JP2011120687A - Insertion section of endoscope - Google Patents

Insertion section of endoscope Download PDF

Info

Publication number
JP2011120687A
JP2011120687A JP2009279684A JP2009279684A JP2011120687A JP 2011120687 A JP2011120687 A JP 2011120687A JP 2009279684 A JP2009279684 A JP 2009279684A JP 2009279684 A JP2009279684 A JP 2009279684A JP 2011120687 A JP2011120687 A JP 2011120687A
Authority
JP
Japan
Prior art keywords
flexible tube
strand
distal end
tube portion
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009279684A
Other languages
Japanese (ja)
Inventor
Taro Ieide
太郎 家出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2009279684A priority Critical patent/JP2011120687A/en
Publication of JP2011120687A publication Critical patent/JP2011120687A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/00078Insertion part of the endoscope body with stiffening means

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insertion section of an endoscope which achieves variations in flexibility of a flexible tube without depending on the characteristic of a resin forming an outer cover and without increasing filling factor of the inside of the flexible tube. <P>SOLUTION: A coil 25, whose cross-sectional shape perpendicular to a wire axis G1 of a wire 51 differs between a distal part 52 and a proximal part 53, is arranged inside the flexible tube of the insertion section. A cross-sectional secondary moment around an axis J2 at the proximal part 53 is larger than a cross-sectional secondary moment around an axis J1 at the distal part 52. With such a configuration, deflection δ2 of the wire 51 at the proximal part 53 in the longitudinal direction of the flexible tube is smaller than deflection δ1 of the wire 51 at the distal part 52 in the longitudinal direction of the flexible tube. As a result, flexibility of the proximal part of the flexible tube is smaller than that of the distal part of the flexible tube. When bending the flexible tube, the distal part of the flexible tube is easy to bend and the proximal part of the flexible tube is difficult to bend. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、体腔内に挿入される内視鏡の挿入部に関する。   The present invention relates to an insertion portion of an endoscope that is inserted into a body cavity.

一般に、内視鏡は、体腔内に挿入される細長い挿入部と、挿入部の基端側に接続される操作部とを有する。挿入部は、細長く可撓性を有する可撓管部と、可撓管部の先端側に配設される湾曲部と、湾曲部の先端側に配設される先端硬性部とから構成されている。可撓管部は、先端側の部分が体腔内の臓器の形状に沿って比較的自由に曲がるように柔軟に形成され、基端側の部分が術者の微妙な操作が先端側に伝達されるように硬めに形成されている。すなわち、可撓管部の先端側の部分は、基端側の部分より可撓性が大きくなっている。   In general, an endoscope has an elongated insertion portion that is inserted into a body cavity, and an operation portion that is connected to a proximal end side of the insertion portion. The insertion portion is composed of a long and flexible flexible tube portion, a bending portion disposed on the distal end side of the flexible tube portion, and a distal end rigid portion disposed on the distal end side of the bending portion. Yes. The flexible tube portion is formed flexibly so that the distal end portion bends relatively freely along the shape of the organ in the body cavity, and the proximal end portion transmits the delicate operation of the operator to the distal end side. It is formed so as to be hard. In other words, the distal end portion of the flexible tube portion is more flexible than the proximal end portion.

特許文献1には、可撓管部の外皮を軟性エラストマと硬性エラストマとを混合して形成した内視鏡可撓管部が開示されている。この内視鏡可撓管部では、先端側の部分で軟性エラストマの混合比率が高く、基端側の部分で硬性エラストマの混合比率が高くなっている。これにより、可撓管部の先端側の部分が、基端側の部分より可撓性が大きくなっている。   Patent Document 1 discloses an endoscope flexible tube portion in which the outer skin of the flexible tube portion is formed by mixing a soft elastomer and a hard elastomer. In the endoscope flexible tube portion, the mixing ratio of the soft elastomer is high in the distal end portion, and the mixing ratio of the hard elastomer is high in the proximal end portion. Thereby, the flexibility at the distal end portion of the flexible tube portion is larger than that at the proximal end portion.

特許文献2には、可撓管部の内部に湾曲操作用の操作ワイヤと、ワイヤが挿通されるワイヤガイド用のコイルとが配設され、コイルに超弾性合金から形成されるパイプを被覆した内視鏡挿入部が開示されている。この内視鏡挿入部では、コイルの可撓管部の基端位置から中間位置までに位置する範囲にパイプが被覆されている。このため、可撓管部のパイプが被覆されている基端側の部分では、パイプが抵抗として作用し、可撓性が小さくなっている。これにより、可撓管部の基端側の部分と先端側の部分とでの可撓性の変化を、外皮を形成する樹脂の特性に依存することなく実現している。   In Patent Document 2, an operation wire for bending operation and a coil for wire guide through which the wire is inserted are arranged inside the flexible tube portion, and the coil is covered with a pipe formed of a superelastic alloy. An endoscope insertion portion is disclosed. In this endoscope insertion portion, the pipe is covered in a range located from the proximal end position to the intermediate position of the flexible tube portion of the coil. For this reason, in the part of the base end side by which the pipe of the flexible tube part is coat | covered, a pipe acts as resistance and flexibility is small. Thereby, the change in flexibility between the proximal end portion and the distal end portion of the flexible tube portion is realized without depending on the characteristics of the resin forming the outer skin.

特開平2−131738号公報Japanese Patent Laid-Open No. 2-131738 特開平11−267092号公報Japanese Patent Laid-Open No. 11-267092

上記特許文献1では、時間の経過とともに外皮を形成するエラストマ樹脂の特性も変化する。エラストマ樹脂の特性の変化により、可撓管部の可撓性も変化してしまう。   In Patent Document 1, the characteristics of the elastomer resin that forms the outer skin change with the passage of time. A change in the properties of the elastomer resin also changes the flexibility of the flexible tube.

上記特許文献2では、可撓管部の内部のコイルにパイプが被覆されているため、ワイヤガイドの径が大きくなる。このため、可撓管部の内部の撮像ケーブル、ライトガイド等の軟性内蔵物が挿通される空間が小さくなり、パイプにより可撓管部の内部の充填率が高くなる。このため、軟性内蔵物が圧迫されてしまう。   In Patent Document 2, since the pipe is covered with the coil inside the flexible tube portion, the diameter of the wire guide is increased. For this reason, a space through which a soft built-in object such as an imaging cable and a light guide inside the flexible tube portion is inserted is reduced, and the filling rate inside the flexible tube portion is increased by the pipe. For this reason, a soft built-in thing will be pressed.

本発明は上記課題に着目してなされたものであり、その目的とするところは、外皮を形成する樹脂の特性に依存することなく、かつ、可撓管部の内部の充填率を高くすることなく可撓管部の可撓性の変化を実現可能な内視鏡挿入部を提供することにある。   The present invention has been made paying attention to the above-mentioned problems, and the object thereof is to increase the filling rate inside the flexible tube portion without depending on the characteristics of the resin forming the outer skin. It is another object of the present invention to provide an endoscope insertion portion that can realize a change in flexibility of a flexible tube portion.

上記目的を達成するため、本発明の内視鏡挿入部は、可撓性を有する可撓管部と、可撓管部の先端側に配設される湾曲部の湾曲操作を行うワイヤと、素線を螺旋状に巻回することにより形成されるとともに、前記可撓管部の内部に配設され、前記ワイヤが挿通される複数のワイヤガイド用のコイルと、を備え、前記複数のコイルのうち少なくとも1本のコイルには、前記可撓管部の長手方向と直交する方向に外力を加えた際に、前記可撓管部の基端側に配設される基端側部分での前記素線の前記可撓管部の長手方向へのたわみ量が、前記可撓管部の先端側に配設される先端側部分での前記素線の前記可撓管部の長手方向へのたわみ量より小さいたわみ量変化部が設けられていることを特徴とする。   In order to achieve the above object, an endoscope insertion portion of the present invention includes a flexible tube portion having flexibility, a wire that performs a bending operation of a bending portion disposed on a distal end side of the flexible tube portion, A plurality of coils for wire guides, which are formed by winding a wire in a spiral shape, and are disposed inside the flexible tube portion and through which the wires are inserted, and the plurality of coils When at least one of the coils is subjected to an external force in a direction perpendicular to the longitudinal direction of the flexible tube portion, a proximal end portion disposed on the proximal end side of the flexible tube portion The amount of deflection of the strand in the longitudinal direction of the flexible tube portion is such that the strand of the strand in the longitudinal direction of the flexible tube portion is disposed at the distal end portion disposed on the distal end side of the flexible tube portion. A deflection amount changing portion smaller than the deflection amount is provided.

前記たわみ量変化部では、前記コイルの前記素線の素線軸に垂直な断面において、前記素線軸を通り、かつ、前記可撓管部の長手方向に対して垂直な軸まわりの断面2次モーメントが、前記先端側部分より前記基端側部分のほうが大きくてもよい。また、前記たわみ量変化部では、前記素線の前記素線軸に垂直な断面積が前記先端側部分と前記基端側部分とで同一であり、前記素線の前記素線軸に垂直な断面において、前記可撓管部の長手方向に対して垂直な方向の寸法が前記先端側部分より前記基端側部分のほうが小さく、前記可撓管部の長手方向の寸法が前記先端側部分より前記基端側部分のほうが大きくてもよい。   In the deflection amount changing portion, in the cross section perpendicular to the strand axis of the strand of the coil, the secondary moment of inertia about the axis passing through the strand axis and perpendicular to the longitudinal direction of the flexible tube portion. However, the proximal end portion may be larger than the distal end portion. Further, in the deflection amount changing portion, the cross-sectional area of the element wire perpendicular to the element wire axis is the same in the distal end side part and the base end side part, and in the section perpendicular to the element axis of the element wire. The dimension in the direction perpendicular to the longitudinal direction of the flexible tube portion is smaller in the proximal end portion than in the distal end portion, and the longitudinal dimension of the flexible tube portion is smaller than that in the distal end portion. The end portion may be larger.

これらの内視鏡挿入部では、素線の素線軸に垂直な断面において、素線軸を通り、かつ、可撓管部の長手方向に対して垂直な軸まわりの断面2次モーメントが、先端側部分より基端側部分のほうが大きくなる。したがって、基端側部分での可撓管部の長手方向への素線のたわみ量が、先端側部分での可撓管部の長手方向への素線のたわみ量より小さくなる。このため、可撓管部の基端側の部分は、可撓管部の先端側の部分より可撓性が小さくなる。これにより、可撓管部が曲がる際、可撓管部の先端側の部分は曲がり易く、可撓管部の基端側の部分は曲がり難くなる。以上のように、素線の素線軸に垂直な断面において、素線軸を通り、かつ、可撓管部の長手方向に対して垂直な軸まわりの断面2次モーメントの変化によって可撓管部の可撓性の変化を実現している。これにより、可撓管部外皮を形成する樹脂の特性に依存することなく、かつ、可撓管部の内部の充填率を高くすることなく可撓管部の可撓性の変化を実現することができる。   In these endoscope insertion portions, in the cross section perpendicular to the strand axis of the strand, the secondary moment of inertia about the axis passing through the strand axis and perpendicular to the longitudinal direction of the flexible tube portion is The proximal end portion is larger than the portion. Therefore, the amount of deflection of the wire in the longitudinal direction of the flexible tube portion at the proximal end portion is smaller than the amount of deflection of the wire in the longitudinal direction of the flexible tube portion at the distal end portion. For this reason, the flexibility of the portion on the proximal end side of the flexible tube portion is smaller than that of the portion on the distal end side of the flexible tube portion. Thereby, when the flexible tube portion is bent, the portion on the distal end side of the flexible tube portion is easily bent, and the portion on the proximal end side of the flexible tube portion is not easily bent. As described above, in the cross section perpendicular to the strand axis of the strand, the change in the secondary moment of the section around the axis passing through the strand axis and perpendicular to the longitudinal direction of the flexible tube portion causes the flexible tube portion to The change in flexibility is realized. This realizes a change in the flexibility of the flexible tube portion without depending on the characteristics of the resin forming the outer shell of the flexible tube portion and without increasing the filling rate inside the flexible tube portion. Can do.

また、前記たわみ量変化部では、前記コイルの前記素線を形成する材料の縦弾性係数が、前記先端側部分より前記基端側部分のほうが大きくてもよい。   Further, in the deflection amount changing portion, the longitudinal elastic modulus of the material forming the element wire of the coil may be larger in the proximal end portion than in the distal end portion.

この内視鏡挿入部では、素線を形成する材料の縦弾性係数が、先端側部分より基端側部分のほうが大きくなる。したがって、基端側部分での可撓管部の長手方向への素線のたわみ量が、先端側部分での可撓管部の長手方向への素線のたわみ量より小さくなる。このため、可撓管部の基端側の部分は、可撓管部の先端側の部分より可撓性が小さくなる。これにより、可撓管部が曲がる際、可撓管部の先端側の部分は曲がり易く、可撓管部の基端側の部分は曲がり難くなる。以上のように、コイルの素線を形成する材料の縦弾性係数の変化によって可撓管部の可撓性の変化を実現している。これにより、可撓管部外皮を形成する樹脂の特性に依存することなく、かつ、可撓管部の内部の充填率を高くすることなく可撓管部の可撓性の変化を実現することができる。   In this endoscope insertion portion, the longitudinal elastic modulus of the material forming the strand is larger in the proximal end portion than in the distal end portion. Therefore, the amount of deflection of the wire in the longitudinal direction of the flexible tube portion at the proximal end portion is smaller than the amount of deflection of the wire in the longitudinal direction of the flexible tube portion at the distal end portion. For this reason, the flexibility of the portion on the proximal end side of the flexible tube portion is smaller than that of the portion on the distal end side of the flexible tube portion. Thereby, when the flexible tube portion is bent, the portion on the distal end side of the flexible tube portion is easily bent, and the portion on the proximal end side of the flexible tube portion is not easily bent. As described above, the change in the flexibility of the flexible tube portion is realized by the change in the longitudinal elastic modulus of the material forming the coil wire. This realizes a change in the flexibility of the flexible tube portion without depending on the characteristics of the resin forming the outer shell of the flexible tube portion and without increasing the filling rate inside the flexible tube portion. Can do.

また、前記たわみ量変化部の前記素線の前記可撓管部の長手方向へのたわみ量が変化する位置が、前記複数のコイルごとに前記可撓管部の長手方向にずれていてもよい。   Moreover, the position where the deflection amount in the longitudinal direction of the flexible tube portion of the wire of the deflection amount changing portion may be shifted in the longitudinal direction of the flexible tube portion for each of the plurality of coils. .

本発明によれば、外皮を形成する樹脂の特性に依存することなく、かつ、可撓管部の内部の充填率を高くすることなく可撓管部の可撓性の変化を実現可能な内視鏡挿入部を提供することができる。   According to the present invention, it is possible to realize a change in flexibility of the flexible tube portion without depending on the characteristics of the resin forming the outer skin and without increasing the filling rate inside the flexible tube portion. An endoscope insertion part can be provided.

本発明の第1の実施形態に係る内視鏡を示す概略図。1 is a schematic diagram showing an endoscope according to a first embodiment of the present invention. 第1の実施形態に係る内視鏡の挿入部の可撓管部及び湾曲部を示す断面図。Sectional drawing which shows the flexible tube part and bending part of the insertion part of the endoscope which concerns on 1st Embodiment. 図2のIII−III線断面図。III-III sectional view taken on the line of FIG. 第1の実施形態に係る可撓管部の内部に配設されるコイルの構成を示す断面図。Sectional drawing which shows the structure of the coil arrange | positioned inside the flexible tube part which concerns on 1st Embodiment. 第1の実施形態に係る可撓管部の内部に配設されるコイルの、(A)は先端側部分の素線軸に垂直な断面を示す断面図、(B)は基端側部分の素線軸に垂直な断面を示す断面図。(A) of the coil arrange | positioned inside the flexible tube part which concerns on 1st Embodiment is sectional drawing which shows a cross section perpendicular | vertical to the strand axis | shaft of a front end side part, (B) is an element of a base end side part Sectional drawing which shows a cross section perpendicular | vertical to a line axis. 内視鏡の可撓管部の内部に配設されるコイルの一例であり、(A)は可撓管部が曲がっていない状態を示す断面図、(B)は可撓管部が曲がっている状態を示す断面図。It is an example of the coil arrange | positioned inside the flexible tube part of an endoscope, (A) is sectional drawing which shows the state in which the flexible tube part is not bent, (B) is a flexible tube part bent. Sectional drawing which shows the state which exists. 図6のコイルを形成する素線の素線軸に垂直な断面を示す断面図。Sectional drawing which shows a cross section perpendicular | vertical to the strand axis of the strand which forms the coil of FIG. 本発明の第2の実施形態に係る内視鏡の可撓管部の内部に配設されるコイルの構成を示す断面図。Sectional drawing which shows the structure of the coil arrange | positioned inside the flexible tube part of the endoscope which concerns on the 2nd Embodiment of this invention.

(第1の実施形態)
本発明の第1の実施形態について、図1乃至図7を参照して説明する。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS.

図1は、内視鏡1の構成を示す図である。内視鏡1は体腔内に挿入する細長い挿入部2と、挿入部2の基端側に連結された操作部3とを有する。操作部3の基端側には、ユニバーサルコード4が接続されている。ユニバーサルコード4の基端部には、スコープコネクタ5が設けられている。   FIG. 1 is a diagram illustrating a configuration of the endoscope 1. The endoscope 1 includes an elongated insertion portion 2 that is inserted into a body cavity, and an operation portion 3 that is coupled to the proximal end side of the insertion portion 2. A universal cord 4 is connected to the proximal end side of the operation unit 3. A scope connector 5 is provided at the base end of the universal cord 4.

挿入部2は、細長く可撓性を有する可撓管部6と、可撓管部6の先端側に連結される湾曲部7と、湾曲部7の先端側に設けられる先端硬性部8とから構成されている。先端硬性部8には、観察窓11、照明窓12、送気送水ノズル13、鉗子チャンネル14が設けられている。先端硬性部8の内部には、撮像素子(図示しない)が観察窓11と対向する位置に設けられている。また、送気送水ノズル13は、先端硬性部8の送気送水チャンネル(図示しない)に連結されている。   The insertion portion 2 includes an elongated and flexible flexible tube portion 6, a bending portion 7 connected to the distal end side of the flexible tube portion 6, and a distal end rigid portion 8 provided on the distal end side of the bending portion 7. It is configured. The distal end rigid portion 8 is provided with an observation window 11, an illumination window 12, an air / water supply nozzle 13, and a forceps channel 14. Inside the distal end rigid portion 8, an image sensor (not shown) is provided at a position facing the observation window 11. The air / water supply nozzle 13 is connected to an air / water supply channel (not shown) of the distal end rigid portion 8.

操作部3は、操作部ケーシング16と、操作部ケーシング16の挿入部2側に設けられる保持部ケーシング17とを有する。操作部ケーシング16には、湾曲部7をそれぞれ上下方向、左右方向に湾曲操作するための2つの湾曲操作ノブ18A,18Bが設けられている。保持部ケーシング17には、鉗子口19が設けられている。   The operation unit 3 includes an operation unit casing 16 and a holding unit casing 17 provided on the insertion unit 2 side of the operation unit casing 16. The operation portion casing 16 is provided with two bending operation knobs 18A and 18B for bending the bending portion 7 in the vertical direction and the horizontal direction, respectively. The holding portion casing 17 is provided with a forceps port 19.

図2及び図3は、可撓管部6及び湾曲部7の構成を示す図である。図2に示すように、可撓管部6は、金属製の螺旋管21と、螺旋管21の外周側に設けられる可撓管部網状管22と、可撓管部網状管22の外周面に被覆される樹脂製の可撓管部外皮23とから構成されている。螺旋管21は金属製の帯状部材を所定の間隔で螺旋状に旋回することで形成され、可撓管部網状管22に比べ硬くなっている。   2 and 3 are diagrams showing the configuration of the flexible tube portion 6 and the bending portion 7. As shown in FIG. 2, the flexible tube portion 6 includes a metal spiral tube 21, a flexible tube portion network tube 22 provided on the outer peripheral side of the spiral tube 21, and an outer peripheral surface of the flexible tube portion network tube 22. It is comprised from the resin-made flexible pipe | tube part skin | dye 23 coat | covered by. The spiral tube 21 is formed by spirally turning a metal strip member at a predetermined interval, and is harder than the flexible tube network tube 22.

湾曲部7は、湾曲管31と、湾曲管31の外周側に設けられる湾曲部網状管32と、湾曲部網状管32の外周面に被覆される樹脂製の湾曲部外皮33とを有する。湾曲管31は、複数のリング状の節輪35を挿入部2の長手方向に並設し、互いに回動可能に連結することにより形成される。   The bending portion 7 includes a bending tube 31, a bending portion network tube 32 provided on the outer peripheral side of the bending tube 31, and a resin-made bending portion skin 33 that covers the outer peripheral surface of the bending portion network tube 32. The bending tube 31 is formed by juxtaposing a plurality of ring-shaped node rings 35 in the longitudinal direction of the insertion portion 2 and connecting them in a rotatable manner.

螺旋管21と湾曲管31とは、間に接続口金37を介して連結されている。接続口金37は、螺旋管21と略同径の小径部37aと、小径部37aの基端側に設けられるとともに小径部37aより大径の大径部37bとを有する。複数の節輪35の中で最も基端側に配置される後端節輪35Aは、接続口金37の小径部37aに外嵌した状態で嵌合する。接続口金37の大径部37bは、螺旋管21に外嵌した状態で嵌合する。これにより、螺旋管21と湾曲管31とが連結される。また、可撓管部外皮23と湾曲部外皮33との間では、可撓管部外皮23及び湾曲部外皮33を糸38で糸巻きにした上から樹脂39が被覆されている。   The spiral tube 21 and the bending tube 31 are connected via a connection cap 37 therebetween. The connection cap 37 has a small diameter portion 37a having substantially the same diameter as the spiral tube 21, and a large diameter portion 37b that is provided on the proximal end side of the small diameter portion 37a and has a larger diameter than the small diameter portion 37a. The rear end node ring 35 </ b> A arranged on the most proximal side among the plurality of node rings 35 is fitted in a state of being externally fitted to the small diameter portion 37 a of the connection base 37. The large-diameter portion 37 b of the connection base 37 is fitted in a state of being fitted on the spiral tube 21. Thereby, the spiral tube 21 and the bending tube 31 are connected. In addition, between the flexible tube outer skin 23 and the curved portion outer skin 33, the resin 39 is covered after the flexible tube outer skin 23 and the curved portion outer skin 33 are wound with a thread 38.

図3に示すように、可撓管部6及び湾曲部7の内部には、撮像ケーブル41、ライトガイド42、送気送水チューブ43及び鉗子チューブ44の長尺な軟性内蔵物40が挿通されている。撮像ケーブル41の先端部は、先端硬性部8の内部の撮像素子(図示しない)に接続されている。撮像ケーブル41の基端部は、操作部3及びユニバーサルコード4を通って、スコープコネクタ5を介して画像観察装置(図示しない)に接続されている。ライトガイド42の基端部は、操作部3及びユニバーサルコード4を通って、スコープコネクタ5を介して照明電源装置(図示しない)に接続されている。ライトガイド42は、先端硬性部8の照明窓12に被写体を照射する光を導光している。送気送水チューブ43の先端部は、先端硬性部8の送気送水チャンネル(図示しない)に連結されている。送気送水チューブ43の基端部は、操作部3及びユニバーサルコード4を通って、スコープコネクタ5を介して送気送水装置(図示しない)に接続されている。鉗子チューブ44の先端部は、先端硬性部8の鉗子チャンネル14に連結されている。また、鉗子チューブ44は操作部3の内部で二股に分けられ、一方が鉗子口19に接続されている。二股に分けられた他方は、ユニバーサルコード4を通って、スコープコネクタ5を介して吸引装置(図示しない)に接続されている。   As shown in FIG. 3, a long flexible built-in object 40 of an imaging cable 41, a light guide 42, an air / water supply tube 43 and a forceps tube 44 is inserted into the flexible tube 6 and the bending portion 7. Yes. The distal end portion of the imaging cable 41 is connected to an imaging element (not shown) inside the distal end rigid portion 8. A proximal end portion of the imaging cable 41 is connected to an image observation apparatus (not shown) through the operation unit 3 and the universal cord 4 via the scope connector 5. The proximal end portion of the light guide 42 is connected to an illumination power supply device (not shown) through the operation connector 3 and the universal cord 4 via the scope connector 5. The light guide 42 guides light that irradiates the subject to the illumination window 12 of the distal end rigid portion 8. The distal end portion of the air / water feeding tube 43 is connected to the air / water feeding channel (not shown) of the distal end rigid portion 8. The proximal end portion of the air / water feeding tube 43 is connected to an air / water feeding device (not shown) via the scope connector 5 through the operation unit 3 and the universal cord 4. The distal end portion of the forceps tube 44 is connected to the forceps channel 14 of the distal end rigid portion 8. Further, the forceps tube 44 is divided into two parts inside the operation unit 3, and one of the forceps tubes 44 is connected to the forceps port 19. The other of the two parts is connected to a suction device (not shown) through a universal connector 4 and a scope connector 5.

図2及び図3に示すように、螺旋管21の内周面には、4本のワイヤガイドである密巻きコイル25が半田付け等により取り付けられている。コイル25は、挿入部2の周方向に互いに90°離れて配置されている。接続口金37の内周面には、コイル25の先端部を固定した状態で保持する4つのコイル止め26がそれぞれのコイル25と対応する位置に設けられている。それぞれのコイル25の内部には、ワイヤ27が長手方向に移動可能に収納されている。コイル25に収納されるワイヤ27は、コイル止め26よりさらに先端側に延設されている。湾曲管31を形成するそれぞれの節輪35の内周面には、4つのワイヤ受け29がそれぞれのワイヤ27と対応する位置に設けられている。ワイヤ27の先端部は、湾曲部7の先端に設けられるワイヤ止め(図示しない)により固定されている。それぞれのワイヤ27を挿入部2の長手方向に引張り動作又は押出し動作を行うことにより、湾曲部7が湾曲操作される。   As shown in FIGS. 2 and 3, a closely wound coil 25, which is four wire guides, is attached to the inner peripheral surface of the spiral tube 21 by soldering or the like. The coils 25 are arranged 90 ° apart from each other in the circumferential direction of the insertion portion 2. On the inner peripheral surface of the connection base 37, four coil stoppers 26 are provided at positions corresponding to the coils 25 to hold the tip of the coil 25 in a fixed state. Inside each coil 25, a wire 27 is accommodated so as to be movable in the longitudinal direction. The wire 27 accommodated in the coil 25 extends further to the distal end side than the coil stopper 26. Four wire receivers 29 are provided at positions corresponding to the respective wires 27 on the inner peripheral surface of each node ring 35 forming the bending tube 31. The distal end portion of the wire 27 is fixed by a wire stopper (not shown) provided at the distal end of the bending portion 7. The bending portion 7 is bent by pulling or pushing each wire 27 in the longitudinal direction of the insertion portion 2.

図4はコイル25の構成を示す図である。図2及び図4に示すように、コイル25は、素線51を所定の長さにわたって螺旋状に密に巻回することによって形成されている。素線51は、例えばステンレスにより形成されている。素線51は、可撓管部6の先端側に配設される先端側部分52と、可撓管部6の基端側に配設される基端側部分53とを有する。   FIG. 4 is a diagram showing the configuration of the coil 25. As shown in FIGS. 2 and 4, the coil 25 is formed by densely winding the element wire 51 spirally over a predetermined length. The element wire 51 is made of, for example, stainless steel. The strand 51 has a distal end side portion 52 disposed on the distal end side of the flexible tube portion 6 and a proximal end portion 53 disposed on the proximal end side of the flexible tube portion 6.

図5(A)は先端側部分52での素線51の素線軸G1に垂直な断面を示す図であり、図5(B)は基端側部分53での素線51の素線軸G1に垂直な断面を示す図である。図5(A)(B)で、矢印Aの方向が可撓管部6の長手方向である。図5(A)(B)に示すように、先端側部分52と基端側部分53とでは、素線51の素線軸G1に垂直な断面形状が異なっている。ただし、先端側部分52の素線51の素線軸G1に垂直な断面の断面積S1は、基端側部分53の素線51の素線軸G1に垂直な断面の断面積S2と略同一である。   5A is a diagram showing a cross section perpendicular to the strand axis G1 of the strand 51 at the distal end side portion 52, and FIG. 5B shows the strand axis G1 of the strand 51 at the proximal end portion 53. It is a figure which shows a vertical cross section. 5A and 5B, the direction of the arrow A is the longitudinal direction of the flexible tube portion 6. As shown in FIGS. 5A and 5B, the distal end portion 52 and the proximal end portion 53 have different cross-sectional shapes perpendicular to the strand axis G1 of the strand 51. However, the cross-sectional area S1 of the cross section perpendicular to the wire axis G1 of the strand 51 of the distal end side portion 52 is substantially the same as the cross-sectional area S2 of the cross section perpendicular to the strand axis G1 of the strand 51 of the proximal end portion 53. .

ここで、本実施形態の基本的な原理ついて説明する。 図6(A)(B)は内視鏡の可撓管部の内部に配設されるワイヤガイド用のコイル100の一例を示す図である。図6(A)に示すように、コイル100は、素線101を所定の長さにわたって螺旋状に密に巻回することによって形成される。図7は、素線101の素線軸Gに垂直な断面を示す図である。図7で、矢印Dの方向が可撓管部の長手方向である。図7に示すように、素線101の素線軸Gに垂直な断面形状は、真円状に形成されている。   Here, the basic principle of this embodiment will be described. FIGS. 6A and 6B are views showing an example of a coil 100 for wire guide disposed inside the flexible tube portion of the endoscope. As shown in FIG. 6A, the coil 100 is formed by densely winding the strand 101 in a spiral shape over a predetermined length. FIG. 7 is a view showing a cross section of the strand 101 perpendicular to the strand axis G. In FIG. 7, the direction of arrow D is the longitudinal direction of the flexible tube. As shown in FIG. 7, the cross-sectional shape perpendicular | vertical to the strand axis G of the strand 101 is formed in perfect circle shape.

可撓管部の長手方向と直交する方向に外力を加え可撓管部を曲げると、可撓管部の内部のコイル100も図6(B)に示すように曲がる。この際、曲がり部の内側ではコイル100は可撓管部の長手方向に収縮し(図6(B)の矢印B)、曲がり部の外側ではコイル100は可撓管部の長手方向に伸長する(図6(B)の矢印C)。すなわち、コイル100を形成する素線101に、可撓管部の長手方向へ曲げの力がかかる。曲げの力により、素線101は可撓管部の長手方向にたわむ。素線101の可撓管部の長手方向へのたわみ量が大きい場合、可撓管部は曲がり易く、可撓管部の可撓性が大きくなる。一方、素線101の可撓管部の長手方向へのたわみ量が小さい場合、可撓管部は曲がり難く、可撓管部の可撓性が小さくなる。   When an external force is applied in a direction orthogonal to the longitudinal direction of the flexible tube portion to bend the flexible tube portion, the coil 100 inside the flexible tube portion is also bent as shown in FIG. At this time, the coil 100 contracts in the longitudinal direction of the flexible tube portion inside the bent portion (arrow B in FIG. 6B), and the coil 100 extends in the longitudinal direction of the flexible tube portion outside the bent portion. (Arrow C in FIG. 6B). That is, a bending force is applied to the strand 101 forming the coil 100 in the longitudinal direction of the flexible tube portion. Due to the bending force, the strand 101 bends in the longitudinal direction of the flexible tube portion. When the amount of deflection of the strand 101 in the longitudinal direction of the flexible tube portion is large, the flexible tube portion is easily bent and the flexibility of the flexible tube portion is increased. On the other hand, when the bending amount of the strand 101 in the longitudinal direction of the flexible tube portion is small, the flexible tube portion is difficult to bend and the flexibility of the flexible tube portion is reduced.

ここで、素線101の可撓管部の長手方向へのたわみ量を、素線101を長さlの片持ちばりに置き換えて計算すると、以下のようになる。
δ=βwl/EI …(1)
式(1)で、δはたわみ量、βはたわみ係数、wは素線101にかかる荷重、Eは素線101の縦弾性係数、Iは図5の軸Jまわりの断面2次モーメントである。軸Jは、素線101の素線軸Gに垂直な断面において、素線軸Gを通り、かつ、可撓管部の長手方向に対して垂直な軸である。
Here, when the deflection amount of the strand 101 in the longitudinal direction of the flexible tube portion is calculated by replacing the strand 101 with a cantilever beam having a length l, the following is obtained.
δ = βwl 3 / EI (1)
In equation (1), δ is the amount of deflection, β is the deflection coefficient, w is the load applied to the strand 101, E is the longitudinal elastic modulus of the strand 101, and I is the secondary moment of inertia about the axis J in FIG. . The axis J is an axis that passes through the strand axis G and is perpendicular to the longitudinal direction of the flexible tube portion in a cross section perpendicular to the strand axis G of the strand 101.

式(1)より、素線101の可撓管部の長手方向へのたわみ量δは、軸Jまわりの断面2次モーメントIに反比例する。素線101の軸Jまわりの断面2次モーメントIは、素線101の素線軸Gに垂直な断面の断面形状、断面積により変化する。軸Jまわりの断面2次モーメントIを大きくすると、素線101の可撓管部の長手方向のたわみ量δが小さくなる。素線101のたわみ量δが小さくなることにより、可撓管部の可撓性が小さくなる。   From equation (1), the amount of deflection δ of the wire 101 in the longitudinal direction of the flexible tube portion is inversely proportional to the cross-sectional secondary moment I around the axis J. The cross-sectional secondary moment I around the axis J of the strand 101 varies depending on the cross-sectional shape and cross-sectional area of the strand 101 perpendicular to the strand axis G. When the cross-sectional secondary moment I around the axis J is increased, the deflection amount δ in the longitudinal direction of the flexible tube portion of the wire 101 is decreased. As the amount of deflection δ of the wire 101 decreases, the flexibility of the flexible tube portion decreases.

図5(A)に示すように、本実施形態の先端側部分52では、素線51の素線軸G1に垂直な断面が、半径rの略真円状に形成されている。先端側部分52では、素線51の軸J1まわりの断面2次モーメントI1は以下のようになる。ここで、軸J1は、先端側部分52の素線51の素線軸G1に垂直な断面において、素線軸G1を通り、かつ、可撓管部6の長手方向に対して垂直な軸である。
I1=πr/4 …(2)
図5(B)に示すように、基端側部分53では、素線51の素線軸G1に垂直な断面形状が、略長円状に形成されている。基端側部分53の素線51の素線軸G1に垂直な断面では、可撓管部6の長手方向に対して垂直な方向の寸法bが、可撓管部6の長手方向の寸法hより小さくなっている。また、寸法bは先端側部分52の素線51の素線軸G1に垂直な断面の直径2rより小さく、寸法hは先端側部分52の素線51の素線軸G1に垂直な断面の直径2rより大きくなっている。素線51の基端側部分53は、例えば素線軸に垂直な断面が略真円状の素線を圧延することにより形成される。基端側部分53では、素線51の軸J2まわりの断面2次モーメントI2は以下のようになる。ここで、軸J2は、基端側部分53の素線51の素線軸G1に垂直な断面において、素線軸G1を通り、かつ、可撓管部6の長手方向に対して垂直な軸である。
I2=bh/12 …(3)
ここで、先端側部分52の素線51の素線軸G1に垂直な断面の断面積S1と基端側部分53の素線51の素線軸G1に垂直な断面の断面積S2とが略同一になるr,b,hの値を式(2),式(3)に代入する。例えばr=0.2を式(2)に代入し、b=0.15,h=0.837を式(3)に代入する。この場合、基端側部分53の軸J2まわりの断面2次モーメントI2は、先端側部分52の軸J1まわりの断面2次モーメントI1の約5倍となる。したがって、式(1)より、基端側部分53での可撓管部6の長手方向への素線51たわみ量δ2は、先端側部分52での可撓管部6の長手方向への素線51のたわみ量δ1の約1/5となる。すなわち、コイル25は、可撓管部6の長手方向と直交する方向に外力を加えた際に、先端側部分52と基端側部分53とで素線51の可撓管部6の長手方向へのたわみ量が変化するたわみ量変化部となっている。このため、コイル25の基端側部分53が配設される可撓管部6の基端側の部分は、コイル25の先端側部分52が配設される可撓管部6の先端側の部分より可撓性が小さくなっている。なお、基端側部分53の素線51の軸J2まわりの断面2次モーメントをI2=0.785(b/2)(h/2)とも考えることもできる。しかし、この場合も上述した場合と同様の効果を奏する。
As shown in FIG. 5A, in the tip side portion 52 of the present embodiment, a cross section perpendicular to the strand axis G1 of the strand 51 is formed in a substantially circular shape with a radius r. In the distal end side portion 52, the secondary moment of inertia I1 around the axis J1 of the wire 51 is as follows. Here, the axis J1 is an axis that passes through the strand axis G1 and is perpendicular to the longitudinal direction of the flexible tube portion 6 in a cross section perpendicular to the strand axis G1 of the strand 51 of the distal end side portion 52.
I1 = πr 4/4 (2)
As shown in FIG. 5B, in the proximal end portion 53, a cross-sectional shape perpendicular to the strand axis G1 of the strand 51 is formed in a substantially oval shape. In a cross section perpendicular to the strand axis G1 of the strand 51 of the proximal end portion 53, the dimension b in the direction perpendicular to the longitudinal direction of the flexible tube portion 6 is larger than the dimension h in the longitudinal direction of the flexible tube portion 6. It is getting smaller. Further, the dimension b is smaller than the diameter 2r of the cross section perpendicular to the strand axis G1 of the strand 51 of the tip end portion 52, and the dimension h is from the diameter 2r of the section perpendicular to the strand axis G1 of the strand 51 of the tip end portion 52. It is getting bigger. The base end side portion 53 of the strand 51 is formed, for example, by rolling a strand having a substantially circular cross section perpendicular to the strand axis. In the proximal end portion 53, the cross-sectional secondary moment I2 around the axis J2 of the strand 51 is as follows. Here, the axis J2 is an axis that passes through the strand axis G1 and is perpendicular to the longitudinal direction of the flexible tube portion 6 in a cross section perpendicular to the strand axis G1 of the strand 51 of the proximal end portion 53. .
I2 = bh 3/12 ... ( 3)
Here, the cross-sectional area S1 of the cross section perpendicular to the wire axis G1 of the strand 51 of the distal end side portion 52 and the cross-sectional area S2 of the cross section perpendicular to the strand axis G1 of the strand 51 of the proximal end side portion 53 are substantially the same. The values of r, b, and h are substituted into Equations (2) and (3). For example, r = 0.2 is substituted into equation (2), and b = 0.15 and h = 0.837 are substituted into equation (3). In this case, the cross-sectional secondary moment I2 around the axis J2 of the base end side portion 53 is about five times the cross-sectional secondary moment I1 around the axis J1 of the distal end side portion 52. Therefore, from equation (1), the amount of deflection δ2 in the longitudinal direction of the flexible tube portion 6 at the proximal end portion 53 is equal to the elemental deflection in the longitudinal direction of the flexible tube portion 6 at the distal end portion 52. This is about 1/5 of the deflection amount δ1 of the line 51. That is, when the coil 25 is applied with an external force in a direction orthogonal to the longitudinal direction of the flexible tube portion 6, the longitudinal direction of the flexible tube portion 6 of the strand 51 is formed by the distal end side portion 52 and the proximal end side portion 53. This is a deflection amount changing portion in which the deflection amount to the angle changes. For this reason, the proximal end portion of the flexible tube portion 6 where the proximal end portion 53 of the coil 25 is disposed is the distal end portion of the flexible tube portion 6 where the distal end portion 52 of the coil 25 is disposed. Flexibility is smaller than the part. Note that the moment of inertia of the cross section around the axis J2 of the strand 51 of the base end portion 53 can also be considered as I2 = 0.785 (b / 2) (h / 2) 3 . However, in this case as well, the same effects as those described above can be obtained.

次に、本実施形態の内視鏡1の挿入部2の作用について説明する。挿入部2を体腔内に挿入する際、挿入部2の可撓管部6に可撓管部6の長手方向と直交する方向に外力が掛かり、可撓管部6が曲がることがある。可撓管部6の内部には、先端側部分52と基端側部分53とで素線51の素線軸G1に垂直な断面形状が異なるコイル25が配設されている。素線51の素線軸G1に垂直な断面において、先端側部分52の断面積S1と基端側部分53の断面積S2とは略同一である。しかし、素線51の素線軸G1に垂直な断面において、基端側部分53の可撓管部6の長手方向に対して垂直な方向の寸法bが、先端側部分52の可撓管部6の長手方向に対して垂直な方向の寸法2rよりを小さくなっている。また、素線51の素線軸G1に垂直な断面において、基端側部分53の可撓管部6の長手方向の寸法hが、先端側部分52の可撓管部6の長手方向の寸法2rより大きくなっている。このため、基端側部分53の軸J2まわりの断面2次モーメントI2は、先端側部分52の軸J1まわりの断面2次モーメントI1より大きくなる。したがって、先端側部分52と基端側部分53とで素線51を形成する材料が同一であるため(素線51を形成する材料の縦弾性係数Eが同一であるため)、式(1)より、基端側部分53での可撓管部6の長手方向への素線51のたわみ量δ2が、先端側部分52での可撓管部6の長手方向への素線51のたわみ量δ1より小さくなる。このため、可撓管部6の基端側の部分は、可撓管部6の先端側の部分より可撓性が小さくなる。これにより、可撓管部6が曲がる際、可撓管部6の先端側の部分は曲がり易く、可撓管部6の基端側の部分は曲がり難くなる。   Next, the operation of the insertion portion 2 of the endoscope 1 according to this embodiment will be described. When the insertion portion 2 is inserted into the body cavity, an external force may be applied to the flexible tube portion 6 of the insertion portion 2 in a direction perpendicular to the longitudinal direction of the flexible tube portion 6, and the flexible tube portion 6 may bend. Inside the flexible tube portion 6, coils 25 having different cross-sectional shapes perpendicular to the strand axis G <b> 1 of the strand 51 are arranged in the distal end side portion 52 and the proximal end side portion 53. In the cross section perpendicular to the strand axis G1 of the strand 51, the sectional area S1 of the distal end side portion 52 and the sectional area S2 of the proximal end side portion 53 are substantially the same. However, in the cross section perpendicular to the strand axis G 1 of the strand 51, the dimension b in the direction perpendicular to the longitudinal direction of the flexible tube portion 6 of the proximal end side portion 53 is the flexible tube portion 6 of the distal end portion 52. The dimension 2r in the direction perpendicular to the longitudinal direction is smaller. In the cross section perpendicular to the strand axis G1 of the strand 51, the longitudinal dimension h of the flexible tube portion 6 of the proximal end portion 53 is the longitudinal dimension 2r of the flexible tube portion 6 of the distal end portion 52. It is getting bigger. For this reason, the sectional secondary moment I2 around the axis J2 of the proximal end portion 53 is larger than the sectional secondary moment I1 around the axis J1 of the distal end side portion 52. Accordingly, since the material forming the strand 51 is the same in the distal end portion 52 and the proximal end portion 53 (because the longitudinal elastic modulus E of the material forming the strand 51 is the same), the formula (1) Accordingly, the deflection amount δ2 of the strand 51 in the longitudinal direction of the flexible tube portion 6 at the proximal end side portion 53 is the deflection amount of the strand 51 in the longitudinal direction of the flexible tube portion 6 at the distal end side portion 52. It becomes smaller than δ1. For this reason, the proximal end portion of the flexible tube portion 6 is less flexible than the distal end portion of the flexible tube portion 6. Thereby, when the flexible tube portion 6 is bent, the portion on the distal end side of the flexible tube portion 6 is easily bent, and the portion on the proximal end side of the flexible tube portion 6 is not easily bent.

そこで、上記構成の内視鏡1の挿入部2では、以下の効果を奏する。すなわち、挿入部2では、可撓管部6の内部に先端側部分52と基端側部分53とで素線51の素線軸G1に垂直な断面形状が異なるコイル25が配設されている。基端側部分53の軸J2まわりの断面2次モーメントI2は、先端側部分52の軸J1まわりの断面2次モーメントI1より大きくなる。したがって、基端側部分53での可撓管部6の長手方向への素線51たわみ量δ2が、先端側部分52での可撓管部6の長手方向への素線51のたわみ量δ1より小さくなる。このため、可撓管部6の基端側の部分は、可撓管部6の先端側の部分より可撓性が小さくなる。これにより、可撓管部6が曲がる際、可撓管部6の先端側の部分は曲がり易く、可撓管部6の基端側の部分は曲がり難くなる。以上のように、コイル25の素線51の素線軸G1に垂直な断面形状の変化によって可撓管部6の可撓性の変化を実現することにより、可撓管部外皮23を形成する樹脂の特性に依存することなく、かつ、可撓管部6の内部の充填率を高くすることなく可撓管部6の可撓性の変化を実現することができる。   Therefore, the insertion portion 2 of the endoscope 1 having the above configuration has the following effects. That is, in the insertion portion 2, the coil 25 having different cross-sectional shapes perpendicular to the strand axis G <b> 1 of the strand 51 is disposed inside the flexible tube portion 6 between the distal end portion 52 and the proximal end portion 53. The sectional secondary moment I2 around the axis J2 of the proximal end portion 53 is larger than the sectional secondary moment I1 around the axis J1 of the distal end portion 52. Therefore, the deflection amount δ2 of the strand 51 in the longitudinal direction of the flexible tube portion 6 at the proximal end portion 53 is equal to the deflection amount δ1 of the strand 51 in the longitudinal direction of the flexible tube portion 6 at the distal end portion 52. Smaller. For this reason, the flexibility of the portion on the proximal end side of the flexible tube portion 6 is smaller than the portion on the distal end side of the flexible tube portion 6. Thereby, when the flexible tube portion 6 is bent, the portion on the distal end side of the flexible tube portion 6 is easily bent, and the portion on the proximal end side of the flexible tube portion 6 is not easily bent. As described above, by realizing the change in the flexibility of the flexible tube portion 6 by the change in the cross-sectional shape perpendicular to the wire axis G1 of the wire 51 of the coil 25, the resin forming the flexible tube portion skin 23 The flexibility of the flexible tube portion 6 can be changed without depending on the characteristics of the flexible tube portion 6 and without increasing the filling rate inside the flexible tube portion 6.

(第1の実施形態の変形例)
なお、上述の実施形態では、先端側部分52の素線51の素線軸G1に垂直な断面の断面積S1は、基端側部分53の素線51の素線軸G1に垂直な断面の断面積S2と略同一であるが、断面積S1と断面積S2は必ずしも略同一である必要はない。この場合、素線51は、例えば素線軸に垂直な断面の断面積が異なる素線同士を溶接することにより、形成される。ただし、この場合も基端側部分53の軸J2まわりの断面2次モーメントI2は、先端側部分52の軸J1まわりの断面2次モーメントI1より大きくなる。
(Modification of the first embodiment)
In the above-described embodiment, the cross-sectional area S1 of the cross section perpendicular to the wire axis G1 of the strand 51 of the distal end side portion 52 is the cross-sectional area of the cross section perpendicular to the strand axis G1 of the strand 51 of the proximal end portion 53. Although substantially the same as S2, the cross-sectional area S1 and the cross-sectional area S2 do not necessarily have to be substantially the same. In this case, the strand 51 is formed, for example, by welding strands having different cross-sectional areas perpendicular to the strand axis. However, also in this case, the cross-sectional secondary moment I2 around the axis J2 of the proximal end portion 53 is larger than the cross-sectional secondary moment I1 around the axis J1 of the distal end side portion 52.

また、上述の実施形態では、素線51の素線軸G1に垂直な断面形状が、先端側部分52で略真円状で、基端側部分53で略長円状に形成されている。しかし、基端側部分53の軸J2まわりの断面2次モーメントI2が、先端側部分52の軸J1まわりの断面2次モーメントI1より大きくなる断面形状であればよい。例えば、先端側部分52の素線51の素線軸G1に垂直な断面の断面積S1は、基端側部分53の素線51の素線軸G1に垂直な断面の断面積S2が同一の場合を考える。この場合、素線51の素線軸G1に垂直な断面において、基端側部分53の可撓管部6の長手方向に対して垂直な方向の寸法が、先端側部分52の可撓管部6の長手方向に対して垂直な方向の寸法よりを小さく、基端側部分53の可撓管部6の長手方向の寸法が、先端側部分52の可撓管部6の長手方向の寸法より大きくなっていればよい。   In the above-described embodiment, the cross-sectional shape of the strand 51 perpendicular to the strand axis G <b> 1 is formed in a substantially perfect circle shape in the distal end side portion 52 and in a substantially oval shape in the proximal end portion 53. However, the cross-sectional secondary moment I2 around the axis J2 of the proximal end portion 53 may be a cross-sectional shape that is larger than the cross-sectional secondary moment I1 around the axis J1 of the distal end side portion 52. For example, the cross-sectional area S1 of the cross section perpendicular to the wire axis G1 of the strand 51 of the distal end side portion 52 is the same as the cross sectional area S2 of the cross section perpendicular to the strand axis G1 of the strand 51 of the proximal end portion 53. Think. In this case, in the cross section perpendicular to the strand axis G <b> 1 of the strand 51, the dimension in the direction perpendicular to the longitudinal direction of the flexible tube portion 6 of the proximal end side portion 53 is the flexible tube portion 6 of the distal end side portion 52. The dimension in the longitudinal direction of the flexible tube portion 6 of the proximal end side portion 53 is larger than the dimension in the longitudinal direction of the flexible tube portion 6 of the distal end side portion 52. It only has to be.

さらに、上述の実施形態では、コイル25は、先端側部分52と基端側部分53の素線51の素線軸G1に垂直な断面形状が異なる2つの部分を有するが、素線軸G1に垂直な断面形状が異なる3つ以上の部分を有してもよい。ただし、コイル25の基端側の部分は、先端側の部分より、素線51の素線軸G1に垂直な断面において、素線軸G1を通り、かつ、可撓管部6の長手方向に対して垂直な軸(図5(A)の軸J1,図5(B)の軸J2)まわりの断面2次モーメントIが大きくなっている。   Further, in the above-described embodiment, the coil 25 has two portions having different cross-sectional shapes perpendicular to the strand axis G1 of the strand 51 of the distal end portion 52 and the proximal end portion 53, but perpendicular to the strand axis G1. You may have three or more parts from which cross-sectional shape differs. However, the proximal end portion of the coil 25 passes through the strand axis G1 in a cross section perpendicular to the strand axis G1 of the strand 51 from the distal end portion, and with respect to the longitudinal direction of the flexible tube portion 6. The cross-sectional secondary moment I around the vertical axis (the axis J1 in FIG. 5A and the axis J2 in FIG. 5B) is large.

(第2の実施形態)
次に、本発明の第2の実施形態について、図8を参照して説明する。本実施形態では第1の実施形態の挿入部2のコイル25の構成を次の通り変更したものである。なお、第1の実施形態と同一の部分及び同一の機能を有する部分については同一の符号を付して、その説明は省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. In this embodiment, the configuration of the coil 25 of the insertion portion 2 of the first embodiment is changed as follows. In addition, the same code | symbol is attached | subjected about the part which has the same function as 1st Embodiment, and the same function, and the description is abbreviate | omitted.

図8は、本実施形態の内視鏡1の可撓管部6のコイル60の構成を示す図である。図8に示すように、コイル60は、素線61を所定の長さにわたって螺旋状に密に巻回することによって形成されている。素線61は、可撓管部6の先端側に配設される先端側部分62と、可撓管部6の基端側に配設される基端側部分63とを有する。先端側部分62と基端側部分63とでは、素線61を形成する材料が異なっている。素線61は、例えば形成する材料が異なる素線同士を溶接することにより、形成される。ただし、先端側部分62の素線61の素線軸G2に垂直な断面の断面積は、基端側部分63の素線61の素線軸G2に垂直な断面の断面積と略同一である。また、先端側部分62及び基端側部分63の素線61の素線軸G2に垂直な断面形状は、いずれも略真円状に形成されている。   FIG. 8 is a diagram illustrating a configuration of the coil 60 of the flexible tube portion 6 of the endoscope 1 according to the present embodiment. As shown in FIG. 8, the coil 60 is formed by winding a wire 61 densely in a spiral shape over a predetermined length. The strand 61 has a distal end side portion 62 disposed on the distal end side of the flexible tube portion 6 and a proximal end portion 63 disposed on the proximal end side of the flexible tube portion 6. The material forming the strand 61 is different between the distal end side portion 62 and the proximal end side portion 63. The strand 61 is formed, for example, by welding strands made of different materials. However, the cross-sectional area of the cross section perpendicular to the strand axis G2 of the strand 61 of the distal end side portion 62 is substantially the same as the cross sectional area of the section perpendicular to the strand axis G2 of the strand 61 of the proximal end portion 63. Moreover, the cross-sectional shape perpendicular | vertical to the strand axis G2 of the strand 61 of the front end side part 62 and the base end side part 63 is all formed in the substantially perfect circle shape.

ここで、本実施形態の基本的原理について図6(A)(B)及び図7を参照して説明する。式(1)より、素線101のコイル100の長手方向へのたわみ量δは、縦弾性係数Eに反比例する。縦弾性係数Eは、素線101を形成する材料により変化する。縦弾性係数Eを大きくすると、素線101のコイル100の長手方向のたわみ量δが小さくなる。素線101のたわみ量δが小さくなることにより、可撓管部の可撓性が小さくなる。   Here, the basic principle of this embodiment will be described with reference to FIGS. From equation (1), the amount of deflection δ of the wire 101 in the longitudinal direction of the coil 100 is inversely proportional to the longitudinal elastic modulus E. The longitudinal elastic modulus E varies depending on the material forming the strand 101. When the longitudinal elastic modulus E is increased, the deflection amount δ in the longitudinal direction of the coil 100 of the wire 101 is decreased. As the amount of deflection δ of the wire 101 decreases, the flexibility of the flexible tube portion decreases.

本実施形態のコイル60の先端側部分62では、素線61がステンレス(SUS304WRB)から形成されている。ステンレスの縦弾性係数E1は、193GPaである。基端側部分63では、素線61がタングステンから形成されている。タングステンの縦弾性係数E2は、410GPaである。ここで、基端側部分63の素線61を形成する材料の縦弾性係数E2は、先端側部分62の素線61を形成する材料の縦弾性係数E1の約2.1倍となる。また、先端側部分62と基端側部分63とで素線61の素線軸G2に垂直な断面の断面積及び断面形状が略同一であるため、素線61の素線軸G2に垂直な断面において、素線軸G2を通り、かつ、可撓管部6の長手方向に対して垂直な軸(図7の軸J)まわりの断面2次モーメントIが先端側部分62と基端側部分63とで略同一である。したがって、式(1)より、基端側部分63での可撓管部6の長手方向への素線61たわみ量δ4は、先端側部分62での可撓管部6の長手方向への素線61のたわみ量δ3より小さくなる。すなわち、コイル60は、可撓管部6の長手方向と直交する方向に外力を加えた際に、先端側部分62と基端側部分63とで素線61の可撓管部6の長手方向へのたわみ量が変化するたわみ量変化部となっている。このため、コイル60の基端側部分63が配設される可撓管部6の基端側の部分は、コイル60の先端側部分62が配設される可撓管部6の先端側の部分より可撓性が小さくなっている。   In the tip side portion 62 of the coil 60 of the present embodiment, the strand 61 is made of stainless steel (SUS304WRB). The longitudinal elastic modulus E1 of stainless steel is 193 GPa. In the base end portion 63, the strand 61 is made of tungsten. The longitudinal elastic modulus E2 of tungsten is 410 GPa. Here, the longitudinal elastic modulus E2 of the material forming the strand 61 of the proximal end portion 63 is about 2.1 times the longitudinal elastic modulus E1 of the material forming the strand 61 of the distal end portion 62. In addition, since the cross-sectional area and the cross-sectional shape of the strand 61 perpendicular to the strand axis G2 of the strand 61 are substantially the same in the distal end portion 62 and the proximal end portion 63, the strand 61 is perpendicular to the strand axis G2. , The cross-sectional secondary moment I around the axis (axis J in FIG. 7) passing through the strand axis G2 and perpendicular to the longitudinal direction of the flexible tube portion 6 is generated between the distal end portion 62 and the proximal end portion 63. It is almost the same. Therefore, from equation (1), the amount of deflection δ4 in the longitudinal direction of the flexible tube portion 6 at the proximal end portion 63 is equal to the elemental length δ4 of the flexible tube portion 6 at the distal end portion 62 in the longitudinal direction. The amount of deflection of the line 61 becomes smaller than δ3. That is, when an external force is applied to the coil 60 in a direction orthogonal to the longitudinal direction of the flexible tube portion 6, the longitudinal direction of the flexible tube portion 6 of the strand 61 is formed by the distal end side portion 62 and the proximal end side portion 63. This is a deflection amount changing portion in which the deflection amount to the angle changes. Therefore, the proximal end portion of the flexible tube portion 6 where the proximal end portion 63 of the coil 60 is disposed is the distal end portion of the flexible tube portion 6 where the distal end portion 62 of the coil 60 is disposed. Flexibility is smaller than the part.

次に、本実施形態の内視鏡1の挿入部2の作用について説明する。挿入部2を体腔内にする際、挿入部2の可撓管部6に可撓管部6の長手方向と直交する方向に外力が掛かり、可撓管部6が曲がることがある。可撓管部6の内部には、先端側部分62と基端側部分63とで素線61を形成する材料が異なるコイル60が配設されている。素線61の素線軸G2に垂直な断面において、先端側部分62と基端側部分63とで断面積及び断面形状は略同一である。しかし、基端側部分53の素線61を形成する材料の縦弾性係数E2は、先端側部分62の素線61を形成する材料の縦弾性係数E1より大きくなる。したがって、先端側部分62と基端側部分63とで素線軸G2を通り、かつ、可撓管部6の長手方向に対して垂直な軸(図7の軸J)まわりの断面2次モーメントIが同一であるため、式(1)より、基端側部分63での可撓管部6の長手方向への素線61たわみ量δ4が、先端側部分62での可撓管部6の長手方向への素線61のたわみ量δ3より小さくなる。このため、可撓管部6の基端側の部分は、可撓管部6の先端側の部分より可撓性が小さくなる。これにより、可撓管部6が曲がる際、可撓管部6の先端側の部分は曲がり易く、可撓管部6の基端側の部分は曲がり難くなる。   Next, the operation of the insertion portion 2 of the endoscope 1 according to this embodiment will be described. When the insertion portion 2 is placed in the body cavity, an external force may be applied to the flexible tube portion 6 of the insertion portion 2 in a direction orthogonal to the longitudinal direction of the flexible tube portion 6 and the flexible tube portion 6 may bend. Inside the flexible tube portion 6, a coil 60 made of different materials for forming the strand 61 between the distal end side portion 62 and the proximal end side portion 63 is disposed. In the cross section perpendicular to the strand axis G2 of the strand 61, the distal end side portion 62 and the proximal end portion 63 have substantially the same sectional area and sectional shape. However, the longitudinal elastic modulus E2 of the material forming the strand 61 of the proximal end side portion 53 is larger than the longitudinal elastic modulus E1 of the material forming the strand 61 of the distal end side portion 62. Therefore, the cross-section secondary moment I around the axis (axis J in FIG. 7) passing through the strand axis G2 at the distal end portion 62 and the proximal end portion 63 and perpendicular to the longitudinal direction of the flexible tube portion 6. Therefore, from equation (1), the amount of deflection δ4 in the longitudinal direction of the flexible tube portion 6 at the proximal end portion 63 is equal to the longitudinal length of the flexible tube portion 6 at the distal end portion 62. This is smaller than the amount of deflection δ3 of the strand 61 in the direction. For this reason, the flexibility of the portion on the proximal end side of the flexible tube portion 6 is smaller than the portion on the distal end side of the flexible tube portion 6. Thereby, when the flexible tube portion 6 is bent, the portion on the distal end side of the flexible tube portion 6 is easily bent, and the portion on the proximal end side of the flexible tube portion 6 is not easily bent.

そこで、上記構成の内視鏡1の挿入部2では、以下の効果を奏する。すなわち、挿入部2では、可撓管部6の内部に先端側部分62と基端側部分63とで素線61を形成する材料が異なるコイル60が配設されている。基端側部分63の素線61を形成する材料の縦弾性係数E2は、先端側部分52の素線61を形成する材料の縦弾性係数E1より大きくなる。したがって、基端側部分63での可撓管部6の長手方向への素線61たわみ量δ4が、先端側部分62での可撓管部6の長手方向への素線61のたわみ量δ3より小さくなる。このため、可撓管部6の基端側の部分は、可撓管部6の先端側の部分より可撓性が小さくなる。これにより、可撓管部6が曲がる際、可撓管部6の先端側の部分は曲がり易く、可撓管部6の基端側の部分は曲がり難くなる。以上のように、コイル60の素線61を形成する材料の変化によって可撓管部6の可撓性の変化を実現することにより、可撓管部外皮23を形成する樹脂の特性に依存することなく、かつ、可撓管部6の内部の充填率を高くすることなく可撓管部6の可撓性の変化を実現することができる。   Therefore, the insertion portion 2 of the endoscope 1 having the above configuration has the following effects. That is, in the insertion portion 2, the coil 60 having different materials for forming the strand 61 between the distal end side portion 62 and the proximal end side portion 63 is disposed inside the flexible tube portion 6. The longitudinal elastic modulus E2 of the material forming the strand 61 of the proximal end portion 63 is larger than the longitudinal elastic modulus E1 of the material forming the strand 61 of the distal end portion 52. Therefore, the deflection amount δ4 of the strand 61 in the longitudinal direction of the flexible tube portion 6 at the proximal end portion 63 is equal to the deflection amount δ3 of the strand 61 of the strand 61 in the longitudinal direction of the flexible tube portion 6 at the distal end portion 62. Smaller. For this reason, the flexibility of the portion on the proximal end side of the flexible tube portion 6 is smaller than the portion on the distal end side of the flexible tube portion 6. Thereby, when the flexible tube portion 6 is bent, the portion on the distal end side of the flexible tube portion 6 is easily bent, and the portion on the proximal end side of the flexible tube portion 6 is not easily bent. As described above, the change in the flexibility of the flexible tube portion 6 is realized by the change in the material forming the wire 61 of the coil 60, and thus depends on the characteristics of the resin forming the flexible tube portion skin 23. It is possible to realize a change in the flexibility of the flexible tube portion 6 without increasing the filling rate inside the flexible tube portion 6.

(第2の実施形態の変形例)
なお、上述の実施形態では、素線61の先端側部分62がステンレスで、基端側部分63がタングステンで形成されているが、先端側部分62がリン青銅(縦弾性係数Eが110GPa)で、基端側部分63がベリリウム(縦弾性係数Eが287GPa)で形成されてもよい。また、素線61の先端側部分62がリン青銅で、基端側部分63がタングステンで形成されてもよい。すなわち、素線61の素線軸G2に垂直な断面積及び断面形状が先端側部分62と基端側部分63とで略同一の場合、基端側部分63が先端側部分62より縦弾性係数Eが大きい材料により形成されていればよい。
(Modification of the second embodiment)
In the above-described embodiment, the distal end portion 62 of the strand 61 is made of stainless steel and the proximal end portion 63 is made of tungsten. However, the distal end portion 62 is phosphor bronze (longitudinal elastic modulus E is 110 GPa). The base end side portion 63 may be made of beryllium (longitudinal elastic modulus E is 287 GPa). Further, the distal end portion 62 of the strand 61 may be formed of phosphor bronze and the proximal end portion 63 may be formed of tungsten. That is, when the cross-sectional area and the cross-sectional shape of the wire 61 perpendicular to the wire axis G <b> 2 are substantially the same in the distal end side portion 62 and the proximal end side portion 63, the proximal end side portion 63 is more elastic than the distal end side portion 62. As long as it is made of a material having a large thickness.

また、上述の実施形態では、コイル60は、先端側部分62と基端側部分63の素線61を形成する材料が異なる2つの部分を有するが、素線61を形成する材料が異なる3つ以上の部分を有してもよい。ただし、コイル60の基端側の部分は、先端側の部分より、素線61を形成する材料の縦弾性係数Eが大きくなっている。   In the above-described embodiment, the coil 60 has two portions that are different from each other in the material forming the strand 61 of the distal end portion 62 and the proximal end portion 63, but the three materials that form the strand 61 are different. You may have the above part. However, the longitudinal elastic modulus E of the material forming the strand 61 is larger in the proximal end portion of the coil 60 than in the distal end portion.

(その他の変形例)
なお、第1の実施形態及び第2の実施形態を組み合わせて、コイルの基端側の部分は、先端側の部分より素線の素線軸Gに垂直な断面において、素線軸Gを通り、かつ、可撓管部6の長手方向に対して垂直な軸(図7の軸J)まわりの断面2次モーメントIが大きくなるとともに、コイルの基端側の部分は、先端側の部分より素線を形成する材料の縦弾性係数Eが大きい材料から形成されていてもよい。すなわち、素線の可撓管部6の長手方向へのたわみ量δが、コイルの基端側の部分のほうが先端側の部分より小さければよい。
(Other variations)
In addition, combining the first embodiment and the second embodiment, the portion on the proximal end side of the coil passes through the strand axis G in a cross section perpendicular to the strand axis G of the strand from the portion on the distal end side, and The secondary moment I of the cross section around the axis perpendicular to the longitudinal direction of the flexible tube portion 6 (axis J in FIG. 7) is increased, and the proximal end portion of the coil is more wire than the distal end portion. May be made of a material having a large longitudinal elastic modulus E. That is, it is only necessary that the amount of deflection δ in the longitudinal direction of the flexible tube portion 6 is smaller at the proximal end portion of the coil than at the distal end portion.

また、上述の実施形態では4本のコイルのすべてが先端側部分と基端側部分とで断面2次モーメントI又は縦弾性係数Eが変化するが、少なくとも1本のコイルが先端部分と基端側部分とで断面2次モーメントI又は縦弾性係数Eが変化する構成であればよい。また、素線の可撓管部6の長手方向へのたわみ量が変化する位置が、4本のコイルごとに可撓管部6の長手方向にずれていてもよい。   In the above-described embodiment, the cross-sectional secondary moment I or the longitudinal elastic modulus E changes between the distal end portion and the proximal end portion of all four coils, but at least one coil has the distal end portion and the proximal end portion. Any structure may be used as long as the secondary moment I of the cross section or the longitudinal elastic modulus E changes between the side portions. Moreover, the position where the amount of deflection in the longitudinal direction of the flexible tube portion 6 of the strands may be shifted in the longitudinal direction of the flexible tube portion 6 every four coils.

さらに、上述の実施形態では、湾曲部7が上下方向及び左右方向に湾曲するが、湾曲部7は上下方向又は左右方向の一方に湾曲する構成でもよい。この場合、2本のコイルの少なくとも一方が、先端側部分と基端側部分とで断面2次モーメントI又は縦弾性係数Eが変化する。   Furthermore, in the above-described embodiment, the bending portion 7 bends in the up-down direction and the left-right direction, but the bending portion 7 may be configured to bend in the up-down direction or the left-right direction. In this case, in at least one of the two coils, the secondary moment I or the longitudinal elastic modulus E changes between the distal end portion and the proximal end portion.

以上、本発明の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形ができることは勿論である。   The embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.

2…挿入部、 6…可撓管部、 25,60…コイル、 27…ワイヤ、 51,61…素線、 52,62…先端側部分、 53,63…基端側部分。   2 ... Insertion part, 6 ... Flexible tube part, 25, 60 ... Coil, 27 ... Wire, 51, 61 ... Elementary wire, 52, 62 ... Tip side part, 53, 63 ... Base end part.

Claims (5)

可撓性を有する可撓管部と、
可撓管部の先端側に配設される湾曲部の湾曲操作を行うワイヤと、
素線を螺旋状に巻回することにより形成されるとともに、前記可撓管部の内部に配設され、前記ワイヤが挿通される複数のワイヤガイド用のコイルと、
を備え、
前記複数のコイルのうち少なくとも1本のコイルには、前記可撓管部の長手方向と直交する方向に外力を加えた際に、前記可撓管部の基端側に配設される基端側部分での前記素線の前記可撓管部の長手方向へのたわみ量が、前記可撓管部の先端側に配設される先端側部分での前記素線の前記可撓管部の長手方向へのたわみ量より小さいたわみ量変化部が設けられていることを特徴とする内視鏡挿入部。
A flexible tube having flexibility;
A wire for performing a bending operation of the bending portion disposed on the distal end side of the flexible tube portion;
A plurality of coils for wire guides, which are formed by spirally winding an element wire, and are arranged inside the flexible tube portion, and through which the wires are inserted;
With
When at least one of the plurality of coils is applied with an external force in a direction perpendicular to the longitudinal direction of the flexible tube portion, a proximal end disposed on the proximal side of the flexible tube portion The amount of deflection in the longitudinal direction of the flexible tube portion of the strand at the side portion is such that the flexible tube portion of the strand at the distal end portion disposed at the distal end side of the flexible tube portion An endoscope insertion portion, characterized in that a deflection amount changing portion smaller than the deflection amount in the longitudinal direction is provided.
前記たわみ量変化部では、前記コイルの前記素線の素線軸に垂直な断面において、前記素線軸を通り、かつ、前記可撓管部の長手方向に対して垂直な軸まわりの断面2次モーメントが、前記先端側部分より前記基端側部分のほうが大きいことを特徴とする請求項1に記載の内視鏡挿入部。   In the deflection amount changing portion, in the cross section perpendicular to the strand axis of the strand of the coil, the secondary moment of inertia about the axis passing through the strand axis and perpendicular to the longitudinal direction of the flexible tube portion. The endoscope insertion portion according to claim 1, wherein the proximal end portion is larger than the distal end portion. 前記たわみ量変化部では、
前記素線の前記素線軸に垂直な断面積が前記先端側部分と前記基端側部分とで同一であり、
前記素線の前記素線軸に垂直な断面において、前記可撓管部の長手方向に対して垂直な方向の寸法が前記先端側部分より前記基端側部分のほうが小さく、前記可撓管部の長手方向の寸法が前記先端側部分より前記基端側部分のほうが大きいことを特徴とする請求項2に記載の内視鏡挿入部。
In the deflection amount changing section,
A cross-sectional area perpendicular to the strand axis of the strand is the same in the distal end side portion and the proximal end side portion;
In the cross section perpendicular to the strand axis of the strand, the dimension in the direction perpendicular to the longitudinal direction of the flexible tube portion is smaller in the proximal end portion than in the distal end portion, and the flexible tube portion The endoscope insertion portion according to claim 2, wherein a dimension in a longitudinal direction is larger in the base end side portion than in the distal end side portion.
前記たわみ量変化部では、前記コイルの前記素線を形成する材料の縦弾性係数が、前記先端側部分より前記基端側部分のほうが大きいことを特徴とする請求項1の内視鏡挿入部。   The endoscope insertion portion according to claim 1, wherein in the deflection amount changing portion, a longitudinal elastic modulus of a material forming the element wire of the coil is larger in the proximal end portion than in the distal end portion. . 前記たわみ量変化部の前記素線の前記可撓管部の長手方向へのたわみ量が変化する位置が、前記複数のコイルごとに前記可撓管部の長手方向にずれていることを特徴とする請求項1に記載の内視鏡挿入部。   The position where the amount of deflection of the flexible wire portion in the longitudinal direction of the wire of the deflection amount changing portion is shifted in the longitudinal direction of the flexible tube portion for each of the plurality of coils. The endoscope insertion portion according to claim 1.
JP2009279684A 2009-12-09 2009-12-09 Insertion section of endoscope Withdrawn JP2011120687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009279684A JP2011120687A (en) 2009-12-09 2009-12-09 Insertion section of endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009279684A JP2011120687A (en) 2009-12-09 2009-12-09 Insertion section of endoscope

Publications (1)

Publication Number Publication Date
JP2011120687A true JP2011120687A (en) 2011-06-23

Family

ID=44285245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009279684A Withdrawn JP2011120687A (en) 2009-12-09 2009-12-09 Insertion section of endoscope

Country Status (1)

Country Link
JP (1) JP2011120687A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014113320A (en) * 2012-12-10 2014-06-26 Olympus Medical Systems Corp Flexible tube of endoscope and endoscope including flexible tube
EP2923633A1 (en) * 2014-03-28 2015-09-30 Fujifilm Corporation Endoscope
US9872607B2 (en) 2014-06-09 2018-01-23 Olympus Corporation Endoscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014113320A (en) * 2012-12-10 2014-06-26 Olympus Medical Systems Corp Flexible tube of endoscope and endoscope including flexible tube
EP2923633A1 (en) * 2014-03-28 2015-09-30 Fujifilm Corporation Endoscope
US9872607B2 (en) 2014-06-09 2018-01-23 Olympus Corporation Endoscope

Similar Documents

Publication Publication Date Title
US20130331651A1 (en) Flexible tube portion of endoscope and endoscope having this flexible tube portion
WO2013065799A1 (en) Flexible tube for endoscope and endoscope having flexible tube
WO2015098236A1 (en) Endoscope
JPWO2015083644A1 (en) Endoscope
JP6157787B1 (en) Endoscope
JPWO2015029503A1 (en) Endoscope
WO2015083645A1 (en) Flexible pipe section for endoscope and endoscope
US9872607B2 (en) Endoscope
US10156304B2 (en) Flexible tube and insertion device
JP5160798B2 (en) Endoscope, its bending operation strip, and manufacturing method of endoscope
JP2011120687A (en) Insertion section of endoscope
US20190082934A1 (en) Flexible tube for endoscope
WO2017195328A1 (en) Medical overtube
CN108348135B (en) Endoscope system
JP4895726B2 (en) Flexible endoscope insertion part
JP7145663B2 (en) insertion device
JP7122848B2 (en) Endoscope
JP2005230135A (en) Flexible tube for endoscope
JP3992822B2 (en) Endoscope insertion part
JP4448362B2 (en) Endoscope bending device
JP6402285B1 (en) Endoscope
JP5179315B2 (en) Endoscope rotation transmission mechanism
JP4017735B2 (en) Endoscope insertion part
JP4070868B2 (en) Endoscope insertion part
JP5797363B1 (en) Coil structure used for endoscope, endoscope and treatment tool provided with this coil structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130305