JP2011124083A - Fuel cell separator - Google Patents

Fuel cell separator Download PDF

Info

Publication number
JP2011124083A
JP2011124083A JP2009280459A JP2009280459A JP2011124083A JP 2011124083 A JP2011124083 A JP 2011124083A JP 2009280459 A JP2009280459 A JP 2009280459A JP 2009280459 A JP2009280459 A JP 2009280459A JP 2011124083 A JP2011124083 A JP 2011124083A
Authority
JP
Japan
Prior art keywords
serpentine
fuel cell
flow channel
separator
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009280459A
Other languages
Japanese (ja)
Other versions
JP5392047B2 (en
Inventor
Masayoshi Hayashi
正義 林
Jun Yoshihara
純 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2009280459A priority Critical patent/JP5392047B2/en
Publication of JP2011124083A publication Critical patent/JP2011124083A/en
Application granted granted Critical
Publication of JP5392047B2 publication Critical patent/JP5392047B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of striking a balance between alleviation of pressure loss of fluid and a high cell output in a serpentine flow channel shape, concerning a fuel cell separator. <P>SOLUTION: Of the separator having a serpentine-shape flow channel for a fuel cell positive electrode, a serpentine-shape flow channel area is either square or rectangular, and small grooves with smaller cross sections than those of flow channel grooves are formed at ribs forming the flow channels in a direction vertical to the flow channel grooves, by the number satisfying the following formula (1) in penetration from the topmost flow channel to the lowermost flow channel. 7≤L/(n+1)≤20...(1), n: the number of grooves, L: a length (mm) of one side of the area if the serpentine-shape flow channel area is square, and the average (mm) of lengths of a long side and a short side of the area if the serpentine-shape flow channel area is rectangular. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、燃料電池用セパレーターに関する。   The present invention relates to a fuel cell separator.

燃料電池はイオンの通路を形成する電解質の両端にそれぞれ負極、正極と称される1対の電極を備えたものを基本構造とし、燃料あるいは酸化ガスを流通させるための流路が形成されたセパレーターで挟持することで1つのセルが形成される。さらに複数のセルを積層することによりスタックが形成される。   A fuel cell has a basic structure that includes a pair of electrodes called a negative electrode and a positive electrode at both ends of an electrolyte that forms an ion passage, and a separator in which a flow path for flowing fuel or oxidizing gas is formed One cell is formed by sandwiching between the two. Furthermore, a stack is formed by stacking a plurality of cells.

燃料電池を組み込んだ発電システムを構築する際、スタックに供給する酸化ガスとしては一般的に空気が用いられている。空気の供給手段としては空気ポンプ、空気ブロア、空気コンプレッサーなどが用いられているが、これらはいずれも燃料電池が起こした電力で稼動させる必要があり、燃料電池発電システム全体の効率向上のためには、これら空気供給装置の消費電力低減が重要である。   When constructing a power generation system incorporating a fuel cell, air is generally used as the oxidizing gas supplied to the stack. As air supply means, air pumps, air blowers, air compressors, etc. are used, all of which need to be operated with the power generated by the fuel cell, and to improve the efficiency of the entire fuel cell power generation system Therefore, it is important to reduce the power consumption of these air supply devices.

空気供給装置の消費電力低減のために空気供給装置を小型化した場合、スタックに供給される空気量が少なくなり、スタックの出力が低下し、発電システム全体の出力が低下してしまう。また、セパレーター内のサーペンタイン流路において、流路断面積を拡大し空気流路内の圧力損失を低減させることにより空気供給装置の消費電力低減を図る方法もあるが、この場合、流路断面積の拡大に伴ってスタック出力が低下してしまい、それぞれの効果がトレードオフとなってしまう。   When the air supply device is downsized to reduce the power consumption of the air supply device, the amount of air supplied to the stack decreases, the output of the stack decreases, and the output of the entire power generation system decreases. There is also a method for reducing the power consumption of the air supply device by enlarging the cross-sectional area of the serpentine flow path in the separator and reducing the pressure loss in the air flow path. The stack output decreases with the increase in the number, and each effect becomes a trade-off.

以上のことから、スタック出力を低下させることなく、圧力損失を低減させることが出来る流路の発明が求められている。
例えば特許文献1では、サーペンタイン流路構造においてスリット状の流路を追加することにより、平行流路間での流量分布を低減する方法が開示されている。しかしながら、本方法ではスリット状流路の長さが、サーペンタイン流路の1並列単位分のみであるため、個々の流路間でのばらつきが抑制されるものの、流路全体での圧力損失低減に対する効果は少ない。
酸化ガス流通用セパレーターの流路形状のみの効果により、圧力損失の低減と電池出力の維持を両立する課題を解決する手段はこれまで開示されていない。
In view of the above, there is a need for an invention for a flow path that can reduce pressure loss without reducing stack output.
For example, Patent Document 1 discloses a method of reducing a flow rate distribution between parallel flow paths by adding a slit-shaped flow path in a serpentine flow path structure. However, in this method, since the length of the slit-like flow path is only one parallel unit of the serpentine flow path, the variation between individual flow paths is suppressed, but the pressure loss in the entire flow path is reduced. Less effective.
No means has been disclosed so far for solving the problem of achieving both reduction in pressure loss and maintenance of battery output due to the effect of only the flow path shape of the separator for circulating the oxidizing gas.

特開2006−351222号公報JP 2006-351222 A

酸化ガス流通用セパレーターの流路形状を工夫することにより、電池出力を低下させずに流路内での圧力損失を低減させることを目的とする。これにより、空気ポンプなどの酸化ガス供給装置の消費電力が低下し、燃料電池発電システム全体の効率が向上する。   By devising the shape of the flow path of the oxidant gas distribution separator, the object is to reduce the pressure loss in the flow path without reducing the battery output. Thereby, the power consumption of the oxidizing gas supply device such as an air pump is reduced, and the efficiency of the entire fuel cell power generation system is improved.

本発明者らは鋭意研究することにより、固体高分子型燃料電池およびメタノール直接型燃料電池において、電池出力を低下させずに流路内での圧力損失を低減させることができる流路形状を見出し、本発明に到達した。
即ち本発明は、燃料電池正極用のサーペンタイン形状流路(以下、蛇行流路またはサーペンダイン流路ともいう)を有するセパレーターであって、サーペンタイン形状流路領域が正方形状あるいは長方形状であり、流路を形成するリブ部に流路溝と垂直方向に流路溝よりも溝断面積の小さい溝を、下記式(1)を満たす本数分、最上部の流路から最下部の流路まで貫通させて設けることを特徴とする燃料電池正極用セパレーターに関するものである。
7≦L/(n+1)≦20 (1)
n:溝の本数
L:サーペンタイン形状流路領域が正方形状の場合には領域の一辺の長さ(mm)、サーペンタイン形状流路領域が長方形状の場合には領域の長辺と短辺の長さの平均(mm)。
The inventors of the present invention have intensively studied to find a flow channel shape that can reduce pressure loss in the flow channel without reducing the cell output in the solid polymer fuel cell and the methanol direct fuel cell. The present invention has been reached.
That is, the present invention is a separator having a serpentine-shaped channel (hereinafter also referred to as a serpentine channel or a serpentine channel) for a fuel cell positive electrode, wherein the serpentine-shaped channel region has a square shape or a rectangular shape. Through the ribs forming the path, a groove having a groove cross-sectional area smaller than the channel groove in the direction perpendicular to the channel groove is passed from the uppermost channel to the lowermost channel by the number that satisfies the following formula (1). It is related with the separator for fuel cell positive electrodes characterized by providing.
7 ≦ L / (n + 1) ≦ 20 (1)
n: number of grooves L: length (mm) of one side when the serpentine-shaped channel region is square, and long and short sides of the region when the serpentine-shaped channel region is rectangular Average length (mm).

本発明による流路形状を用い、リブ部溝の本数を最適化することにより、燃料電池の出力低下を起こさずに差圧の低減が図れる。これにより、燃料電池発電システムの効率を高くすることができる。   By using the flow channel shape according to the present invention and optimizing the number of rib grooves, the differential pressure can be reduced without causing a decrease in the output of the fuel cell. Thereby, the efficiency of the fuel cell power generation system can be increased.

サーペンタイン流路部および縦溝部の断面図Cross section of serpentine channel and vertical groove サーペンタイン形状流路を有するセパレーターの模式図(縦溝7本)Schematic diagram of separator with serpentine channel (7 vertical grooves) サーペンタイン形状流路を有するセパレーターの模式図(縦溝0本)Schematic diagram of a separator having a serpentine-shaped channel (0 vertical groove) サーペンタイン形状流路を有するセパレーターの模式図(縦溝3本)Schematic diagram of separator with serpentine channel (3 vertical grooves) サーペンタイン形状流路を有するセパレーターの模式図(縦溝15本)Schematic diagram of a separator having a serpentine channel (15 vertical grooves)

本発明のセパレーターは燃料電池正極用のセパレーターであり、固体高分子型燃料電池に好適に用いられる。固体高分子型燃料電池としては、水素を燃料に用いる燃料電池およびメタノールを直接負極に供給して発電するメタノール直接型燃料電池が挙げられるが、特にメタノール直接型燃料電池に好適に用いることができる。   The separator of the present invention is a separator for a fuel cell positive electrode and is suitably used for a polymer electrolyte fuel cell. Examples of the polymer electrolyte fuel cell include a fuel cell using hydrogen as a fuel and a methanol direct fuel cell that generates electricity by supplying methanol directly to the negative electrode, and can be suitably used particularly for a methanol direct fuel cell. .

固体高分子型燃料電池は固体高分子系イオン交換膜の両側に負極と正極が配されたセルを備え、燃料を負極に供給し、酸化ガスを正極に供給して発電を行う。燃料および空気をそれぞれの極に供給するため、該セルは流路を備えたセパレーターで挟持されている。   The polymer electrolyte fuel cell includes a cell in which a negative electrode and a positive electrode are arranged on both sides of a solid polymer ion exchange membrane, and supplies fuel to the negative electrode and supplies an oxidizing gas to the positive electrode to generate power. In order to supply fuel and air to the respective electrodes, the cell is sandwiched between separators having flow paths.

酸化ガスは負極で生成したHを酸化するための酸素を供給できるものであれば特に制限はないが、分子状酸素を含むものが好ましく、空気を用いることが経済的に有利である。 The oxidizing gas is not particularly limited as long as it can supply oxygen for oxidizing H + produced at the negative electrode, but it preferably contains molecular oxygen, and it is economically advantageous to use air.

本発明のセパレーターのサーペンタイン流路領域は、おおむね正方形状あるいは長方形状である。セパレーター流路の形状はサーペンタイン構造を基本とし、特に圧力損失低減が重要となる正極には、サーペンタイン流路を形成しているリブ部にサーペンタイン流路溝と垂直方向にサーペンタイン流路溝よりも溝断面積の小さい溝(以下、縦溝ともいう)を、最上部の流路から最下部の流路まで貫通させて設ける。ここで、サーペンタイン流路溝が並列サーペンタイン流路である場合のサーペンタイン流路溝の溝断面積とは、一本当たりの溝断面積を指す。リブ部の溝断面積をこのようにすることで、ガスの供給性および燃料電池出力が良好なものとなる。   The serpentine channel region of the separator of the present invention is generally square or rectangular. The shape of the separator channel is based on a serpentine structure. Especially for the positive electrode, where pressure loss reduction is important, the ribs forming the serpentine channel are grooved more perpendicularly to the serpentine channel groove than the serpentine channel groove. A groove having a small cross-sectional area (hereinafter also referred to as a longitudinal groove) is provided so as to penetrate from the uppermost channel to the lowermost channel. Here, the groove sectional area of the serpentine channel groove when the serpentine channel groove is a parallel serpentine channel refers to a groove sectional area per one. By setting the groove cross-sectional area of the rib portion in this way, the gas supply performance and the fuel cell output are improved.

リブ部の溝幅および溝深さは、サーペンタイン流路溝よりも小さいことが好ましい。サーペンタイン流路溝と同等以上とした場合、サーペンタイン流路の利点であるガスの供給性が損なわれ、燃料電池出力が低下してしまう。   The groove width and groove depth of the rib part are preferably smaller than the serpentine channel groove. When it is equal to or greater than the serpentine channel groove, the gas supply ability, which is an advantage of the serpentine channel, is impaired, and the fuel cell output is reduced.

リブ部の溝は、サーペンタイン流路溝間のリブの最上部から最下部まで貫通することが好ましい。貫通させずに一部のサーペンタイン形状溝のみを跨ぐ長さとした場合、圧力損失の低減効果が乏しくなる。   The groove of the rib part preferably penetrates from the uppermost part to the lowermost part of the rib between the serpentine channel grooves. When it is made the length which straddles only a part of serpentine shape groove | channel without making it penetrate, the reduction effect of a pressure loss will become scarce.

リブ部の溝の本数は下記式(1)を満たす本数であり、下記式(2)を満たす本数であることが好ましく、特に下記式(3)を満たす本数であることが好ましい。
7≦L/(n+1)≦20 (1)
9≦L/(n+1)≦15 (2)
10≦L/(n+1)≦14 (3)
n:溝の本数
L:サーペンタイン形状流路領域が正方形状の場合には領域の一辺の長さ(mm)、サーペンタイン形状流路領域が長方形状の場合には領域の長辺と短辺の長さの平均(mm)。
The number of grooves in the rib portion is the number satisfying the following formula (1), preferably the number satisfying the following formula (2), and particularly preferably the number satisfying the following formula (3).
7 ≦ L / (n + 1) ≦ 20 (1)
9 ≦ L / (n + 1) ≦ 15 (2)
10 ≦ L / (n + 1) ≦ 14 (3)
n: number of grooves L: length (mm) of one side when the serpentine-shaped channel region is square, and long and short sides of the region when the serpentine-shaped channel region is rectangular Average length (mm).

リブ部の溝同士の間隔は、好ましくは5〜20mm、より好ましくは9〜14mm、特に好ましくは10〜13mmである。間隔が大きすぎると溝本数が少なくなり圧力損失低減効果に乏しく、逆に間隔が小さすぎると溝本数が多くなりすぎ出力の低下が見られる。   The interval between the grooves in the rib portion is preferably 5 to 20 mm, more preferably 9 to 14 mm, and particularly preferably 10 to 13 mm. If the distance is too large, the number of grooves is reduced and the effect of reducing pressure loss is poor. On the other hand, if the distance is too small, the number of grooves is excessively increased and the output is reduced.

サーペンタイン流路の並列数は1〜4から選ぶことができるが、2〜3が好ましく、特に2が好ましい。サーペンタイン流路の1本あたりの溝断面積とリブ部の溝の1本あたりの断面積の比率は、好ましくは3〜20:1、より好ましくは5〜15:1である。   Although the number of serpentine flow paths in parallel can be selected from 1 to 4, 2 to 3 is preferable, and 2 is particularly preferable. The ratio of the groove cross-sectional area per serpentine channel to the cross-sectional area per rib of the rib portion is preferably 3 to 20: 1, more preferably 5 to 15: 1.

サーペンタイン流路の最端部とリブ部溝の間隔、およびリブ部溝間の間隔は、それぞれ同じ程度になるよう、リブ部溝を配置することが好ましい。リブ部溝がある部分に偏ると、その部分に断面積の大きなリブ部溝を配置した場合と同様の影響、すなわちガスの供給性が損なわれてしまう。   It is preferable to arrange the rib part grooves so that the distance between the endmost part of the serpentine channel and the rib part groove and the distance between the rib part grooves are the same. If the rib portion groove is biased to the portion where the rib portion groove is present, the same effect as that in the case where the rib portion groove having a large cross-sectional area is arranged in that portion, that is, the gas supply performance is impaired.

以下に、メタノール直接型燃料電池を用いた実施例により本発明を具体的に説明する。但し、本発明はこれらの実施例に制限されない。   Hereinafter, the present invention will be described in detail by way of examples using a methanol direct fuel cell. However, the present invention is not limited to these examples.

・燃料電池セル作製手順
電解質となる高分子膜にはパーフルオロカーボンスルホン酸膜NafionTM-117(DuPont社製)を選択し、過酸化水素水および希硫酸中で煮沸洗浄して使用した。電極はカーボンペーパーをテトラフルオロエチレン分散液で撥水処理した後、カーボン、アルコール、水、Nafion分散液を混合したスラリーをドクターブレードで塗布し乾燥させることによりガス拡散層を形成し、その上に触媒とNafion(パーフルオロカーボンスルホン酸)分散液を混合した触媒インクをドクターブレード法で塗布し乾燥して作成した。触媒は両極とも白金系触媒を使用した。このようにして作製した正極、負極電極(94mm角)を電解質膜のそれぞれの面に用いて熱圧着することにより膜電極接合体を作製した。
-Fuel cell production procedure A perfluorocarbon sulfonic acid membrane NafionTM-117 (manufactured by DuPont) was selected as the polymer membrane to be used as an electrolyte, and used after boiling and washing in hydrogen peroxide and dilute sulfuric acid. The electrode is treated with water-repellent treatment of carbon paper with tetrafluoroethylene dispersion, and then a slurry mixed with carbon, alcohol, water, and Nafion dispersion is applied with a doctor blade and dried to form a gas diffusion layer. A catalyst ink in which a catalyst and a Nafion (perfluorocarbon sulfonic acid) dispersion were mixed was applied by a doctor blade method and dried. As the catalyst, a platinum-based catalyst was used for both electrodes. A membrane / electrode assembly was prepared by thermocompression bonding using the positive electrode and the negative electrode (94 mm square) thus produced on each surface of the electrolyte membrane.

・セパレーター
以下の実施例、比較例において、正極用、負極用セパレーターともにセパレータ流路領域は一辺が94mmの正方形状である。負極用セパレーターには図3に示したようなサーペンタイン流路にリブ部の溝がないセパレーターを用いた。負極用セパレーターのサーペンタイン流路の溝は幅2.5mm、深さ0.5mmである。また、正極用セパレーターのサーペンタイン流路の溝は幅2.5mm、深さ0.8mmであり、リブ部の縦溝は幅0.5mm、深さ0.5mmである。
-Separator In the following examples and comparative examples, the separator channel region of each of the positive electrode separator and the negative electrode separator has a square shape with a side of 94 mm. As the negative electrode separator, a separator having no rib in the serpentine flow path as shown in FIG. 3 was used. The groove of the serpentine channel of the negative electrode separator has a width of 2.5 mm and a depth of 0.5 mm. Moreover, the groove | channel of the serpentine flow path of the separator for positive electrodes is width 2.5mm and depth 0.8mm, and the vertical groove of a rib part is width 0.5mm and depth 0.5mm.

・発電条件
以下の実施例、比較例においては上記操作にて得られた膜電極接合体を用いて燃料電池を作製し、正極には酸化ガスとして空気を、負極にはメタノール水溶液を供給して発電し、電圧0.3Vで放電時の電流密度を調べた。
Power generation conditions In the following examples and comparative examples, a fuel cell was prepared using the membrane electrode assembly obtained by the above operation, and air as an oxidizing gas was supplied to the positive electrode and a methanol aqueous solution was supplied to the negative electrode. Electric power was generated and the current density at the time of discharge was examined at a voltage of 0.3V.

試験条件を以下に示す。
電池温度:80℃
正極空気:乾燥空気、10ml・min-1・cm-2
負極燃料:1Mメタノール水溶液、0.07 ml・min-1・cm-2
発電制御法:0.3V定電圧
Test conditions are shown below.
Battery temperature: 80 ℃
Positive air: Dry air, 10ml ・ min −1・ cm -2
Anode fuel: 1M aqueous methanol solution, 0.07 ml · min −1 · cm -2
Power generation control method: 0.3V constant voltage

(実施例1)
正極側セパレーターには、図2に示したように、蛇行流路のリブ部に溝7本を設けたセパレーターを用いた。その結果、セル出力は7.2W、正極側圧力損失は9.6kPaであった。
(Example 1)
As the positive electrode side separator, as shown in FIG. 2, a separator provided with seven grooves in the rib portion of the meandering channel was used. As a result, the cell output was 7.2 W, and the pressure loss on the positive electrode side was 9.6 kPa.

(比較例1)
正極側セパレーターには、図3に示したように、蛇行流路のリブ部に溝がないセパレーターを用いた。その結果、セル出力は最大7.2Wと実施例1と同等であるものの、正極側圧力損失は11.6kPaと大きかった。
(Comparative Example 1)
As the positive separator, a separator having no groove in the rib portion of the meandering channel was used as shown in FIG. As a result, the maximum cell output was 7.2 W, which was the same as in Example 1, but the positive electrode side pressure loss was as large as 11.6 kPa.

(比較例2)
正極側セパレーターには、図4に示したように、蛇行流路のリブ部に溝3本を設けたセパレーターを用いた。その結果、セル出力は7.2Wと実施例1と同等であるものの、正極側圧力損失は10.5kPaと大きかった。
(Comparative Example 2)
As the positive electrode side separator, as shown in FIG. 4, a separator provided with three grooves in the rib portion of the meandering flow path was used. As a result, the cell output was 7.2 W, which was the same as in Example 1, but the positive electrode side pressure loss was as large as 10.5 kPa.

(比較例3)
正極側セパレーターには、図5に示したように、蛇行流路のリブ部に溝15本を設けたセパレーターを用いた。その結果、正極側圧力損失は8.4kPaと低い値を示したものの、セル出力は6.5Wと実施例1よりも大幅に低下した。
(Comparative Example 3)
As the positive electrode side separator, as shown in FIG. 5, a separator provided with 15 grooves in the rib portion of the meandering flow path was used. As a result, the positive electrode side pressure loss was as low as 8.4 kPa, but the cell output was 6.5 W, which was significantly lower than that of Example 1.

実施例1および比較例1〜3の結果を表1に纏めた

Figure 2011124083
The results of Example 1 and Comparative Examples 1 to 3 are summarized in Table 1.
Figure 2011124083

Claims (3)

燃料電池正極用のサーペンタイン形状流路を有するセパレーターであって、サーペンタイン形状流路領域が正方形状あるいは長方形状であり、流路を形成するリブ部に流路溝と垂直方向に流路溝よりも溝断面積の小さい溝を、下記式(1)を満たす本数分、最上部の流路から最下部の流路まで貫通させて設けることを特徴とする燃料電池正極用セパレーター。
7≦L/(n+1)≦20 (1)
n:溝の本数
L:サーペンタイン形状流路領域が正方形状の場合には領域の一辺の長さ(mm)、サーペンタイン形状流路領域が長方形状の場合には領域の長辺と短辺の長さの平均(mm)。
A separator having a serpentine-shaped channel for a fuel cell positive electrode, wherein the serpentine-shaped channel region is square or rectangular, and the rib portion forming the channel is perpendicular to the channel groove in the direction perpendicular to the channel groove. A separator for a fuel cell positive electrode, wherein grooves having a small groove cross-sectional area are provided so as to pass through the number of grooves satisfying the following formula (1) from the uppermost channel to the lowermost channel.
7 ≦ L / (n + 1) ≦ 20 (1)
n: number of grooves L: length (mm) of one side when the serpentine-shaped channel region is square, and long and short sides of the region when the serpentine-shaped channel region is rectangular Average length (mm).
燃料電池が水素を燃料とする固体高分子型燃料電池である請求項1に記載の燃料電池正極用セパレーター。   2. The fuel cell positive electrode separator according to claim 1, wherein the fuel cell is a polymer electrolyte fuel cell using hydrogen as a fuel. 燃料電池がメタノールを燃料とする固体高分子型燃料電池である請求項1に記載の燃料電池正極用セパレーター。   2. The fuel cell positive electrode separator according to claim 1, wherein the fuel cell is a polymer electrolyte fuel cell using methanol as a fuel.
JP2009280459A 2009-12-10 2009-12-10 Fuel cell separator Active JP5392047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009280459A JP5392047B2 (en) 2009-12-10 2009-12-10 Fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009280459A JP5392047B2 (en) 2009-12-10 2009-12-10 Fuel cell separator

Publications (2)

Publication Number Publication Date
JP2011124083A true JP2011124083A (en) 2011-06-23
JP5392047B2 JP5392047B2 (en) 2014-01-22

Family

ID=44287781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009280459A Active JP5392047B2 (en) 2009-12-10 2009-12-10 Fuel cell separator

Country Status (1)

Country Link
JP (1) JP5392047B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327162A (en) * 2003-04-23 2004-11-18 Nissan Motor Co Ltd Fuel cell
JP2005276519A (en) * 2004-03-23 2005-10-06 Nissan Motor Co Ltd Solid polymer fuel cell
JP2007005235A (en) * 2005-06-27 2007-01-11 Honda Motor Co Ltd Fuel cell
WO2007088832A1 (en) * 2006-02-02 2007-08-09 Matsushita Electric Industrial Co., Ltd. Separator plate and fuel cell
WO2009010067A1 (en) * 2007-07-18 2009-01-22 Serenergy A/S A bipolar plate for a fuel cell comprising a by-passed serpentine flow path for oxidant gas; a cooling plate for a fuel cell comprising a by-passed serpentine flow path for coolant fluid; fuel cell comprising such plates and uses thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327162A (en) * 2003-04-23 2004-11-18 Nissan Motor Co Ltd Fuel cell
JP2005276519A (en) * 2004-03-23 2005-10-06 Nissan Motor Co Ltd Solid polymer fuel cell
JP2007005235A (en) * 2005-06-27 2007-01-11 Honda Motor Co Ltd Fuel cell
WO2007088832A1 (en) * 2006-02-02 2007-08-09 Matsushita Electric Industrial Co., Ltd. Separator plate and fuel cell
WO2009010067A1 (en) * 2007-07-18 2009-01-22 Serenergy A/S A bipolar plate for a fuel cell comprising a by-passed serpentine flow path for oxidant gas; a cooling plate for a fuel cell comprising a by-passed serpentine flow path for coolant fluid; fuel cell comprising such plates and uses thereof
JP2010533936A (en) * 2007-07-18 2010-10-28 セレネルギー アクティーゼルスカブ Bipolar plate and cooling plate for fuel cell, fuel cell having the plate, and method of using the same

Also Published As

Publication number Publication date
JP5392047B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5408263B2 (en) Fuel cell
US10727511B2 (en) Fuel cell
JP4121491B2 (en) Liquid fuel mixing apparatus and direct liquid fuel cell using the same
JP6402740B2 (en) Fuel cell
US10553881B2 (en) Fuel cell
JP6604261B2 (en) Fuel cell
JP2015207549A (en) Separation plate and fuel cell including the same
JP2006294503A (en) Fuel battery and gas separator for the same
KR101315622B1 (en) Fuelcell stack using branched channel
JPWO2012035584A1 (en) Fuel cell separator, fuel cell
JP2005190714A (en) Fluid flow field plate for fuel cell and fuel cell
JP2006236851A (en) Polymer electrolyte fuel cell
JP5392047B2 (en) Fuel cell separator
KR101397238B1 (en) Bipolar plate for fuel cell made of composite material
JP5653867B2 (en) Fuel cell
JP4499690B2 (en) Direct liquid fuel cell
JP5633504B2 (en) Fuel cell separator
JP4197514B2 (en) Fuel cell system and stack
KR100529080B1 (en) Fuel cell system and stack used thereto
JP6403099B2 (en) Fuel cell module
JP2019125530A (en) Fuel cell stack
JP2010034005A (en) Fuel cell
JP2019079722A (en) Fuel cell
JP4736453B2 (en) Fuel cell separator
JP2009181918A (en) Polymer electrolyte fuel cell

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R151 Written notification of patent or utility model registration

Ref document number: 5392047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151