any one of claims 1 to 4 is continuously installed to construct a sheet pile wall, the wall direction length in which the drainage member is not installed is 1.0 m or less. Characterized sheet pile with drainage function. 前記排水部材の部材断面積が20cm2以上であり、かつ該排水部材の軸直角方向の厚みが10mm以上であることを特徴とする請求項1〜5のいずれか一項に記載の排水機能付き矢板。 The member cross-sectional area of the drainage member is 20 cm 2 or more, and the thickness of the drainage member in the direction perpendicular to the axis is 10 mm or more. With drainage function according to any one of claims 1 to 5, Sheet pile. 請求項1〜6のいずれか一項に記載の排水機能付き矢板を連続して設置し矢板壁を構築した場合に、矢板本体に壁投影面積比0.5%以上となる開口孔が設けられていることを特徴とする排水機能付き矢板。   When the sheet pile with drainage function according to any one of claims 1 to 6 is continuously installed to construct a sheet pile wall, the sheet pile main body is provided with an opening hole having a wall projection area ratio of 0.5% or more. A sheet pile with a drainage function. 前記排水部材を設置する位置が矢板ウェブ部であることを特徴とする請求項1〜7のいずれか一項に記載の排水機能付き矢板。   The sheet pile with a drainage function according to any one of claims 1 to 7, wherein a position where the drainage member is installed is a sheet pile web portion. 前記排水部材が、地震時に液状化の発生が懸念される層下端より上部のみに設置されることを特徴とする請求項1〜8のいずれか一項に記載の排水機能付き矢板。   The sheet pile with drainage function according to any one of claims 1 to 8, wherein the drainage member is installed only above the lower end of the layer where liquefaction is a concern during an earthquake. 前記排水部材がマット状の樹脂製網状構造体であり、かつ前記樹脂製網状構造体上に透水性を確保しつつ土砂の侵入を防止するフィルターが設けられていることを特徴とする請求項1〜9のいずれか一項に記載の排水機能付き矢板。   2. The drainage member is a mat-like resin network structure, and a filter for preventing intrusion of earth and sand while ensuring water permeability is provided on the resin network structure. The sheet pile with a drainage function according to any one of? 9. 前記フィルター上に、さらにフィルター破損防止用に該フィルターの網目よりも大きな透水孔を有する防護板が設けられていることを特徴とする請求項10記載の排水機能付き矢板。   11. A sheet pile with a drainage function according to claim 10, further comprising a protective plate having a water permeable hole larger than the mesh of the filter for preventing damage to the filter on the filter. 前記排水部材と矢板が、排水部材の先端部および矢板長手方向に沿って離散的に固定されていることを特徴とする請求項1〜11のいずれか一項に記載の排水機能付き矢板。   The said drainage member and a sheet pile are fixed discretely along the front-end | tip part of a drainage member, and a sheet pile longitudinal direction, The sheet pile with a drainage function as described in any one of Claims 1-11 characterized by the above-mentioned. 請求項1〜12のいずれか一項に記載の排水機能付き矢板を連続して設置し構築したことを特徴とする排水機能付き矢板壁体構造。   A sheet pile wall structure with a drainage function, wherein the sheet pile with a drainage function according to any one of claims 1 to 12 is continuously installed and constructed. 液状化性地盤上に設置される構造物に対する矢板締切りとして用いられ、少なくとも前記構造物の存在する矢板締切り内側に前記排水部材が位置するようにしたことを特徴とす
る請求項13記載の排水機能付き矢板壁体構造。
The drainage function according to claim 13, wherein the drainage member is used as a sheet pile cutoff for a structure installed on a liquefiable ground, and at least the drainage member is positioned inside a sheet pile cutoff where the structure exists. With sheet pile wall structure.
JP2009283765A 2009-12-15 2009-12-15 Sheet pile and wall structure with drainage and water collection functions Active JP5251856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009283765A JP5251856B2 (en) 2009-12-15 2009-12-15 Sheet pile and wall structure with drainage and water collection functions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009283765A JP5251856B2 (en) 2009-12-15 2009-12-15 Sheet pile and wall structure with drainage and water collection functions

Publications (2)

Publication Number Publication Date
JP2011127273A true JP2011127273A (en) 2011-06-30
JP5251856B2 JP5251856B2 (en) 2013-07-31

Family

ID=44290155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009283765A Active JP5251856B2 (en) 2009-12-15 2009-12-15 Sheet pile and wall structure with drainage and water collection functions

Country Status (1)

Country Link
JP (1) JP5251856B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167496A (en) * 2011-02-15 2012-09-06 Sumitomo Metal Ind Ltd Wall body provided with liquefaction countermeasure and steel sheet pile with liquefaction prevention function
WO2016056883A1 (en) * 2014-10-06 2016-04-14 Ramírez Rascón Armando Javier Permeable sheet pile and screen for draining underground water and for collecting and conducting surface and underground water
CN111364448A (en) * 2018-12-26 2020-07-03 北京中岩大地科技股份有限公司 Cross-shaped steel pipe combined pile with dual functions of bearing and draining

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03286016A (en) * 1990-03-30 1991-12-17 Sumitomo Metal Ind Ltd Liquefaction preventive pile and sheet-pile
JPH1171750A (en) * 1988-11-11 1999-03-16 Sumitomo Metal Ind Ltd Sheet pile having drainage function, mounting method of filter for the same, and member for drainage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171750A (en) * 1988-11-11 1999-03-16 Sumitomo Metal Ind Ltd Sheet pile having drainage function, mounting method of filter for the same, and member for drainage
JPH03286016A (en) * 1990-03-30 1991-12-17 Sumitomo Metal Ind Ltd Liquefaction preventive pile and sheet-pile

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012056137; 地盤工学会液状化対策工法編集委員会: 液状化対策工法 , 20040730, P.401〜406, 社団法人地盤工学会 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167496A (en) * 2011-02-15 2012-09-06 Sumitomo Metal Ind Ltd Wall body provided with liquefaction countermeasure and steel sheet pile with liquefaction prevention function
WO2016056883A1 (en) * 2014-10-06 2016-04-14 Ramírez Rascón Armando Javier Permeable sheet pile and screen for draining underground water and for collecting and conducting surface and underground water
CN111364448A (en) * 2018-12-26 2020-07-03 北京中岩大地科技股份有限公司 Cross-shaped steel pipe combined pile with dual functions of bearing and draining

Also Published As

Publication number Publication date
JP5251856B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5782734B2 (en) Wall sheet with liquefaction measures and steel sheet pile with liquefaction suppression function
JP5251856B2 (en) Sheet pile and wall structure with drainage and water collection functions
US7607861B2 (en) Connection structure of plate-type vertical drain and circular horizontal drainpipe and method of constructing horizontal drain layer in soft ground using the same
JP5364403B2 (en) Ground improvement structure
JP2890869B2 (en) Sheet pile with drainage function, method of manufacturing the same, and plug
JP5527173B2 (en) Water-permeable steel sheet pile and water-permeable steel wall using it
JP3031336B2 (en) Sheet pile with drainage function, method of mounting filter for sheet pile, and drainage member
JP2006188940A (en) Earthquake resistant structure
JP2833036B2 (en) Sheet pile with drainage function and method of mounting filter for sheet pile
JP2789803B2 (en) Liquefaction control piles and plugs for liquefaction control piles
JP2012197653A (en) Steel sheet pile with drainage function
JP5782713B2 (en) Sheet pile and sheet pile wall with drainage function
JP5488125B2 (en) Filling reinforcement structure
JP2725516B2 (en) Liquefaction countermeasures for buried structures
JP2005016231A (en) Liquefaction countermeasure construction method
JP7320362B2 (en) Design method for reinforcement structure of cut-off wall
JP2013155559A (en) Liquefaction damage reducing structure for construction
JP6292028B2 (en) Embankment reinforcement structure
JP6018804B2 (en) Cell body water-blocking structure
JPH03275813A (en) Method for coping with liquefaction of embedded structure
JP2976390B2 (en) Method for preventing liquefaction of the foundation directly under the existing structure
JP2013091894A (en) Plank with drainage function
JP3298468B2 (en) Liquefaction countermeasures for H-shaped steel piles
JP5929651B2 (en) Steel with drainage function
JP5915448B2 (en) Steel with drainage function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R151 Written notification of patent or utility model registration

Ref document number: 5251856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350