JP2011126235A - Belt end joining method, method for manufacturing endless belt, and non-end flat belt - Google Patents

Belt end joining method, method for manufacturing endless belt, and non-end flat belt Download PDF

Info

Publication number
JP2011126235A
JP2011126235A JP2009288997A JP2009288997A JP2011126235A JP 2011126235 A JP2011126235 A JP 2011126235A JP 2009288997 A JP2009288997 A JP 2009288997A JP 2009288997 A JP2009288997 A JP 2009288997A JP 2011126235 A JP2011126235 A JP 2011126235A
Authority
JP
Japan
Prior art keywords
belt
joining
endless
heat
along
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009288997A
Other languages
Japanese (ja)
Inventor
Yasuyori Ishikiriyama
靖順 石切山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta Corp
Original Assignee
Nitta Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Corp filed Critical Nitta Corp
Priority to JP2009288997A priority Critical patent/JP2011126235A/en
Publication of JP2011126235A publication Critical patent/JP2011126235A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the earthquake resistance and durability of an endless flat belt where both ends are adhered by heat welding. <P>SOLUTION: Both ends of a band-shaped flat belt 10 formed of a thermoplastic resin is die-cut into a complementary finger shape, both the ends of the fingers are placed on a matching pressing table 15, a pressing metal plate 17 shaped along an adhesive line 16 of the finger is pressed to an adhesive part thereof, the pressing metal plate 17 is heated to give heat only to the adhesive part so as to be fused, and then the resultant is cooled down to fuse both the ends thereof, whereby a band-shaped belt is made to be an endless belt. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、伝動用または搬送用ベルトの熱融着による端部接合方法に関する。   The present invention relates to an end joining method by heat fusion of a transmission or conveyance belt.

伝動用、搬送用平ベルトにおける両端部の接合方法として、ラップ継ぎ手、フィンガー継ぎ手、機械式レーシング継ぎ手などが知られている。このうち、フィンガー継ぎ手は、小プーリでの使用において耐久性が優れ、平坦性においても有利であるため、伝動用、搬送用平ベルトにおいて近年広く利用されている。フィンガー継ぎ手を用いたベルトでは、一般にベルト本体を熱可塑性樹脂で形成し、相補的な形状に打ち抜かれたベルト両端部を噛み合わせ、熱プレス機を用いて熱融着によりベルト両端を接合する(特許文献1参照)。   As a method for joining both ends of a transmission and conveying flat belt, a lap joint, a finger joint, a mechanical racing joint, and the like are known. Of these, the finger joint is excellent in durability when used with a small pulley and is advantageous in terms of flatness, and thus has been widely used in recent years for transmission and conveyance flat belts. In a belt using a finger joint, the belt body is generally formed of a thermoplastic resin, both ends of the belt punched into a complementary shape are engaged, and both ends of the belt are joined by heat fusion using a heat press machine ( Patent Document 1).

特公平6−73911号公報Japanese Patent Publication No. 6-73911

しかし、従来の熱融着を用いたフィンガー継ぎ手でも、プレスの際、熱可塑性樹脂の熱流動のため、熱プレス機に挿入された継ぎ手部分の厚みが僅かに減少して変曲点が生成され、継ぎ手部分の両端にベルト幅方向に沿った段差が僅かに形成される。これは、ベルトに接触するロータやスピンドルに振動を与えるとともに、ベルト自身にも縞状の磨耗痕跡(ゼブラマーク)を生じさせ、機器およびベルトの損傷を引き起こす原因となる。   However, even with conventional finger joints using heat fusion, the thickness of the joint part inserted into the heat press machine is slightly reduced due to the heat flow of the thermoplastic resin during pressing, and an inflection point is generated. The step along the belt width direction is slightly formed at both ends of the joint portion. This gives vibration to the rotor and spindle that contact the belt, and also causes striped wear marks (zebra marks) on the belt itself, causing damage to the equipment and the belt.

本発明は、熱融着を用いて両端が接合される無端平ベルトの制震性、耐久性を向上することを課題としている。   An object of the present invention is to improve the vibration control and durability of an endless flat belt having both ends joined by heat fusion.

本発明のベルト端部接合方法は、帯状のベルトの両端を熱融着により接合するベルト端部接合方法であって、ベルトの両端に設けられる接合面をベルト幅方向に沿った面以外の面を含む相補的な形状に成形し、相補的な接合面を突合せ、接合面に沿った領域のみ熱融解させて両端を融着することを特徴としている。   The belt end joining method of the present invention is a belt end joining method in which both ends of a belt-like belt are joined by thermal fusion, and the joining surfaces provided at both ends of the belt are surfaces other than the surfaces along the belt width direction. In this case, the complementary joint surfaces are joined together, the regions along the joint surfaces are melted, and both ends are fused together.

また、本発明の無端ベルトの製造方法は、帯状のベルトの両端を熱融着により接合して無端ベルトを製造する方法であって、ベルトの両端に設けられる接合面をベルト幅方向に沿った面以外の面を含む相補的な形状に成形し、相補的な接合面を突合せ、接合面に沿った領域のみ熱融解させて融着し無端ベルトを形成することを特徴としている。   The endless belt manufacturing method of the present invention is a method of manufacturing an endless belt by joining both ends of a belt-like belt by heat fusion, and the joining surfaces provided at both ends of the belt are along the belt width direction. It is characterized in that it is formed into a complementary shape including a surface other than the surface, the complementary bonding surfaces are butted together, and only an area along the bonding surface is thermally melted and fused to form an endless belt.

熱融解においては、接合面に沿った形状のプレス金板を両端の接合部に押し当て、プレス金板を通してベルトに熱が加えられる。また、接合面は、例えばフィンガー継ぎ手の接合面であることが好ましい。   In the thermal melting, a press metal plate having a shape along the joint surface is pressed against the joints at both ends, and heat is applied to the belt through the press metal plate. Moreover, it is preferable that a joining surface is a joining surface of a finger joint, for example.

また、帯状のベルトの抗張力層は、例えば芯線を溶融押し出しされたポリアミドエラストマ樹脂で被覆することで形成される。更に、ポリアミドエラストマ樹脂の押し出し加工中にゴム材を投入し、抗張力層の両面にゴム層が形成される。   The tensile strength layer of the belt-like belt is formed, for example, by covering the core wire with a melt-extruded polyamide elastomer resin. Further, a rubber material is introduced during the extrusion process of the polyamide elastomer resin, and rubber layers are formed on both sides of the tensile strength layer.

本発明の無端平ベルトは、相補的な形状に成形された帯状のベルトの両端を突合せて熱融着により接合した無端ベルトであって、熱融着される接合面がベルト幅方向に沿った面以外の面を含み、ベルトの継ぎ手部の表面が、接合面に沿って凹みを有することを特徴としている。   The endless flat belt of the present invention is an endless belt in which both ends of a belt-like belt formed in a complementary shape are abutted and joined by thermal fusion, and the joining surface to be thermally fused is along the belt width direction. The surface of the joint portion of the belt including the surface other than the surface has a dent along the joining surface.

無端平ベルトは、例えば芯体に芯線を用い、例えばポリアミドエラストマで芯体を被覆して抗張力層を形成する。また、抗張力層の両面には、例えばゴム層が直接形成される。   In the endless flat belt, for example, a core wire is used as the core, and the tensile strength layer is formed by covering the core with, for example, polyamide elastomer. Also, for example, rubber layers are directly formed on both sides of the tensile layer.

本発明によれば、熱融着を用いて両端が接合される無端平ベルトの制震性、耐久性を向上することができる。   ADVANTAGE OF THE INVENTION According to this invention, the damping property and durability of an endless flat belt to which both ends are joined using heat fusion can be improved.

第1実施形態の平ベルトの横断面図である。It is a cross-sectional view of the flat belt of 1st Embodiment. 継ぎ手部の部分拡大平面図である。It is a partial enlarged plan view of a joint part. 本実施形態における熱プレス処理の様子を示す斜視図である。It is a perspective view which shows the mode of the hot press process in this embodiment. 変形例の継ぎ手部の部分拡大平面図である。It is the elements on larger scale of the joint part of a modification. 第2実施形態の平ベルトの横断面図である。It is a cross-sectional view of the flat belt of 2nd Embodiment. 振動試験機のレイアウト図である。It is a layout figure of a vibration testing machine. 振動試験の結果を示すグラフである。It is a graph which shows the result of a vibration test.

以下、本発明の実施の形態を、図面を参照して説明する。図1は、本発明のベルト端部接合方法を用いて製造される第1実施形態の無端平ベルトの構成を示す横断面図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing the configuration of an endless flat belt according to a first embodiment manufactured using the belt end joining method of the present invention.

平ベルト10は、例えば繊維機械等のスピンドルやロータへの動力伝達に用いられるタンジェンシャルベルトや、印刷、製本、紙工、郵便などで使用される紙葉類の搬送に用いられる搬送ベルトである。図1に示されるように、平ベルト10は上下5つの層から構成される。   The flat belt 10 is, for example, a tangential belt used for power transmission to a spindle or rotor of a textile machine or the like, or a conveyance belt used for conveying paper sheets used in printing, bookbinding, paperwork, mail, or the like. As shown in FIG. 1, the flat belt 10 is composed of five upper and lower layers.

ベルト断面中央に配置される抗張力層11には、複数の芯線12が芯体(抗張力部材)としてベルト長手方向に沿って埋設される。また、芯線12は、それぞれベルト幅方向に一定の間隔で配置される。抗張力層11の上下両面には、帆布13がそれぞれ貼着され、その外側にはそれぞれ表面材としてのゴム層14が形成される。   A plurality of core wires 12 are embedded as core bodies (strength members) along the longitudinal direction of the belt in the tensile layer 11 disposed in the center of the belt cross section. Moreover, the core wires 12 are arranged at regular intervals in the belt width direction. The canvas 13 is adhered to both the upper and lower surfaces of the tensile layer 11, and rubber layers 14 as surface materials are formed on the outer sides thereof.

芯線12には、繊維コードが用いられ、例えば、綿などの天然繊維や、ポリアミド繊維、アラミド繊維、ポリエステル繊維、ガラス繊維などの化学繊維、あるいはそれらの組合せなどが用いられる。芯線12が埋設される抗張力層11には、ポリアミドエラストマやポリウレタンエラストマなどの熱可塑性樹脂が用いられる。なお、抗張力層11は、ベルト幅方向に一定の間隔で配列された芯線12を溶融押出しされた熱可塑性樹脂で被覆することで形成される。また、帆布13には、ポリアミド繊維などを用いた織布や編布などが用いられ、ゴム層14には例えばNBRゴムなどが用いられる。   A fiber cord is used for the core wire 12, and natural fibers such as cotton, chemical fibers such as polyamide fibers, aramid fibers, polyester fibers, and glass fibers, or combinations thereof are used. For the tensile strength layer 11 in which the core wire 12 is embedded, a thermoplastic resin such as polyamide elastomer or polyurethane elastomer is used. The tensile layer 11 is formed by coating the core wires 12 arranged at a constant interval in the belt width direction with a melt-extruded thermoplastic resin. The canvas 13 is made of woven or knitted fabric using polyamide fibers, and the rubber layer 14 is made of, for example, NBR rubber.

図2は、図1に示される平ベルト10の両端接合部を拡大して示す模式的な平面図であり、図3は、本実施形態の熱プレス処理に用いられるプレス機の一例を示す斜視図である。図2、3を参照して本実施形態のベルト端部接合方法について説明する。   FIG. 2 is a schematic plan view showing an enlarged joint at both ends of the flat belt 10 shown in FIG. 1, and FIG. 3 is a perspective view showing an example of a press used in the hot press processing of the present embodiment. FIG. The belt end joining method of the present embodiment will be described with reference to FIGS.

まず、平ベルト10の両端に形成される接合面は、ベルト幅方向に沿った面以外の面が含まれる相補的な形状に成形される。すなわち、接合面として打ち抜かれたベルト断面は、ベルト幅方向に沿った単一の平面から構成されるのではなく、ベルト横断面とは異なる向きの平面や曲面、あるいはそれらの組合せを含む断面から構成される。本実施形態では、平ベルト10の両端はフィンガー形状に打ち抜かれる。フィンガー形状に打ち抜かれたベルトの両端は、図3に示されるようにフィンガー同士が突合せられた(噛み合わせられた)状態でプレス台15の上に配置される。   First, the joining surfaces formed at both ends of the flat belt 10 are formed into a complementary shape including a surface other than the surface along the belt width direction. That is, the belt cross-section punched out as the joining surface is not composed of a single plane along the belt width direction, but from a cross-section including a plane or curved surface in a direction different from the belt cross-section, or a combination thereof. Composed. In this embodiment, both ends of the flat belt 10 are punched into a finger shape. Both ends of the belt punched into the finger shape are arranged on the press table 15 in a state where the fingers are butted (engaged) with each other as shown in FIG.

本実施形態の熱プレス処理では、噛み合わせられたフィンガー同士の接合線16に沿ったプレス金板17が用いられる。すなわち、プレス金板17は、接合線16に沿って所定の幅を有する金板部材として形成され、プレス台15に載置されたベルト両端部に対して接合線16を覆うように押し当てられる。その後、プレス金板17は、熱源(図示せず)により所定時間加熱され更に冷却されて、この熱プレス処理は終了する。   In the hot press process of this embodiment, the press metal plate 17 along the joining line 16 of the fingers engaged with each other is used. That is, the press metal plate 17 is formed as a metal plate member having a predetermined width along the bonding line 16 and is pressed against the both ends of the belt placed on the press table 15 so as to cover the bonding line 16. . Thereafter, the press metal plate 17 is heated for a predetermined time by a heat source (not shown) and further cooled, and this hot press process is completed.

すなわち、本熱プレス処理では、図2において斜線で示される接合線16に沿った加熱領域17Aにのみプレス金板17が押し当てられ熱が加えられるため、ベルトを構成する熱可塑性樹脂もフィンガー接合部に沿ったこの領域でのみ融解される。なお、図3の例では、プレス台に載せられたフィンガー継ぎ手部に、フィンガー形状に沿ったプレス金板を一方から押し当てたが、フィンガー形状に沿った上下1組のプレス金板で継ぎ手部を挟んで熱プレスを行ってもよい。   That is, in this heat press process, the press metal plate 17 is pressed only to the heating region 17A along the joining line 16 shown by slant lines in FIG. 2 and heat is applied, so that the thermoplastic resin constituting the belt is also finger-joined. It melts only in this region along the part. In addition, in the example of FIG. 3, the press metal plate along the finger shape was pressed from one side to the finger joint portion placed on the press stand, but the joint portion was formed by a pair of upper and lower press metal plates along the finger shape. You may heat-press on both sides.

以上のように、第1実施形態によれば、熱プレス処理の際に熱融解されるのは接合線(接合面)に沿った領域なので、この領域に段差(僅かな凹み)が発生するが、段差のベルト長手方向における位置は、ベルト幅方向に沿って移動する。これにより、熱融着により発生する段差は、継ぎ手部の長手方向全体に分散され、ローラやスピンドルとの接触における段差の影響が低減され、これによる振動を抑えることができる。   As described above, according to the first embodiment, since the area that is thermally melted during the hot press process is the area along the joining line (joining surface), a step (slight dent) is generated in this area. The position of the step in the longitudinal direction of the belt moves along the belt width direction. As a result, the step generated by heat fusion is dispersed throughout the longitudinal direction of the joint, and the influence of the step in contact with the roller and the spindle is reduced, thereby suppressing vibration due to this.

また、本実施形態の平ベルトでは、芯体に芯線を用いることで張力設計の自由度を増大させ、かつ柔軟性を持たせながらも、接合線に沿った領域のみを熱融解させることで、熱融着時の芯線の乱れ防止して走行性を維持することができる。なお、本発明は、熱融着により発生する段差(変曲点)がベルト長手方向に分散されればよいので、例えば図4のように、フィンガー継ぎ手を斜めにすることでより効果を得ることができる。   Further, in the flat belt of the present embodiment, by using a core wire as a core body, the degree of freedom in tension design is increased, and while having flexibility, only the region along the joining line is thermally melted, The runnability can be maintained by preventing the core wire from being disturbed during heat fusion. In the present invention, since the step (inflection point) generated by heat fusion only has to be dispersed in the belt longitudinal direction, for example, as shown in FIG. Can do.

なお、第1実施形態では、芯体に芯線を用いた平ベルトを例に説明を行ったが、本発明は、端部の接合に熱融着が用いられるベルトであれば如何なる構成のベルトにも適用することができ、芯体に延伸フィルムや帆布を用いるベルトや、ゴム層との間に帆布がないベルト、あるいは表面素材(ゴム層)をゴム以外の素材で構成するベルトにも適用することができる。   In the first embodiment, a flat belt using a core wire as the core has been described as an example. However, the present invention can be applied to any belt as long as heat fusion is used for joining the end portions. It can also be applied to belts that use stretched film or canvas for the core, belts that do not have canvas between the rubber layers, or belts that have a surface material (rubber layer) made of materials other than rubber. be able to.

次に、図5を参照して本発明のベルト端部接合方法を用いて製造される第2実施形態の無端平ベルトについて説明する。   Next, an endless flat belt according to a second embodiment manufactured using the belt end joining method of the present invention will be described with reference to FIG.

第2実施形態の無端平ベルト20は、例えば、印刷、製本、紙工、郵便などで使用される紙葉類の搬送に用いられる搬送ベルトである。図5の断面図に示されるように、平ベルト10は上下3つの層から構成される。   The endless flat belt 20 of the second embodiment is a conveyance belt used for conveyance of paper sheets used in printing, bookbinding, paperwork, mail, and the like. As shown in the cross-sectional view of FIG. 5, the flat belt 10 is composed of upper and lower three layers.

ベルト断面中央に配置される抗張力層21には、複数の芯線22が芯体(抗張力部材)としてベルト長手方向に沿って埋設され、芯線22は、それぞれベルト幅方向に一定の間隔で配置される。また、抗張力層21の上下両面には、それぞれ表面材としてのゴム層23が形成される。   A plurality of core wires 22 are embedded along the longitudinal direction of the belt as core bodies (strength members), and the core wires 22 are arranged at regular intervals in the belt width direction. . Further, rubber layers 23 as surface materials are respectively formed on the upper and lower surfaces of the tensile layer 21.

芯線22には、綿などの天然繊維や、ポリアミド系合成繊維、ポリエステル繊維、ガラス繊維などの化学繊維、あるいはそれらの組合せなどが用いられる。芯線22には、例えばパラ系アラミドコード1100dtex/3を使用する。すなわち、パラ系アラミドコード1100dtex/3を上撚りS、Z交互にベルト幅方向に密度4.5本/cmの等間隔で配列し、これを溶融押し出しされたポリアミドエラストマ樹脂で被覆して厚さ1.5mmの抗張力層21が形成される。   For the core wire 22, natural fibers such as cotton, chemical synthetic fibers such as polyamide-based synthetic fibers, polyester fibers, and glass fibers, or combinations thereof are used. For the core wire 22, for example, a para-aramid cord 1100 dtex / 3 is used. That is, para-aramid cords 1100 dtex / 3 are twisted alternately with S and Z at equal intervals in the belt width direction at a density of 4.5 pieces / cm, and this is covered with a melt-extruded polyamide elastomer resin. A 1.5 mm tensile strength layer 21 is formed.

また第2実施形態の平ベルト20では、抗張力層21の両面にNBRなどのゴムが直接接着されゴム層23が形成される。ゴム層23の抗張力層21への接着は、抗張力層21の形成時、すなわち、ポリアミドエラストマ樹脂の押し出し加工中にNBRゴムを投入することで行われる。   In the flat belt 20 of the second embodiment, rubber such as NBR is directly bonded to both sides of the tensile strength layer 21 to form the rubber layer 23. Adhesion of the rubber layer 23 to the tensile strength layer 21 is performed by introducing NBR rubber during the formation of the tensile strength layer 21, that is, during extrusion processing of the polyamide elastomer resin.

上記工程で形成された長尺のベルト本体は、所定の長さでその両端が相補的な形状となるように打ち抜かれ、第1実施形態で説明した接合方法を用いて熱融着され無端ベルトとされる。   The long belt body formed in the above process is punched so as to have a complementary shape at both ends with a predetermined length, and is heat-sealed by using the joining method described in the first embodiment. It is said.

以上のように第2実施形態においても、第1実施形態と同様の効果を得ることができる。また、従来の搬送ベルトでは、必要張力および横剛性を得るため、かつ熱融着による接合を行うために熱可塑性樹脂層を含む帆布3ply計7層の構造が用いられるが、本実施形態の平ベルトでは、芯線を用いることで抗張力を高めるとともにポリアミドエラストマを抗張力層に用い横剛性を維持し、かつ抗張力層に接合用の熱融着材としての機能を持たせているので、その構造が簡略となり製造コストの低減を図ることができる。   As described above, also in the second embodiment, the same effect as that of the first embodiment can be obtained. In addition, the conventional conveyor belt uses a structure of a total of seven layers of canvas 3ply including a thermoplastic resin layer in order to obtain necessary tension and lateral rigidity and to perform bonding by heat fusion. In the belt, the core wire is used to increase the tensile strength, and the polyamide elastomer is used for the tensile strength layer to maintain the lateral rigidity, and the tensile strength layer has a function as a heat sealing material for bonding, so the structure is simplified. Thus, the manufacturing cost can be reduced.

また、上記熱プレス機を用いて熱融着を行うことで主な抗張体に芯線を採用しながらも、芯線を乱すことなくピッチ線上に維持することができる。これにより端部の接合に接着剤等を用いることなく、走行性を維持し、曲げ抵抗の増大を抑制して屈曲損失を低減し、かつ高い抗張力を得ることでクリープ損失の低減も図られる。特に第2実施形態では、帆布を用いない3層構造とされているので、構造の簡略化によるコストの削減、屈曲損失の低減に大きな効果がある。   Moreover, it can maintain on a pitch line, without disturbing a core wire, employ | adopting a core wire as a main tensile body by performing heat sealing | fusion using the said heat press machine. Accordingly, the traveling property is maintained without using an adhesive or the like for joining the end portions, the increase in bending resistance is suppressed, the bending loss is reduced, and the creep loss is reduced by obtaining a high tensile strength. In particular, the second embodiment has a three-layer structure that does not use a canvas, and therefore has a great effect on cost reduction and bending loss reduction by simplifying the structure.

次に、図6、図7を参照して、本発明のベルト端部接合方法によるベルトの振動の低減の具体的な効果を示す。なお、図6は、振動試験に用いられた試験機のレイアウトであり、図7は振動試験の結果を示すグラフである。   Next, with reference to FIG. 6 and FIG. 7, a specific effect of reducing belt vibration by the belt end joining method of the present invention will be described. FIG. 6 is a layout of a testing machine used for the vibration test, and FIG. 7 is a graph showing the result of the vibration test.

試験では、熱可塑性樹脂を主成分として構成された平ベルトの両端を相補的なフィンガー形状に打ち抜き、噛み合わせた両端のフィンガーを第1実施形態で説明した方法により熱融着させ無端ベルトとした実施例1とし、従来の熱プレス処理を行って無端ベルトとした比較例1の振動試験を行った。なお、実施例1、比較例1のベルトはともに幅25mm、長さ3100mmの無端ベルトであり、熱プレス処理以外の構成は全て同じである。   In the test, both ends of a flat belt composed mainly of a thermoplastic resin were punched into complementary finger shapes, and the fingers at both ends were heat-sealed by the method described in the first embodiment to form an endless belt. Example 1 was subjected to the vibration test of Comparative Example 1 in which an endless belt was formed by performing a conventional hot pressing process. The belts of Example 1 and Comparative Example 1 are both endless belts having a width of 25 mm and a length of 3100 mm, and the configuration other than the hot press process is the same.

図6に示されるように、実施例1、比較例1の平ベルト30は、それぞれ直径150mmの原動プーリ31および従動プーリ32に取付張力850N/25mm幅で掛け回され、ベルト速度8.4m/秒で走行された。ベルトの張り側スパンには、直径8mmの3個のローラ33〜35と、各ローラ33〜35と対となる3個プレッシャーローラ36〜38が各々ベルト表面および背面に線接触するように略等間隔で配置され、ローラ33〜35は20,000rpmで回転された。計測は、3個のプレッシャーローラ36〜38のうちの略スパン中央に位置する真ん中のプレッシャーローラ37の位置をレーザー変位計で測定することにより行われた。   As shown in FIG. 6, the flat belt 30 of Example 1 and Comparative Example 1 is wound around a driving pulley 31 and a driven pulley 32 each having a diameter of 150 mm with a mounting tension of 850 N / 25 mm and a belt speed of 8.4 m / Ran in seconds. The tension side span of the belt includes three rollers 33 to 35 each having a diameter of 8 mm and three pressure rollers 36 to 38 that are paired with the rollers 33 to 35 so that they are in line contact with the belt surface and the back surface. Arranged at intervals, the rollers 33-35 were rotated at 20,000 rpm. The measurement was performed by measuring the position of the middle pressure roller 37 located substantially in the center of the three pressure rollers 36 to 38 with a laser displacement meter.

図7は、プレッシャーローラ37の釣合い位置からの変位(mm)を時系列で示したものである。図7において、実施例1の平ベルトを走行したときの変位は曲線Eで示され、比較例1の平ベルトを走行したときの変位は曲線Cで示される。   FIG. 7 shows the displacement (mm) from the balance position of the pressure roller 37 in time series. In FIG. 7, the displacement when traveling on the flat belt of Example 1 is indicated by a curve E, and the displacement when traveling on the flat belt of Comparative Example 1 is indicated by a curve C.

図7のグラフで示されるように、比較例1のベルトでは、継ぎ手のローラへの接触に対応して、略0.369秒の周期で0.4mmを越える大きな変位が現れるが、実施例1のベルトでは、この変位が略0.1mmのオーダにまで大幅に低減されている(1/4以下)。   As shown in the graph of FIG. 7, in the belt of Comparative Example 1, a large displacement exceeding 0.4 mm appears at a period of about 0.369 seconds corresponding to the contact with the roller of the joint. In this belt, this displacement is greatly reduced to an order of about 0.1 mm (1/4 or less).

以上のように、本発明のベルト端部接合方法によれば、継ぎ手部に形成される段差による振動の発生を大幅に抑えることができる。なお、制震性の効果は特に高速走行されるタンジェンシャルベルトに大きい。   As described above, according to the belt end portion joining method of the present invention, it is possible to greatly suppress the occurrence of vibration due to the step formed in the joint portion. The vibration control effect is particularly great for tangential belts that run at high speeds.

なお、本実施形態では、熱源をプレス金板に当てて融解を行ったが、例えば金型に高周波ウェルダーや超音波ウェルダーを適用しベルトの熱融着を行ってもよい。また、本実施形態で例示したフィンガー形状は直線のみにより形成されているが、フィンガーの形状は曲線や、曲線と直線で構成される形状であってもよい。   In this embodiment, the heat source is applied to the press metal plate for melting, but for example, a high-frequency welder or an ultrasonic welder may be applied to the mold to heat-seal the belt. Moreover, although the finger shape illustrated by this embodiment is formed only with the straight line, the shape comprised by a curve or a straight line may be sufficient as the shape of a finger.

10 平ベルト
11 抗張力層
12 芯線
13 帆布
14 ゴム層
16 接合線
17 プレス金板
17A 加熱領域
20 平ベルト
21 抗張力層
22 芯線
23 ゴム層
DESCRIPTION OF SYMBOLS 10 Flat belt 11 Tensile layer 12 Core wire 13 Canvas 14 Rubber layer 16 Joining wire 17 Press metal plate 17A Heating area 20 Flat belt 21 Tensile layer 22 Core wire 23 Rubber layer

Claims (12)

帯状のベルトの両端を熱融着により接合するベルト端部接合方法であって、前記ベルトの両端に設けられる接合面をベルト幅方向に沿った面以外の面を含む相補的な形状に成形し、前記相補的な接合面を突合せ、前記接合面に沿った領域のみ熱融解させて前記両端を融着することを特徴とするベルト端部接合方法。   A belt end joining method in which both ends of a belt-like belt are joined by heat-sealing, wherein joining surfaces provided at both ends of the belt are formed into a complementary shape including a surface other than a surface along the belt width direction. The belt end joining method characterized in that the complementary joining surfaces are abutted and only the region along the joining surface is thermally melted to fuse the both ends. 前記熱融解において、前記接合面に沿った形状のプレス金板を前記両端の接合部に押し当て、前記プレス金板を通して前記ベルトに熱が加えられることを特徴とする請求項1に記載のベルト端部接合方法。   2. The belt according to claim 1, wherein in the heat melting, a press metal plate having a shape along the joint surface is pressed against the joint portion at both ends, and heat is applied to the belt through the press metal plate. End joining method. 前記接合面がフィンガー継ぎ手の接合面であることを特徴とする請求項1に記載のベルト端部接合方法。   The belt end joining method according to claim 1, wherein the joining surface is a joining surface of a finger joint. 帯状のベルトの両端を熱融着により接合して無端ベルトを製造する方法であって、前記ベルトの両端に設けられる接合面をベルト幅方向に沿った面以外の面を含む相補的な形状に成形し、前記相補的な接合面を突合せ、前記接合面に沿った領域のみ熱融解させて融着し、前記無端ベルトを形成することを特徴とする無端ベルトの製造方法。   A method of manufacturing an endless belt by joining both ends of a belt-like belt by heat fusion, wherein joining surfaces provided at both ends of the belt have a complementary shape including a surface other than a surface along the belt width direction. A method of manufacturing an endless belt, wherein the endless belt is formed by molding, butting the complementary joining surfaces, and heat-melting only a region along the joining surface. 前記熱融解において、前記接合面に沿った形状のプレス金板を前記両端の接合部に押し当て、前記プレス金板を通して前記ベルトに熱が加えられることを特徴とする請求項4に記載の無端ベルトの製造方法。   The endless press according to claim 4, wherein, in the heat melting, a press metal plate having a shape along the joint surface is pressed against the joint portion at both ends, and heat is applied to the belt through the press metal plate. A method for manufacturing a belt. 前記接合面がフィンガー継ぎ手の接合面であることを特徴とする請求項4に記載の無端ベルトの製造方法。   The method for manufacturing an endless belt according to claim 4, wherein the joint surface is a joint surface of a finger joint. 前記帯状のベルトの抗張力層が、芯線を溶融押し出しされたポリアミドエラストマ樹脂で被覆することで形成されることを特徴とする請求項5または請求項6の何れか一項に記載の無端ベルトの製造方法。   The endless belt manufacturing method according to any one of claims 5 and 6, wherein the tensile strength layer of the belt-like belt is formed by covering a core wire with a melt-extruded polyamide elastomer resin. Method. 前記ポリアミドエラストマ樹脂の押し出し加工中にゴム材を投入し、前記抗張力層の両面にゴム層を形成することを特徴とする請求項7に記載の無端ベルトの製造方法。   8. The method for producing an endless belt according to claim 7, wherein a rubber material is introduced during extrusion processing of the polyamide elastomer resin, and rubber layers are formed on both sides of the tensile strength layer. 相補的な形状に成形された帯状のベルトの両端を突合せて熱融着により接合した無端ベルトであって、熱融着される接合面がベルト幅方向に沿った面以外の面を含み、前記ベルトの継ぎ手部の表面が、前記接合面に沿って凹みを有することを特徴とする無端平ベルト。   An endless belt in which both ends of a belt-shaped belt formed into a complementary shape are butted and bonded by thermal fusion, and a bonded surface to be thermally fused includes a surface other than a surface along the belt width direction, An endless flat belt, wherein a surface of a joint portion of the belt has a dent along the joining surface. 芯体に芯線を用いたことを特徴とする請求項9に記載の無端平ベルト。   The endless flat belt according to claim 9, wherein a core wire is used as the core body. ポリアミドエラストマで前記芯体を被覆して抗張力層を形成することを特徴とする請求項10に記載の無端平ベルト。   11. The endless flat belt according to claim 10, wherein the tensile strength layer is formed by coating the core with a polyamide elastomer. 前記抗張力層の両面にゴム層が直接形成されたことを特徴とする請求項11に記載の無端平ベルト。
The endless flat belt according to claim 11, wherein a rubber layer is directly formed on both sides of the tensile strength layer.
JP2009288997A 2009-12-21 2009-12-21 Belt end joining method, method for manufacturing endless belt, and non-end flat belt Pending JP2011126235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009288997A JP2011126235A (en) 2009-12-21 2009-12-21 Belt end joining method, method for manufacturing endless belt, and non-end flat belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009288997A JP2011126235A (en) 2009-12-21 2009-12-21 Belt end joining method, method for manufacturing endless belt, and non-end flat belt

Publications (1)

Publication Number Publication Date
JP2011126235A true JP2011126235A (en) 2011-06-30

Family

ID=44289349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009288997A Pending JP2011126235A (en) 2009-12-21 2009-12-21 Belt end joining method, method for manufacturing endless belt, and non-end flat belt

Country Status (1)

Country Link
JP (1) JP2011126235A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014088250A (en) * 2012-10-31 2014-05-15 Yokohama Rubber Co Ltd:The Taking-up core and taking-up method for conveyer belt
WO2018071139A3 (en) * 2016-10-11 2018-07-26 Laitram, L.L.C. Sidewall bonder and method for bonding sidewalls to thermoplastic belts

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014088250A (en) * 2012-10-31 2014-05-15 Yokohama Rubber Co Ltd:The Taking-up core and taking-up method for conveyer belt
WO2018071139A3 (en) * 2016-10-11 2018-07-26 Laitram, L.L.C. Sidewall bonder and method for bonding sidewalls to thermoplastic belts
CN109803811A (en) * 2016-10-11 2019-05-24 莱特拉姆有限责任公司 Side wall jointing machine and for by side wall engagement to thermoplastic belt method
CN109803811B (en) * 2016-10-11 2021-04-20 莱特拉姆有限责任公司 Sidewall bonding machine and method for bonding sidewalls to thermoplastic belts
US11040497B2 (en) 2016-10-11 2021-06-22 Laitram, L.L.C. Sidewall bonder and method for bonding sidewalls to thermoplastic belts

Similar Documents

Publication Publication Date Title
EP0742383B1 (en) Power transmission belt and method of producing the same
JP2009197896A (en) Flat belt
WO2011027380A1 (en) Flat belt
WO2015174480A1 (en) Endless flat belt and method for manufacturing same
JP2011133029A (en) Flat belt
JPH0531012B2 (en)
JP4671742B2 (en) Flat belt
JP6804847B2 (en) Conveyance belt and its manufacturing method
JP2011126235A (en) Belt end joining method, method for manufacturing endless belt, and non-end flat belt
WO2015108074A1 (en) Endless flat belt and manufacturing method therefor
EP1340004B1 (en) Power transmission belt
WO2016043096A1 (en) Endless flat belt and manufacturing method for endless flat belt
WO1996022479A1 (en) Transmission belt and method for producing the same
JP6770901B2 (en) Conveying belt and manufacturing method of conveying belt
JP2009242007A (en) Flat belt
JPH11333943A (en) Transmission belt and its production
JP2002068438A (en) Carrier belt and its manufacturing method
JP7469919B2 (en) Manufacturing method of endless belt and conveyor belt
JP2000309416A (en) Conveyor belt
JP6062292B2 (en) Conveyor belt
JPH08270736A (en) Connecting structure for belt with crosspiece
JPH07180748A (en) Endless belt and its manufacture
JP2002255325A (en) Conveyance belt with guide
JP4685247B2 (en) Treadmill belt joining structure
JP2010006531A (en) Method for manufacturing of conveyer belt, and conveyer belt