JP2011127214A - Heat treatment apparatus - Google Patents

Heat treatment apparatus Download PDF

Info

Publication number
JP2011127214A
JP2011127214A JP2009289367A JP2009289367A JP2011127214A JP 2011127214 A JP2011127214 A JP 2011127214A JP 2009289367 A JP2009289367 A JP 2009289367A JP 2009289367 A JP2009289367 A JP 2009289367A JP 2011127214 A JP2011127214 A JP 2011127214A
Authority
JP
Japan
Prior art keywords
heat treatment
fan
cooling
prime movers
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009289367A
Other languages
Japanese (ja)
Other versions
JP4916545B2 (en
Inventor
Yoshiyuki Fujita
良幸 藤田
Hideto Fujita
英人 藤田
Ryoji Fujino
良治 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EDISON HAADO KK
Original Assignee
EDISON HAADO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EDISON HAADO KK filed Critical EDISON HAADO KK
Priority to JP2009289367A priority Critical patent/JP4916545B2/en
Publication of JP2011127214A publication Critical patent/JP2011127214A/en
Application granted granted Critical
Publication of JP4916545B2 publication Critical patent/JP4916545B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat treatment apparatus capable of favorably gas-cooling an object for heat treatment by rotating a stirring fan at high speed without using any prime mover of a large output. <P>SOLUTION: The heat treatment apparatus includes a cooling chamber in which an object for heat treatment is carried, a fan 5 for executing the stirring by sucking and discharging filled cooling gas, and a plurality of prime movers 91, 92, 93 for feeding the rotational driving force to a fan shaft. The fan is not rotation-driven by one prime mover of large output but the driving forces to be output by the plurality of prime movers 91, 92, 93, respectively, are transmitted to rotate the fan 5. Then, the fan 5 is rotated at high speed by combining the prime movers 91, 92, 93 of the realistic output to be available in a relatively easy manner, and the flow rate of the cooling gas flowing in the cooling chamber can be increased. When the flow rate of the gas flowing in the chamber is sufficiently high, the cooling gas flow is also applied easily to the recessed portion of the object for heat treatment, and the temperature of the entire object for heat treatment is uniformly dropped thereby. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱処理対象物を焼き入れ処理等するための熱処理装置に関する。   The present invention relates to a heat treatment apparatus for quenching a heat treatment object.

金型等の鉄鋼製品や部品、材料を熱処理する装置として、真空熱処理炉が公知である。この種の熱処理炉では、炉内を真空引きした状態で熱処理対象物を所定時間加熱した後、低温の不活性冷却ガスを充填してファンで攪拌しながら急冷処理することが通例となっている。   A vacuum heat treatment furnace is known as an apparatus for heat treating steel products such as molds, parts, and materials. In this type of heat treatment furnace, it is customary to heat the object to be heat-treated for a predetermined time in a state where the inside of the furnace is evacuated, and then perform a rapid cooling treatment while charging with a low-temperature inert cooling gas and stirring with a fan. .

焼き入れ処理において、熱処理対象物の全体を均等に冷却できないと、各部の焼き入れ結果に差が出る。即ち、各部位のオーステナイト組織からマルテンサイト組織への変態の時間差による膨張の時間差が発生し、伸び、反り、曲がり等の焼き入れ変形を引き起こす。極端な場合には、焼き割れにまで発展する。質量の差の大きい凹凸形状、シャープエッジを持つ形状、直径の異なる多数の孔のある形状の熱処理対象物の冷却処理においては、冷却ガスが抵抗の少ない流れやすい方向、場所に多く流れるので、部位によって膨張の時間遅れが発生し、焼き入れ変形の原因となる。   In the quenching process, if the entire object to be heat-treated cannot be cooled uniformly, there will be a difference in the quenching result of each part. That is, a time difference of expansion occurs due to a time difference of transformation from the austenite structure to the martensite structure in each part, and quenching deformation such as elongation, warpage, and bending is caused. In extreme cases, it develops into burn cracks. In the cooling treatment of heat treatment objects with uneven shapes with large mass differences, shapes with sharp edges, and shapes with a large number of holes with different diameters, the cooling gas flows in many directions and places with less resistance. This causes a time delay in expansion and causes quenching deformation.

近時では、複雑な形状の対象物をガス冷却するにあたり、炉内に注入する冷却ガスの圧力を1MPaないし3MPaの超高圧に引き上げることで、熱処理対象物全体の温度降下を均一化しようと図っている。しかしながら、莫大な量のガスを消費することになるし、炉胴の耐圧性能の向上も必須となる。これらランニングコスト及び設備コストの増大は、熱処理コストの高騰に直結する。加えて、超高圧雰囲気中でファンを回転駆動できるほどの巨大出力を発揮する原動機を用いなければならないという問題もある。   Recently, when gas-cooling an object having a complicated shape, the pressure of the cooling gas injected into the furnace is increased to an ultra-high pressure of 1 MPa to 3 MPa in an attempt to make the temperature drop of the entire heat treatment object uniform. ing. However, an enormous amount of gas is consumed, and improvement of the pressure resistance of the furnace body is essential. These increases in running costs and equipment costs are directly linked to a rise in heat treatment costs. In addition, there is a problem that a prime mover that exhibits a huge output capable of rotating the fan in an ultra-high pressure atmosphere must be used.

出願人は、ファンの駆動源として大出力のディーゼルエンジンを採択し、ガス冷却処理を実施している(下記特許文献を参照)。このものは、常に大形の熱処理対象物を処理するような専用的な用途に威力を発揮している。だが、熱処理を施すべき対象物の大きさや個数は毎度異なる。例えば、50kgの八個の対象物を処理するケースと、400kgの一個の対象物を処理するケースとでは、必要な冷却ガス圧力、ファン出力が異なってくる。大出力エンジンを用いてファンを駆動する現用炉は、小物を比較的少量処理するためには非効率であり、多様な対象物に対応する汎用性、多目的性の面では課題がある。   The applicant adopts a high-power diesel engine as a fan drive source and performs gas cooling processing (see the following patent document). This product is always effective for special purposes such as processing large heat treatment objects. However, the size and number of objects to be heat-treated are different each time. For example, the required cooling gas pressure and the fan output differ between a case where eight objects of 50 kg are processed and a case where one object of 400 kg is processed. A current furnace that drives a fan using a high-power engine is inefficient for processing a relatively small amount of small objects, and there is a problem in terms of versatility and versatility corresponding to various objects.

一方で、熱処理対象物の一である大形金型は、今後とも工業製品製造上の重要なツールであり、その熱処理技術及び設備を疎かにすることはできない。とは言え、大形熱処理設備に必須の大出力原動機の調達は困難さを増しており、その運用上の制約も多い。   On the other hand, a large mold, which is one of heat treatment objects, will continue to be an important tool for manufacturing industrial products, and its heat treatment technology and equipment cannot be neglected. Nevertheless, the procurement of high-powered motors essential for large heat treatment facilities is becoming more difficult, and there are many operational restrictions.

実用新案登録第3125138号公報Utility Model Registration No. 3125138

以上に鑑みてなされた本発明は、巨大出力の原動機を用いることなしに、攪拌ファンを高速回転駆動して熱処理対象物を好適にガス冷却できる熱処理装置を提供せんとするものである。   The present invention made in view of the above is intended to provide a heat treatment apparatus capable of suitably cooling the object to be heat-treated by driving a stirring fan at a high speed without using a prime mover with a large output.

本発明は、今後の世界的趨勢として益々その重要性が予見される、大形精密金型等に対する信頼性の高い熱処理を、コストや危険性の増長を回避しつつ実現する画期的な冷却設備並びに冷却プロセスを提供する。   The present invention is an epoch-making cooling system that realizes highly reliable heat treatment for large precision molds, etc., which is expected to become increasingly important as a global trend in the future, while avoiding an increase in cost and risk. Equipment and cooling processes are provided.

本発明に係る熱処理装置は、熱処理対象物を加熱後、冷却用のガスを吹き当てて冷却(主として焼き入れ)するものであり、基本構成として、熱処理対象物が搬入される冷却室と、充填された冷却ガスを吸引し吐出することで攪拌するファンと、ファン軸に回転駆動力を供給する複数個の原動機とを具備する。   A heat treatment apparatus according to the present invention cools (mainly quenches) a gas for cooling after heating the object to be heat treated. As a basic configuration, a cooling chamber into which the object to be heat treated is loaded, and filling And a plurality of prime movers for supplying a rotational driving force to the fan shaft.

即ち、一個の大出力原動機を以てファンを回転駆動するのではなく、複数個の原動機が各々出力する駆動力を同一のファン軸に伝達してファンを回転駆動するようにしたのである。本発明によれば、比較的容易に入手できる現実的な出力の原動機を複数個組み合わせて全体で大出力を達成でき、攪拌ファンを高速で回転させて冷却室内を流動する冷却ガスの流速(風速)を効果的に高めることが可能となる。室内に導入するガスを超高圧化(多量化)せずとも、室内を流動するガスの流速を十分に高められれば、熱処理対象物の凹形状部分にも冷却ガスの風が当たりやすくなり、熱処理対象物全体の温度降下を均一化させることができる。   That is, the fan is not rotationally driven by one high-power prime mover, but the driving force output from each of the plurality of prime movers is transmitted to the same fan shaft to rotationally drive the fan. According to the present invention, it is possible to achieve a large output as a whole by combining a plurality of prime movers with realistic outputs that are relatively easily available, and the flow velocity of the cooling gas (wind speed) flowing in the cooling chamber by rotating the stirring fan at high speed. ) Can be effectively increased. Even if the flow rate of the gas flowing in the room can be increased sufficiently without increasing the pressure of the gas introduced into the room, the cooling gas wind will easily hit the concave part of the object to be heat treated. The temperature drop of the entire object can be made uniform.

鉄鋼金型等の焼き入れ処理では、鉄鋼金型等を940℃ないし1050℃まで加熱し、これをMs点(マルテンサイト生成温度)付近まで急速冷却し、しかる後緩やかに冷ます。急冷期間においては、ファンの回転速度ひいては冷却ガスの流速をできるだけ高める必要があり、ファン軸に供給される回転駆動力も大きいことが望ましい。他方、緩冷期間においては、先の急冷期間ほどには冷却ガスの流速が必要でなく、ファン軸に供給される回転駆動力も小さくてよい。熱処理装置が、前記複数個の原動機のうちの一部のみを駆動力供給源として運転している状態と、全部を駆動力供給源として運転している状態とを選択的にとり得るものであれば、急冷期間において全部の原動機を運転し、緩冷期間において一部の原動機を運転するようにして、所望の冶金的効果を獲得しながら原動機の消費エネルギを抑制することが可能となる。また、小形の熱処理対象物を処理するケースでも、一部の原動機のみを運転して必要なファン出力を確保できるので、効率的となる。   In the quenching process of steel molds, etc., the steel molds are heated to 940 ° C to 1050 ° C, rapidly cooled to around the Ms point (martensite formation temperature), and then slowly cooled. During the rapid cooling period, it is necessary to increase the rotational speed of the fan and thus the flow rate of the cooling gas as much as possible, and it is desirable that the rotational driving force supplied to the fan shaft is also large. On the other hand, in the slow cooling period, the flow rate of the cooling gas is not required as in the previous rapid cooling period, and the rotational driving force supplied to the fan shaft may be small. If the heat treatment apparatus can selectively take a state in which only a part of the plurality of prime movers is operated as a driving force supply source and a state in which the heat treatment apparatus is operated as an entire driving force supply source It is possible to suppress the energy consumption of the prime mover while obtaining a desired metallurgical effect by operating all the prime movers during the rapid cooling period and operating some prime movers during the slow cooling period. Further, even in the case of processing a small heat treatment object, it is efficient because only a part of the prime movers can be operated to ensure a necessary fan output.

前記複数個の原動機はそれぞれ電動モータとすることが好ましい。原動機として、バッテリモータを採用してもよい。原動機を運転しファンを駆動する時間は、一日のうちでせいぜい一時間ないし二時間であり、熱処理対象物を加熱する時間と比べれば数%ないし十数%と随分短い。バッテリモータを用いる場合には、電力需要の比較的少ない夜間等にバッテリを充電することができ、電力負荷平準化に資する。   Each of the plurality of prime movers is preferably an electric motor. A battery motor may be employed as the prime mover. The time for driving the motor and driving the fan is one hour or two hours at most in one day, which is considerably shorter than the time for heating the object to be heat-treated by several% to several tens%. In the case of using a battery motor, the battery can be charged at night when the power demand is relatively small, which contributes to power load leveling.

本発明によれば、巨大出力の原動機を用いることなく、攪拌ファンを強力かつ高速回転駆動して熱処理対象物を好適にガス冷却できる熱処理装置が実現する。   ADVANTAGE OF THE INVENTION According to this invention, the heat processing apparatus which can carry out the gas cooling of the heat processing target object suitably is achieved by driving a stirring fan powerfully and at high-speed rotation, without using a prime mover of huge output.

本発明の一実施形態における熱処理装置を示す側断面図。The sectional side view which shows the heat processing apparatus in one Embodiment of this invention. 同実施形態の熱処理装置を示す正断面図。The front sectional view showing the heat treatment apparatus of the embodiment. 同実施形態における攪拌ファン及びファンの駆動源となる原動機を示す部分平面図。The fragmentary top view which shows the motor | power_engine used as the stirring fan and drive source of a fan in the embodiment. 図3に対応したスケルトン図。FIG. 4 is a skeleton diagram corresponding to FIG. 3.

本発明の一実施形態を、図面を参照して説明する。本実施形態の熱処理装置は、真空状態で熱処理対象物を加熱した後、冷却用のガスを充填し攪拌して急冷処理する真空熱処理炉である。   An embodiment of the present invention will be described with reference to the drawings. The heat treatment apparatus of the present embodiment is a vacuum heat treatment furnace that heats an object to be heat treated in a vacuum state, and then fills a cooling gas, stirs, and quenches.

はじめに、ファン5の駆動源を除く、本熱処理装置の基本構成を述べる。図1及び図2に示すように、本熱処理装置は、熱処理対象物を加熱する加熱室2が、熱処理対象物を冷却する冷却室を兼ねている一室型のものである。具体的には、熱処理装置の外殻となる炉胴1内に略箱体状または略円筒状をなす処理室筐体2を配し、この処理室筐体2により炉胴1内の一部空間を加熱室及び冷却室として区画している。   First, the basic configuration of the heat treatment apparatus excluding the drive source of the fan 5 will be described. As shown in FIGS. 1 and 2, the heat treatment apparatus is a one-chamber type in which a heating chamber 2 for heating a heat treatment target object also serves as a cooling chamber for cooling the heat treatment target object. Specifically, a processing chamber casing 2 having a substantially box shape or a substantially cylindrical shape is arranged in a furnace barrel 1 serving as an outer shell of the heat treatment apparatus, and a part of the inside of the furnace barrel 1 is formed by the processing chamber casing 2. The space is partitioned as a heating chamber and a cooling chamber.

炉胴1には、真空排気系3、ガス導入系4、ファン5及び熱交換器6を設けている。真空排気系3は、炉胴1内を真空排気するものであり、例えば拡散ポンプ、メカニカルブースタポンプや油回転真空ポンプ等を直列に連結してなる。ガス導入系4は、熱処理対象物をガス冷却するための冷却ガス、例えばN2等の不活性ガスをガスボンベから炉胴1内に送り込むものである。真空排気系3、ガス導入系4はそれぞれ、バルブを介して断接切替可能に炉胴1に接続する。 The furnace body 1 is provided with a vacuum exhaust system 3, a gas introduction system 4, a fan 5 and a heat exchanger 6. The evacuation system 3 evacuates the furnace body 1 and is formed by connecting, for example, a diffusion pump, a mechanical booster pump, an oil rotary vacuum pump, or the like in series. The gas introduction system 4 feeds a cooling gas for gas-cooling the object to be heat-treated, for example, an inert gas such as N 2 from the gas cylinder into the furnace body 1. Each of the evacuation system 3 and the gas introduction system 4 is connected to the furnace body 1 through a valve so as to be connected and disconnected.

冷却ガスを攪拌するファン5は、炉胴1内に充填された冷却ガスをスラスト方向に吸引しラジアル方向に送風するターボファンである。ファン5は、炉胴1の後端側に存在し、そのファン軸を炉胴1を貫通して外方に突出させている。ファン軸が炉胴1を貫通する部位には、真空シールを施す。熱交換器6は、ファン5の直近にあって、ファン5に吸引される冷却ガスを冷ます。   The fan 5 that stirs the cooling gas is a turbofan that sucks the cooling gas filled in the furnace body 1 in the thrust direction and blows it in the radial direction. The fan 5 exists on the rear end side of the furnace body 1, and the fan shaft penetrates the furnace body 1 and protrudes outward. A portion where the fan shaft passes through the furnace body 1 is vacuum-sealed. The heat exchanger 6 is in the immediate vicinity of the fan 5 and cools the cooling gas sucked into the fan 5.

炉胴1の前端側は熱処理対象物の搬出入口とし、その搬出入口に開閉扉11を設けてある。   The front end side of the furnace body 1 serves as a carry-in / out port for the object to be heat-treated, and an opening / closing door 11 is provided at the carry-in / out port.

処理室2は、耐熱用のグラファイト材、断熱材により囲まれている。処理室2は、前端側が開閉扉11に追従して開閉可能な蓋21、後端側が開閉不能の隔壁22となっている。そして、その室2内にヒータ7を設置している。ヒータ7は、熱処理対象物を所要温度に加熱可能な例えばグラファイトヒータ等であって、処理室2内に搬入された熱処理対象物を取り巻く位置に配置する。   The processing chamber 2 is surrounded by a heat-resistant graphite material and a heat insulating material. The processing chamber 2 has a lid 21 that can be opened and closed following the open / close door 11 on the front end side, and a partition wall 22 that cannot be opened and closed on the rear end side. A heater 7 is installed in the chamber 2. The heater 7 is, for example, a graphite heater or the like that can heat the object to be heat-treated to a required temperature, and is disposed at a position surrounding the object to be heat-treated carried into the processing chamber 2.

処理室2の上下壁には、処理室2内にある熱処理対象物に冷却ガスを吹き当てる吹出口として、多数のノズル23を設けている。また、処理室2の前後の隔壁22及び蓋21には、熱処理対象物から熱量を奪い昇温した冷却ガスを吸出す還流口24を設けている。還流口24は、幅方向に長尺なスロット孔である。   A large number of nozzles 23 are provided on the upper and lower walls of the processing chamber 2 as outlets for spraying the cooling gas to the heat treatment target in the processing chamber 2. In addition, the partition wall 22 and the lid 21 before and after the processing chamber 2 are provided with a reflux port 24 for sucking out the cooling gas that has been heated from the heat treatment object. The reflux port 24 is a slot hole that is long in the width direction.

処理室2の周囲(図示例では、開閉扉11を含む炉胴1)には、冷却液を流通させる冷却液ジャケット12を付設している。冷却水ジャケット12は、加熱時に処理室2から発される輻射熱等を吸収するとともに、ガス冷却時に冷却ガスの摩擦に伴う昇温を抑制する。   Around the processing chamber 2 (in the illustrated example, the furnace body 1 including the open / close door 11), a coolant jacket 12 for circulating the coolant is attached. The cooling water jacket 12 absorbs radiant heat and the like emitted from the processing chamber 2 during heating, and suppresses a temperature rise caused by friction of the cooling gas during gas cooling.

処理室2の外周と炉胴1の内周との間には間隙が介在しており、この間隙に冷却ガスの流路が設定される。即ち、回転するファン5から吐出された冷却ガスは、処理室2の上下壁と炉胴1との間を通過し、上下のノズル23を介して処理室2内に吹出す。処理室2内に吹出した冷却ガスは、複数方向(図示例では、前後)の還流口24を介して処理室2外に吸い出される。隔壁22に設けた(後端側の)還流口24を経由する冷却ガスは、そのまま熱交換器6を通過してファン5に吸い込まれる。蓋21に設けた(前端側の)還流口24を経由する冷却ガスは、処理室2の左右側壁と炉胴1との間を通過して熱交換器6近傍に至り、ファン5に吸い込まれる。   A gap is interposed between the outer periphery of the processing chamber 2 and the inner periphery of the furnace shell 1, and a cooling gas flow path is set in the gap. That is, the cooling gas discharged from the rotating fan 5 passes between the upper and lower walls of the processing chamber 2 and the furnace body 1 and blows out into the processing chamber 2 through the upper and lower nozzles 23. The cooling gas blown out into the processing chamber 2 is sucked out of the processing chamber 2 through the reflux ports 24 in a plurality of directions (front and rear in the illustrated example). The cooling gas passing through the reflux port 24 (on the rear end side) provided in the partition wall 22 passes through the heat exchanger 6 as it is and is sucked into the fan 5. The cooling gas passing through the reflux port 24 (on the front end side) provided in the lid 21 passes between the left and right side walls of the processing chamber 2 and the furnace body 1, reaches the vicinity of the heat exchanger 6, and is sucked into the fan 5. .

しかして、冷却ガスの還流口24に、その開度を調節する調節機構8を付帯させている。調節機構8は、昇降動作を通じて還流口24を開閉するシャッタ81と、シャッタ81を駆動するアクチュエータ82とを要素とする。この調節機構8は、還流口24の開口面積(の総和)を前記吹出口23の開口面積(の総和)以下に絞ることができる。つまり、還流口24の開口面積が吹出口23の開口面積よりも大の状態と、吹出口23の開口面積よりも小の状態とを選択的にとり得る。シャッタ81を上昇させて還流口24を全開したとき、複数の還流口24の開口面積の総和は、複数のノズル23の開口面積の総和の300%(ないし200%)となる。シャッタ81を下降させれば、還流口24の開度を絞ることができる。限界まで絞ったときには、複数の還流口24の開口面積の総和が、複数のノズル23の開口面積の総和の10%(ないし20%、ないし30%)となる。   Therefore, an adjustment mechanism 8 for adjusting the opening degree is attached to the cooling gas recirculation port 24. The adjustment mechanism 8 includes a shutter 81 that opens and closes the reflux port 24 through an elevating operation and an actuator 82 that drives the shutter 81. The adjusting mechanism 8 can reduce the opening area (total) of the reflux port 24 to be equal to or smaller than the opening area (total) of the blower outlet 23. That is, a state where the opening area of the reflux port 24 is larger than the opening area of the outlet 23 and a state where the opening area of the outlet 23 is smaller can be selectively taken. When the shutter 81 is raised and the reflux port 24 is fully opened, the total opening area of the plurality of reflux ports 24 is 300% (or 200%) of the total opening area of the plurality of nozzles 23. If the shutter 81 is lowered, the opening degree of the reflux port 24 can be reduced. When narrowed to the limit, the sum of the opening areas of the plurality of reflux ports 24 becomes 10% (or 20% to 30%) of the sum of the opening areas of the plurality of nozzles 23.

この開度調節機構8の機能により、熱処理対象物の形状、単体質量、部位による質量の差異の状況等に対応した冷却ガスの挙動、即ち熱処理対象物に吹き当てるガス量、ガス流速、ガス圧力、ガス流方向等を一定限度内で制御できる。   By the function of the opening degree adjusting mechanism 8, the behavior of the cooling gas corresponding to the shape of the heat treatment object, the single mass, the state of the mass difference depending on the part, etc., that is, the amount of gas blown to the heat treatment object, the gas flow rate, the gas pressure The gas flow direction can be controlled within a certain limit.

続いて、ファン5の駆動源について述べる。図3及び図4に示すように、本熱処理装置では、炉外に設置した複数個の原動機91、92、93をファン軸に機械的に接続せしめ、各原動機91、92、93が出力する回転駆動力を同ファン軸に供給してファン5を回転駆動する。原動機91、92、93は、炉胴1とは別に構築した架台に載置して支持させる。各原動機91、92、93は、それぞれ電動モータとする。電動モータ91、92、93としては、例えば自動車用のバッテリモータを採用することができる。原動機91、92、93の電源とヒータの電源とは、別系統とする。各原動機91、92、93の出力の総和は、ヒータ7に給電する電源出力の数倍の大きさに達し得る。   Subsequently, the drive source of the fan 5 will be described. As shown in FIGS. 3 and 4, in this heat treatment apparatus, a plurality of prime movers 91, 92, 93 installed outside the furnace are mechanically connected to the fan shaft, and rotations output from the prime movers 91, 92, 93 are output. A driving force is supplied to the fan shaft to rotationally drive the fan 5. The prime movers 91, 92 and 93 are placed on and supported by a stand constructed separately from the furnace body 1. Each prime mover 91, 92, 93 is an electric motor. As the electric motors 91, 92, 93, for example, battery motors for automobiles can be employed. The power sources of the prime movers 91, 92, and 93 and the power source of the heater are different systems. The sum total of the outputs of the prime movers 91, 92, and 93 can reach several times the power output that supplies power to the heater 7.

図3及び図4には、三個の原動機91、92、93を示している。これは、駆動源となる原動機の個数が三個に限定されることを意味するものではなく、二個の原動機を使用、または四個以上の原動機を使用してファン5を駆動することも当然に可能である。各原動機91、92、93の出力軸は、ファン軸を中心として略対称に位置する。原動機を三個以上用いる場合にあっては、各原動機の出力軸を、ファン軸の周囲に、その軸心周りに略等角度間隔で配置することができる。   3 and 4 show three prime movers 91, 92, and 93. FIG. This does not mean that the number of prime movers as drive sources is limited to three, and it is natural that two prime movers are used or the fan 5 is driven using four or more prime movers. Is possible. The output shafts of the prime movers 91, 92, and 93 are positioned substantially symmetrically about the fan shaft. When three or more prime movers are used, the output shaft of each prime mover can be arranged around the fan shaft at substantially equal angular intervals around the axis.

原動機91の出力軸は、断接切換可能なクラッチ(液圧クラッチ、電磁クラッチ等)911を介して、歯車912に接続する。この歯車912は、直接にまたは他の機械要素を介して間接に、ファン軸に取り付けた歯車51に噛合する。原動機92の出力軸は、断接切換可能なクラッチ921を介して、歯車922に接続する。この歯車922は、直接にまたは他の機械要素を介して間接に、ファン軸に取り付けた歯車51に噛合する。そして、原動機93の出力軸もまた、断接切換可能なクラッチ931を介して、歯車932に接続する。この歯車932は、直接にまたは他の機械要素を介して間接に、ファン軸に取り付けた歯車51に噛合する。   The output shaft of the prime mover 91 is connected to a gear 912 via a clutch (hydraulic clutch, electromagnetic clutch, etc.) 911 that can be switched between connection and disconnection. The gear 912 meshes with the gear 51 attached to the fan shaft, either directly or indirectly through other mechanical elements. The output shaft of the prime mover 92 is connected to a gear 922 via a clutch 921 that can be connected and disconnected. The gear 922 meshes with the gear 51 attached to the fan shaft, either directly or indirectly through other mechanical elements. The output shaft of the prime mover 93 is also connected to the gear 932 via a clutch 931 that can be connected and disconnected. The gear 932 meshes with the gear 51 attached to the fan shaft directly or indirectly through other mechanical elements.

本熱処理装置によるガス冷却(焼き入れ)処理のプロセスの一例を示す。熱処理対象物を処理室2の内に搬入し、蓋21及び開閉扉11を閉止して真空排気し、ヒータ7に通電して熱処理対象物を加熱する。加熱完了後、ヒータ7への通電を遮断するとともに、クラッチ911をつないで原動機91が出力する回転駆動力をファン軸に伝達しファン5を回転させる。真空中のファン起動であるから負荷が小さく、ファン5の回転速度は直ちに所要の回転数に達する。故に、ファン起動時に全ての原動機91、92、93を運転する必要はない。運転しない原動機92、93とファン軸との間のクラッチ921、931は、切り離しておく。   An example of the process of the gas cooling (quenching) process by this heat processing apparatus is shown. The object to be heat-treated is carried into the processing chamber 2, the lid 21 and the opening / closing door 11 are closed and evacuated, and the heater 7 is energized to heat the object to be heat-treated. After the heating is completed, the energization to the heater 7 is interrupted, and the clutch 911 is connected to transmit the rotational driving force output from the prime mover 91 to the fan shaft to rotate the fan 5. Since the fan is activated in vacuum, the load is small, and the rotational speed of the fan 5 immediately reaches the required rotational speed. Therefore, it is not necessary to drive all the prime movers 91, 92, 93 when the fan is activated. The clutches 921 and 931 between the prime movers 92 and 93 that are not operated and the fan shaft are disconnected.

次に、ガス導入系4より炉胴1内に冷却ガスを導入、充填し、これをファン5で攪拌して循環させながら熱処理対象物を急冷する。ガス冷却は、複数段階に分けて行うことができる。例えば、冷却ガス圧力が比較的低圧の状況下で所定温度まで冷却する第一段階では、全ての原動機91、92、93は運転せず、一部の原動機91、92のクラッチ911、921をつないでこれら原動機91、92からの回転駆動力をファン5に伝達する。その後、冷却ガスを追加注入してガス圧力を高めた状況下で急冷する第二段階では、全ての原動機91、92、93のクラッチ911、921、931をつないで全原動機91、92、93からの回転駆動力をファン5に伝達する。   Next, a cooling gas is introduced and filled into the furnace shell 1 from the gas introduction system 4, and the object to be heat-treated is rapidly cooled while being stirred and circulated by the fan 5. Gas cooling can be performed in a plurality of stages. For example, in the first stage of cooling to a predetermined temperature under a condition where the cooling gas pressure is relatively low, all the prime movers 91, 92, 93 are not operated and the clutches 911, 921 of some prime movers 91, 92 are connected. Then, the rotational driving force from the prime movers 91 and 92 is transmitted to the fan 5. After that, in the second stage in which cooling gas is additionally injected to rapidly cool the gas pressure, the clutches 911, 921, and 931 of all the prime movers 91, 92, and 93 are connected to start from all the prime movers 91, 92, and 93. Is transmitted to the fan 5.

あるいは、熱処理対象物の形状、寸法、質量、個数や総重量等に応じ、適宜量だけ処理室2の還流口24の開度を調節するようにしてもよい。例えば、各部の質量の差が大きい、または冷却ガスが当たりにくい凹穴や孔を有する熱処理対象物の冷却処理では、温度降下が早い部位、即ち冷却ガスの流れが当たりやすい部位や質量の小さい部位の温度を(炉胴1に設けた観測窓を介しての輻射測温法、火色の目測判定、または検体による直接測温法等を以て)捕捉し、当該部位がMs点に近づくまでの間は、還流口24の開度を比較的大きく開くとともに全原動機91、92、93を使用してファン5を高速回転駆動し、処理室2内を流動する冷却ガスの流速を高く保つ。当該部位の温度がMs点近くまで低下した暁には、一部の原動機93(及び/または、92)とファン軸との間にあるクラッチ931(及び/または、921)を切り離し、原動機93(及び/または、92)の運転を停止する。同時に、還流口24の開度を絞り込む。すると、冷却ガスの流速が落ちるとともに、処理室2内のみガス圧力が増圧されるので、温度降下が早い部位の冷却が遅れ、温度降下が遅い部位の冷却がこれに追いつく。ひいては、対象物全体の温度降下が略均一となる。このようにして、比較的質量の小さい部位、大きい部位共々マルテンサイト変態を行わせる。   Alternatively, the opening degree of the reflux port 24 of the processing chamber 2 may be adjusted by an appropriate amount according to the shape, size, mass, number, total weight, etc. of the heat treatment object. For example, in the cooling process of a heat treatment target object having a large difference in mass of each part or having a concave hole or hole in which the cooling gas is difficult to hit, a part where the temperature drop is fast, that is, a part where the flow of the cooling gas is easy to hit or a part where the mass is small Until the part approaches the Ms point (by means of a radiation temperature measurement method through the observation window provided in the furnace shell 1, a fire-colored eye measurement determination, or a direct temperature measurement method using a specimen, etc.) The opening of the reflux port 24 is opened relatively large, and the fans 5 are driven to rotate at high speed using all the prime movers 91, 92, 93 to keep the flow velocity of the cooling gas flowing in the processing chamber 2 high. When the temperature of the part decreases to near the Ms point, the clutch 931 (and / or 921) between some of the prime movers 93 (and / or 92) and the fan shaft is disconnected, and the prime mover 93 ( And / or 92) is stopped. At the same time, the opening degree of the reflux port 24 is narrowed down. Then, the flow rate of the cooling gas decreases and the gas pressure is increased only in the processing chamber 2, so that the cooling of the part where the temperature drop is early is delayed, and the cooling of the part where the temperature drop is slow catches up with this. As a result, the temperature drop of the entire object becomes substantially uniform. In this way, the martensitic transformation is performed on both the relatively small mass and large mass sites.

冷却が完了したら、全原動機91、92、93の運転を停止する。そして、炉胴1内を大気圧まで下げ、熱処理対象物を搬出する。   When the cooling is completed, the operation of all the prime movers 91, 92, 93 is stopped. Then, the inside of the furnace body 1 is lowered to atmospheric pressure, and the heat treatment object is carried out.

本実施形態によれば、熱処理対象物が搬入される処理室(冷却室)2と、充填された冷却ガスを吸引し吐出することで攪拌するファン5と、ファン軸に回転駆動力を供給する複数個の原動機91、92、93とを具備する熱処理装置を構成したため、比較的容易に入手できる現実的な出力の原動機91、92、93を複数個組み合わせて攪拌ファン5を高速で回転させ、冷却室内を流動する冷却ガスの流速を効果的に高めることが可能である。処理室2内に導入するガスを超高圧化(多量化)せずとも、処理室2内を流動するガスの流速を十分に高められるので、熱処理対象物の凹形状部分にも冷却ガスの風が当たりやすくなり、熱処理対象物全体の温度降下を均一化せしめることができる。   According to this embodiment, the processing chamber (cooling chamber) 2 into which the heat treatment object is carried in, the fan 5 that stirs by sucking and discharging the filled cooling gas, and the rotational driving force is supplied to the fan shaft. Since the heat treatment apparatus including the plurality of prime movers 91, 92, 93 is configured, the stirring fan 5 is rotated at a high speed by combining a plurality of prime outputs 91, 92, 93 having realistic outputs that can be obtained relatively easily. It is possible to effectively increase the flow rate of the cooling gas flowing in the cooling chamber. Since the flow velocity of the gas flowing in the processing chamber 2 can be sufficiently increased without increasing the pressure of the gas introduced into the processing chamber 2 to an extremely high pressure (increasing the amount), the cooling gas flow is also applied to the concave portion of the heat treatment object. It becomes easy to hit, and the temperature drop of the whole heat treatment target object can be made uniform.

熱処理装置が、前記複数個の原動機91、92、93のうちの一部のみを駆動力供給源として運転している状態と、全部を駆動力供給源として運転している状態とを選択的にとり得るものであることから、急冷期間において全部の原動機91、92、93を運転し、緩冷期間において一部の原動機91(及び/または、92)を運転するようにして、所望の冶金的効果を獲得しながら原動機91、92、93の消費エネルギを抑制することが可能となる。小形の熱処理対象物を処理するケースでも、一部の原動機91(及び/または、92)のみを運転して必要なファン出力を確保できるので、効率的となる。   The heat treatment apparatus selectively takes a state in which only a part of the plurality of prime movers 91, 92, 93 is operated as a driving force supply source and a state in which all are operated as a driving force supply source. Therefore, all the prime movers 91, 92, 93 are operated during the rapid cooling period, and a part of the prime movers 91 (and / or 92) are operated during the slow cooling period. The energy consumption of the prime movers 91, 92, 93 can be suppressed while acquiring Even in the case of processing a small heat treatment object, only a part of the prime movers 91 (and / or 92) can be operated to secure a necessary fan output, which is efficient.

前記複数個の原動機91、92、93がそれぞれ電動モータであるため、エンジンを採用する場合と比して速度制御その他の取り扱いが容易となる。さらに、原動機91、92、93がバッテリモータであれば、電力需要の比較的少ない夜間等にバッテリを充電して運用することができ、電力負荷平準化に資する。通常のモータである場合には、大掛かりな送受電設備も不要となり、合理化される。   Since the plurality of prime movers 91, 92, and 93 are electric motors, speed control and other handling are facilitated as compared with the case where an engine is employed. Furthermore, if the prime movers 91, 92, and 93 are battery motors, the batteries can be charged and operated at night when power demand is relatively low, which contributes to power load leveling. In the case of a normal motor, a large-scale power transmission / reception facility is not necessary, and it is streamlined.

なお、本発明は以上に詳述した実施形態に限られるものではない。列挙すると、原動機とファン軸との間に介在する駆動力伝達機構は、図4に示しているような態様のものには限定されない。差動歯車または遊星歯車を用いて各原動機の出力軸をファン軸に接続するようにしてもよいし、巻掛伝動機構を用いて各原動機の出力軸をファン軸に接続するようにしてもよい。   The present invention is not limited to the embodiment described in detail above. To enumerate, the driving force transmission mechanism interposed between the prime mover and the fan shaft is not limited to that shown in FIG. A differential gear or a planetary gear may be used to connect the output shaft of each prime mover to the fan shaft, or a winding transmission mechanism may be used to connect the output shaft of each prime mover to the fan shaft. .

各原動機の出力軸同士を、巻掛伝動機構(タイミングベルトまたはチェーン)等を介して回転同期させるようにしても構わない。   The output shafts of the prime movers may be rotationally synchronized via a winding transmission mechanism (timing belt or chain) or the like.

全部の原動機が電動モータであるとも限られない。一部を電動モータとし、残りを実用的な小形のディーゼルエンジンやタービンエンジン等の熱機関としてもよい。あるいは、全部の原動機を熱機関としてもよい。   Not all prime movers are electric motors. One part may be an electric motor and the rest may be a heat engine such as a practical small diesel engine or turbine engine. Alternatively, all the prime movers may be heat engines.

上記実施形態では、一つの還流口に対して一枚のシャッタを設けていたが、一つの還流口に対して複数枚のシャッタを設けてもよい。例えば、互いに独立に昇降動作可能なシャッタを上下に対向配置すれば、還流口の開度のみならず、還流口の開通部分の高さ位置をも調節できるようになる。   In the above embodiment, one shutter is provided for one return port, but a plurality of shutters may be provided for one return port. For example, if shutters that can be moved up and down independently of each other are arranged opposite to each other, not only the opening degree of the reflux port but also the height position of the opening portion of the reflux port can be adjusted.

上記実施形態では、処理室筐体に設けた還流口の開度を調節機構により調節するようにしていたが、処理室筐体には常に全開したガスの流出口を設けておき、その流出口とファンとの間に開度調節機構を伴う還流口を別途設ける態様もとり得る。   In the above embodiment, the opening degree of the reflux port provided in the processing chamber casing is adjusted by the adjustment mechanism. However, the processing chamber casing is always provided with a gas outlet that is fully open, and the outlet A mode in which a reflux port with an opening degree adjusting mechanism is separately provided between the fan and the fan may be employed.

熱処理対象物の冷却に使用するガスは、N2等の不活性ガスに限定されない。空気等であってもよい。 The gas used for cooling the heat treatment object is not limited to an inert gas such as N 2 . Air or the like may be used.

処理室筐体が断熱材でない場合、その室外、筐体の周囲にヒータを設置することができる。筐体外にヒータを設置する場合、炉胴に断熱材を実装する。   When the processing chamber casing is not a heat insulating material, a heater can be installed outside the chamber and around the casing. When installing a heater outside the housing, heat insulation is mounted on the furnace shell.

また、上記実施形態では加熱室が冷却室を兼ねる一室型の熱処理装置としていたが、加熱室と冷却室とを別々に設けた二室型の熱処理装置としてもよい。   In the above embodiment, the one-chamber heat treatment apparatus in which the heating chamber also serves as the cooling chamber is used. However, a two-chamber heat treatment apparatus in which the heating chamber and the cooling chamber are separately provided may be used.

さらには、ヒータを設置せず、加熱した熱処理対象物を搬入して冷却する冷却処理専用の装置としても構わない。   Furthermore, it does not matter as an apparatus for exclusive use of the cooling process which carries in and cools the heat processing target object without installing a heater.

その他各部の具体的構成は上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   Other specific configurations of the respective parts are not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

本発明は、金型等の鉄鋼製品や部品、材料を熱処理する装置として利用することができる。   The present invention can be used as an apparatus for heat-treating steel products such as molds, parts, and materials.

2…冷却室
23…吹出口
24…還流口
5…ファン
8…調節機構
91、92、93…原動機
921、922、932…クラッチ
2 ... Cooling chamber 23 ... Air outlet 24 ... Recirculation port 5 ... Fan 8 ... Adjustment mechanism 91, 92, 93 ... Motors 921, 922, 932 ... Clutch

Claims (3)

冷却用のガスを充填して熱処理対象物を冷却する熱処理装置であって、
熱処理対象物が搬入される冷却室と、
充填された冷却ガスを吸引し吐出することで攪拌するファンと、
ファン軸に回転駆動力を供給する複数個の原動機と
を具備する熱処理装置。
A heat treatment apparatus for cooling an object to be heat treated by filling a cooling gas,
A cooling chamber into which the heat treatment object is carried, and
A fan that stirs by sucking and discharging the filled cooling gas;
A heat treatment apparatus comprising a plurality of prime movers for supplying rotational driving force to a fan shaft.
前記複数個の原動機のうちの一部のみを駆動力供給源として運転している状態と、全部を駆動力供給源として運転している状態とを選択的にとり得る請求項1記載の熱処理装置。 The heat treatment apparatus according to claim 1, wherein a state in which only a part of the plurality of prime movers is operated as a driving force supply source and a state in which all of the prime movers are operated as a driving force supply source can be taken selectively. 前記複数個の原動機がそれぞれ電動モータである請求項1または2記載の熱処理装置。 The heat treatment apparatus according to claim 1, wherein each of the plurality of prime movers is an electric motor.
JP2009289367A 2009-12-21 2009-12-21 Heat treatment equipment Active JP4916545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009289367A JP4916545B2 (en) 2009-12-21 2009-12-21 Heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009289367A JP4916545B2 (en) 2009-12-21 2009-12-21 Heat treatment equipment

Publications (2)

Publication Number Publication Date
JP2011127214A true JP2011127214A (en) 2011-06-30
JP4916545B2 JP4916545B2 (en) 2012-04-11

Family

ID=44290110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009289367A Active JP4916545B2 (en) 2009-12-21 2009-12-21 Heat treatment equipment

Country Status (1)

Country Link
JP (1) JP4916545B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016508545A (en) * 2013-01-23 2016-03-22 イーシーエム テクノロジーズ Gas quenching equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9995305B2 (en) 2013-10-08 2018-06-12 Regal Beloit America, Inc. Fluid flow apparatus, fan assembly and associated method
CN105886737A (en) * 2016-05-03 2016-08-24 山东伊莱特重工股份有限公司 Non-deformation thermal refining process of main shaft of kilowatt-level blower

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61518A (en) * 1984-06-14 1986-01-06 Ishikawajima Harima Heavy Ind Co Ltd Vacuum heat-treating furnace
JPH02273050A (en) * 1989-04-14 1990-11-07 Hino Motors Ltd Electrically-driven actuator
JPH10183236A (en) * 1996-12-25 1998-07-14 Shimazu Mekutemu Kk Vacuum heat treatment furnace
JPH11318052A (en) * 1998-05-01 1999-11-16 Shinko Electric Co Ltd Locking mechanism for motor output rotating shaft and locking method for the motor output rotating shaft using the locking mechanism
JP2008527176A (en) * 2005-01-17 2008-07-24 エチューズ エ コンストリクションズ メカニクス Gas quenching cell for steel parts
JP2009102671A (en) * 2007-10-19 2009-05-14 Edison Haado Kk Heat treatment apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61518A (en) * 1984-06-14 1986-01-06 Ishikawajima Harima Heavy Ind Co Ltd Vacuum heat-treating furnace
JPH02273050A (en) * 1989-04-14 1990-11-07 Hino Motors Ltd Electrically-driven actuator
JPH10183236A (en) * 1996-12-25 1998-07-14 Shimazu Mekutemu Kk Vacuum heat treatment furnace
JPH11318052A (en) * 1998-05-01 1999-11-16 Shinko Electric Co Ltd Locking mechanism for motor output rotating shaft and locking method for the motor output rotating shaft using the locking mechanism
JP2008527176A (en) * 2005-01-17 2008-07-24 エチューズ エ コンストリクションズ メカニクス Gas quenching cell for steel parts
JP2009102671A (en) * 2007-10-19 2009-05-14 Edison Haado Kk Heat treatment apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016508545A (en) * 2013-01-23 2016-03-22 イーシーエム テクノロジーズ Gas quenching equipment

Also Published As

Publication number Publication date
JP4916545B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP4916545B2 (en) Heat treatment equipment
CN207498444U (en) Annealing furnace and annealing furnace for aluminum
JP6147261B2 (en) Quenching chamber
JP6078000B2 (en) Cooling system
CN103060531A (en) Annealing high-temperature furnace
JP4958725B2 (en) Heat treatment equipment
EP1801529A1 (en) Cooling gas passage switching equipment for vacuum heat treatment furnace
CN106863686A (en) One kind uses microwave and electrically heated foaming furnace
KR100792715B1 (en) Controlling apparatus for atmospheric gas using dx-gas burner
KR101095587B1 (en) Flow equalization and cooling modules mounted accelerated sintering heat treatment
CN201170691Y (en) Sintering furnace for salt core
CN107614709A (en) Annealing device
CN204171289U (en) A kind of model casting small-sized formwork roasting cooling integration unit
CN116294556B (en) Unidirectional double-acting high-frequency vibration hot-pressing vacuum sintering furnace and application method thereof
CN104534873A (en) Baking technology production system for furnace burdens
CN102003877B (en) Multifunctional heat treatment furnace for seepage hydrogen and vacuum dehydrogenation of titanium alloy forging
JP5988985B2 (en) Method for manufacturing camshaft for internal combustion engine
CN204313642U (en) A kind of roasting technique production system of furnace charge
CN102282271A (en) Quenching device and quenching method
CN203112869U (en) Air-cooling table for pretreatment production line
CN207002793U (en) Heating arrangements and heater
CN103898287A (en) Annular heating furnace for spheroidizing annealing production line
CN207608605U (en) A kind of aluminium alloy quenching furnace and aluminum alloy heat processing system
EP2663821B1 (en) A transportable equipment for the thermal treatment of metals
JPH02267216A (en) Vacuum heat treatment furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110315

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110315

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4916545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250