JP2011121062A - Solder alloy and method for manufacturing solder alloy - Google Patents

Solder alloy and method for manufacturing solder alloy Download PDF

Info

Publication number
JP2011121062A
JP2011121062A JP2009278426A JP2009278426A JP2011121062A JP 2011121062 A JP2011121062 A JP 2011121062A JP 2009278426 A JP2009278426 A JP 2009278426A JP 2009278426 A JP2009278426 A JP 2009278426A JP 2011121062 A JP2011121062 A JP 2011121062A
Authority
JP
Japan
Prior art keywords
solder alloy
mass
solder
copper
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009278426A
Other languages
Japanese (ja)
Other versions
JP5218383B2 (en
Inventor
Hiroji Yamazaki
浩次 山崎
Akira Maeda
晃 前田
Akira Yamada
朗 山田
Taketsugu Otsu
健嗣 大津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009278426A priority Critical patent/JP5218383B2/en
Publication of JP2011121062A publication Critical patent/JP2011121062A/en
Application granted granted Critical
Publication of JP5218383B2 publication Critical patent/JP5218383B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To allow a solder alloy having excellent connection reliability under high temperature and having high content of Cu, to be applied in a soldering method by the reduction processing using reducing gas with low environmental load. <P>SOLUTION: The solder alloy consists of 3-10 mass% copper, 0.00005-0.1 mass% germanium, and the balance mainly tin. Alternatively, a first solder alloy containing ≤1.5 mass% copper and the balance mainly tin, and at least one of a second solder alloy containing ≥2.0 mass% copper and the balance mainly tin and pure copper are superposed at the predetermined mass ratio to produce the pellet-like solder alloy containing 3-10 mass% copper and the balance mainly tin by the hot-rolling process. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、錫を主成分とするはんだ合金およびはんだ合金の製造方法に関するものである。   The present invention relates to a solder alloy mainly composed of tin and a method for producing the solder alloy.

近年、半導体装置に対する信頼性の要求はますます高まり、とくに熱膨張係数差の大きい半導体素子と回路基板との接合部に対する耐ヒートサイクル特性向上が求められている。また省エネルギーの観点から、次世代デバイスとしてシリコンカーバイド(SiC)や窒化ガリウム(GaN)を基板としたデバイスの開発が盛んに行なわれている。これらの基板を利用したデバイスにおいては、エネルギーロス低減の観点からその動作温度は175℃以上に設定されており、将来的には約300℃になるともいわれている。   In recent years, there has been an increasing demand for reliability of semiconductor devices, and in particular, there has been a demand for improved heat cycle resistance at the junction between a semiconductor element having a large difference in thermal expansion coefficient and a circuit board. Further, from the viewpoint of energy saving, development of devices using silicon carbide (SiC) or gallium nitride (GaN) as a next-generation device has been actively conducted. In the devices using these substrates, the operating temperature is set to 175 ° C. or higher from the viewpoint of reducing energy loss, and it is said that it will be about 300 ° C. in the future.

このような高温動作の要求に対して、高温下での接続信頼性に優れた高温はんだ合金が必要である。たとえば、Cuの含有量が3.0質量%以上でCu−Sn化合物(たとえばCuSn)の相を含有するSn系はんだ合金が開示されている(例えば特許文献1参照)。 In response to such a demand for high temperature operation, a high temperature solder alloy having excellent connection reliability at high temperatures is required. For example, an Sn-based solder alloy having a Cu content of 3.0% by mass or more and containing a phase of a Cu—Sn compound (for example, Cu 6 Sn 5 ) is disclosed (for example, see Patent Document 1).

このようなはんだ合金においては、はんだ接合の際に通常フラックスを使用してはんだ表面や被接合材の表面の酸化膜を除去して清浄化させつつはんだ合金を溶融して被接合材同士を接合させている。そのため、接合工程後にフラックスを洗浄除去する目的で、有機溶剤による洗浄工程が必要であり、環境負荷の高い製造方法となっていた。   In such a solder alloy, the soldering material is melted and joined to each other by using a normal flux during soldering to remove and clean the oxide film on the surface of the solder and the material to be joined. I am letting. Therefore, a cleaning process using an organic solvent is necessary for the purpose of cleaning and removing the flux after the joining process, which has been a manufacturing method with a high environmental load.

これに対して、有機溶剤による洗浄工程が不要で、環境負荷の低いはんだの接合方法として、蟻酸、酢酸などの還元性ガスを用いた還元処理によって被接合材の表面の酸素量を低下させ、フラックスを含まないシート状あるいはペレット状のはんだ合金を用いたはんだ接合方法が開示されている(例えば特許文献2参照)。   On the other hand, a cleaning process with an organic solvent is unnecessary, and as a solder joining method with a low environmental load, the amount of oxygen on the surface of the material to be joined is reduced by a reduction treatment using a reducing gas such as formic acid or acetic acid, A solder joining method using a sheet-like or pellet-like solder alloy that does not contain a flux is disclosed (for example, see Patent Document 2).

特開2007−67158号公報(8頁、表1)JP 2007-67158 A (page 8, table 1) 特開2006−88204号公報(7−8頁)JP 2006-88204 A (pages 7-8)

フラックスの洗浄工程が不要な蟻酸、酢酸などの還元性ガスを用いた還元処理によるはんだ接合工程においては、厚さが1mm以下の薄いペレット状の必要である。ところが、高温下での接続信頼性に優れたCu含有量の多いはんだ合金を圧延して厚さ1mm以下のペレットを作製すると、ペレットに割れが発生する事がわかった。そのため、高温下での接続信頼性に優れたはんだ合金を環境負荷の低い還元性ガスを用いた還元処理によるはんだ接合方法に適用する事が困難という問題があった。   In a solder joining process by a reduction process using a reducing gas such as formic acid or acetic acid that does not require a flux cleaning process, a thin pellet having a thickness of 1 mm or less is required. However, it was found that when a pellet having a thickness of 1 mm or less was produced by rolling a solder alloy having a high Cu content and excellent in connection reliability at high temperatures, cracking occurred in the pellet. For this reason, there is a problem that it is difficult to apply a solder alloy excellent in connection reliability at high temperatures to a solder joining method by reduction treatment using a reducing gas having a low environmental load.

この発明は、上述のような課題を解決するためになされたもので、高温下での接続信頼性に優れたCu含有量の多いはんだ合金を環境負荷の低い還元性ガスを用いた還元処理によるはんだ接合方法に適用することを可能にすることを目的とする。   The present invention has been made to solve the above-described problems, and is based on a reduction treatment using a reducing gas having a low environmental load and a high Cu content solder alloy having excellent connection reliability at high temperatures. It aims at making it applicable to a soldering method.

この発明に係るはんだ合金においては、3質量%以上10質量%以下の銅と、0.00005質量%以上0.1質量%以下のゲルマニウムと、残部の主成分が錫とで構成されたものである。   In the solder alloy according to the present invention, 3 mass% or more and 10 mass% or less of copper, 0.00005 mass% or more and 0.1 mass% or less of germanium, and the remaining main component is composed of tin. is there.

また、この発明に係るはんだ合金の製造方法においては、1.5質量%以下の銅を含み残部の主成分が錫からなる第1のはんだ合金と、2.0質量%以上の銅を含み残部の主成分が錫からなる第2のはんだ合金とを所定の質量比で重ね合わせ、熱間圧延工程よって3質量%以上10質量%以下の銅を含み残部の主成分が錫からなるペレット状のはんだ合金を製造するものである。   In the method for producing a solder alloy according to the present invention, the first solder alloy containing 1.5% by mass or less of copper and the main component of the balance being tin, and the balance containing 2.0% by mass or more of copper. And a second solder alloy consisting mainly of tin in a predetermined mass ratio, and in a hot rolling process, containing 3% by mass to 10% by mass of copper, and the remaining main component is a pellet made of tin. A solder alloy is produced.

あるいは、1.5質量%以下の銅を含み残部の主成分が錫からなる第1のはんだ合金に、2.0質量%以上の銅を含み残部の主成分が錫からなるはんだ合金の粉末を所定の質量比で付着させ、熱間圧延工程よって3質量%以上10質量%以下の銅を含み残部の主成分が錫からなるペレット状のはんだ合金を製造するものである。   Alternatively, a solder alloy powder containing 2.0% by mass or more of copper and the remaining main component of tin is added to the first solder alloy containing 1.5% by mass or less of copper and the remaining main component of tin. It is made to adhere at a predetermined mass ratio, and a hot-rolling step produces a pellet-shaped solder alloy containing 3% by mass or more and 10% by mass or less of copper and the remaining main component being tin.

この発明は、3質量%以上10質量%以下の銅含有量の多い錫系はんだ合金に、0.00005質量%以上0.1質量%以下のゲルマニウムを添加したことにより、厚さが1mm以下の薄いペレット状のはんだ合金を作製する圧延工程において、割れを防止することができる。   In the present invention, by adding germanium of 0.00005% by mass or more and 0.1% by mass or less to a tin-based solder alloy having a high copper content of 3% by mass or more and 10% by mass or less, the thickness is 1 mm or less. In the rolling process for producing a thin pellet-shaped solder alloy, cracking can be prevented.

また、1.5質量%以下の銅を含み残部の主成分が錫からなる第1のはんだ合金と、2.0質量%以上の銅を含み残部の主成分が錫からなる第2のはんだ合金とを合体させて熱間圧延工程を行なうことにより、3質量%以上10質量%以下の銅を含み残部の主成分が錫からなる厚さが1mm以下の薄いペレット状のはんだ合金を作製する工程において、割れを防止することができる。   Moreover, the 1st solder alloy which contains 1.5 mass% or less of copper and the main component of remainder consists of tin, and the 2nd solder alloy which contains 2.0 mass% or more of copper and the main component of the remainder consists of tin To produce a thin pellet-shaped solder alloy having a thickness of 1 mm or less, the main component of which is 3% by weight or more and containing tin of 10% by weight or less. In, cracking can be prevented.

実施の形態1.
実施の形態1においては、錫(Sn)と銅(Cu)とを主成分とするはんだ材料にゲルマニウム(Ge)を添加したものである。本実施の形態においては、はんだ合金をSn−5Cu−xGeのように表記する。この場合、5質量%のCuと、x質量%のGeと、残部の主成分がSnとで構成されたはんだ合金を示している。本実施の形態においては、残部の主成分がSnで構成されていればよく、不可避的な不純物などを含んでいてもよい。
Embodiment 1 FIG.
In Embodiment 1, germanium (Ge) is added to a solder material mainly composed of tin (Sn) and copper (Cu). In the present embodiment, the solder alloy is expressed as Sn-5Cu-xGe. In this case, a solder alloy is shown in which 5% by mass of Cu, x% by mass of Ge, and the remaining main component are composed of Sn. In the present embodiment, the remaining main component only needs to be made of Sn, and may contain inevitable impurities.

x=0(比較例1)、x=0.00005(実施例1)、x=0.0001(実施例2)、x=0.0005(実施例3)、x=0.001(実施例4)、x=0.005(実施例5)、x=0.007(実施例6)、x=0.01(実施例7)、x=0.05(実施例8)、x=0.1(実施例9)、x=0.2(比較例2)およびx=0.5(比較例3)となるように、Sn粉末、Cu粉末およびGe粉末をそれぞれ所定量秤量して混合した。これらの混合粉末を、高周波溶融炉にて溶融後、金型に投入して鍛造することにより、それぞれ長さ325mm、幅40mm、厚さ40mmの棒状はんだ材を作製した。   x = 0 (Comparative Example 1), x = 0.00005 (Example 1), x = 0.0001 (Example 2), x = 0.0005 (Example 3), x = 0.001 (Example) 4), x = 0.005 (Example 5), x = 0.007 (Example 6), x = 0.01 (Example 7), x = 0.05 (Example 8), x = 0 0.1 (Example 9), x = 0.2 (Comparative Example 2) and x = 0.5 (Comparative Example 3), Sn powder, Cu powder, and Ge powder were weighed and mixed in predetermined amounts, respectively. did. These mixed powders were melted in a high-frequency melting furnace, and then put into a mold and forged to produce bar-shaped solder materials having a length of 325 mm, a width of 40 mm, and a thickness of 40 mm, respectively.

なお、Ge添加量が微量であるため、棒状はんだ材の一部を用いてICP分析(Inductively CoupledPlasma Analysis)を行い、Geの添加量を確認した。   Since the addition amount of Ge is very small, ICP analysis (Inductively Coupled Plasma Analysis) was performed using a part of the rod-shaped solder material to confirm the addition amount of Ge.

これらの各実施例および比較例の棒状はんだ材を、圧延機で圧延してペレット状のはんだ合金を作製した。このとき、1回の圧延率が10%となるように圧延機の圧延ロール間隔を適宜調整した。ここで、圧延率は、(圧延前の厚さ−圧延後の厚さ)/(圧延前の厚さ)×100[%]と定義する。圧延工程は、圧延後のペレットに目視で確認できる長さ0.5mm以上の割れが発生するまで圧延率10%で繰り返し行い、割れが確認できたときの厚さを割れ発生厚さとした。   The rod-shaped solder materials of these Examples and Comparative Examples were rolled with a rolling mill to produce pellet-shaped solder alloys. At this time, the rolling roll interval of the rolling mill was adjusted as appropriate so that the rolling rate per rolling was 10%. Here, the rolling rate is defined as (thickness before rolling−thickness after rolling) / (thickness before rolling) × 100 [%]. The rolling process was repeated at a rolling rate of 10% until a crack having a length of 0.5 mm or more that could be visually confirmed occurred in the pellets after rolling, and the thickness when the crack was confirmed was defined as the crack generation thickness.

表1は、本実施の形態における各実施例および比較例の割れ発生厚さを示したものである。なお、表1において、割れ発生厚さの表記で「<0.1」とは、厚さ0.1mmまで圧延してもわれが発生しなかったことを示している。   Table 1 shows the crack occurrence thickness of each example and comparative example in the present embodiment. In Table 1, “<0.1” in the notation of crack occurrence thickness indicates that no crack was generated even when rolled to a thickness of 0.1 mm.

Figure 2011121062
Figure 2011121062

表1からわかるように、Geを0.00005〜0.1質量%添加することで、ペレットの厚さを1mm以下まで圧延しても割れが発生しないことがわかる。なお、好ましくは、Geの添加量が0.001〜0.01質量%であれば、厚さ0.1mmまで割れが発生せず、圧延性に優れたはんだ合金が得られることがわかる。   As can be seen from Table 1, by adding 0.00005 to 0.1% by mass of Ge, it can be seen that cracking does not occur even when the thickness of the pellet is rolled to 1 mm or less. Preferably, it can be seen that if the amount of Ge added is 0.001 to 0.01% by mass, a crack is not generated up to a thickness of 0.1 mm, and a solder alloy excellent in rollability is obtained.

一方、比較例1においては、厚さが3.60mmで割れが発生したが、この原因は、鍛造して棒状はんだ材を作製した際に、棒状はんだ材の内部にボイドが発生したためと推定される。また、比較例2および3においては、Geの添加量が多いために、棒状はんだ材の内部にGeが偏析し、この偏析したGeが起点となって圧延時に割れが発生したと推定される。   On the other hand, in Comparative Example 1, cracks occurred at a thickness of 3.60 mm, and this was presumed to be because voids were generated inside the bar-shaped solder material when forged to produce the bar-shaped solder material. The In Comparative Examples 2 and 3, since the amount of Ge added is large, Ge is segregated inside the bar-shaped solder material, and it is presumed that cracks occurred during rolling starting from the segregated Ge.

次に、本実施の形態における蟻酸の還元雰囲気を用いた還元処理によるはんだ接合工程について説明する。はんだペレットしては、実施例5(x=0.005)のペレットを用いた。ペレットの厚さは0.5mmとした。   Next, the solder joining process by the reduction process using the formic acid reducing atmosphere in the present embodiment will be described. As a solder pellet, the pellet of Example 5 (x = 0.005) was used. The thickness of the pellet was 0.5 mm.

□7mm×厚さ0.25mmのSiチップ(たとえば日立超LSIシステムズ製TEGチップ)と□10mm×厚さ1mmのCuブロックを用意する。Siチップの接合面には厚さ約700nmのNi膜をメッキ処理により成膜する。これらのSiチップとCuブロックとを、50〜200ppmの蟻酸還元雰囲気中において175℃で50秒間保持することにより接合面の酸化膜を除去する。次に、同じ蟻酸還元雰囲気中において、Siチップの接合面とCuブロックの接合面との間に、上記実施例5のはんだペレットを挟み、これらをホットプレート上に載置し、180℃で40秒間保持し、続けて320℃で15秒間保持することにより、SiチップとCuブロックとを接合した。その後、大気放冷させて接合サンプルを作製した。   A 7 mm × 0.25 mm thick Si chip (for example, a TEG chip manufactured by Hitachi Ultra LSI Systems) and a 10 mm × 1 mm thick Cu block are prepared. A Ni film having a thickness of about 700 nm is formed on the bonding surface of the Si chip by plating. These Si chip and Cu block are held in a formic acid reducing atmosphere of 50 to 200 ppm at 175 ° C. for 50 seconds to remove the oxide film on the bonding surface. Next, in the same formic acid reducing atmosphere, the solder pellets of Example 5 were sandwiched between the Si chip bonding surface and the Cu block bonding surface, and these were placed on a hot plate and heated at 180 ° C. at 40 ° C. The Si chip and the Cu block were bonded by holding for 2 seconds and then holding at 320 ° C. for 15 seconds. Thereafter, the sample was allowed to cool to the atmosphere to prepare a bonded sample.

このような接合サンプルを、同じはんだペレットを用いて10個作製し、はんだ接合部を透過X線装置によってそれぞれの接合サンプルのはんだ接合部の透過X線写真を撮影し、この透過X線写真の画像を画像処理により濃淡を2値化(黒色または白色)してボイド率を算出した。ここで、ボイド率とは、透過X線写真において空洞のボイドは薄い色となるので、2値化したときの写真全体の面積に対する白色部分の面積比で定義される。その結果、本実施の形態における蟻酸の還元雰囲気を用いた還元処理によるはんだ接合においては、10個のサンプルすべてにおいて、ボイド率は6〜9%となり、長期信頼性の観点からボイド率の製造基準としている10%以下を満足した。   Ten such bonded samples are produced using the same solder pellet, and the solder X-ray photograph of the solder bonded portion of each bonded sample is photographed with a transmission X-ray apparatus. The void ratio was calculated by binarizing the shade of the image by image processing (black or white). Here, the void ratio is defined by the area ratio of the white portion to the area of the entire photograph when binarized because voids in the transmission X-ray photograph have a light color. As a result, in the solder joint by the reduction treatment using the formic acid reducing atmosphere in the present embodiment, the void rate is 6 to 9% in all 10 samples, and the manufacturing standard of the void rate from the viewpoint of long-term reliability. Satisfying 10% or less.

実施の形態2.
実施の形態2においては、Geの添加量を一定とし、Cuの含有量を変更したものである。本実施の形態においては、はんだ合金をSn−yCu−0.005Geのように表記する。この場合、y質量%のCuと、0.005質量%のGeと、残部の主成分がSnとで構成されたはんだ合金を示している。本実施の形態においても実施の形態1と同様に、残部の主成分がSnで構成されていればよく、不可避的な不純物などを含んでいてもよい。
Embodiment 2. FIG.
In the second embodiment, the addition amount of Ge is constant and the Cu content is changed. In the present embodiment, the solder alloy is expressed as Sn-yCu-0.005Ge. In this case, a solder alloy composed of y% by mass of Cu, 0.005% by mass of Ge, and the remaining main component of Sn is shown. Also in the present embodiment, as in the first embodiment, it is only necessary that the remaining main component is composed of Sn, and it may contain inevitable impurities.

y=2(比較例4)、y=3(実施例11)、y=5(実施例12)、y=8(実施例13)、y=10(実施例14)、y=12(比較例5)およびy=15(比較例6)となるように、Sn粉末、Cu粉末およびGe粉末をそれぞれ所定量秤量して混合した。これらの混合粉末を、高周波溶融炉にて溶融後、金型に投入して鍛造することにより、それぞれ長さ325mm、幅40mm、厚さ40mmの棒状はんだ材を作製した。   y = 2 (Comparative Example 4), y = 3 (Example 11), y = 5 (Example 12), y = 8 (Example 13), y = 10 (Example 14), y = 12 (Comparison) A predetermined amount of each of Sn powder, Cu powder and Ge powder was weighed and mixed so that Example 5) and y = 15 (Comparative Example 6). These mixed powders were melted in a high-frequency melting furnace, and then put into a mold and forged to produce bar-shaped solder materials having a length of 325 mm, a width of 40 mm, and a thickness of 40 mm, respectively.

これらの各実施例および比較例の棒状はんだ材を、圧延機で圧延してペレット状のはんだ合金を作製した。このとき、1回の圧延率が10%となるように圧延機の圧延ロール間隔を適宜調整した。圧延率および割れ発生厚さは、実施の形態1と同様に定義される。   The rod-shaped solder materials of these Examples and Comparative Examples were rolled with a rolling mill to produce pellet-shaped solder alloys. At this time, the rolling roll interval of the rolling mill was adjusted as appropriate so that the rolling rate per rolling was 10%. The rolling rate and crack generation thickness are defined in the same manner as in the first embodiment.

次に、□7mm×厚さ0.25mmのSiチップ(たとえば日立超LSIシステムズ製TEGチップ)と□10mm×厚さ1mmのCuブロックを用意する。Siチップの接合面には厚さ約700nmのNi膜をメッキ処理により成膜する。これらのSiチップとCuブロックとを、50〜200ppmの蟻酸還元雰囲気中において175℃で50秒間保持することにより接合面の酸化膜を除去する。次に、同じ蟻酸還元雰囲気中において、Siチップの接合面とCuブロックの接合面との間に、上記各実施例および比較例のはんだペレットを挟み、これらをホットプレート上に載置し、180℃で40秒間保持し、続けて320℃で15秒間保持することにより、SiチップとCuブロックとを接合した。その後、大気放冷させて接合サンプルを作製した。   Next, a □ 7 mm × 0.25 mm thick Si chip (for example, a TEG chip manufactured by Hitachi Ultra LSI Systems) and a □ 10 mm × 1 mm thick Cu block are prepared. A Ni film having a thickness of about 700 nm is formed on the bonding surface of the Si chip by plating. These Si chip and Cu block are held in a formic acid reducing atmosphere of 50 to 200 ppm at 175 ° C. for 50 seconds to remove the oxide film on the bonding surface. Next, in the same formic acid reducing atmosphere, the solder pellets of the above examples and comparative examples are sandwiched between the bonding surface of the Si chip and the bonding surface of the Cu block, and these are placed on a hot plate, 180 The Si chip and the Cu block were bonded by holding at 40 ° C. for 40 seconds and subsequently holding at 320 ° C. for 15 seconds. Thereafter, the sample was allowed to cool to the atmosphere to prepare a bonded sample.

これらの接合サンプルをはんだ接合部の接合断面が露出するように断面研磨し、はんだ接合部の接合断面を電子顕微鏡で約2万倍の倍率で観察し、Ni膜の残存膜厚を測定した。   These bonded samples were polished so that the bonded cross section of the solder bonded portion was exposed, and the bonded cross section of the solder bonded portion was observed with an electron microscope at a magnification of about 20,000 times to measure the remaining film thickness of the Ni film.

表2は、本実施の形態における各実施例および比較例の割れ発生厚さおよびNi膜の残存膜厚を示したものである。   Table 2 shows the crack occurrence thickness and the remaining film thickness of the Ni film in each example and comparative example in the present embodiment.

Figure 2011121062
Figure 2011121062

表2からわかるように、Geが0.005質量%添加されたはんだ合金においては、Cu組成比が、10質量%以下であれば、ペレットの厚さを1mm以下まで圧延しても割れが発生しないことがわかる。また、Cuの含有量が3質量%以上であれば、Ni残存膜厚が400nm以上となる。はんだ接合の長期信頼性を確保するためには、残存するNi膜の膜厚が400nm以上であることが望ましい。残存するNi膜の膜厚が400nmより小さくなると界面剥離(クラック)などの発生する確率が高くなるので、Cuの組成比は3質量%以上が望ましい。したがって、Cuの含有量が3〜10質量%の範囲であれば圧延性および長期接合信頼性に優れた半田合金となる。   As can be seen from Table 2, in the solder alloy to which 0.005% by mass of Ge is added, if the Cu composition ratio is 10% by mass or less, cracking occurs even if the pellet thickness is rolled to 1mm or less. I understand that I do not. Further, if the Cu content is 3% by mass or more, the Ni remaining film thickness is 400 nm or more. In order to ensure the long-term reliability of the solder joint, it is desirable that the remaining Ni film has a thickness of 400 nm or more. If the thickness of the remaining Ni film is smaller than 400 nm, the probability of occurrence of interfacial peeling (cracks) increases, so the Cu composition ratio is desirably 3% by mass or more. Therefore, when the Cu content is in the range of 3 to 10% by mass, the solder alloy is excellent in rollability and long-term bonding reliability.

なお、実施の形態1において、残存するNi膜の膜厚は、実施例1〜9および比較例1〜3すべて500nm以上であった。   In the first embodiment, the thickness of the remaining Ni film was 500 nm or more in all of Examples 1 to 9 and Comparative Examples 1 to 3.

実施の形態3.
実施の形態3においては、Cu含有量が低いはんだ合金と、Cu含有量の高いはんだ合金とを組み合わせて、Cu含有量が3〜10質量%のペレット状のはんだ合金を製造する方法を示したものである。
Embodiment 3 FIG.
In the third embodiment, a method of manufacturing a pellet-shaped solder alloy having a Cu content of 3 to 10% by mass by combining a solder alloy having a low Cu content and a solder alloy having a high Cu content has been shown. Is.

始めに、1mm以下まで圧延しても割れの発生もなく、安定してペレット状のはんだ合金が得られるCu含有量を求めた。ここで、はんだ合金をSn−yCuのように表記する。この場合、y質量%のCuと残部の主成分がSnとで構成されたはんだ合金を示している。本実施の形態においても実施の形態1と同様に、残部の主成分がSnで構成されていればよく、不可避的な不純物などを含んでいてもよい。本実施の形態においては、棒状はんだ材の製造方法および圧延工程は、実施の形態1と同様である。Cu含有量(y)を変化させて棒状はんだ材を作製し、さらに圧延後の厚さが1mm、2mmおよび5mm厚としたサンプルを各10個ずつ作製し、それぞれの10個のサンプルにおいて、割れが発生せず良好なペレットが得られた率(歩留り)を評価した。   First, the Cu content was obtained in which a pellet-shaped solder alloy was stably obtained without cracking even when rolled to 1 mm or less. Here, the solder alloy is expressed as Sn-yCu. In this case, the solder alloy is composed of y mass% Cu and the remaining main component is Sn. Also in the present embodiment, as in the first embodiment, it is only necessary that the remaining main component is composed of Sn, and it may contain inevitable impurities. In the present embodiment, the method for manufacturing the rod-shaped solder material and the rolling process are the same as those in the first embodiment. A rod-shaped solder material was produced by changing the Cu content (y), and 10 samples each having a thickness after rolling of 1 mm, 2 mm, and 5 mm were produced, and each of the 10 samples was cracked. The rate (yield) at which good pellets were obtained without generation was evaluated.

表3は、Cu含有量とペレット厚に対する歩留りを示したものである。この表から、Cu含有量が1.5質量%以下で歩留り100%となることがわかる。   Table 3 shows the yield with respect to the Cu content and the pellet thickness. From this table, it can be seen that when the Cu content is 1.5 mass% or less, the yield is 100%.

Figure 2011121062
Figure 2011121062

次に、上記の結果からCu含有量が低いはんだ合金として、Sn−1.5Cuはんだ合金を用いて、Cu含有量の高いはんだ合金と組み合わせて、Cu含有量が3〜10質量%のペレット状のはんだ合金を製造する方法について説明する。   Next, from the above results, Sn-1.5Cu solder alloy is used as a solder alloy having a low Cu content, and in combination with a solder alloy having a high Cu content, a pellet shape having a Cu content of 3 to 10% by mass. A method for producing the solder alloy will be described.

Sn−1.5Cuはんだ合金を用いて、長さ325mm、幅40mm、厚さ30mmの棒状はんだ材を作製する。この棒状はんだ材の表面に、約400gのSn−30Cuの粉末状はんだ合金を付着させる。この粉末状はんだ合金が付着した棒状はんだ材を、圧延機を用いて、1回の圧延率を10%に設定して圧延を複数回行い、厚さ1mmのペレット状はんだ合金を作製した。   Using a Sn-1.5Cu solder alloy, a rod-shaped solder material having a length of 325 mm, a width of 40 mm, and a thickness of 30 mm is produced. About 400 g of Sn-30Cu powdered solder alloy is adhered to the surface of the bar-shaped solder material. The rod-shaped solder material with the powdered solder alloy adhered thereto was rolled a plurality of times using a rolling mill at a rolling rate of 10% to produce a pellet-shaped solder alloy having a thickness of 1 mm.

このようにして得られたペレット状はんだ合金の組成は、Sn−1.5Cuはんだ合金とSn−30Cuはんだ合金との混合割合から、Sn−5Cuとなる。また、このペレット状はんだ合金には、割れは発生しなかった。   The composition of the thus obtained pellet-like solder alloy is Sn-5Cu from the mixing ratio of Sn-1.5Cu solder alloy and Sn-30Cu solder alloy. Further, no cracking occurred in this pellet solder alloy.

次に、□7mm×厚さ0.25mmのSiチップ(たとえば日立超LSIシステムズ製TEGチップ)と□10mm×厚さ1mmのCuブロックを用意する。Siチップの接合面には厚さ約700nmのNi膜をメッキ処理により成膜する。これらのSiチップとCuブロックとを、50〜200ppmの蟻酸還元雰囲気中において175℃で50秒間保持することにより接合面の酸化膜を除去する。次に、同じ蟻酸還元雰囲気中において、Siチップの接合面とCuブロックの接合面との間に、本実施の形態のはんだペレットを挟み、これらをホットプレート上に載置し、180℃で40秒間保持し、続けて320℃で15秒間保持することにより、SiチップとCuブロックとを接合した。その後、大気放冷させて接合サンプルを作製した。   Next, a □ 7 mm × 0.25 mm thick Si chip (for example, a TEG chip manufactured by Hitachi Ultra LSI Systems) and a □ 10 mm × 1 mm thick Cu block are prepared. A Ni film having a thickness of about 700 nm is formed on the bonding surface of the Si chip by plating. These Si chip and Cu block are held in a formic acid reducing atmosphere of 50 to 200 ppm at 175 ° C. for 50 seconds to remove the oxide film on the bonding surface. Next, in the same formic acid reducing atmosphere, the solder pellets of the present embodiment are sandwiched between the bonding surface of the Si chip and the bonding surface of the Cu block, and these are placed on a hot plate and heated at 180 ° C. at 40 ° C. The Si chip and the Cu block were bonded by holding for 2 seconds and then holding at 320 ° C. for 15 seconds. Thereafter, the sample was allowed to cool to the atmosphere to prepare a bonded sample.

このような接合サンプルを、同じはんだペレットを用いて10個作製し、はんだ接合部を透過X線装置によってそれぞれの接合サンプルのはんだ接合部の透過X線写真を撮影し、ボイド率を算出した。その結果、本実施の形態における蟻酸の還元雰囲気を用いた還元処理によるはんだ接合においては、10個のサンプルすべてにおいて、ボイド率は6〜9%となり、長期信頼性の観点からボイド率の製造基準としている10%以下を満足した。   Ten such bonded samples were prepared using the same solder pellets, and the solder joints were photographed by transmission X-ray photographs of the solder joints of the respective joint samples using a transmission X-ray apparatus, and the void ratio was calculated. As a result, in the solder joint by the reduction treatment using the formic acid reducing atmosphere in the present embodiment, the void rate is 6 to 9% in all 10 samples, and the manufacturing standard of the void rate from the viewpoint of long-term reliability. Satisfying 10% or less.

なお、本実施の形態においては、Sn−1.5Cuはんだ合金の厚さ30mmの棒状はんだ材に、Sn−30Cuの粉末状はんだ合金を付着させて、厚さ1mmのペレット状のSn−5Cuはんだ合金を作製したが、Cu含有量が低いはんだ合金としてはCu含有量が1.5質量%以下のはんだ合金、Cu含有量の高いはんだ合金としてはCu含有量が2.0質量%以上のはんだ合金を用いて、Cu含有量が3〜10質量%で厚さ1mmのペレット状のはんだ合金を作製することができる。また、Cu含有量の高いはんだ合金の替わりに、純銅を用いることもできる。   In the present embodiment, Sn-30Cu powdered solder alloy is attached to a Sn-1.5Cu solder alloy rod-shaped solder material having a thickness of 30 mm, and a pellet-shaped Sn-5Cu solder having a thickness of 1 mm is used. An alloy was prepared. A solder alloy having a low Cu content is a solder alloy having a Cu content of 1.5% by mass or less, and a solder alloy having a high Cu content is a solder having a Cu content of 2.0% by mass or more. Using the alloy, a pellet-shaped solder alloy having a Cu content of 3 to 10% by mass and a thickness of 1 mm can be produced. Moreover, pure copper can also be used instead of a solder alloy with high Cu content.

実施の形態4.
実施の形態4においては、実施の形態3とは異なる方法で、Cu含有量が低いはんだ合金とCu含有量の高いはんだ合金とを組み合わせて、Cu含有量が3〜10質量%のペレット状のはんだ合金を製造する方法を示したものである。
Embodiment 4 FIG.
In the fourth embodiment, in a method different from the third embodiment, a solder alloy having a low Cu content and a solder alloy having a high Cu content are combined to form a pellet having a Cu content of 3 to 10% by mass. A method for producing a solder alloy is shown.

Sn−1.5Cuはんだ合金粉末を2.8kg、平均粒径約20μmのSn−30Cuのはんだ合金粉末を400g用意する。Sn−1.5Cuはんだ合金粉末を高周波溶融炉にて溶融後、長さ325mm、幅40mm、厚さ40mmの棒状はんだ材を作製するための金型に投入する。金型内の溶融はんだ合金の温度を共晶温度(227℃)以下に設定した後に、Sn−30Cuのはんだ合金粉末を金型に追加投入する。この場合、追加投入したSn−30Cuはんだ合金粉末は溶解せず、溶融しているSn−1.5Cuはんだ合金に分散する。その後冷却して長さ約325mm、幅40mm、厚さ40mmの棒状はんだ材を作製した。   2.8 kg of Sn-1.5Cu solder alloy powder and 400 g of Sn-30Cu solder alloy powder having an average particle size of about 20 μm are prepared. After the Sn-1.5Cu solder alloy powder is melted in a high-frequency melting furnace, it is put into a mold for producing a bar-shaped solder material having a length of 325 mm, a width of 40 mm, and a thickness of 40 mm. After setting the temperature of the molten solder alloy in the mold to be equal to or lower than the eutectic temperature (227 ° C.), Sn-30Cu solder alloy powder is additionally charged into the mold. In this case, the added Sn-30Cu solder alloy powder is not dissolved but dispersed in the molten Sn-1.5Cu solder alloy. Thereafter, it was cooled to produce a rod-shaped solder material having a length of about 325 mm, a width of 40 mm, and a thickness of 40 mm.

このようにして作製された棒状はんだ材を、圧延機を用いて、1回の圧延率を10%に設定して圧延を複数回行い、厚さ1mmのペレット状はんだ合金を作製した。   The rod-shaped solder material thus produced was rolled a plurality of times using a rolling mill at a rolling rate of 10% to produce a 1 mm thick pellet-shaped solder alloy.

このようにして得られたペレット状はんだ合金の組成は、Sn−1.5Cuはんだ合金とSn−30Cuはんだ合金との混合割合から、Sn−5Cuとなる。また、このペレット状はんだ合金には、割れは発生しなかった。   The composition of the thus obtained pellet-like solder alloy is Sn-5Cu from the mixing ratio of Sn-1.5Cu solder alloy and Sn-30Cu solder alloy. Further, no cracking occurred in this pellet solder alloy.

次に、□7mm×厚さ0.25mmのSiチップ(たとえば日立超LSIシステムズ製TEGチップ)と□10mm×厚さ1mmのCuブロックを用意する。Siチップの接合面には厚さ約700nmのNi膜をメッキ処理により成膜する。これらのSiチップとCuブロックとを、50〜200ppmの蟻酸還元雰囲気中において175℃で50秒間保持することにより接合面の酸化膜を除去する。次に、同じ蟻酸還元雰囲気中において、Siチップの接合面とCuブロックの接合面との間に、本実施の形態のはんだペレットを挟み、これらをホットプレート上に載置し、180℃で40秒間保持し、続けて320℃で15秒間保持することにより、SiチップとCuブロックとを接合した。その後、大気放冷させて接合サンプルを作製した。   Next, a □ 7 mm × 0.25 mm thick Si chip (for example, a TEG chip manufactured by Hitachi Ultra LSI Systems) and a □ 10 mm × 1 mm thick Cu block are prepared. A Ni film having a thickness of about 700 nm is formed on the bonding surface of the Si chip by plating. These Si chip and Cu block are held in a formic acid reducing atmosphere of 50 to 200 ppm at 175 ° C. for 50 seconds to remove the oxide film on the bonding surface. Next, in the same formic acid reducing atmosphere, the solder pellets of the present embodiment are sandwiched between the bonding surface of the Si chip and the bonding surface of the Cu block, and these are placed on a hot plate and heated at 180 ° C. at 40 ° C. The Si chip and the Cu block were bonded by holding for 2 seconds and then holding at 320 ° C. for 15 seconds. Thereafter, the sample was allowed to cool to the atmosphere to prepare a bonded sample.

このような接合サンプルを、同じはんだペレットを用いて10個作製し、はんだ接合部を透過X線装置によってそれぞれの接合サンプルのはんだ接合部の透過X線写真を撮影し、ボイド率を算出した。その結果、本実施の形態における蟻酸の還元雰囲気を用いた還元処理によるはんだ接合においては、10個のサンプルすべてにおいて、ボイド率は6〜9%となり、長期信頼性の観点からボイド率の製造基準としている10%以下を満足した。   Ten such bonded samples were prepared using the same solder pellets, and the solder joints were photographed by transmission X-ray photographs of the solder joints of the respective joint samples using a transmission X-ray apparatus, and the void ratio was calculated. As a result, in the solder joint by the reduction treatment using the formic acid reducing atmosphere in the present embodiment, the void rate is 6 to 9% in all 10 samples, and the manufacturing standard of the void rate from the viewpoint of long-term reliability. Satisfying 10% or less.

なお、本実施の形態においては、Sn−1.5Cuはんだ合金の溶融物にSn−30Cuはんだ合金粉末を投入して棒状はんだ材を作製したが、Cu含有量が低いはんだ合金としてはCu含有量が1.5質量%以下のはんだ合金、Cu含有量の高いはんだ合金としてはCu含有量が2.0質量%以上のはんだ合金を用いて棒状はんだ材を作製することができる。また、Cu含有量の高いはんだ合金粉末の替わりに、純銅の粉末を用いることもできる。   In the present embodiment, Sn-30Cu solder alloy powder was put into a melt of Sn-1.5Cu solder alloy to produce a rod-shaped solder material. However, as a solder alloy having a low Cu content, the Cu content is low. As a solder alloy having a Cu content of 1.5% by mass or less and a solder alloy having a high Cu content, a bar-shaped solder material can be produced using a solder alloy having a Cu content of 2.0% by mass or more. Also, pure copper powder can be used in place of the solder alloy powder having a high Cu content.

また、本実施の形態においては、Cu含有量の高いはんだ合金粉末として平均粒径20μmのものを用いたが、平均粒径は1〜50μmの範囲が好ましい。平均粒径が1μm以上であれば、接合サンプル作製時のはんだ合金の濡れ性がよくなり、平均粒径が50μm以下であれば、ペレット状はんだ合金の作製時に確実に割れが発生せず安定してペレット状に加工できる。   Moreover, in this Embodiment, although the thing with an average particle diameter of 20 micrometers was used as a solder alloy powder with high Cu content, the average particle diameter has the preferable range of 1-50 micrometers. If the average particle size is 1 μm or more, the wettability of the solder alloy at the time of preparing the bonded sample is improved, and if the average particle size is 50 μm or less, cracks are not reliably generated and stable when the pellet-shaped solder alloy is manufactured. Can be processed into pellets.

実施の形態5.
実施の形態5においては、Cu含有量が低いはんだ合金と、Cu含有量の高いはんだ合金とを組み合わせて、Cu含有量が3〜10質量%のペレット状のはんだ合金を製造する方法を示したものである。
Embodiment 5 FIG.
In the fifth embodiment, a method of manufacturing a pellet-shaped solder alloy having a Cu content of 3 to 10% by mass by combining a solder alloy having a low Cu content and a solder alloy having a high Cu content has been shown. Is.

Sn−1.5Cuはんだ合金を用いて、長さ325mm、幅40mm、厚さ20mmの棒状はんだ材を作製する。次に、Sn−6.5Cuはんだ合金を用いて、長さ325mm、幅40mm、厚さ20mmの棒状はんだ材を作製する。この厚さ20mmでCu含有量の異なる棒状はんだ材を重ねて、圧延機を用いて、1回の圧延率を10%に設定して圧延を複数回行い、厚さ1mmのペレット状はんだ合金を作製した。   Using a Sn-1.5Cu solder alloy, a bar-shaped solder material having a length of 325 mm, a width of 40 mm, and a thickness of 20 mm is produced. Next, a rod-shaped solder material having a length of 325 mm, a width of 40 mm, and a thickness of 20 mm is produced using a Sn-6.5Cu solder alloy. This rod-shaped solder material having a thickness of 20 mm and different Cu contents is stacked, and a rolling mill is used to perform rolling a plurality of times with a rolling rate set to 10%. Produced.

このようにして得られたペレット状はんだ合金の組成は、Sn−1.5Cuはんだ合金とSn−6.5Cuはんだ合金との混合割合から、Sn−4Cuとなる。また、このペレット状はんだ合金には、割れは発生しなかった。   The composition of the thus obtained pellet-shaped solder alloy is Sn-4Cu from the mixing ratio of the Sn-1.5Cu solder alloy and the Sn-6.5Cu solder alloy. Further, no cracking occurred in this pellet solder alloy.

次に、□7mm×厚さ0.25mmのSiチップ(たとえば日立超LSIシステムズ製TEGチップ)と□10mm×厚さ1mmのCuブロックを用意する。Siチップの接合面には厚さ約700nmのNi膜をメッキ処理により成膜する。これらのSiチップとCuブロックとを、50〜200ppmの蟻酸還元雰囲気中において175℃で50秒間保持することにより接合面の酸化膜を除去する。次に、同じ蟻酸還元雰囲気中において、Siチップの接合面とCuブロックの接合面との間に、本実施の形態のはんだペレットを挟み、これらをホットプレート上に載置し、180℃で40秒間保持し、続けて320℃で15秒間保持することにより、SiチップとCuブロックとを接合した。その後、大気放冷させて接合サンプルを作製した。   Next, a □ 7 mm × 0.25 mm thick Si chip (for example, a TEG chip manufactured by Hitachi Ultra LSI Systems) and a □ 10 mm × 1 mm thick Cu block are prepared. A Ni film having a thickness of about 700 nm is formed on the bonding surface of the Si chip by plating. These Si chip and Cu block are held in a formic acid reducing atmosphere of 50 to 200 ppm at 175 ° C. for 50 seconds to remove the oxide film on the bonding surface. Next, in the same formic acid reducing atmosphere, the solder pellets of the present embodiment are sandwiched between the bonding surface of the Si chip and the bonding surface of the Cu block, and these are placed on a hot plate and heated at 180 ° C. at 40 ° C. The Si chip and the Cu block were bonded by holding for 2 seconds and then holding at 320 ° C. for 15 seconds. Thereafter, the sample was allowed to cool to the atmosphere to prepare a bonded sample.

このような接合サンプルを、同じはんだペレットを用いて10個作製し、はんだ接合部を透過X線装置によってそれぞれの接合サンプルのはんだ接合部の透過X線写真を撮影し、ボイド率を算出した。その結果、本実施の形態における蟻酸の還元雰囲気を用いた還元処理によるはんだ接合においては、10個のサンプルすべてにおいて、ボイド率は6〜9%となり、長期信頼性の観点からボイド率の製造基準としている10%以下を満足した。   Ten such bonded samples were prepared using the same solder pellets, and the solder joints were photographed by transmission X-ray photographs of the solder joints of the respective joint samples using a transmission X-ray apparatus, and the void ratio was calculated. As a result, in the solder joint by the reduction treatment using the formic acid reducing atmosphere in the present embodiment, the void rate is 6 to 9% in all 10 samples, and the manufacturing standard of the void rate from the viewpoint of long-term reliability. Satisfying 10% or less.

なお、本実施の形態においては、Sn−1.5Cuはんだ合金の厚さ20mmの棒状はんだ材とSn−6.5Cuはんだ合金の厚さ20mmの棒状はんだ材とを組み合わせて、厚さ1mmのペレット状のSn−5Cuはんだ合金を作製したが、Cu含有量が低いはんだ合金としてはCu含有量が1.5質量%以下のはんだ合金、Cu含有量の高いはんだ合金としてはCu含有量が2.0質量%以上のはんだ合金を用いて、Cu含有量が3〜10質量%で厚さ1mmのペレット状のはんだ合金を作製することができる。
また、本実施の形態においては、Cu含有量の異なる2つの棒状はんだ材を用いたが、棒状はんだ材の厚みを薄くして、Cu含有量の異なる2つの棒状はんだ材を多層に重ねて圧延することもできる。
In the present embodiment, a Sn-1.5Cu solder alloy rod-shaped solder material having a thickness of 20 mm and a Sn-6.5Cu solder alloy rod-shaped solder material having a thickness of 20 mm are combined to form a pellet having a thickness of 1 mm. A Sn-5Cu solder alloy was prepared, but as a solder alloy having a low Cu content, a Cu content having a Cu content of 1.5% by mass or less, and as a solder alloy having a high Cu content, a Cu content of 2. Using a solder alloy of 0% by mass or more, a pellet-shaped solder alloy having a Cu content of 3 to 10% by mass and a thickness of 1 mm can be produced.
In this embodiment, two bar-shaped solder materials having different Cu contents are used. However, the thickness of the bar-shaped solder material is reduced, and the two bar-shaped solder materials having different Cu contents are stacked and rolled. You can also

また、Cu含有量の高いはんだ合金の替わりに、純銅を用いることもできる。この場合、Sn−Cuはんだ合金の棒状はんだ材を棒状の純銅材で挟んで圧延することができる。   Moreover, pure copper can also be used instead of a solder alloy with high Cu content. In this case, the rod-shaped solder material of Sn—Cu solder alloy can be sandwiched and rolled with a rod-shaped pure copper material.

Claims (4)

3質量%以上10質量%以下の銅と、
0.00005質量%以上0.1質量%以下のゲルマニウムと、
残部の主成分が錫と
から構成されたことを特徴とするはんだ合金。
3 mass% or more and 10 mass% or less of copper,
0.00005% to 0.1% by weight of germanium;
A solder alloy characterized in that the remaining main component is composed of tin.
1.5質量%以下の銅を含み残部の主成分が錫からなる第1のはんだ合金と、
2.0質量%以上の銅を含み残部の主成分が錫からなる第2のはんだ合金および純銅の少なくとも一方とを所定の質量比で重ね合わせ、
熱間圧延工程よって3質量%以上10質量%以下の銅を含み残部の主成分が錫からなるペレット状のはんだ合金の製造方法。
A first solder alloy containing 1.5% by mass or less of copper and the main component of the balance being tin;
Overlaying at least one of a second solder alloy and pure copper containing 2.0% by mass or more of copper and the main component of the balance being tin, at a predetermined mass ratio,
A method for producing a solder alloy in the form of a pellet which contains 3% by mass or more and 10% by mass or less of copper by the hot rolling step and the remaining main component is tin.
1.5質量%以下の銅を含み残部の主成分が錫からなる第1のはんだ合金の溶融物に、
前記第1のはんだ合金の共晶温度以下で2.0質量%以上の銅を含み残部の主成分が錫からなる第2のはんだ合金の粉末および純銅粉末の少なくとも一方を分散させ、
熱間圧延工程よって3質量%以上10質量%以下の銅を含み残部の主成分が錫からなるペレット状のはんだ合金の製造方法。
In the melt of the first solder alloy containing 1.5% by mass or less of copper and the main component of the balance being tin,
Disperse at least one of the second solder alloy powder and pure copper powder containing 2.0 mass% or more of copper at the eutectic temperature or lower of the first solder alloy and the main component of the balance being tin,
A method for producing a solder alloy in the form of a pellet which contains 3% by mass or more and 10% by mass or less of copper by the hot rolling step and the remaining main component is tin.
1.5質量%以下の銅を含み残部の主成分が錫からなる第1のはんだ合金に、
2.0質量%以上の銅を含み残部の主成分が錫からなる第2のはんだ合金の粉末および純銅の粉末の少なくとも一方とを所定の質量比で付着させ、
熱間圧延工程よって3質量%以上10質量%以下の銅を含み残部の主成分が錫からなるペレット状のはんだ合金の製造方法。
In the first solder alloy containing 1.5% by mass or less of copper and the main component of the balance being tin,
At least one of a second solder alloy powder and a pure copper powder containing 2.0% by mass or more of copper and the main component of the balance being tin is attached at a predetermined mass ratio,
A method for producing a solder alloy in the form of a pellet which contains 3% by mass or more and 10% by mass or less of copper by the hot rolling step and the remaining main component is tin.
JP2009278426A 2009-12-08 2009-12-08 Method for producing solder alloy Active JP5218383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009278426A JP5218383B2 (en) 2009-12-08 2009-12-08 Method for producing solder alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009278426A JP5218383B2 (en) 2009-12-08 2009-12-08 Method for producing solder alloy

Publications (2)

Publication Number Publication Date
JP2011121062A true JP2011121062A (en) 2011-06-23
JP5218383B2 JP5218383B2 (en) 2013-06-26

Family

ID=44285514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009278426A Active JP5218383B2 (en) 2009-12-08 2009-12-08 Method for producing solder alloy

Country Status (1)

Country Link
JP (1) JP5218383B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047289A1 (en) * 2015-09-17 2017-03-23 富士電機株式会社 Soldering material for semiconductor device
CN116921914A (en) * 2023-08-24 2023-10-24 广州汉源微电子封装材料有限公司 Composite metal composition and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06155081A (en) * 1992-11-26 1994-06-03 Nec Kansai Ltd Solder tape and its production
JPH1177367A (en) * 1997-09-05 1999-03-23 Murata Mfg Co Ltd Solder composition
JPH11226775A (en) * 1998-02-12 1999-08-24 Mitsubishi Shindoh Co Ltd Solder material and its production
JP2005014076A (en) * 2003-06-27 2005-01-20 Toshiba Corp Oxidation-resistant solder, method for manufacturing the same, and soldering method
JP2005254254A (en) * 2004-03-09 2005-09-22 Toshiba Corp Lead-free solder, its manufacturing method and electronic component
JP2006254580A (en) * 2005-03-10 2006-09-21 Mitsuba Corp Commutator of motor
JP2009141197A (en) * 2007-12-07 2009-06-25 Sanyo Special Steel Co Ltd Electronic apparatus soldered using lead-free bonding material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06155081A (en) * 1992-11-26 1994-06-03 Nec Kansai Ltd Solder tape and its production
JPH1177367A (en) * 1997-09-05 1999-03-23 Murata Mfg Co Ltd Solder composition
JPH11226775A (en) * 1998-02-12 1999-08-24 Mitsubishi Shindoh Co Ltd Solder material and its production
JP2005014076A (en) * 2003-06-27 2005-01-20 Toshiba Corp Oxidation-resistant solder, method for manufacturing the same, and soldering method
JP2005254254A (en) * 2004-03-09 2005-09-22 Toshiba Corp Lead-free solder, its manufacturing method and electronic component
JP2006254580A (en) * 2005-03-10 2006-09-21 Mitsuba Corp Commutator of motor
JP2009141197A (en) * 2007-12-07 2009-06-25 Sanyo Special Steel Co Ltd Electronic apparatus soldered using lead-free bonding material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047289A1 (en) * 2015-09-17 2017-03-23 富士電機株式会社 Soldering material for semiconductor device
CN107427968A (en) * 2015-09-17 2017-12-01 富士电机株式会社 Semiconductor device solderable material
JPWO2017047289A1 (en) * 2015-09-17 2018-01-25 富士電機株式会社 Solder materials for semiconductor devices
US10727194B2 (en) 2015-09-17 2020-07-28 Fuji Electric Co., Ltd. Solder material for semiconductor device
JP2021142568A (en) * 2015-09-17 2021-09-24 富士電機株式会社 Solder material for semiconductor device
US11145615B2 (en) 2015-09-17 2021-10-12 Fuji Electric Co., Ltd. Solder material for semiconductor device
JP7115591B2 (en) 2015-09-17 2022-08-09 富士電機株式会社 Solder material for semiconductor devices
CN116921914A (en) * 2023-08-24 2023-10-24 广州汉源微电子封装材料有限公司 Composite metal composition and preparation method and application thereof

Also Published As

Publication number Publication date
JP5218383B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
KR101009564B1 (en) Conductive filler
US9355986B2 (en) Solder joint structure, power module, power module substrate with heat sink and method of manufacturing the same, and paste for forming solder base layer
WO2015046280A1 (en) Cu/ceramic material joint, method for manufacturing cu/ceramic material joint, and substrate for power module
Mokhtari et al. The shear strength of transient liquid phase bonded Sn–Bi solder joint with added Cu particles
Takaku et al. Development of Bi-base high-temperature Pb-free solders with second-phase dispersion: Thermodynamic calculation, microstructure, and interfacial reaction
WO2006109573A1 (en) Conductive filler and solder material
Takata et al. Effects of solvents in the polyethylene glycol series on the bonding of copper joints using Ag 2 O paste
WO2014203425A1 (en) Zn-based lead-free solder and semiconductor power module
JP5633816B2 (en) Au-Sn alloy solder
CN115139009B (en) Preformed solder and preparation method thereof, and preparation method of welded joint
TWI725664B (en) Solder alloys, solder pastes, solder preforms and solder joints
JP6036202B2 (en) Au-Ag-Ge solder alloy
TWI711141B (en) Semiconductor device
CN108780784B (en) Metal member with Ag-based layer, insulated circuit board with Ag-based layer, semiconductor device, insulated circuit board with heat sink, and method for manufacturing metal member with Ag-based layer
JP5218383B2 (en) Method for producing solder alloy
CN114540666A (en) Bonding material and mounting structure using same
Fei et al. A preparation method for Al/AlN ceramics substrates by using a CuO interlayer
JP2012125783A (en) Lead-free solder alloy
JP2011062736A (en) Lead-free high-temperature solder material
WO2018180306A1 (en) Molded body for joining and method for manufacturing same
JP2012228729A (en) Pb FREE SOLDER ALLOY MAKING Zn PRINCIPAL INGREDIENT AND METHOD OF MANUFACTURING THE SAME
WO2021045131A1 (en) Solder paste and solder bonded body
JP7451964B2 (en) Cu alloy plate and its manufacturing method
WO2020095411A1 (en) Junction structure, semiconductor device, and production method therefor
JP3734388B2 (en) Al-based metal brazing material and ceramic circuit board using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5218383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250