JP2011125285A - Method for quickly measuring factor causing early flocculation of yeast, and measurement apparatus therefor - Google Patents

Method for quickly measuring factor causing early flocculation of yeast, and measurement apparatus therefor Download PDF

Info

Publication number
JP2011125285A
JP2011125285A JP2009288118A JP2009288118A JP2011125285A JP 2011125285 A JP2011125285 A JP 2011125285A JP 2009288118 A JP2009288118 A JP 2009288118A JP 2009288118 A JP2009288118 A JP 2009288118A JP 2011125285 A JP2011125285 A JP 2011125285A
Authority
JP
Japan
Prior art keywords
suspension
yeast
temperature
measurement
malt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009288118A
Other languages
Japanese (ja)
Inventor
Setsuzo Tada
田 節 三 多
Seisuke Wasano
成 亮 和佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kirin Brewery Co Ltd
Original Assignee
Kirin Brewery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Brewery Co Ltd filed Critical Kirin Brewery Co Ltd
Priority to JP2009288118A priority Critical patent/JP2011125285A/en
Publication of JP2011125285A publication Critical patent/JP2011125285A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which enables the highly accurate, quick and convenient measurement of a factor causing early flocculation of yeast contained in a brewing material and further enables the quick measurement of a number of specimens. <P>SOLUTION: The method of quickly measuring a factor causing early flocculation of yeast in a brewing material includes: the process (1) of mixing yeast in the late logarithmic growth phase or thereafter with a water-extracted high-molecular fraction prepared from a test material sample in a buffer and suspending the obtained mixture therein; and the process (2) of irradiating the suspension obtained by the process (1) with visible light, photographing a scattered light with a camera device, image-analyzing the obtained image data and thus determining the degree of whiteness of the suspension to thereby determine the degree of sedimentation of the yeast in the suspension. The measurement is performed while controlling the temperature of the suspension obtained by the process (1) at a constant temperature within the range from 20 to 45°C. Besides, when it is desired to measure the factor of high early flocculation activity, the temperature of the suspension is set at that higher than the temperature range. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ビール、発泡酒、およびウィスキーなどの発酵麦芽飲料等の製造に用いられる醸造原料中に含まれる酵母早期凝集因子の迅速な測定方法、および、該測定方法を用いた醸造原料の酵母早期凝集性の迅速判定法に関する。本発明はまた、懸濁液中の菌体の沈降を連続的に定量測定するための測定装置に関する。   The present invention relates to a method for quickly measuring a yeast early aggregation factor contained in a brewing raw material used for producing fermented malt beverages such as beer, happoshu, and whiskey, and a yeast for brewing raw material using the measuring method The present invention relates to a method for rapid determination of early aggregation. The present invention also relates to a measuring apparatus for continuously and quantitatively measuring the sedimentation of bacterial cells in a suspension.

関連技術Related technology

ビール、発泡酒、およびウィスキーなどの発酵麦芽飲料等の醸造においては、酵母による主発酵の終了時に、酵母が適度に凝集沈降する。この凝集沈降により酵母の回収が可能となる。ところが、主発酵の終了時に、酵母が適度に凝集沈降しないと、酵母の回収量が不足してしまう一方で、逆に凝集沈降しすぎると発酵が進まず問題となる。この酵母の凝集は、発酵の終期になりエキスが少なくなると酵母がお互いに塊となって起こるが、この凝集により酵母は培養液より底に沈降する。この酵母自体の凝集には酵母細胞表層のレクチン様タンパク質と酵母マンナンのマンノース糖鎖の結合の関与等が報告されている(Appl. Microbiol. Biotechno l23: 197-205, 2003)。   In brewing fermented malt beverages such as beer, sparkling liquor, and whiskey, the yeast is appropriately aggregated and settled at the end of the main fermentation by the yeast. Yeast can be recovered by this aggregation and sedimentation. However, if the yeast is not properly aggregated and settled at the end of the main fermentation, the recovered amount of yeast will be insufficient. On the other hand, if the yeast is excessively aggregated and settled, fermentation will not proceed. The yeast agglutinates at the end of the fermentation and when the extract is reduced, the yeasts clump together. This aggregation causes the yeast to settle to the bottom of the culture solution. Involvement of the binding of the lectin-like protein on the surface of yeast cells and the mannose sugar chain of yeast mannan has been reported in this agglutination of yeast itself (Appl. Microbiol. Biotechnol 23: 197-205, 2003).

このように発酵麦芽飲料等の醸造において、正常な発酵工程においては、酵母の凝集沈降は酵母による主発酵の終了時に、発酵液のエキスが少なくなった時点に適度に起こる。この酵母の凝集沈降について「早期酵母凝集現象」(以下、「早凝現象」と言うことがある)と呼ばれる現象が観察されることが報告されている。   Thus, in brewing fermented malt beverages and the like, in a normal fermentation process, the aggregation and precipitation of yeast occurs moderately at the end of the main fermentation by yeast and at the time when the extract of the fermentation liquor is reduced. It has been reported that a phenomenon called “early yeast agglomeration phenomenon” (hereinafter sometimes referred to as “early coagulation phenomenon”) is observed in this yeast agglomeration and sedimentation.

「早期酵母凝集現象」とは、酵母による発酵工程、特に発酵後期に、酵母の資化可能な糖分がまだ発酵液中に残っているにもかかわらず、酵母が凝集して沈降してしまう現象のことをいい、この早期凝集現象により、酵母が凝集・沈降してしまうと発酵の進行が停止してしまう(Proc. Congr. Eur. Brew. Conv.26:53-60, 1997(非特許文献1))。したがって、この現象が見られると、発酵が不十分となり、製造された製品が規格外のものとなり、発酵麦芽飲料等の醸造において、大きな損害を蒙ることにもなる。   "Early yeast agglomeration phenomenon" is a phenomenon in which yeast agglomerates and settles in the fermentation process of yeast, especially in the latter stage of fermentation, even though the sugars that can be assimilated by yeast remain in the fermentation broth. This early flocculation phenomenon causes the fermentation to stop when yeast agglomerates and settles (Proc. Congr. Eur. Brew. Conv. 26: 53-60, 1997 (non-patent literature). 1)). Therefore, when this phenomenon is observed, fermentation becomes insufficient, the manufactured product becomes out of specification, and a large amount of damage is caused in brewing a fermented malt beverage or the like.

この早期凝集現象は、原料麦に由来し、麦芽中に含まれる高分子酸性多糖類によって引き起こされると考えられている(J. Am. Soc. Brew. Chem. 47:29-34, 1989)。そして、早期凝集現象を引き起こす因子は、製麦工程において生成される場合と、原料麦中にもともと存在している場合があることが解っている(J. Inst. Brew., 97, 359-366, 1991;特開平10−179190号公報(特許文献1))。従来より、大麦を原料とする発酵麦芽飲料等の醸造においては、発酵工程における早期凝集現象を避けるために、麦芽、大麦の早期凝集性の有無を確認して、早期凝集現象を引き起こさない大麦麦芽を選別し、用いることが望まれる。   This early aggregation phenomenon is considered to be caused by high molecular acidic polysaccharides derived from raw wheat and contained in malt (J. Am. Soc. Brew. Chem. 47: 29-34, 1989). And it is known that the factor causing the early aggregation phenomenon may be generated in the wheat making process or may be present in the raw wheat (J. Inst. Brew., 97, 359-366). , 1991; JP-A-10-179190 (Patent Document 1)). Conventionally, in the brewing of fermented malt beverages made from barley, in order to avoid the early agglomeration phenomenon in the fermentation process, the presence of the early agglomeration of malt and barley is confirmed, and the barley malt does not cause the early agglomeration phenomenon It is desirable to select and use these.

麦芽、大麦等の早期凝集性の有無を確認するためには、従来の方法としては、発酵試験による方法が採用されてきた。このような方法としては、例えば、T. Nakamuraらが開発したKY管発酵試験法(Proc. Congr. Eur. Brew. Conv.26:53-60, 1997(非特許文献1)や、M. Jibikiらが開発したUniversal fermentation test(J. Am. Soc. Brew. Chem. 64(2):79 -85, 2006(非特許文献2))などがある。しかしながら、これらの方法はいずれも、発酵試験は実際の醸造のスケール(発酵試験のスケール)を小規模にした試験であり、麦汁を発酵させる必要がある。さらにこれら方法では、通常、麦汁の調製に1日、発酵の進行状況から麦芽、大麦中の早期凝集因子の有無を確認するのに8日間程度必要とする。更に、製麦前の麦類の場合は、製麦および麦汁の調製に7日程度必要とすることから、早期凝集因子の有無の確認のために長期間が必要とされた。   In order to confirm the presence or absence of early cohesiveness such as malt and barley, a method based on a fermentation test has been adopted as a conventional method. Examples of such methods include KY tube fermentation test method developed by T. Nakamura et al. (Proc. Congr. Eur. Brew. Conv. 26: 53-60, 1997 (Non-patent Document 1), M. Jibiki Universal fermentation test (J. Am. Soc. Brew. Chem. 64 (2): 79-85, 2006 (non-patent document 2)), etc. However, all of these methods are fermentation tests. Is a test in which the actual brewing scale (fermentation test scale) is made small, and it is necessary to ferment the wort.In these methods, the wort preparation usually takes 1 day from the progress of fermentation. It takes about 8 days to check for the presence of early aggregation factors in malt and barley, and in the case of wheat before malting, it takes about 7 days to prepare wheat and wort. A long period of time was required to confirm the presence of early aggregation factors.

この早期凝集性の有無を確認するための発酵試験の期間を短縮するために、被検原料麦に酵素を添加して原料麦を酵素処理し、得られた酵素処理物または酵素処理物から分離された高分子画分を合成麦汁に添加して発酵試験原料とし、48時間後の発酵試験原料の濁度を測定することにより原料麦中の早期凝集性因子の有無を判定する方法が開発された(特開平10−179190号公報(特許文献1))。この方法により、早期凝集因子の有無の確認のための期間が大幅に短縮されたが、しかしながら、この方法も発酵試験による方法であり、依然として、48時間もの発酵試験の時間が必要であった。   In order to shorten the period of the fermentation test for confirming the presence or absence of this early agglomeration, enzyme is added to the test raw wheat and the raw wheat is subjected to enzyme treatment, and the resulting enzyme-treated product or enzyme-treated product is separated. Developed a method to determine the presence or absence of early cohesive factors in raw wheat by adding the obtained polymer fraction to synthetic wort to make a raw material for fermentation test and measuring the turbidity of the raw material for fermentation test after 48 hours (Japanese Patent Laid-Open No. 10-179190 (Patent Document 1)). This method significantly shortened the period for confirming the presence or absence of early aggregation factors. However, this method is also a method based on a fermentation test, and still requires 48 hours of fermentation test.

国際公開WO2005/073394A1(特許文献2)には、キュベット法と呼ばれる方法が開示されており、この方法は、麦芽から抽出した早凝因子と対数増殖後期の酵母をキュベット中で混合し、酵母の凝集・沈降を特定の波長での吸光度により測定する方法であり、発酵試験を必要としないものである。しかしながら、この方法は、手分析によるものであるため、多検体の処理には向いておらず、また、分析を行う者の違いによる処理の正確性や測定誤差の問題を生じる余地があった。   International Publication WO2005 / 073394A1 (Patent Document 2) discloses a method called a cuvette method, in which an early coagulation factor extracted from malt and a yeast in the late logarithmic growth are mixed in a cuvette. This is a method of measuring aggregation / sedimentation by absorbance at a specific wavelength and does not require a fermentation test. However, since this method is based on manual analysis, it is not suitable for processing many samples, and there is room for problems in processing accuracy and measurement errors due to differences in the person performing the analysis.

特開2009−171955号公報(特許文献3)には、前記キュベット法の原理を利用しつつ、多検体の分析を迅速に測定することができる方法および装置が提案されている。   Japanese Patent Application Laid-Open No. 2009-171955 (Patent Document 3) proposes a method and apparatus that can quickly measure the analysis of multiple samples while utilizing the principle of the cuvette method.

酵母は環境的な影響を受けやすいため、酵母を用いた分析には測定値が変化し易いことがあり、測定日、測定時間、または、分析を行うものの違いによっても誤差を生じてしまうことがあった。また、酵母の凝集性の強さは用いる酵母に特有であり、早凝因子に対する感受性をコントロールすることが困難であった。このため、酵母の凝集に影響を与える環境要因を洗い出し、酵母の凝集強度をコントロールしつつ、醸造原料の早期凝集因子の有無を、より簡便かつ迅速に測定でき、さらに、多検体の分析を効率的に行うことができる方法の開発が望まれていた。   Since yeast is susceptible to environmental influences, the measurement value may change easily in the analysis using yeast, and errors may occur due to differences in measurement date, measurement time, or analysis. there were. Moreover, the strength of the aggregating ability of yeast is peculiar to the yeast to be used, and it was difficult to control the sensitivity to precoagulant factors. For this reason, environmental factors affecting yeast aggregation can be identified, yeast agglomeration strength can be controlled, and the presence or absence of early aggregation factors in brewing ingredients can be measured more easily and quickly. Development of a method that can be carried out automatically has been desired.

特開平10−179190号公報JP 10-179190 A WO2005/073394A1WO2005 / 073394A1 特開2009−171955号公報JP 2009-171955 A

Proc. Congr. Eur. Brew. Conv.26:53-60, 1997Proc. Congr. Eur. Brew. Conv. 26: 53-60, 1997 J. Am. Soc. Brew. Chem. 64(2):79 -85, 2006J. Am. Soc. Brew. Chem. 64 (2): 79 -85, 2006

本発明者等は既に、対数増殖後期またはそれ以降の酵母と、麦や麦芽等の被検原料サンプルの水抽出高分子画分とを、バッファー液中で混合して懸濁させ、得られた懸濁液中に懸濁した酵母の沈降度合いを測定する場合に、懸濁液に可視光を照射して散乱された光を、デジタルビデオカメラで撮影し、得られた画像データを画像解析して、白色度として数値化することによって、製造原料中に含まれる酵母早期凝集因子を極めて短時間に測定でき、さらに多検体を同時に測定することに成功していた(特開2009−171955号公報(特許文献3))。今回、本発明者等は、酵母の凝集に影響を与えうる環境要因について検討をすすめたところ、想定されうる広範な要因・パラメータ群の中から、懸濁液の温度について、温度が特定の値より低くなると、酵母の凝集性が強くなり差が見られなくなることを発見した。すなわち、温度が高いほど浮遊性が高まり、温度が低くなると浮遊性が低くなる傾向にあることを見出した。その結果、前記した測定法において、測定しようとする懸濁液の温度を、特定の温度範囲に設定することで、早期凝集因子の検出を精度よく、かつ迅速に行えることが判明した。さらに、懸濁液の温度を高い温度に設定することで、凝集性の高い早期凝集因子を優先的かつさらに迅速に検出することに成功した。
本発明はこれらの知見に基づくものである。
The present inventors have already obtained the yeast in the late logarithmic growth phase or later and the water-extracted polymer fraction of the test raw material sample such as wheat and malt mixed and suspended in a buffer solution. When measuring the degree of sedimentation of yeast suspended in a suspension, the suspension is irradiated with visible light and the light scattered is photographed with a digital video camera, and the resulting image data is analyzed. In addition, by converting into numerical values as whiteness, the yeast early aggregation factor contained in the raw material for production can be measured in a very short time, and moreover, it has succeeded in simultaneously measuring multiple samples (Japanese Patent Laid-Open No. 2009-171955). (Patent Document 3)). In this study, the present inventors investigated environmental factors that could affect yeast aggregation, and from a wide range of possible factors and parameters, the temperature of the suspension was a specific value. It was discovered that at lower temperatures, the cohesiveness of yeast became stronger and no difference was observed. That is, it has been found that the higher the temperature, the higher the floating property, and the lower the temperature, the lower the floating property. As a result, it has been found that in the measurement method described above, the temperature of the suspension to be measured is set within a specific temperature range, so that the early aggregation factor can be detected accurately and quickly. Furthermore, by setting the temperature of the suspension to a high temperature, the inventors succeeded in preferentially and rapidly detecting an early aggregation factor having high aggregation properties.
The present invention is based on these findings.

よって本発明は、醸造原料中に含まれる酵母早期凝集因子を、高精度で、迅速かつ簡便に測定でき、さらに多検体を迅速に測定できる方法の提供をその目的とする。   Therefore, an object of the present invention is to provide a method capable of measuring a yeast early aggregation factor contained in a brewing raw material with high accuracy, quickly and simply, and further capable of measuring multiple samples rapidly.

本発明による測定方法は、醸造原料中に含まれる酵母早期凝集因子の迅速測定方法であって、
(1) 対数増殖後期またはそれ以降の酵母と、被検原料サンプルから調製された水抽出高分子画分とを、バッファー液中で混合して懸濁させ、
(2) 工程(1)で得られた懸濁液に対して可視光を照射して散乱された光を、カメラ装置で撮影し、得られた画像データを画像解析して、懸濁液の白色度を求めることによって、懸濁液における酵母の沈降度合いを測定し、
ここで、測定は、工程(1)で得られた懸濁液の温度を20〜45℃の範囲内の一定温度に制御して行い、かつ、早凝活性が強い酵母早期凝集因子の測定を希望する場合には、懸濁液の温度を温度範囲内においてより高い温度に設定する
ことを特徴とするものである。
The measurement method according to the present invention is a rapid measurement method of yeast early aggregation factor contained in a brewing raw material,
(1) The yeast in the late logarithmic growth phase or later and the water-extracted polymer fraction prepared from the test raw material sample are mixed and suspended in a buffer solution,
(2) The suspension obtained in step (1) is irradiated with visible light and the scattered light is photographed with a camera device, and the obtained image data is subjected to image analysis, By determining the whiteness, measure the degree of sedimentation of the yeast in the suspension,
Here, the measurement is performed by controlling the temperature of the suspension obtained in the step (1) to a constant temperature within a range of 20 to 45 ° C., and measuring a yeast early aggregation factor having strong precoagulant activity. If desired, the temperature of the suspension is set to a higher temperature within the temperature range.

本発明の一つの好ましい態様によれば、前記の測定において、工程(1)で得られた懸濁液の温度を30〜40℃の範囲内の一定温度に制御する。 According to one preferable aspect of the present invention, in the measurement, the temperature of the suspension obtained in the step (1) is controlled to a constant temperature within a range of 30 to 40 ° C.

本発明の一つの好ましい態様によれば、本発明の方法は、工程(2)において、懸濁液の温度を、30〜35℃の範囲の一定温度に制御して測定を行い、かつ、早凝活性が強い酵母早期凝集因子の測定を希望する場合には、懸濁液の温度を35℃より高い一定の温度に制御して測定を行う。   According to one preferred embodiment of the present invention, in the method of the present invention, in step (2), the temperature of the suspension is controlled at a constant temperature in the range of 30 to 35 ° C. When it is desired to measure yeast early aggregation factor having strong coagulation activity, the suspension temperature is controlled to a constant temperature higher than 35 ° C.

本発明の一つのより好ましい態様によれば、本発明の方法は、工程(2)において、懸濁液の温度を、32〜35℃の範囲の一定温度に制御して測定を行い、かつ、早凝活性が強い酵母早期凝集因子の測定を希望する場合には、懸濁液の温度を37〜39℃の範囲の一定温度に制御して測定を行う。   According to one more preferred aspect of the present invention, in the method of the present invention, in step (2), the temperature of the suspension is controlled at a constant temperature in the range of 32 to 35 ° C., and measurement is performed. When it is desired to measure a yeast early aggregation factor having a strong precoagulant activity, the suspension temperature is controlled at a constant temperature in the range of 37 to 39 ° C.

本発明の一つのさらに好ましい態様によれば、本発明の方法は、工程(2)において、懸濁液の温度を35℃以下の一定温度に制御して行う測定と、懸濁液の温度を35℃より高い一定の温度に制御して行う測定とを同時に行う。   According to one more preferred aspect of the present invention, the method of the present invention comprises a step (2) wherein the suspension temperature is controlled to a constant temperature of 35 ° C. or lower, the suspension temperature is Measurements performed at a constant temperature higher than 35 ° C. are simultaneously performed.

本発明の一つのさらに好ましい態様によれば、本発明の測定方法は、一定温度に制御することは、測定中、懸濁液の温度を±0.5℃の温度範囲内に保つことを意味する。   According to one more preferred aspect of the present invention, in the measurement method of the present invention, controlling to a constant temperature means that the temperature of the suspension is kept within a temperature range of ± 0.5 ° C. during the measurement. To do.

本発明による測定方法は、好ましくは、工程(2)において、散乱された光をデジタルカメラ装置で撮影し、得られた画像データを画像解析して、数値化された懸濁液の白色度を得ることを含んでなる。   In the measurement method according to the present invention, preferably, in step (2), the scattered light is photographed with a digital camera device, the obtained image data is subjected to image analysis, and the whiteness of the digitized suspension is determined. Comprising obtaining.

本発明の別の好ましい態様によれば、本発明の方法は、懸濁液の白色度を、消光時の白色度を0とし、かつ、混合・懸濁直後の酵母が均一分散している懸濁液の白色度を100として、数値化することを含んでなる。   According to another preferred embodiment of the present invention, the method of the present invention is such that the whiteness of the suspension is 0, the whiteness at the time of quenching is zero, and the yeast immediately after mixing and suspension is uniformly dispersed. This includes numerically setting the whiteness of the turbid liquid as 100.

本発明の別の一つの好ましい態様によれば、工程(2)において、懸濁液への可視光の照射を、懸濁液の真下に置かれた光源から行い、かつ、懸濁液において散乱された光を、懸濁液に対し水平方向に設置されたカメラ装置から撮影する。   According to another preferred embodiment of the present invention, in step (2), the suspension is irradiated with visible light from a light source placed directly under the suspension and scattered in the suspension. The emitted light is photographed from a camera device installed in a horizontal direction with respect to the suspension.

本発明の別の一つの好ましい態様によれば、工程(1)において、複数の検体を同時に振盪することができる多検体振盪装置を用いて、複数の検体を同時に混合し懸濁させ、複数の懸濁液を得る。このとき、より好ましくは、複数の懸濁液における酵母の沈降度合いを、同時に測定する。   According to another preferred embodiment of the present invention, in the step (1), a plurality of specimens are mixed and suspended at the same time using a multi-sample shaking apparatus capable of shaking a plurality of specimens at the same time. A suspension is obtained. At this time, more preferably, the degree of sedimentation of yeast in a plurality of suspensions is measured simultaneously.

本発明のさらに別の一つの好ましい態様によれば、工程(1)において使用する酵母が、酵母を培養し、対数増殖後期もしくはそれ以降の酵母を回収したものであるか、または、該回収した酵母を更に凍結保存したものである。このときより好ましくは、回収した酵母はEDTAで洗浄されたものである。   According to still another preferred embodiment of the present invention, the yeast used in the step (1) is obtained by culturing the yeast and recovering the yeast in the late logarithmic growth phase or later, or the recovered yeast. Yeast further frozen and stored. More preferably, at this time, the recovered yeast is washed with EDTA.

本発明のさらに別の一つの好ましい態様によれば、工程(1)において使用する高分子画分が、被検原料サンプルの水抽出液をエタノール沈殿することによって調製した高分子画分であるか、または、被検原料サンプルの水抽出液を透析、限外濾過、もしくはゲル濾過により分離した高分子画分である。   According to still another preferred embodiment of the present invention, is the polymer fraction used in the step (1) a polymer fraction prepared by ethanol precipitation of an aqueous extract of a test material sample? Alternatively, it is a polymer fraction obtained by separating a water extract of a test raw material sample by dialysis, ultrafiltration, or gel filtration.

本発明の他の一つの好ましい態様によれば、工程(1)において使用する高分子画分が、被検原料サンプルの糖化液から調製された高分子画分である。
本発明の別の一つの好ましい態様によれば、工程(1)において使用する水抽出高分子画分の調製に際して、抽出中に被検原料サンプルを酵素処理する。
According to another preferred embodiment of the present invention, the polymer fraction used in step (1) is a polymer fraction prepared from a saccharified solution of a test raw material sample.
According to another preferred embodiment of the present invention, when preparing the water-extracted polymer fraction used in step (1), the test raw material sample is treated with an enzyme during extraction.

本発明のさらに別の一つの好ましい態様によれば、工程(1)のバッファー液として、酢酸バッファー−CaClを用いる。 According to still another preferred embodiment of the present invention, acetate buffer-CaCl 2 is used as the buffer solution in step (1).

本発明のさらに別の一つの好ましい態様によれば、工程(1)のバッファー液として、酢酸バッファー−CaClに、グルコース、マルトース、マンノースおよびそれらの混合物からなる群より選択される糖類成分を加えたものを用いる。 According to still another preferred embodiment of the present invention, a saccharide component selected from the group consisting of glucose, maltose, mannose and a mixture thereof is added to acetate buffer-CaCl 2 as the buffer solution in step (1). Use the same thing.

本発明の一つの好ましい態様によれば、被検原料サンプルが、大麦、麦芽、または製麦途中の大麦である。
本発明の別の一つの好ましい態様によれば、被検原料サンプルの水抽出高分子画分が、麦芽粉砕物を30秒間以上、水で抽出した抽出液の高分子画分であるか、または、大麦粉砕物もしくは製麦途中の大麦粉砕物を15分間以上水で抽出した抽出液の高分子画分である。
According to one preferable aspect of the present invention, the test raw material sample is barley, malt, or barley in the middle of malting.
According to another preferred embodiment of the present invention, the water-extracted polymer fraction of the test raw material sample is a polymer fraction of an extract obtained by extracting the malt pulverized product with water for 30 seconds or more, or It is a polymer fraction of an extract obtained by extracting a barley pulverized product or a barley pulverized product in the middle of wheat making with water for 15 minutes or more.

本発明による醸造用原料の酵母早期凝集性の迅速判定法は、本発明による酵母早期凝集因子の迅速測定方法を用いることを特徴とする。この判定法は、典型的には、本発明による酵母早期凝集因子の迅速測定方法を用いて、その結果から、醸造用原料が酵母早期凝集性であるか否かを判定する工程を含んでなる。   The rapid determination method of yeast early aggregation property of the raw material for brewing according to the present invention is characterized by using the rapid measurement method of yeast early aggregation factor according to the present invention. This determination method typically includes a step of determining whether the raw material for brewing is yeast early aggregating ability or not from the result using the rapid measurement method for yeast early aggregation factor according to the present invention. .

本発明による麦芽の製造方法は、本発明による酵母早期凝集因子の迅速測定方法を用いて、麦芽原料、製造途中の麦芽、または製造麦芽の早期凝集性を判定することにより、麦芽製造工程を管理することを特徴とする。   The method for producing malt according to the present invention manages the malt production process by determining the early cohesiveness of the malt raw material, the malt during production, or the produced malt using the method for rapid measurement of yeast early aggregation factor according to the present invention. It is characterized by doing.

本発明による発酵アルコール飲料の製造方法は、本発明による酵母早期凝集因子の迅速測定方法を用いて、醸造原料の早期凝集性を判定することにより、用いる醸造原料の選択および調整を行うことを特徴とする。   The method for producing a fermented alcoholic beverage according to the present invention is characterized in that the brewing raw material to be used is selected and adjusted by determining the early flocculating property of the brewing raw material using the method for quickly measuring yeast early flocculation factor according to the present invention. And

さらに、本発明によれば、懸濁液中の菌体の沈降を連続的に定量測定するための測定装置であって、
検体としての懸濁液を入れるための複数のキュベットもしくはバイアルを、所定の位置で水平方向に一列に保持し、かつ、必要に応じて、該キュベットもしくはバイアルを振盪してその中の懸濁液を懸濁させる、検体振盪手段と、
該キュベットもしくはバイアル中の懸濁液の温度を20〜45℃の範囲内の一定温度に制御する、温度制御手段と、
一列に配置された該キュベットもしくはバイアルを撮影する、カメラ装置と、
該カメラ装置で撮影された画像データを画像解析して、懸濁液の白色度の数値データを得る、データ処理手段と
から構成されてなる、測定装置が提供される。
Furthermore, according to the present invention, there is provided a measuring device for continuously quantitatively measuring the sedimentation of bacterial cells in a suspension,
A plurality of cuvettes or vials for holding a suspension as a specimen are held in a row in a horizontal direction at a predetermined position, and if necessary, the cuvettes or vials are shaken to suspend the cuvettes or vials therein. A sample shaking means,
Temperature control means for controlling the temperature of the suspension in the cuvette or vial to a constant temperature within the range of 20 to 45 ° C .;
A camera device for photographing the cuvettes or vials arranged in a row;
There is provided a measuring device comprising data processing means for analyzing image data taken by the camera device and obtaining numerical data of the whiteness of the suspension.

本発明の好ましい態様によれば、本発明の測定装置において、温度制御手段は、懸濁液の温度を30〜40℃の範囲内の一定温度に制御するものである。   According to a preferred aspect of the present invention, in the measuring apparatus of the present invention, the temperature control means controls the temperature of the suspension to a constant temperature within the range of 30 to 40 ° C.

本発明の好ましい態様によれば、前記検体振盪手段は、前記温度制御手段を備えてなる。   According to a preferred aspect of the present invention, the sample shaking means includes the temperature control means.

本発明の好ましい態様によれば、前記温度制御手段は、複数のキュベットもしくはバイアルの一部の中の懸濁液の温度を35℃以下の一定温度に制御し、かつ、他のキュベットもしくはバイアル中の懸濁液の温度を35℃より高い一定の温度に制御しうるものである。   According to a preferred aspect of the present invention, the temperature control means controls the temperature of the suspension in a part of the plurality of cuvettes or vials to a constant temperature of 35 ° C. or less and in another cuvette or vial. The suspension temperature can be controlled to a constant temperature higher than 35 ° C.

本発明の好ましい態様によれば、前記検体振盪手段は、キュベットもしくはバイアルの真下に可視光の光源を有してなる。   According to a preferred aspect of the present invention, the sample shaking means has a visible light source directly under the cuvette or vial.

本発明の別の一つの好ましい態様によれば、該測定装置は、検体振盪手段において、キュベットもしくはバイアルを所定の時間振盪させた後、所定の時間静置させ、カメラ装置による撮影が行われるように、検体振盪手段とカメラ装置とを制御する制御手段をさらに含んでなる。   According to another preferred embodiment of the present invention, the measurement apparatus is configured such that in the specimen shaking means, the cuvette or the vial is shaken for a predetermined time and then allowed to stand for a predetermined time, and photographing by the camera device is performed. In addition, it further includes control means for controlling the sample shaking means and the camera device.

本発明の別の一つのより好ましい態様によれば、該測定装置において、カメラ装置は、デジタルビデオカメラである。   According to another more preferable aspect of the present invention, in the measurement apparatus, the camera device is a digital video camera.

本発明の好ましい態様によれば、前記測定装置は、醸造原料中に含まれる酵母早期凝集因子の迅速測定に用いられる。   According to the preferable aspect of this invention, the said measuring apparatus is used for the rapid measurement of the yeast early aggregation factor contained in a brewing raw material.

本発明のより好ましい態様によれば、前記測定装置は、本発明による酵母早期凝集因子の迅速測定方法を実施するものである。   According to a more preferred aspect of the present invention, the measuring device implements the method for quickly measuring a yeast early aggregation factor according to the present invention.

本発明の酵母早期凝集因子の迅速測定方法によれば、発酵麦芽飲料等の醸造に際して、醸造に用いる原料の早期凝集因子の有無を、従来法のような発酵法によらず、簡便な手段で、迅速かつ正確に測定することが可能であり、また、従来の吸光度を使用するキュベット法に比べて、多検体を同時にかつ正確に、効率よく測定することが可能となる。キュベット法では、酵母と水抽出高分子画分との混合方法に関しては明確な規定がなく、分析を行う者によって異なる方法で混合される可能性があるため、処理の正確性や測定誤差の問題を生じる余地があった。本発明による方法では、処理が簡便で、多検体を同時に測定可能なため、このような懸念には配慮しなくて良いと言える。   According to the method for rapid measurement of yeast early aggregation factor of the present invention, when brewing a fermented malt beverage or the like, the presence or absence of an early aggregation factor of the raw material used for brewing is not a fermentation method like the conventional method, but a simple means. Thus, it is possible to measure quickly and accurately, and it is possible to measure multiple samples simultaneously, accurately and efficiently, compared to the conventional cuvette method using absorbance. In the cuvette method, there is no clear rule regarding the method of mixing the yeast and the water-extracted polymer fraction, and there is a possibility of mixing in different ways depending on the person performing the analysis. There was room to produce. In the method according to the present invention, since the processing is simple and multiple samples can be measured simultaneously, it can be said that there is no need to consider such concerns.

さらに本発明によれば、測定しようとする懸濁液の温度を、特定の温度範囲に設定することで、早期凝集因子の検出を、さらに精度よく、かつ迅速に行うことができる。また、懸濁液の温度を高い温度に設定することで、凝集性の高い早期凝集因子を優先的かつさらに迅速に検出するができる。このため、凝集性の高い早期凝集因子の存在が予想されうる場合には、温度条件を調製することで、より迅速にそのような早期凝集因子の検出することができる。このような凝集性の高い早期凝集因子をより効率的に検出することができると、発酵麦芽飲料等の醸造過程での損害の発生をより早期に見出すことが可能となる。また、本発明によれば、測定する際に、懸濁液の温度を通常の範囲と、より高い範囲とに複数のサンプルついてそれぞれ設定し、それらを同時に測定することで、検体中の早期凝集因子の状態がより適格かつ効率的に測定することができる。すなわち、同じ早期凝集因子であっても、凝集性の高い因子の含まれる割合がより高い場合やそうでない場合などを、簡便に検出することができる。   Furthermore, according to the present invention, by setting the temperature of the suspension to be measured within a specific temperature range, the early aggregation factor can be detected more accurately and quickly. In addition, by setting the temperature of the suspension to a high temperature, it is possible to preferentially and more quickly detect an early aggregation factor having high aggregation properties. For this reason, when the presence of an early aggregation factor having high aggregation properties can be expected, the early aggregation factor can be detected more rapidly by adjusting the temperature condition. If such an early aggregation factor having high cohesiveness can be detected more efficiently, the occurrence of damage in the brewing process of a fermented malt beverage or the like can be found earlier. In addition, according to the present invention, when measuring, the temperature of the suspension is set for a plurality of samples in a normal range and a higher range, respectively, and by simultaneously measuring them, early aggregation in the specimen is performed. Factor status can be more qualified and efficiently measured. That is, even when the same early aggregation factor is used, it is possible to easily detect the case where the ratio of the highly aggregating factor is higher or not.

さらに本発明の方法によれば、多検体の測定を人手を極力かけずに、処理を自動化することも可能である。このため、本発明による方法は、発酵麦芽飲料等の醸造に際して用いる、醸造原料の早期凝集性の実用的な測定・判定方法として極めて有用なものである。特に多検体を迅速かつ効率的に、正確に測定できることは、工業規模での生産への応用に大きく期待される。本発明による測定装置についても同様である。   Furthermore, according to the method of the present invention, it is also possible to automate the processing without much manual measurement of multiple samples. For this reason, the method according to the present invention is extremely useful as a practical method for measuring and judging early cohesiveness of brewing raw materials used in brewing fermented malt beverages and the like. In particular, the ability to measure a large number of specimens quickly, efficiently and accurately is highly expected for application to production on an industrial scale. The same applies to the measuring apparatus according to the present invention.

また、本発明の迅速測定方法は、麦芽、または製麦前の大麦はもとより、収穫直後の大麦、または製麦途中の大麦、または、醸造に用いられるその他の穀類やエキス等における早期凝集因子の測定に適用することができ、簡便、迅速、かつ確実な方法として、広くこれらの醸造原料における早期凝集因子の有無の判定に用いることが可能なものである。更に、本発明の測定方法は、少量のサンプルで測定が可能であることから、発酵麦芽飲料等の醸造に際して、簡便に用いることができると共に、精度の良い実用的な測定・判定方法として提供されるものである。また、本発明の早期凝集因子の測定方法は、各々の原料ごとに早期凝集因子の測定を正確に把握することができるものであるから、各々の原料ごとの早期凝集性の判定が可能である。さらに、極少量の早期凝集因子の活性も測定することが可能であることから、それぞれの醸造原料における分割された画分ごとの早期凝集因子の測定も可能であり、その早期凝集因子の精製や特定に効果的に利用することができる。   In addition, the rapid measurement method of the present invention is not limited to malt or barley before wheat production but also barley immediately after harvesting, barley in the middle of wheat production, or other cereals and extracts used for brewing. As a simple, rapid and reliable method that can be applied to measurement, it can be widely used to determine the presence or absence of early aggregation factors in these brewing raw materials. Furthermore, since the measurement method of the present invention can be measured with a small amount of sample, it can be easily used in brewing fermented malt beverages and the like, and is provided as a practical measurement / judgment method with high accuracy. Is. In addition, since the method for measuring the early aggregation factor of the present invention can accurately grasp the measurement of the early aggregation factor for each raw material, it is possible to determine the early aggregation property for each raw material. . Furthermore, since it is possible to measure the activity of a very small amount of early aggregation factor, it is also possible to measure the early aggregation factor for each fraction divided in each brewing raw material. It can be effectively used for specific purposes.

図は、カメラ装置と、キュベットもしくはバイアル、光源との位置関係を示した概念図である。The figure is a conceptual diagram showing the positional relationship between a camera device, a cuvette, a vial, and a light source. 図は、本発明による装置の概念図である。The figure is a conceptual diagram of an apparatus according to the present invention. 図は、実施例1におけるモニタリング開始10分後の画像を示す。The figure shows an image 10 minutes after the start of monitoring in Example 1. 図は、実施例2における測定結果を示す。The figure shows the measurement results in Example 2. 図は、バイアルを5段階に分けて測定する場合の分け方の概念図である。The figure is a conceptual diagram of how to divide a vial into five stages for measurement. 図は、実施例3における測定結果を示す。The figure shows the measurement results in Example 3. 図は、実施例5における測定結果を示す。The figure shows the measurement results in Example 5.

発明の具体的説明Detailed description of the invention

酵母早期凝集因子の迅速測定方法
本発明による測定方法は、前記したように、醸造原料中に含まれる酵母早期凝集因子の迅速測定方法であって、
(1) 対数増殖後期またはそれ以降の酵母と、被検原料サンプルから調製された水抽出高分子画分とを、バッファー液中で混合して懸濁させ、
(2) 工程(1)で得られた懸濁液に対して可視光を照射して散乱された光を、カメラ装置で撮影し、得られた画像データを画像解析して、懸濁液の白色度を求めることによって、懸濁液における酵母の沈降度合いを測定し、
ここで、測定は、工程(1)で得られた懸濁液の温度を20〜45℃の範囲内の一定温度に制御して行い、かつ、早凝活性が強い酵母早期凝集因子の測定を希望する場合には、懸濁液の温度を温度範囲内においてより高い温度に設定する
ことを特徴とする。
Rapid measurement method of yeast early aggregation factor The measurement method according to the present invention, as described above, is a rapid measurement method of yeast early aggregation factor contained in a brewing material,
(1) The yeast in the late logarithmic growth phase or later and the water-extracted polymer fraction prepared from the test raw material sample are mixed and suspended in a buffer solution,
(2) The suspension obtained in step (1) is irradiated with visible light and the scattered light is photographed with a camera device, and the obtained image data is subjected to image analysis, By determining the whiteness, measure the degree of sedimentation of the yeast in the suspension,
Here, the measurement is performed by controlling the temperature of the suspension obtained in the step (1) to a constant temperature within a range of 20 to 45 ° C., and measuring a yeast early aggregation factor having strong precoagulant activity. If desired, the temperature of the suspension is set to a higher temperature within the temperature range.

本発明において、醸造原料は、ビール、発泡酒、およびウィスキーなどの発酵麦芽飲料等の製造に用いられるものであって、例えば、麦芽、または製麦前の大麦はもとより、収穫直後の大麦、または製麦途中の大麦、または、醸造に用いられるその他の穀類やエキス等が挙げられる。被検原料サンプルとしても同様のものが挙げられ、好ましくは、被検原料サンプルは、大麦、麦芽、または製麦途中の大麦である。   In the present invention, the brewing raw material is used for producing fermented malt beverages such as beer, happoshu, and whiskey, and for example, malt or barley before malting, barley immediately after harvesting, or Examples include barley in the middle of wheat making, or other grains and extracts used for brewing. The same thing is mentioned as a test raw material sample, Preferably, the test raw material sample is barley, malt, or barley in the middle of wheat making.

工程(1):
本発明の測定方法における工程(1)においては、対数増殖後期またはそれ以降の酵母と、被検原料サンプルから調製された水抽出高分子画分とを、バッファー液中で混合して懸濁させる。
本発明においては、国際公開WO2005/073394A1に記載のキュベット法と同様に、酵母早期凝集因子の測定に、「対数増殖後期またはそれ以降の酵母」を使用する。「対数増殖後期またはそれ以降の酵母」を使用するのは、この時期に酵母が適度な凝集能を獲得し始めるためである。
Step (1):
In step (1) in the measurement method of the present invention, the yeast in the late logarithmic growth phase or later and the water-extracted polymer fraction prepared from the test raw material sample are mixed and suspended in a buffer solution. .
In the present invention, as in the cuvette method described in International Publication WO2005 / 073394A1, “yeast of logarithmic growth phase or later” is used for the measurement of yeast early aggregation factor. The reason why “yeast in logarithmic growth phase or later” is used is that yeast begins to acquire an appropriate aggregation ability at this time.

ここで、「対数増殖後期またはそれ以降の酵母」は、例えば、下記のようにして調製することができる。
醸造に用いられる酵母を、通常用いられる酵母用培地で培養して、酵母の増殖曲線を作成し、対数増殖後期もしくはそれ以降の段階に達した酵母(通常、8℃の培養温度で、培養開始から4〜5日目のもの)を、遠心分離等により分離、回収する。回収した酵母は、例えば、0.1M EDTAのようなキレート化合物溶液で洗浄しておくのが望ましい。
回収した酵母は、そのまま使用しても良いが、例えば、15%グリセロール溶液により、−80℃で凍結保存するなどして、予め培養、回収した酵母を凍結保存しておいても良い。このようにして凍結保存した酵母は、本発明の測定方法において使用するに際して、解凍等して調製しておくことができる。
Here, “the yeast in the late logarithmic phase or later” can be prepared, for example, as follows.
Yeast used for brewing is cultured in a commonly used yeast medium to create a yeast growth curve, and yeast that has reached the late stage of logarithmic growth or a later stage (usually started at a culture temperature of 8 ° C) From day 4 to day 5) by centrifugation or the like. The recovered yeast is desirably washed with a chelate compound solution such as 0.1 M EDTA.
The recovered yeast may be used as it is, but the yeast that has been cultured and recovered in advance may be stored frozen by, for example, cryopreserving at −80 ° C. with a 15% glycerol solution. The yeast thus cryopreserved can be prepared by thawing or the like when used in the measurement method of the present invention.

本発明の測定方法において使用される、「被検原料サンプルから調製された水抽出高分子画分」は、例えば、下記のようにして調製することができる。
まず、大麦や麦芽等の被検原料サンプルを必要により粉砕処理し、水抽出、または通常の糖化を行う。被検原料サンプルの水抽出を行うに際しては、特開平10−179190号公報に記載された方法に従い、被検原料サンプルをα−アミラーゼ、β−アミラーゼ、β−グルカナーゼ、プロテアーゼ等の添加によって酵素処理を行うことができる。被検原料サンプルの水抽出高分子画分を調製するに際して水抽出液から、高分子画分を分離するには、エタノール沈殿法、例えば、水抽出液に終濃度50%にエタノールを添加し、沈殿を遠心分離により回収する方法、または、透析、限外濾過、もしくはゲル濾過等により、分画、回収する方法等によって、分離、回収することができる。
The “water-extracted polymer fraction prepared from the test raw material sample” used in the measurement method of the present invention can be prepared, for example, as follows.
First, a test raw material sample such as barley or malt is pulverized as necessary, followed by water extraction or normal saccharification. When water extraction of a test raw material sample is performed, the test raw material sample is subjected to enzyme treatment by adding α-amylase, β-amylase, β-glucanase, protease or the like according to the method described in JP-A-10-179190. It can be performed. To separate the polymer fraction from the water extract when preparing the water extract polymer fraction of the test raw material sample, ethanol precipitation, for example, adding ethanol to the water extract to a final concentration of 50%, The precipitate can be separated and collected by a method of collecting by centrifugation, a method of fractionating and collecting by dialysis, ultrafiltration, gel filtration, or the like.

本発明の測定方法の工程(1)においては、前記酵母と、前記水抽出高分子画分とを、バッファー液中で混合して懸濁させる。ここで使用するバッファー液としては、酢酸バッファー−CaClを用いるのが望ましい。より好ましくはバッファー液は、例えば、50mM酢酸バッファー(pH4〜4.5)−0.1%CaClのような液である。 In step (1) of the measurement method of the present invention, the yeast and the water-extracted polymer fraction are mixed and suspended in a buffer solution. As the buffer solution used here, it is desirable to use acetate buffer-CaCl 2 . More preferably, the buffer solution is a solution such as 50 mM acetate buffer (pH 4 to 4.5) -0.1% CaCl 2 .

ここで、例えば、増殖の定常期後期に回収したものや、工場等で回収した酵母などのように酵母自体が強い凝集性を有している場合がある。使用する酵母が、このような凝集性の強い酵母であると、正常麦芽(非早凝性の麦芽)を用いて測定する場合であっても沈んでしまい、その結果、原料の非早凝性を正確に測定できなくなる虞がある。このため、酵母自体が強い凝集性を有している場合の酵母に基づく凝集を抑える一方で、早凝因子に基づく凝集にはほとんど影響を与えないようにして、凝集性が強い酵母による測定ノイズを排除することが望ましい。そこで、本発明者等は今般さらに、酢酸バッファー−CaClに、糖類成分(例えば、単糖類、二糖類、またはそれらの混合物)を加えたものをバッファー液として用いることによって、この望ましくない酵母に基づく凝集ノイズを適切に抑えることに成功した(実施例4)。これは、糖類成分が、酵母と早凝因子との結合を阻害する効果があると考えられる。 Here, for example, the yeast itself may have strong aggregating properties such as those collected in the late stationary phase of growth or yeast collected in a factory or the like. If the yeast to be used is such a highly cohesive yeast, it sinks even when measured with normal malt (non-precipitating malt), and as a result, the non-precipitating property of the raw material May not be measured accurately. For this reason, it suppresses the aggregation based on the yeast when the yeast itself has a strong aggregating property, but has little influence on the aggregation based on the precoagulant factor, so that the measurement noise due to the strongly aggregating yeast is measured. It is desirable to eliminate. Accordingly, the present inventors have further recently, in acetate buffer-CaCl 2, saccharide component (e.g., monosaccharides, disaccharides or mixtures thereof) by using a plus as a buffer solution, to the undesired yeast It succeeded in suppressing appropriately the aggregation noise based on (Example 4). It is considered that this is because the saccharide component has an effect of inhibiting the binding between the yeast and the rapid coagulation factor.

よって、本発明の別の一つの好ましい態様によれば、このバッファー液として、酢酸バッファー−CaClに、糖類成分(例えば、単糖類、二糖類、またはそれらの混合物)を加えたものを用いる。このような加える糖類成分としては、好ましくは、グルコース、マルトース、マンノースおよびそれらの混合物からなる群より選択されるものである。 Therefore, according to another preferred embodiment of the present invention, a buffer solution obtained by adding a saccharide component (for example, a monosaccharide, a disaccharide, or a mixture thereof) to acetate buffer-CaCl 2 is used. Such a saccharide component to be added is preferably selected from the group consisting of glucose, maltose, mannose and mixtures thereof.

加える糖類成分がマルトースである場合、バッファー中のマルトース濃度は、0.5〜1.5重量%であることが好ましく、より好ましくは0.8〜1.2重量%であり、特に好ましくは約1重量%である。糖類成分による酵母と早凝因子との結合の阻害効果の強さは糖類によって異なることが判明している。上記で挙げた糖類の場合、阻害効果の強い順に、マンノース>グルコース>マルトースであることが判明している。このため、マルトースより強い、マンノースやグルコースを使用する場合には、使用濃度を、上述のマルトースの場合の濃度よりも低い濃度に設定することが可能である。   When the saccharide component to be added is maltose, the maltose concentration in the buffer is preferably 0.5 to 1.5% by weight, more preferably 0.8 to 1.2% by weight, particularly preferably about 1% by weight. It has been found that the strength of the inhibitory effect on the binding between yeast and precoagulant factors by saccharide components varies depending on the saccharide. In the case of the saccharides listed above, it has been found that mannose> glucose> maltose in the order of strong inhibitory effect. For this reason, when using mannose and glucose stronger than maltose, it is possible to set the use concentration to a concentration lower than the concentration in the case of maltose described above.

本発明の特に好ましい態様によれば、使用するバッファー液は、50mM酢酸バッファー(pH4〜4.5)−0.1%CaCl−1%マルトースのような液である。 According to a particularly preferred embodiment of the present invention, the buffer solution used is a liquid such as 50mM acetic acid buffer (pH4~4.5) -0.1% CaCl 2 -1 % maltose.

また上記したように、本発明において、このようにバッファー液に糖類成分を加えるとするのは、使用する酵母が凝集性の強い場合であるのが好ましい。使用する酵母が凝集性の強いものであるかは、正常麦芽であっても沈降するか否かにより容易に確認することができる。   In addition, as described above, in the present invention, it is preferable that the saccharide component is added to the buffer solution as described above when the yeast to be used has strong aggregability. Whether the yeast to be used is highly cohesive can be easily confirmed by whether or not normal malt is settled.

また混合および懸濁の処理は、検体としての懸濁液(前記酵母と、前記水抽出高分子画分との混合物)を入れたキュベットもしくはバイアルなどの容器を、攪拌、振盪などの慣用の方法を実施することによって行われる。本発明においては、好ましくは、複数の検体を同時に振盪することができる多検体振盪装置を用いて、複数の検体を同時に混合し懸濁させ、複数の懸濁液を得る。これは、多検体を同時に測定するために有用である。ここで、多検体振盪装置は、後述するように、検体としての懸濁液を入れるための複数のキュベットもしくはバイアルを、所定の位置で水平方向に一列に保持でき、かつ、必要に応じて、該キュベットもしくはバイアルを振盪してその中の懸濁液を懸濁させることができるものが好ましい。   In addition, mixing and suspension treatment is performed by a conventional method such as stirring or shaking a container such as a cuvette or a vial containing a suspension as a specimen (a mixture of the yeast and the water-extracted polymer fraction). It is done by implementing. In the present invention, preferably, a plurality of specimens are mixed and suspended at the same time using a multi-sample shaking apparatus capable of simultaneously shaking a plurality of specimens to obtain a plurality of suspensions. This is useful for measuring multiple samples simultaneously. Here, as will be described later, the multi-sample shaking device can hold a plurality of cuvettes or vials for containing a suspension as a sample in a row in a horizontal direction at a predetermined position, and if necessary, It is preferable that the cuvette or vial can be shaken to suspend the suspension therein.

工程(2):
本発明における工程(2)においては、工程(1)で得られた懸濁液に対して可視光を照射して散乱された光を、カメラ装置で撮影し、得られた画像データを画像解析して、懸濁液の白色度を求めることによって、懸濁液における酵母の沈降度合いを測定する。
Step (2):
In step (2) according to the present invention, light scattered by irradiating the suspension obtained in step (1) with visible light is photographed with a camera device, and the obtained image data is subjected to image analysis. Then, the degree of sedimentation of yeast in the suspension is measured by determining the whiteness of the suspension.

従来のキュベット法では、懸濁液を分光光度計を用いてその光学密度を測定することによって、懸濁液における酵母の沈降度合いを測定したが、本発明によれば、懸濁液に対して可視光を照射して散乱された光を、カメラ装置で撮影し、得られた画像データを画像解析することによる。このため、従来法のように一検体づつ手分析によって順番に測定するのではなく、多検体を並べて、同時にカメラ装置で撮影し画像データを得ることができる。この画像データを画像解析することによって、本発明によれば、多検体を短時間で同時に測定することができる。
さらに本発明によれば、撮影および画像解析を連続的に行うことが可能であるので、本発明による測定方法を、連続的に行うことができ、例えば、経時的変化を測定することも可能である。
In the conventional cuvette method, the degree of sedimentation of yeast in the suspension was measured by measuring the optical density of the suspension using a spectrophotometer. The light scattered by irradiation with visible light is photographed by a camera device, and the obtained image data is subjected to image analysis. For this reason, it is possible to obtain image data by arranging multiple samples and photographing them with a camera device at the same time, instead of measuring manually one sample at a time as in the conventional method. By analyzing this image data, according to the present invention, multiple samples can be measured simultaneously in a short time.
Furthermore, according to the present invention, since photographing and image analysis can be performed continuously, the measurement method according to the present invention can be performed continuously. For example, it is possible to measure changes over time. is there.

また本発明の測定方法においては、懸濁液の測定を、工程(1)で得られた懸濁液の温度を20〜45℃の範囲内の一定温度に制御して行い、かつ、早凝活性が強い酵母早期凝集因子の測定を希望する場合には、懸濁液の温度を温度範囲内においてより高い温度に設定する。このような温度範囲に制御して測定することで、より精度の高い迅速な測定が可能となる。また早凝活性が強い酵母早期凝集因子の測定を希望する場合には、測定温度条件をより高く変更することで、所望の早期凝集因子の検出をより効率的に行うことができる。   In the measurement method of the present invention, the suspension is measured by controlling the temperature of the suspension obtained in step (1) to a constant temperature within the range of 20 to 45 ° C. When it is desired to measure a yeast early aggregation factor having strong activity, the temperature of the suspension is set to a higher temperature within the temperature range. By controlling in such a temperature range and performing measurement, it is possible to perform more accurate and quick measurement. In addition, when it is desired to measure a yeast early aggregation factor having a strong early coagulation activity, the desired early aggregation factor can be detected more efficiently by changing the measurement temperature condition higher.

本発明の方法において、測定しようとする懸濁液の温度を、特定の温度範囲に設定する場合、温度の調整手段は特に限定されない。例えば、工程(1)における混合および懸濁の処理は、前記したように、検体としての懸濁液(前記酵母と、前記水抽出高分子画分との混合物)を入れたキュベットもしくはバイアルなどの容器を、例えば振盪によって行うことができるが、このとき、振盪を、液温を一定に保ちながら行い、かつ前記測定装置内部の気温を制御することで、キュベット内部の液温(懸濁液の温度)を制御することができる。また例えば、振盪後のキュベットもしくはバイアルを測定装置内の温度制御手段(例えば、恒温装置)によって所望の温度に一定し、これにより懸濁液の温度を制御することもできる。   In the method of the present invention, when the temperature of the suspension to be measured is set within a specific temperature range, the temperature adjusting means is not particularly limited. For example, as described above, the mixing and suspending process in the step (1) is performed using a cuvette or a vial containing a suspension as a specimen (a mixture of the yeast and the water extraction polymer fraction) as described above. The container can be shaken by, for example, shaking. At this time, shaking is performed while keeping the liquid temperature constant, and the temperature inside the cuvette is controlled to control the liquid temperature (suspension of the suspension). Temperature) can be controlled. In addition, for example, the cuvette or vial after shaking can be kept at a desired temperature by a temperature control means (for example, a thermostat) in the measuring device, thereby controlling the temperature of the suspension.

本発明においては、工程(1)で得られた懸濁液の温度を20〜45℃の範囲内の一定温度に制御して測定を行う。制御する懸濁液の温度は、好ましくは30〜40℃であり、より好ましくは32〜39℃であり、さらに好ましくは32〜35℃である。これらの値は、凝集性の高い早期凝集因子を優先的に測定したい場合のような特定の目的での測定ではない、通常の目的での測定(すなわち、弱早凝性、早凝性、強早凝性の麦芽のいずれも包含する全て早凝因子の検出)の場合に好ましい温度範囲であるといえる。一方、醸造工程で比較的問題となり易い凝集性の高い早期凝集因子を検出しようとする場合には、該温度は、好ましくは35〜40℃、より好ましくは37〜39℃に設定する。   In the present invention, measurement is performed by controlling the temperature of the suspension obtained in the step (1) to a constant temperature within a range of 20 to 45 ° C. The temperature of the suspension to be controlled is preferably 30 to 40 ° C, more preferably 32 to 39 ° C, and further preferably 32 to 35 ° C. These values are not intended for a specific purpose, such as when you want to preferentially measure highly coagulative early aggregation factors (ie, weak, fast, fast, strong). It can be said that this is a preferable temperature range in the case of detection of all fast-coagulation factors including any precoagulable malt. On the other hand, when trying to detect an early aggregation factor with high aggregability, which is relatively problematic in the brewing process, the temperature is preferably set to 35 to 40 ° C, more preferably 37 to 39 ° C.

なお、前記において「一定温度に制御して測定を行う」とは、記載された温度範囲内であっても、測定中はその内の特定の温度で一定の条件に保って測定することを意味し、ここで一定温度とは、例えば、測定中、設定した温度を、例えば±0.8℃(好ましくは±0.5℃)の温度範囲内に保つことを意味する。このような一定温度に保って(固定して)測定することによって、より精度の高い測定が可能となる。   In the above, “measurement is performed while controlling at a constant temperature” means that measurement is performed at a specific temperature within the specified temperature range, even under the described temperature range. Here, the constant temperature means, for example, that the set temperature is kept within a temperature range of, for example, ± 0.8 ° C. (preferably ± 0.5 ° C.) during measurement. By measuring at such a fixed temperature (fixed), more accurate measurement is possible.

本発明の一つの好ましい態様によれば、前記したように、本発明の方法は、工程(2)において、懸濁液の温度を、30〜35℃(好ましくは32〜35℃)の範囲の一定温度に制御して測定を行い、かつ、早凝活性が強い酵母早期凝集因子の測定を希望する場合には、懸濁液の温度を35℃より高い(好ましくは37〜39℃の範囲の)一定の温度に制御して測定を行う。より好ましくは、工程(2)において、懸濁液の温度を、32〜35℃の範囲の一定温度に制御して測定を行い、かつ、早凝活性が強い酵母早期凝集因子の測定を希望する場合には、懸濁液の温度を37〜39℃の範囲の一定温度に制御して測定を行う。このように温度条件を特定して測定することで、より効率的かつ迅速な測定が可能となる。   According to one preferred embodiment of the present invention, as described above, in the method of the present invention, in the step (2), the temperature of the suspension is in the range of 30 to 35 ° C. (preferably 32 to 35 ° C.). When measurement is performed while controlling at a constant temperature, and measurement of yeast early aggregation factor having a strong precoagulant activity is desired, the temperature of the suspension is higher than 35 ° C (preferably in the range of 37-39 ° C). ) Measure at a constant temperature. More preferably, in step (2), the temperature of the suspension is controlled at a constant temperature in the range of 32 to 35 ° C., and measurement of yeast early agglutination factor having strong precoagulant activity is desired. In some cases, the suspension temperature is controlled at a constant temperature in the range of 37 to 39 ° C. for measurement. By specifying and measuring temperature conditions in this way, more efficient and quick measurement can be performed.

本発明の一つのさらに好ましい態様によれば、前記したように、本発明の方法は、工程(2)において、懸濁液の温度を35℃以下(好ましくは30〜35℃、より好ましくは32〜35℃の範囲)の一定温度に制御して行う測定と、懸濁液の温度を35℃より高い(好ましくは35〜40℃、より好ましくは37〜39℃の範囲の)一定の温度に制御して行う測定とを同時に行う。より好ましくは、工程(2)において、懸濁液の温度を32〜35℃の範囲の一定温度に制御して行う測定と、懸濁液の温度を37〜39℃の範囲の一定温度に制御して行う測定とを同時に行う。検体中の早期凝集因子の状態がより適格かつ効率的に測定することができる。   According to one more preferable aspect of the present invention, as described above, in the method of the present invention, in the step (2), the temperature of the suspension is 35 ° C. or lower (preferably 30 to 35 ° C., more preferably 32 ° C.). The measurement to be performed at a constant temperature in the range of ˜35 ° C. and the temperature of the suspension to be higher than 35 ° C. (preferably in the range of 35-40 ° C., more preferably in the range of 37-39 ° C.). Perform controlled measurements at the same time. More preferably, in step (2), the measurement is performed by controlling the temperature of the suspension to a constant temperature in the range of 32 to 35 ° C, and the temperature of the suspension is controlled to a constant temperature in the range of 37 to 39 ° C. And the measurement performed at the same time. The state of the early aggregation factor in the specimen can be measured more appropriately and efficiently.

また本発明において、懸濁液に可視光を照射するための光源は、後述するカメラ装置で撮影でき、かつそれによって撮影された画像データを画像解析して白色度を数値化することができるのであれば、いずれのタイプの光源でも良い。例えば、光源としては、市販の白色LED光源を使用することができる。光源の光度も同様、本発明の測定が可能である限り限定されないが、10000〜30000mcd程度、例えば18000mcd程度の光度の光を検体に照射できるものである。   In the present invention, the light source for irradiating the suspension with visible light can be photographed by a camera device to be described later, and the whiteness can be digitized by image analysis of the photographed image data. Any type of light source may be used. For example, a commercially available white LED light source can be used as the light source. Similarly, the luminous intensity of the light source is not limited as long as the measurement of the present invention is possible, but the specimen can be irradiated with light having a luminous intensity of about 10,000 to 30000 mcd, for example, about 18000 mcd.

使用されるカメラ装置としては、撮影された画像データを画像処理装置に出力できるものであれば特に制限はない。このため通常、該カメラ装置は、デジタルカメラが望ましく、好ましくはデジタルビデオカメラである。デジタルカメラの画素数としては、得られた画像データに基づいて画像解析して白色度を求めることができれば特に制限されないが、例えば、130万画素、またはそれ以上の画素数を有するものが好ましい。   The camera device to be used is not particularly limited as long as the captured image data can be output to the image processing device. For this reason, usually, the camera device is preferably a digital camera, preferably a digital video camera. The number of pixels of the digital camera is not particularly limited as long as the whiteness can be obtained by analyzing the image based on the obtained image data. For example, the number of pixels having 1.3 million pixels or more is preferable.

よって、本発明による好ましい態様によれば、工程(2)において、散乱された光をデジタルカメラ装置で撮影し、得られた画像データを画像解析して、数値化された懸濁液の白色度を得る。   Therefore, according to a preferred aspect of the present invention, in step (2), the scattered light is photographed with a digital camera device, the obtained image data is subjected to image analysis, and the whiteness of the digitized suspension is measured. Get.

ここで、数値化された白色度とは、例えば、得られた画像データを画像解析して、測定すべき領域の白と黒の比率を白色度として得ることができる。このとき、好ましくは、懸濁液の白色度を、消光時の白色度を0とし、かつ、混合・懸濁直後の酵母が均一分散している懸濁液の白色度を100とし、相対値として数値化する。この場合、白色度が高いほど数値も、0〜100の間で大きくなる。   Here, the digitized whiteness can be obtained, for example, by analyzing the obtained image data and obtaining the ratio of white to black in the region to be measured as the whiteness. In this case, preferably, the whiteness of the suspension is 0, the whiteness at the time of quenching is 0, and the whiteness of the suspension in which the yeast immediately after mixing / suspension is uniformly dispersed is 100. As a numerical value. In this case, the higher the whiteness, the larger the numerical value is between 0 and 100.

また画像データの画像解析はパーソナルコンピュータと、画像中の白と黒のエリアを数値化可能な市販のソフトウエアとを組み合わせることによって行うことができる。   The image analysis of the image data can be performed by combining a personal computer and commercially available software capable of digitizing the white and black areas in the image.

本発明の好ましい態様によれば、懸濁液への可視光の照射を、懸濁液の真下に置かれた光源から行う。またこのとき、懸濁液において散乱された光は、通常、懸濁液に対し水平方向に設置されたカメラ装置から撮影する。このようにすることによって、懸濁酵母による散乱光を正確に捉えることができ、また、これによって、分析を行う者の違いによる処理の正確性や測定誤差の問題も大幅に低減することができる。   According to a preferred embodiment of the present invention, the suspension is irradiated with visible light from a light source placed directly under the suspension. At this time, the light scattered in the suspension is usually photographed from a camera device installed in a horizontal direction with respect to the suspension. By doing so, it is possible to accurately capture the scattered light from the suspended yeast, and this can greatly reduce the problem of processing accuracy and measurement error due to the difference in the person performing the analysis. .

本発明の一つの好ましい態様によれば、工程(1)における混合および懸濁の後、必要により所定の時間、静置した後に、再度懸濁してから懸濁液における酵母の沈降度合いを測定する。ここで静置する時間は、混合された懸濁液中の酵母が早凝性因子と反応し凝集塊を形成することができるのであれば、特に制限はなく、いずれの時間であってもよい。
また、静置後の懸濁の時間は、懸濁液中の酵母凝集塊が均一に分散された状態とすることができるのであれば、特に制限はなく、いずれの時間であってもよい。このように、一定の静置時間と懸濁時間を設けることで、酵母の沈降度合いが明確になり、バラツキの少ない正確で再現性の高い測定が可能となる。
According to one preferred embodiment of the present invention, after mixing and suspending in step (1), the mixture is allowed to stand for a predetermined time if necessary, and then suspended again, and then the degree of sedimentation of yeast in the suspension is measured. . The time for standing here is not particularly limited as long as the yeast in the mixed suspension can react with the precoagulant factor to form an aggregate, and any time may be used. .
The suspension time after standing is not particularly limited as long as the yeast agglomerates in the suspension can be uniformly dispersed, and may be any time. Thus, by providing a fixed standing time and a suspension time, the degree of sedimentation of the yeast becomes clear, and accurate and highly reproducible measurement with little variation becomes possible.

本発明の測定方法では、前記したように、懸濁液の白色度を求めることによって、懸濁液における酵母の沈降度合いを測定する。すなわち、酵母の沈降度合いが大きいほど、懸濁液を側面から観察すると、黒く見えるようになり、白色度の値も小さくなる。一方、沈降度合いが低く、酵母の沈降が少ないほど、懸濁液は白く見え、白色度の値も大きくなる。このようにして、白色度の値から、酵母の沈降度合いを測定することができる。   In the measurement method of the present invention, as described above, the degree of sedimentation of yeast in the suspension is measured by determining the whiteness of the suspension. That is, the larger the degree of sedimentation of yeast, the blacker the whiteness value becomes when the suspension is observed from the side. On the other hand, the lower the sedimentation degree and the less the yeast sedimentation, the whiter the suspension appears and the greater the whiteness value. In this way, the sedimentation degree of yeast can be measured from the value of whiteness.

本発明のより好ましい態様によれば、複数の懸濁液における酵母の沈降度合いを、同時に測定する。このとき、より好ましくは、工程(1)の混合・懸濁処理を、多検体同時に行うようにする。このように工程(1)および工程(2)を共に多検体同時に実施可能とすることによって、本発明の測定方法を人手によらず、自動化することが可能となる。   According to a more preferred embodiment of the present invention, the sedimentation degree of yeast in a plurality of suspensions is measured simultaneously. At this time, more preferably, the mixing / suspension process in the step (1) is performed simultaneously for multiple samples. As described above, both the step (1) and the step (2) can be performed simultaneously on multiple samples, whereby the measurement method of the present invention can be automated without human intervention.

測定装置
本発明によれば、前記したように、懸濁液中の菌体の沈降を連続的に定量測定するための測定装置であって、
検体としての懸濁液を入れるための複数のキュベットもしくはバイアルを、所定の位置で水平方向に一列に保持し、かつ、必要に応じて、該キュベットもしくはバイアルを振盪してその中の懸濁液を懸濁させる、検体振盪手段と、
該キュベットもしくはバイアル中の懸濁液の温度を20〜45℃の範囲内の一定温度に制御する、温度制御手段と、
一列に配置された該キュベットもしくはバイアルを撮影する、カメラ装置と、
該カメラ装置で撮影された画像データを画像解析して、懸濁液の白色度の数値データを得る、データ処理手段と
から構成されてなる、測定装置が提供される。
Measuring device According to the present invention, as described above, a measuring device for continuously quantitatively measuring the sedimentation of bacterial cells in a suspension,
A plurality of cuvettes or vials for holding a suspension as a specimen are held in a row in a horizontal direction at a predetermined position, and if necessary, the cuvettes or vials are shaken to suspend the cuvettes or vials therein. A sample shaking means,
Temperature control means for controlling the temperature of the suspension in the cuvette or vial to a constant temperature within the range of 20 to 45 ° C .;
A camera device for photographing the cuvettes or vials arranged in a row;
There is provided a measuring device comprising data processing means for analyzing image data taken by the camera device and obtaining numerical data of the whiteness of the suspension.

図1には、カメラ装置と、キュベットもしくはバイアル、光源との位置関係を示した概念図を示した。また図2には、本発明による装置の概念図を示した。   In FIG. 1, the conceptual diagram which showed the positional relationship of a camera apparatus, a cuvette or a vial, and a light source was shown. FIG. 2 shows a conceptual diagram of an apparatus according to the present invention.

ここで、菌体としては、例えば、酵母、カビが挙げられ、好ましくは、酵母である。なお本発明の測定法は、凝集して沈降しうる生物全般に適用することも可能である。   Here, examples of the microbial cells include yeast and mold, and yeast is preferred. The measurement method of the present invention can also be applied to all organisms that can aggregate and settle.

前記検体振盪手段は、検体としての懸濁液を入れるための複数のキュベットもしくはバイアルを、所定の位置で水平方向に一列に保持してなり、かつ、必要に応じて、該キュベットもしくはバイアルを振盪してその中の懸濁液を懸濁させることができるものである。   The specimen shaking means holds a plurality of cuvettes or vials for containing a suspension as a specimen in a row in a horizontal direction at a predetermined position, and shakes the cuvettes or vials as necessary. Thus, the suspension therein can be suspended.

ここで、複数の(例えば、11〜12本の)キュベットもしくはバイアルが、所定の位置で水平方向に一列に保持されているとは、カメラ装置により、複数のキュベットもしくはバイアルが同時に撮影できるような、高さや位置(カメラ装置に対する位置)にキュベットもしくはバイアルが保持され、かつ、同時に撮影可能なように、通常は、カメラ装置の撮影される方向とは直角に一列に配置されている場合を言う。このため、この目的の範囲で、キュベットもしくはバイアルの位置は適宜設定することができる。またこの場合、キュベットもしくはバイアルの高さや位置、並び方、およびカメラ装置との位置関係は、多検体をカメラ装置で同時に撮影できる限り、適宜変更してもよい。   Here, a plurality of (for example, 11 to 12) cuvettes or vials are held in a row in a horizontal direction at a predetermined position means that a plurality of cuvettes or vials can be photographed simultaneously by a camera device. The cuvette or vial is held at a height or position (position relative to the camera device), and is usually arranged in a line perpendicular to the direction in which the camera device is photographed so that it can be photographed simultaneously. . Therefore, the position of the cuvette or vial can be set as appropriate within the range of this purpose. In this case, the height and position of cuvettes or vials, how they are arranged, and the positional relationship with the camera device may be appropriately changed as long as multiple samples can be simultaneously photographed by the camera device.

また、検体振盪手段において、必要に応じて、キュベットもしくはバイアルを振盪してその中の懸濁液を懸濁させることができるとは、所定の位置に保持したキュベットもしくはバイアルを振盪し懸濁液を懸濁させることができる装置であれば特に制限はないが、例えば、複数のキュベットもしくはバイアルを、並列に(一列に)固定し、反転させながら振盪できる多検体振盪装置が挙げられる。好ましくは、このような多検体振盪装置は、振盪速度、振盪時間、および待機時間は可変で、適宜設定できるものである。このような制御は、別途制御装置を用いて行うことができる。制御装置等により厳密に振盪速度、振盪時間、および待機時間を制御することによって、分析を行う者の違いによる測定誤差を無くすことができる。制御装置としては、例えば、市販品を使用してもよい。   In addition, in the specimen shaking means, if necessary, the cuvette or vial can be shaken to suspend the suspension therein. The suspension is obtained by shaking the cuvette or vial held in place. The apparatus is not particularly limited as long as it is a device that can suspend liquid, for example, a multi-sample shaking device that can fix a plurality of cuvettes or vials in parallel (in a row) and shake them while inverting them. Preferably, such a multi-sample shaking apparatus has variable shaking speed, shaking time, and waiting time, and can be set as appropriate. Such control can be performed using a separate control device. By precisely controlling the shaking speed, shaking time, and waiting time with a control device or the like, it is possible to eliminate measurement errors due to differences in the analysts. As a control apparatus, you may use a commercial item, for example.

本発明の測定装置は、キュベットもしくはバイアル中の懸濁液の温度を20〜45℃(好ましくは30〜40℃)の範囲内の一定温度に制御する、温度制御手段を備えてなる。より好ましくは、この温度制御手段は、複数のキュベットもしくはバイアルの一部の中の懸濁液の温度を35℃以下の一定温度に制御し、かつ、他のキュベットもしくはバイアル中の懸濁液の温度を35℃より高い一定の温度に制御しうるものである。   The measuring apparatus of the present invention comprises temperature control means for controlling the temperature of the suspension in the cuvette or vial to a constant temperature within the range of 20 to 45 ° C. (preferably 30 to 40 ° C.). More preferably, the temperature control means controls the temperature of the suspension in a part of the plurality of cuvettes or vials to a constant temperature of 35 ° C. or less, and the suspension in another cuvette or vial. The temperature can be controlled to a constant temperature higher than 35 ° C.

より詳しくは、温度制御手段は、本発明の測定装置において、懸濁液の温度を一定に保つためにキュベット等の内部の温度を20〜45℃に調整でき、一定の温度(例えば、±0.5℃の温度範囲内)に制御が可能なものである。本発明では、キュベット内部の温度が20〜45℃(例えば、好ましくは30〜40℃、より好ましくは30〜35℃、より好ましくは32〜35℃)で一定温度になるように装置内部の温度をコントロールできる。キュベット内部の温度を上昇させると凝集性は弱くなり(早凝因子に対する感受性が低下)、温度を下げると凝集性が強くなる(早凝因子に対する感受性増加)。このため、これらを利用して、目的に応じて上下に温度を変化させるとよい。   More specifically, in the measuring apparatus of the present invention, the temperature control means can adjust the internal temperature of the cuvette or the like to 20 to 45 ° C. in order to keep the temperature of the suspension constant. Within a temperature range of 5 ° C.). In the present invention, the temperature inside the cuvette is such that the temperature inside the cuvette is 20 to 45 ° C. (for example, preferably 30 to 40 ° C., more preferably 30 to 35 ° C., more preferably 32 to 35 ° C.). Can be controlled. Increasing the temperature inside the cuvette weakens the cohesiveness (decreases sensitivity to precoagulant factors), and decreases the temperature increases the cohesiveness (increased sensitivity to precoagulant factors). For this reason, it is good to change temperature up and down according to the objective using these.

温度制御手段の具体例としては、加温装置と冷却装置によって温度調節された空気を装置内に送風して温度を制御するもの、または、加温装置と冷却装置によって装置内部の温度を直接制御するものなどが挙げられる。   As a specific example of the temperature control means, the temperature is controlled by blowing air whose temperature is adjusted by the heating device and the cooling device into the device, or the temperature inside the device is directly controlled by the heating device and the cooling device. And what to do.

また、本発明の好ましい態様によれば、前記検体振盪手段は、この温度制御手段を備えてなる。   According to a preferred aspect of the present invention, the sample shaking means includes this temperature control means.

さらに好ましくは、本発明の装置は、検体振盪手段において、キュベットもしくはバイアルを所定の時間振盪させた後、所定の時間静置させ、カメラ装置による撮影が行われるように、検体振盪手段とカメラ装置とを制御する制御手段をさらに含んでなる。このように、混合、懸濁、静置、カメラ撮影までの操作を、制御することによって、測定の自動化が可能となり、分析者の違いによって生じ得る誤差をほぼ無くすことができる。さらには、より最適な測定条件を見出し、設定することが可能となる。
このような制御の例としては、例えば、ガラスバイアルの場合、混合2分間→放置(静置)15分以上→混合2分間→測定(撮影)との条件が挙げられ、また、キュベット型の場合、混合7分間→放置(静置)2分間→混合7分間→測定(撮影)との条件が挙げられる。
More preferably, in the sample shaking means, the sample shaking means and the camera device are arranged such that the sample shaking means causes the cuvette or the vial to shake for a predetermined time, and then is allowed to stand for a predetermined time and photographing is performed by the camera device. And a control means for controlling the above. In this way, by controlling operations from mixing, suspension, standing, and camera photography, measurement can be automated, and errors that can be caused by different analysts can be almost eliminated. Furthermore, it becomes possible to find and set a more optimal measurement condition.
As an example of such control, for example, in the case of a glass vial, the condition of mixing 2 minutes → stand (standing) 15 minutes or longer → mixing 2 minutes → measurement (photographing) can be mentioned. The condition of mixing for 7 minutes, standing (standing) for 2 minutes, mixing for 7 minutes, and measurement (photographing) can be mentioned.

本発明の好ましい態様によれば、検体振盪手段において、キュベットもしくはバイアルの真下に可視光の光源を有してなる。   According to a preferred aspect of the present invention, the specimen shaking means has a visible light source directly under the cuvette or vial.

本発明において、前記データ処理手段とは、カメラ装置で撮影された画像データを画像解析して、懸濁液の白色度の数値データを得ることができるものである。このような処理手段としては、例えば、パーソナルコンピュータが挙げられる。この場合、パーソナルコンピュータは、得られた画像データの画像解析を行うことができるソフトウエア、例えば、画像中の白と黒のエリアを数値化可能な市販のソフトウエアとを組み合わせて使用することが好ましい。   In the present invention, the data processing means is capable of obtaining numerical data of the whiteness of the suspension by analyzing the image data captured by the camera device. An example of such processing means is a personal computer. In this case, the personal computer may be used in combination with software that can perform image analysis of the obtained image data, for example, commercially available software that can quantify the white and black areas in the image. preferable.

なお本明細書において、「約」および「程度」を用いた値の表現は、その値を設定することによる目的を達成する上で、当業者であれば許容することができる値の変動を含む意味である。例えば、所定の値または範囲の20%以内、好ましくは10%以内、より好ましくは5%以内の変動を許容し得ることを意味する。   In this specification, the expression of a value using “about” and “degree” includes a variation in a value that can be allowed by those skilled in the art to achieve the purpose by setting the value. Meaning. For example, it means that a variation within 20%, preferably within 10%, more preferably within 5% of a predetermined value or range can be tolerated.

本発明を以下の例によって詳細に説明するが、本発明はこれらに限定されるものではない。   The present invention will be described in detail by the following examples, but the present invention is not limited thereto.

実験方法
1)酵母の培養
YEPG培地(1%Yeast Extract、2% Bactopepton、7.5% Maltose、2.5% Glucose)で、20℃静置培養で3日間培養した前培養液を、あらかじめ8℃に冷却しておいたYEPG培地(通常は250ml容メディウムビンに培地100ml)に1.5%濃度で添加し、スターラーで攪拌しながら8℃で培養した。培養時、経時的にOD600を測定し、酵母の増殖曲線を作成し、対数増殖期、増殖曲線がねはじめた対数増殖後期(培養開始4日目)、定常期初期(培養開始5日10時間目)のそれぞれの酵母を用いることができるようにした。
experimental method
1) Yeast culture The pre-cultured solution cultured in a stationary culture at 20 ° C. for 3 days in a YEPG medium (1% Yeast Extract, 2% Bactopepton, 7.5% Maltose, 2.5% Glucose) The solution was added to a cooled YEPG medium (usually 100 ml in a 250 ml medium bottle) at a concentration of 1.5%, and cultured at 8 ° C. while stirring with a stirrer. During culture, OD600 is measured over time, and a yeast growth curve is prepared. In the logarithmic growth phase, the logarithmic growth late stage (4 days after the start of culture), the early stationary phase (5 days 10 days after the start of culture) Eyes) can be used.

2)試験用酵母の調製
培養の終了した定常期初期の酵母を、3000rpm、5分間(4℃)の遠心により回収した。回収した酵母は、冷水により懸濁洗浄し同様に遠心により回収し、冷却した100mM EDTA(pH8.0)によって懸濁洗浄2回、冷水による懸濁洗浄2回行い、20mlの冷水に懸濁させた。酵母液を1/200希釈し、OD600を測定することにより酵母濃度を測定した。また、冷水による洗浄を2回行った後、15%のグリセロール液に懸濁し、同様に酵母液のOD600を測定することにより酵母濃度を測定した後、−80℃で凍結させた。
2) Preparation of test yeast The yeast in the early stationary phase after completion of the culture was recovered by centrifugation at 3000 rpm for 5 minutes (4 ° C). The recovered yeast is suspended and washed with cold water and similarly collected by centrifugation, suspended twice with cold 100 mM EDTA (pH 8.0) and twice with cold water, and suspended in 20 ml of cold water. It was. The yeast concentration was measured by diluting the yeast solution 1/200 and measuring OD600. Moreover, after performing washing | cleaning by cold water twice, after suspending in a 15% glycerol solution and measuring yeast concentration similarly by measuring OD600 of a yeast solution, it was made to freeze at -80 degreeC.

3)麦芽水抽出高分子画分の調製
下記のような早凝性麦芽および非早凝性麦芽(正常麦芽)の各20gにそれぞれ、120mlの水を加え、スターラーで10分間攪拌した。攪拌後、4℃にて8718g、10分間の遠心分離により不要画分を取り除き、上清を回収した。上清をさらにろ過して不溶画分を取り除き、等量のエタノールを混和した。室温で10分間静置後、4℃にて11387g、10分間遠心分離により沈殿画分を回収した。沈殿画分を10mlの熱水で懸濁し、測定サンプルとした。
早凝性麦芽1〜3: キリンビール株式会社製の麦芽評価用サンプル
正常麦芽1〜3: キリンビール株式会社製の麦芽評価用サンプル
3) Preparation of malt water extraction polymer fraction 120 ml of water was added to 20 g of each of the following fast-coagulated malt and non-precipitated malt (normal malt), and the mixture was stirred with a stirrer for 10 minutes. After stirring, unnecessary fractions were removed by centrifugation at 8718 g for 10 minutes at 4 ° C., and the supernatant was collected. The supernatant was further filtered to remove the insoluble fraction, and an equal amount of ethanol was mixed. After allowing to stand at room temperature for 10 minutes, the precipitate fraction was collected by centrifugation at 11387 g for 10 minutes at 4 ° C. The precipitate fraction was suspended in 10 ml of hot water to obtain a measurement sample.
Fast-setting malt 1-3: Sample for malt evaluation manufactured by Kirin Brewery Co., Ltd. Normal malt 1-3: Sample for malt evaluation manufactured by Kirin Brewery Co., Ltd.

実施例1: 早凝性麦芽の識別
上記2)で得られた凍結乾燥酵母に水を加えて所定の濃度(OD600が約200)とした酵母液を用意し、一方で、上記3)で得られた麦芽水抽出高分子画分(早凝性麦芽1〜3および正常麦芽1〜3)とを用意した。
次いで、酵母液0.075mlと、麦芽水抽出高分子画分0.385mlとを、50mM酢酸ナトリウム(pH4.8)1.5mlおよび50%塩化カルシュウム6μlに懸濁させ、全量が3mlとなるように水で調製した。得られた溶液を、それぞれプラスティックキュベット(10×10×45mm)に入れ、パラフィルムで上部をシールした。
これらを用意した、多検体振盪装置内のフォルダーに置き、7分間振盪→2分間静置→7分間浸透後、沈降を下記条件にてモニタリングした。
Example 1: Identification of fast-coagulating malt A water solution was prepared by adding water to the freeze-dried yeast obtained in 2) above, and having a predetermined concentration (OD600 of about 200), while obtained in 3) above. The obtained malt water extraction polymer fractions (fast-coagulating malts 1 to 3 and normal malts 1 to 3) were prepared.
Next, 0.075 ml of the yeast solution and 0.385 ml of the malt water extraction polymer fraction are suspended in 1.5 ml of 50 mM sodium acetate (pH 4.8) and 6 μl of 50% calcium chloride so that the total amount becomes 3 ml. Prepared with water. Each of the obtained solutions was put into a plastic cuvette (10 × 10 × 45 mm), and the upper part was sealed with parafilm.
These were prepared and placed in a folder in a multi-sample shaking apparatus. After shaking for 7 minutes → standing for 2 minutes → penetrating for 7 minutes, sedimentation was monitored under the following conditions.

使用する多検体振盪装置は、振盪装置部として、キュベットを11本並列に固定でき、反転させながら振盪させることができるものである。
光源としては、白色LED光源(日亜化学株式会社製,NSPW500BS)(AC100V/3A)を使用した。
振盪装置の制御装置としては、キーエンス社製KV−16ATを使用した。
カメラ装置としては、デジタルビデオカメラ(株式会社アートレイ製、ARTCAM−130MI(150万画素))を使用した。
パーソナルコンピュータとしては市販のもの(OS:WindoowsXP)を使用し、市販の沈殿速度解析ソフトを使用した。
測定は、いずれも室温条件下にて行った。
The multi-sample shaking device to be used is one that can fix eleven cuvettes in parallel as a shaking device part and can be shaken while inverting.
As a light source, a white LED light source (manufactured by Nichia Corporation, NSPW500BS) (AC100V / 3A) was used.
As a control device for the shaking device, KV-16AT manufactured by Keyence Corporation was used.
As a camera device, a digital video camera (ArtCam Co., Ltd., ARTCAM-130MI (1.5 million pixels)) was used.
A commercial computer (OS: Windows XP) was used as the personal computer, and a commercially available precipitation rate analysis software was used.
All measurements were performed at room temperature.

結果は図3に示される通りであった。図は、モニタリング開始10分後の画像である。
図中、右から2連ずつ、正常麦芽1、早凝麦芽1、早凝麦芽2、正常麦芽2、早凝麦芽3、正常麦芽3を意味する。
また下記表1に、図の画像データを画像解析することによって得られた白色度の数値を示した。
The result was as shown in FIG. The figure is an image 10 minutes after the start of monitoring.
In the figure, normal malt 1, fast-coagulated malt 1, fast-coagulated malt 2, normal malt 2, early-coagulated malt 3, and normal malt 3 are shown in duplicate from the right.
Table 1 below shows numerical values of whiteness obtained by image analysis of the image data shown in the figure.

実施例2: 測定時間の検討
前記実施例1と同様にして、早凝性麦芽1のサンプルを用意した。これらを実施例1に従って、バイアルを5段に分けて考え(図5)、各段でモニタリングを行い、時間0分から30分まで経時的に、白色度を測定した。
Example 2: Examination of measurement time A sample of precoagulable malt 1 was prepared in the same manner as in Example 1 above. These were considered according to Example 1 by dividing the vial into five stages (FIG. 5), and monitoring was performed at each stage, and the whiteness was measured over time from time 0 to 30 minutes.

結果は図4に示される通りであった。図中、系列2〜6とは、5段に分けた窓を通して、測定結果を表、系列2〜6は順に下からの窓の位置での結果を意味する。
測定時間を検討した結果、いずれの段においても、最初の3分までに濁度は大幅に減少するが、それ以後30分まで比較的安定であることが判明した。
The result was as shown in FIG. In the drawing, series 2 to 6 represent measurement results through windows divided into five stages, and series 2 to 6 mean results at the window positions from the bottom in order.
As a result of examining the measurement time, it was found that in all stages, the turbidity decreased significantly by the first 3 minutes, but was relatively stable until 30 minutes thereafter.

実施例3: 測定位置の検討
まず前記実施例1と同様にして、早凝性麦芽および非早凝性麦芽のサンプルを用意した。次いで、バイアルあるいはキュベットのどの位置で比較するのが最も精度が高いか検討するため、バイアルを5段に分けて考え(図5)、それぞれの段のエリアごとに濁度を比較した。
Example 3: Examination of measurement position First, samples of early setting malt and non-early setting malt were prepared in the same manner as in Example 1. Next, in order to examine which position of the vial or cuvette has the highest accuracy, the vial was divided into five stages (FIG. 5), and the turbidity was compared for each area of each stage.

結果は図6に示される通りであった。図は4分放置後の濁度である。図では、各バイアルについて5段のエリアに分けた結果を順に示してある。いずれのバイアルにおいても、5段のエリアに分けて測定することによって、早凝性麦芽と非早凝性麦芽を判定することが可能であった。   The result was as shown in FIG. The figure shows the turbidity after standing for 4 minutes. In the figure, the results of dividing each vial into five areas are shown in order. In any vial, it was possible to determine early setting malt and non-precipitating malt by measuring in five areas.

実施例4: バッファー液の検討
前述の「実験方法」の「1)酵母の培養」の項と同様にして、酵母の培養を行い、作成した増殖曲線の、定常期後期の培養酵母を下記のように採取したものを下記で使用した:
酵母1: 培養開始から7日間培養したもの、
酵母2: 培養開始から6日16時間培養したもの。
また対照として、定常期初期(培養開始から5日10時間培養したもの)の培養酵母を「正常酵母」として以下において使用した。
得られた各培養酵母サンプルにそれぞれ水を加えて所定の濃度(OD600が約200)とした酵母液を用意した。
Example 4: Examination of buffer solution The yeast was cultured in the same manner as in the section of “1) Yeast culture” in the “Experimental method” described above. The following was used as follows:
Yeast 1: cultured for 7 days from the start of culture,
Yeast 2: cultured for 16 hours 6 days from the start of culture.
In addition, as a control, cultured yeast in the early stationary phase (cultured for 10 hours for 5 days from the start of culture) was used as “normal yeast” in the following.
Water was added to each of the obtained cultured yeast samples to prepare a yeast solution having a predetermined concentration (OD600 is about 200).

前述の「実験方法」の「3)麦芽水抽出高分子画分の調製」の項と同様にして、麦芽サンプルとして、「正常麦芽1」と「早凝性麦芽1」とを用意した。   “Normal malt 1” and “fast-setting malt 1” were prepared as malt samples in the same manner as in “3) Preparation of malt water-extracted polymer fraction” in “Experimental method” described above.

用意した酵母液を使用し、また麦芽水抽出高分子画分として「正常麦芽1」と「早凝性麦芽1」とを使用し、さらにバッファーとして下記の条件のものを使用した以外は、「実施例1」と同様にして試験を行い、各場合についての白色度を求めた。   Other than using the prepared yeast solution, using “normal malt 1” and “fast-coagulating malt 1” as the malt water extraction polymer fraction, and further using the following conditions as a buffer: The test was conducted in the same manner as in Example 1 to determine the whiteness for each case.

結果は表2に示される通りであった。   The results were as shown in Table 2.

糖類成分を加えない場合における結果から明らかなように、凝集性の強い酵母(すなわち、酵母1および酵母2)を使用すると、酵母自体の凝集性のために、正常麦芽を使用した場合であっても、白色度が低下した。
凝集性の強い酵母を使用した場合に、バッファー液に1%マルトースを加えると、正常麦芽と、早凝性麦芽との白色度の値に明確な差異が見られるようになった。このような明確な差異が生ずる結果、使用麦芽が早凝性のものか否かが判別可能となることが明らかとなった。上記表中では、このような差異は、使用した糖類成分がマルトースで、濃度が1重量%である場合に顕著であった。
As is apparent from the results in the case where no saccharide component is added, the use of yeast with strong aggregability (ie, yeast 1 and yeast 2) is due to the fact that normal malt is used due to the agglutination of the yeast itself. Also, the whiteness decreased.
When 1% maltose was added to the buffer solution when yeast having strong cohesiveness was used, a clear difference was observed in the whiteness value between normal malt and fast-coagulated malt. As a result of such a clear difference, it has become clear that it is possible to determine whether the malt used is fast-coagulating. In the above table, such a difference was remarkable when the sugar component used was maltose and the concentration was 1% by weight.

実施例5: 測定温度の検討
前述の「実験方法」の「3)麦芽水抽出高分子画分の調製」の項と同様にして、麦芽サンプルとして、「正常麦芽1」(正常麦芽)と「早凝性麦芽1」(早凝麦芽)とを用意した。
また発酵試験で実際に麦汁を発酵した場合の麦汁残糖度を基準に、正常麦芽の場合に比べ高いものを、「強早凝麦芽」(強早凝麦芽1および2)として採取し、また正常麦芽の場合に比べ低いものを「弱早凝麦芽」として採取した(いずれも、キリンビール株式会社製の麦芽評価用サンプル)。これらを、前述の「実験方法」の「3)麦芽水抽出高分子画分の調製」の項と同様にして、麦芽サンプルとし、それぞれ「強早凝麦芽1」(強早凝麦芽)、「強早凝麦芽2」(強早凝麦芽)および、「弱早凝麦芽」(弱早凝麦芽)として用意した。
Example 5: Examination of measurement temperature In the same manner as in the section of “3) Preparation of malt water extraction polymer fraction” in “Experimental method” described above, “normal malt 1” (normal malt) and “ Precocious malt 1 ”(precocious malt) was prepared.
Moreover, based on the wort residual sugar degree when wort is actually fermented in the fermentation test, the higher one compared with the case of normal malt is collected as “Kohaya coagulation malt” (Kogaya coagulation malt 1 and 2), Moreover, what was low compared with the case of normal malt was extract | collected as "weak early setting malt" (all are samples for malt evaluation by Kirin Brewery Co., Ltd.). These were made into malt samples in the same manner as in the section of “3) Preparation of malt water extraction polymer fraction” in the “Experimental method” described above, and “Kogaya coagulation malt 1” (Kogaya coagulation malt), “ It was prepared as “Kohaya early malt 2” (Kohaya early malt) and “Kayahaya malt” (weakly early malt).

用意した酵母液を使用し、また麦芽水抽出高分子画分として「正常麦芽」、「早凝性麦芽」、に加えて「強早凝麦芽1」、「強早凝麦芽2」、「弱早凝麦芽」とを使用し、さらに測定温度条件として表3に記載の条件のものを使用した以外は、「実施例1」と同様にして試験を行い、各サンプルの場合についての白色度を求めた。   In addition to “normal malt” and “fast-coagulating malt” as a high molecular fraction extracted from the malt water using the prepared yeast liquid, “Kohaya-coagulated malt 1”, “Kokaya-coagulated malt 2”, “weak” The test was carried out in the same manner as in “Example 1” except that “fast-cooking malt” was used and the conditions described in Table 3 were used as measurement temperature conditions, and the whiteness for each sample was determined. Asked.

なおここで、使用した測定装置は、懸濁液の温度を一定に保つために内部の温度を22〜40℃に調整できるものであり、±0.5℃で制御が可能なものであった。実験では、キュベット内部の温度が32〜35℃の下記表記載の各温度で一定になるように装置内部の温度をコントロールした。   Here, the measuring device used was such that the internal temperature could be adjusted to 22 to 40 ° C. in order to keep the suspension temperature constant, and control was possible at ± 0.5 ° C. . In the experiment, the temperature inside the cuvette was controlled so that the temperature inside the cuvette was constant at each temperature shown in the following table of 32 to 35 ° C.

結果は表3および図7に示される通りであった。   The results were as shown in Table 3 and FIG.

Claims (31)

醸造原料中に含まれる酵母早期凝集因子の迅速測定方法であって、
(1) 対数増殖後期またはそれ以降の酵母と、被検原料サンプルから調製された水抽出高分子画分とを、バッファー液中で混合して懸濁させ、
(2) 工程(1)で得られた懸濁液に対して可視光を照射して散乱された光を、カメラ装置で撮影し、得られた画像データを画像解析して、懸濁液の白色度を求めることによって、懸濁液における酵母の沈降度合いを測定し、
ここで、測定は、工程(1)で得られた懸濁液の温度を20〜45℃の範囲内の一定温度に制御して行い、かつ、早凝活性が強い酵母早期凝集因子の測定を希望する場合には、懸濁液の温度を温度範囲内においてより高い温度に設定する
ことを特徴とする、測定方法。
A method for quickly measuring a yeast early aggregation factor contained in a brewing material,
(1) The yeast in the late logarithmic growth phase or later and the water-extracted polymer fraction prepared from the test raw material sample are mixed and suspended in a buffer solution,
(2) The suspension obtained in step (1) is irradiated with visible light and the scattered light is photographed with a camera device, and the obtained image data is subjected to image analysis, By determining the whiteness, measure the degree of sedimentation of the yeast in the suspension,
Here, the measurement is performed by controlling the temperature of the suspension obtained in the step (1) to a constant temperature within a range of 20 to 45 ° C., and measuring a yeast early aggregation factor having strong precoagulant activity. If desired, the measuring method is characterized in that the temperature of the suspension is set to a higher temperature within the temperature range.
測定において、工程(1)で得られた懸濁液の温度を30〜40℃の範囲内の一定温度に制御する、請求項1に記載の方法。   The method according to claim 1, wherein in the measurement, the temperature of the suspension obtained in the step (1) is controlled to a constant temperature within a range of 30 to 40 ° C. 工程(2)において、懸濁液の温度を、30〜35℃の範囲の一定温度に制御して測定を行い、かつ、早凝活性が強い酵母早期凝集因子の測定を希望する場合には、懸濁液の温度を35℃より高い一定の温度に制御して測定を行う、請求項1または2に記載の方法。   In the step (2), when the temperature of the suspension is controlled at a constant temperature in the range of 30 to 35 ° C. and measurement of yeast early agglutination factor having a strong precoagulant activity is desired, The method according to claim 1 or 2, wherein the measurement is performed while controlling the temperature of the suspension at a constant temperature higher than 35 ° C. 工程(2)において、懸濁液の温度を、32〜35℃の範囲の一定温度に制御して測定を行い、かつ、早凝活性が強い酵母早期凝集因子の測定を希望する場合には、懸濁液の温度を37〜39℃の範囲の一定温度に制御して測定を行う、請求項1〜3のいずれか一項に記載の方法。   In the step (2), when the temperature of the suspension is controlled at a constant temperature in the range of 32 to 35 ° C. and measurement of yeast early agglutination factor having a strong precoagulant activity is desired, The method according to any one of claims 1 to 3, wherein the measurement is performed while controlling the temperature of the suspension at a constant temperature in a range of 37 to 39 ° C. 工程(2)において、懸濁液の温度を35℃以下の一定温度に制御して行う測定と、懸濁液の温度を35℃より高い一定の温度に制御して行う測定とを同時に行う、請求項1〜4のいずれか一項に記載の方法。   In the step (2), the measurement performed by controlling the temperature of the suspension to a constant temperature of 35 ° C. or lower and the measurement performed by controlling the temperature of the suspension to a constant temperature higher than 35 ° C. are performed simultaneously. The method as described in any one of Claims 1-4. 一定温度に制御することが、測定中、懸濁液の温度を±0.5℃の温度範囲内に保つことを意味する、請求項1〜5のいずれか一項に記載の方法。   Control according to any one of claims 1 to 5, wherein controlling to a constant temperature means keeping the temperature of the suspension within a temperature range of ± 0.5 ° C during the measurement. 工程(2)において、散乱された光をデジタルカメラ装置で撮影し、得られた画像データを画像解析して、数値化された懸濁液の白色度を得る、請求項1〜6のいずれか一項に記載の方法。   In the step (2), the scattered light is photographed with a digital camera device, and the obtained image data is subjected to image analysis to obtain a quantified whiteness of the suspension. The method according to one item. 懸濁液の白色度を、消光時の白色度を0とし、かつ、混合・懸濁直後の酵母が均一分散している懸濁液の白色度を100として、数値化する、請求項1〜7のいずれか一項に記載の方法。   The whiteness of the suspension is quantified by setting the whiteness at the time of quenching to 0 and the whiteness of the suspension in which the yeast immediately after mixing and suspension is uniformly dispersed as 100. The method according to any one of 7 above. 工程(2)において、懸濁液への可視光の照射を、懸濁液の真下に置かれた光源から行い、かつ、懸濁液において散乱された光を、懸濁液に対し水平方向に設置されたカメラ装置から撮影する、請求項1〜8のいずれか一項に記載の方法。   In step (2), the suspension is irradiated with visible light from a light source placed directly under the suspension, and the light scattered in the suspension is horizontally directed to the suspension. The method according to any one of claims 1 to 8, wherein an image is taken from an installed camera device. 工程(1)において、複数の検体を同時に振盪することができる多検体振盪装置を用いて、複数の検体を同時に混合し懸濁させ、複数の懸濁液を得る、請求項1〜9のいずれか一項に記載の方法。   In the step (1), a plurality of specimens are mixed and suspended at the same time using a multi-sample shaking apparatus capable of simultaneously shaking a plurality of specimens to obtain a plurality of suspensions. The method according to claim 1. 複数の懸濁液における酵母の沈降度合いを、同時に測定する、請求項10に記載の方法。   The method according to claim 10, wherein the degree of sedimentation of yeast in a plurality of suspensions is measured simultaneously. 工程(1)において使用する酵母が、酵母を培養し、対数増殖後期もしくはそれ以降の酵母を回収したものであるか、または、該回収した酵母を更に凍結保存したものである、請求項1〜11のいずれか一項に記載の方法。   The yeast used in the step (1) is a yeast obtained by culturing yeast and recovering yeast in the late logarithmic growth phase or later, or the recovered yeast is further cryopreserved. 12. The method according to any one of 11 above. 工程(1)において使用する高分子画分が、被検原料サンプルの水抽出液をエタノール沈殿することによって調製した高分子画分であるか、または、被検原料サンプルの水抽出液を透析、限外濾過、もしくはゲル濾過により分離した高分子画分である、請求項1〜12のいずれか一項に記載の方法。   The polymer fraction used in step (1) is a polymer fraction prepared by ethanol precipitation of a water extract of a test raw material sample, or a water extract of a test raw material sample is dialyzed, The method according to any one of claims 1 to 12, which is a polymer fraction separated by ultrafiltration or gel filtration. 工程(1)において使用する高分子画分が、被検原料サンプルの糖化液から調製された高分子画分である、請求項1〜13のいずれか一項に記載の方法。   The method according to any one of claims 1 to 13, wherein the polymer fraction used in step (1) is a polymer fraction prepared from a saccharified solution of a test raw material sample. 工程(1)において使用する水抽出高分子画分の調製に際して、抽出中に被検原料サンプルを酵素処理する、請求項1〜14のいずれか一項に記載の方法。   The method according to any one of claims 1 to 14, wherein, in preparing the water-extracted polymer fraction used in step (1), the test raw material sample is subjected to an enzyme treatment during extraction. 工程(1)のバッファー液として、酢酸バッファー−CaClを用いる、請求項1〜15のいずれか一項に記載の方法。 As the buffer solution of step (1), using the acetate buffer-CaCl 2, The method according to any one of claims 1 to 15. 工程(1)のバッファー液として、酢酸バッファー−CaClに、グルコース、マルトース、マンノースおよびそれらの混合物からなる群より選択される糖類成分を加えたものを使用する、請求項1〜15のいずれか一項に記載の方法。 The buffer solution used in step (1) is one obtained by adding a saccharide component selected from the group consisting of glucose, maltose, mannose and a mixture thereof to acetate buffer-CaCl 2 . The method according to one item. 被検原料サンプルが、大麦、麦芽、または製麦途中の大麦である、請求項1〜17のいずれか一項に記載の方法。   The method according to any one of claims 1 to 17, wherein the test raw material sample is barley, malt, or barley in the middle of malting. 被検原料サンプルの水抽出高分子画分が、麦芽粉砕物を30秒間以上、水で抽出した抽出液の高分子画分であるか、または、大麦粉砕物もしくは製麦途中の大麦粉砕物を15分間以上水で抽出した抽出液の高分子画分である、請求項1〜18のいずれか一項に記載の方法。   The water-extracted polymer fraction of the test raw material sample is the polymer fraction of the extract obtained by extracting the malt pulverized product with water for 30 seconds or more, or the barley pulverized product or the barley pulverized product in the middle of malting The method according to any one of claims 1 to 18, which is a polymer fraction of an extract extracted with water for 15 minutes or more. 請求項1〜19のいずれか一項に記載の方法を用いることを特徴とする、醸造用原料の酵母早期凝集性の迅速判定法。   A method for quickly judging yeast early aggregability of a raw material for brewing, wherein the method according to any one of claims 1 to 19 is used. 請求項1〜19のいずれか一項に記載の方法を用いて、麦芽原料、製造途中の麦芽、または製造麦芽の早期凝集性を判定することにより、麦芽製造工程を管理することを特徴とする、麦芽の製造方法。   The malt production process is managed by determining the early cohesiveness of malt raw material, malt during production, or production malt using the method according to any one of claims 1 to 19. , A method for producing malt. 請求項1〜19のいずれか一項に記載の方法を用いて、醸造原料の早期凝集性を判定することにより、用いる醸造原料の選択および調整を行うことを特徴とする、発酵アルコール飲料の製造方法。   Production of a fermented alcoholic beverage characterized by selecting and adjusting the brewing raw material to be used by determining the early cohesiveness of the brewing raw material by using the method according to any one of claims 1 to 19. Method. 懸濁液中の菌体の沈降を連続的に定量測定するための測定装置であって、
検体としての懸濁液を入れるための複数のキュベットもしくはバイアルを、所定の位置で水平方向に一列に保持し、かつ、必要に応じて、該キュベットもしくはバイアルを振盪してその中の懸濁液を懸濁させる、検体振盪手段と、
該キュベットもしくはバイアル中の懸濁液の温度を20〜45℃の範囲内の一定温度に制御する、温度制御手段と、
一列に配置された該キュベットもしくはバイアルを撮影する、カメラ装置と、
該カメラ装置で撮影された画像データを画像解析して、懸濁液の白色度の数値データを得る、データ処理手段と
から構成されてなる、測定装置。
A measurement device for continuously and quantitatively measuring sedimentation of bacterial cells in a suspension,
A plurality of cuvettes or vials for holding a suspension as a specimen are held in a row in a horizontal direction at a predetermined position, and if necessary, the cuvettes or vials are shaken to suspend the cuvettes or vials therein. A sample shaking means,
Temperature control means for controlling the temperature of the suspension in the cuvette or vial to a constant temperature within the range of 20 to 45 ° C .;
A camera device for photographing the cuvettes or vials arranged in a row;
A measuring apparatus comprising: data processing means for analyzing image data captured by the camera device to obtain numerical data of the whiteness of the suspension.
温度制御手段が、懸濁液の温度を30〜40℃の範囲内の一定温度に制御するものである、請求項23に記載の測定装置。   The measuring device according to claim 23, wherein the temperature control means controls the temperature of the suspension to a constant temperature within a range of 30 to 40 ° C. 前記検体振盪手段が、前記温度制御手段を備えてなる、請求項23または24に記載の測定装置。   The measurement apparatus according to claim 23 or 24, wherein the sample shaking means includes the temperature control means. 温度制御手段が、複数のキュベットもしくはバイアルの一部の中の懸濁液の温度を35℃以下の一定温度に制御し、かつ、他のキュベットもしくはバイアル中の懸濁液の温度を35℃より高い一定の温度に制御しうるものである、請求項23〜25のいずれか一項に記載の測定装置。   The temperature control means controls the temperature of the suspension in a part of the plurality of cuvettes or vials to a constant temperature of 35 ° C. or lower, and the temperature of the suspension in the other cuvettes or vials from 35 ° C. The measuring device according to any one of claims 23 to 25, which can be controlled to a high constant temperature. 検体振盪手段が、キュベットもしくはバイアルの真下に可視光の光源を有してなる、請求項23〜26のいずれか一項に記載の測定装置。   27. The measuring apparatus according to any one of claims 23 to 26, wherein the specimen shaking means includes a visible light source directly below the cuvette or vial. 検体振盪手段において、キュベットもしくはバイアルを所定の時間振盪させた後、所定の時間静置させ、カメラ装置による撮影が行われるように、検体振盪手段とカメラ装置とを制御する制御手段をさらに含んでなる、請求項23〜27のいずれか一項に記載の測定装置。   The sample shaking means further includes a control means for controlling the sample shaking means and the camera device such that the cuvette or the vial is shaken for a predetermined time and then allowed to stand for a predetermined time, and photographing by the camera device is performed. The measurement apparatus according to any one of claims 23 to 27. カメラ装置が、デジタルビデオカメラである、請求項23〜28のいずれか一項に記載の測定装置。   The measurement apparatus according to any one of claims 23 to 28, wherein the camera apparatus is a digital video camera. 醸造原料中に含まれる酵母早期凝集因子の迅速測定に用いられる、請求項23〜29のいずれか一項に記載の測定装置。   The measuring device according to any one of claims 23 to 29, which is used for rapid measurement of a yeast early aggregation factor contained in a brewing raw material. 請求項1〜19のいずれか一項に記載の方法を実施する、請求項23〜30のいずれか一項に記載の測定装置。   The measurement apparatus according to any one of claims 23 to 30, wherein the method according to any one of claims 1 to 19 is performed.
JP2009288118A 2009-12-18 2009-12-18 Method for quickly measuring factor causing early flocculation of yeast, and measurement apparatus therefor Withdrawn JP2011125285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009288118A JP2011125285A (en) 2009-12-18 2009-12-18 Method for quickly measuring factor causing early flocculation of yeast, and measurement apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009288118A JP2011125285A (en) 2009-12-18 2009-12-18 Method for quickly measuring factor causing early flocculation of yeast, and measurement apparatus therefor

Publications (1)

Publication Number Publication Date
JP2011125285A true JP2011125285A (en) 2011-06-30

Family

ID=44288585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009288118A Withdrawn JP2011125285A (en) 2009-12-18 2009-12-18 Method for quickly measuring factor causing early flocculation of yeast, and measurement apparatus therefor

Country Status (1)

Country Link
JP (1) JP2011125285A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102660582A (en) * 2012-04-17 2012-09-12 山西大学 Preparation method and use of brewers' yeast microbial flocculant
CN104062293A (en) * 2014-07-03 2014-09-24 青岛啤酒股份有限公司 Method for detecting advance yeast coherence causing factors in barley or malt
CN105200117A (en) * 2015-10-15 2015-12-30 燕京啤酒(桂林漓泉)股份有限公司 Method for detecting PYF (premature yeast flocculation) factor in malt
JP2017075902A (en) * 2015-10-16 2017-04-20 公益財団法人科学技術交流財団 Pre-processing method for residual pesticide analysis by means of instrumental analysis
JP2021032728A (en) * 2019-08-26 2021-03-01 株式会社東芝 Physical property measuring device
CN115308096A (en) * 2022-10-10 2022-11-08 四川永沁环境工程有限公司 Automatic measuring equipment for sedimentation ratio

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102660582A (en) * 2012-04-17 2012-09-12 山西大学 Preparation method and use of brewers' yeast microbial flocculant
CN102660582B (en) * 2012-04-17 2014-01-29 山西大学 Preparation method and use of brewers' yeast microbial flocculant
CN104062293A (en) * 2014-07-03 2014-09-24 青岛啤酒股份有限公司 Method for detecting advance yeast coherence causing factors in barley or malt
CN105200117A (en) * 2015-10-15 2015-12-30 燕京啤酒(桂林漓泉)股份有限公司 Method for detecting PYF (premature yeast flocculation) factor in malt
JP2017075902A (en) * 2015-10-16 2017-04-20 公益財団法人科学技術交流財団 Pre-processing method for residual pesticide analysis by means of instrumental analysis
JP2021032728A (en) * 2019-08-26 2021-03-01 株式会社東芝 Physical property measuring device
JP7303066B2 (en) 2019-08-26 2023-07-04 株式会社東芝 Physical property measuring device
CN115308096A (en) * 2022-10-10 2022-11-08 四川永沁环境工程有限公司 Automatic measuring equipment for sedimentation ratio

Similar Documents

Publication Publication Date Title
JP2011125285A (en) Method for quickly measuring factor causing early flocculation of yeast, and measurement apparatus therefor
Steiner et al. Turbidity and haze formation in beer—Insights and overview
CN108728554B (en) Method for rapidly identifying mutton content by using fluorescence test strip
WO2009084407A1 (en) Method of quickly measuring factor causing early flocculation of yeast and a measurement apparatus therefor
JP4612548B2 (en) Rapid measurement of yeast early aggregation factor
WO2008053603A1 (en) Method of improving fermentability of early flocculating malt
Mains et al. Monitoring yogurt culture fermentation and predicting fermentation endpoint with fluorescence spectroscopy
CN106932377B (en) Method for detecting pathogenic bacteria in food by using Raman enhanced spectrum
CN109283239A (en) A kind of different beta-casein variant type method in detection cow&#39;s milk
JP6976144B2 (en) Method for measuring the final fermentation degree of cold wheat juice and method for predicting the final fermentation degree of cold wheat juice
JP2008249704A (en) Method of evaluating foam-holding properties of fermented malt drink and marker for evaluating foam-holding properties
JP4137687B2 (en) Malt detection method that induces early aggregation of yeast
CN106404994B (en) It makes wine into the detection method of cellar grain grain gelatinization degree
JP3121552B2 (en) Quick setting method
JP4309459B1 (en) Method for measuring yeast aggregating activity of malt using crystal oscillator
CN108659117A (en) A method of quantitatively detecting collagen triple helix structural content
JP2007135530A (en) Method for fermenting yeast
CN107365857B (en) Method for identifying fresh milk and recovered milk based on DNA gel electrophoresis chart and mtDNA (deoxyribonucleic acid). nDNA value
SU1704069A1 (en) Fermented milk mass determination method
CA2680168C (en) Determining foam-holding properties of a fermented malt drink based on protein z7
JP4531782B2 (en) Barley selection method and selection marker
CN104062293A (en) Method for detecting advance yeast coherence causing factors in barley or malt
Bellassai et al. The importance of proper yeast recovery
JP4868609B2 (en) Substrate for measuring proteolytic enzyme activity in salmon, proteolytic enzyme activity measuring method and kit
CN116769874A (en) Method for analyzing liquefaction force of brewing Daqu by using mixed buffer solution

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130305