JP2011119124A - Manufacturing method for separator of fuel cell, and the separator of fuel cell - Google Patents

Manufacturing method for separator of fuel cell, and the separator of fuel cell Download PDF

Info

Publication number
JP2011119124A
JP2011119124A JP2009275531A JP2009275531A JP2011119124A JP 2011119124 A JP2011119124 A JP 2011119124A JP 2009275531 A JP2009275531 A JP 2009275531A JP 2009275531 A JP2009275531 A JP 2009275531A JP 2011119124 A JP2011119124 A JP 2011119124A
Authority
JP
Japan
Prior art keywords
fuel cell
resin
cell separator
molding
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009275531A
Other languages
Japanese (ja)
Other versions
JP5349267B2 (en
Inventor
Takashi Nogami
隆 野上
Masaru Yoneyama
勝 米山
Takashi Gonda
貴司 権田
Akira Okada
晃 岡田
Kaoru Kawamura
薫 川村
Minoru Kubota
稔 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2009275531A priority Critical patent/JP5349267B2/en
Publication of JP2011119124A publication Critical patent/JP2011119124A/en
Application granted granted Critical
Publication of JP5349267B2 publication Critical patent/JP5349267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Fuel Cell (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a separator of a fuel cell and a separator of a fuel cell capable of improving durability of the separator, without causing poor molding and insufficient electrical conductivity. <P>SOLUTION: In the manufacturing method for the separator of the fuel cell which can mold the separator for the fuel cell, by pressurizing and cooling after heating and pressurizing a powdery molding material 1 by filling up to a molding die 10, the molding material 1 is prepared, by heating and kneading a designated resin and graphite particles at a temperature exceeding melting-start temperature of the designated resin; and then the powdery molding material 1 is prepared by mixing at temperature, under a melting-start temperature of the designated resin by adding graphite particles into the pulverized molding material 1, after pulverizing by crushing the molding material. Insufficient electrical conductivity of the separator can be solved, since the conductivity of the pulverized molding material 1 is not excessively impaired by sticking the designated resin around each graphite particle. Furthermore, it is also solved that poor mechanical characteristics and poor conductivity of the separator used for the fuel cell occur locally, since the local variation of the designated resin and graphite is restrained. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、地球温暖化防止や省エネルギー等に資する燃料電池用セパレータの製造方法及び燃料電池用セパレータに関するものである。   The present invention relates to a method for manufacturing a fuel cell separator that contributes to prevention of global warming, energy saving, and the like, and a fuel cell separator.

燃料電池に使用される燃料電池用セパレータは、導電性、機械的特性、耐久性が重要な特性として求められるが、これら以外にも、低価格を実現して普及させるため、高い生産性が求められている。   Fuel cell separators used in fuel cells are required to have electrical conductivity, mechanical properties, and durability as important properties. In addition to these, high productivity is required in order to realize low prices and widespread use. It has been.

このような燃料電池用セパレータを製造する場合には、図示しないが、所定の樹脂と黒鉛とを所定量混合して成形材料とし、この成形材料を加熱加圧して燃料電池用セパレータを成形する方法が採用されている(特許文献1、2、3、4参照)。所定の樹脂としては、熱可塑性樹脂あるいは熱硬化性樹脂が使用される。また、黒鉛は、導電性を確保するため、樹脂量に対して質量比率で2〜6倍量と多量に配合される。   When manufacturing such a fuel cell separator, although not shown, a predetermined amount of resin and graphite are mixed to form a molding material, and the molding material is heated and pressed to mold the fuel cell separator. (See Patent Documents 1, 2, 3, and 4). As the predetermined resin, a thermoplastic resin or a thermosetting resin is used. Moreover, in order to ensure electroconductivity, graphite is mix | blended abundantly 2-6 times by mass ratio with respect to the amount of resin.

特許第4260428号公報Japanese Patent No. 4260428 特許第3693275号公報Japanese Patent No. 3693275 特開2008‐078023号公報JP 2008-078023 A 特開2001‐085030号公報Japanese Patent Laid-Open No. 2001-085030

従来における燃料電池用セパレータは、以上のように導電性を確保するため、黒鉛の比率が多く、成形材料の流動性が悪いので、黒鉛の混合量に限度があり、成形材料の調製が非常に難しいという問題がある。また、特許文献1、2には、熱可塑性樹脂と粉末の黒鉛とを溶融混練する方法が開示されているが、この方法の場合には、溶融混練時に黒鉛の周辺に熱可塑性樹脂が過度に密着して導電性を阻害するので、導電性が不足することとなる。   Conventional fuel cell separators have a high graphite ratio and poor flowability of the molding material in order to ensure conductivity as described above, so there is a limit to the amount of graphite mixed, and the preparation of the molding material is very difficult. There is a problem that it is difficult. Patent Documents 1 and 2 disclose a method of melt-kneading a thermoplastic resin and powdered graphite. In this method, excessive thermoplastic resin is present around the graphite during melt-kneading. Adhesion hinders conductivity, resulting in insufficient conductivity.

この点に鑑み、特許文献3には、熱可塑性樹脂を溶融することなく黒鉛と混合し、成形材料を得る方法が開示されているが、この方法の場合には、樹脂と黒鉛の局部的なばらつきが大きくなるので、燃料電池用セパレータの表面状態が悪化したり、燃料電池用セパレータの機械的特性や導電性の不良が局部的に発生するという問題が新たに生じることとなる。この問題は、樹脂を予め黒鉛の粒径と同程度又はそれ以下に粉砕して使用すれば、ある程度解決することができるが、完全に解決することは困難である。   In view of this point, Patent Document 3 discloses a method in which a thermoplastic resin is mixed with graphite without melting to obtain a molding material. In this method, the resin and graphite are locally localized. Since the variation becomes large, there arises a new problem that the surface state of the fuel cell separator is deteriorated, and mechanical characteristics and conductivity defects of the fuel cell separator are locally generated. This problem can be solved to some extent if the resin is used after being pulverized to the same particle size as that of graphite or less, but it is difficult to completely solve the problem.

また、特許文献4には、熱硬化性樹脂を使用する方法が示されているが、この方法の場合、熱硬化性樹脂を液状にして黒鉛と混合し、成形材料を調製して使用すると、特許文献1、2と同様、黒鉛の周辺に熱硬化性樹脂が過度に密着して導電性を阻害し、導電性の不足を招くおそれがある。また、粉体の樹脂を黒鉛と混合して成形材料を調製すれば、特許文献3同様、樹脂と黒鉛の局部的なばらつきが大きくなるので、燃料電池用セパレータの表面状態が悪化したり、燃料電池用セパレータの機械的特性や導電性の不良が局部的に発生する。   Further, Patent Document 4 shows a method of using a thermosetting resin. In this method, when the thermosetting resin is made into a liquid and mixed with graphite, a molding material is prepared and used, Similar to Patent Documents 1 and 2, the thermosetting resin may be excessively adhered to the periphery of graphite to inhibit the conductivity, leading to a lack of conductivity. Also, if a molding resin is prepared by mixing a powder resin with graphite, as in Patent Document 3, the local variation between the resin and graphite increases, so that the surface condition of the fuel cell separator deteriorates, Mechanical properties and conductivity defects of the battery separator are locally generated.

また、熱硬化性樹脂を使用する場合、熱硬化性樹脂の硬化に長時間を要するので、生産性の向上を図ることができない。さらに、未硬化成分や反応生成物が燃料電池用セパレータ中に残留物として残留しやすいので、燃料電池の作動中に残留物が溶出して燃料電池の耐久性を低下させるおそれがある。この問題の解消には、後加熱して残留物を除去する方法が提案されているが、十分な効果が期待できないので、生産性を向上させることができない。   Moreover, when using a thermosetting resin, since a long time is required for hardening of a thermosetting resin, improvement of productivity cannot be aimed at. Furthermore, since uncured components and reaction products are likely to remain as residues in the fuel cell separator, the residues may elute during the operation of the fuel cell, thereby reducing the durability of the fuel cell. In order to solve this problem, a method of removing the residue by post-heating has been proposed, but since a sufficient effect cannot be expected, productivity cannot be improved.

本発明は上記に鑑みなされたもので、成形不良や導電性の不足を招くことがなく、耐久性を向上させることのできる燃料電池用セパレータの製造方法及び燃料電池用セパレータを提供することを目的としている。   The present invention has been made in view of the above, and it is an object of the present invention to provide a method for manufacturing a fuel cell separator and a fuel cell separator that can improve durability without incurring molding defects or lack of conductivity. It is said.

本発明においては上記課題を解決するため、粉状の成形材料を成形用金型に充填して加熱加圧し、その後、加圧冷却して燃料電池用セパレータを得る製造方法であって、
所定の樹脂と黒鉛粒子とを所定の樹脂の溶融開始温度以上の温度で加熱混練して予備成形材料を調製し、この予備成形材料を粉砕して粉体化し、この粉体化した予備成形材料に黒鉛粒子を添加して所定の樹脂の溶融開始温度未満の温度で混合することにより、粉状の成形材料を調製することを特徴としている。
In the present invention, in order to solve the above-mentioned problem, a powdery molding material is filled in a molding die, heated and pressurized, and then pressurized and cooled to obtain a fuel cell separator,
A predetermined resin and graphite particles are heated and kneaded at a temperature equal to or higher than the melting start temperature of the predetermined resin to prepare a preformed material, the preformed material is pulverized and powdered, and the powdered preformed material It is characterized in that a powdery molding material is prepared by adding graphite particles to and mixing at a temperature lower than the melting start temperature of a predetermined resin.

なお、燃料電池用セパレータの面方向における線膨張係数を、成形用金型の線膨張係数の−60〜+20%以下の範囲とすることができる。
また、予備成形材料中の黒鉛粒子の添加量を、成形材料中の黒鉛粒子の添加量×0.5以上、かつ成形材料中の黒鉛粒子の添加量×1.0未満とし、黒鉛粒子の平均粒径を5〜500μmとすることができる。
In addition, the linear expansion coefficient in the surface direction of the fuel cell separator can be set in a range of −60 to + 20% or less of the linear expansion coefficient of the molding die.
Further, the addition amount of graphite particles in the preforming material is the addition amount of graphite particles in the molding material x 0.5 or more and the addition amount of graphite particles in the molding material x less than 1.0, and the average of the graphite particles The particle size can be 5 to 500 μm.

さらに、本発明においては上記課題を解決するため、請求項1、2、又は3記載の燃料電池用セパレータの製造方法により燃料電池用セパレータを製造することを特徴としている。   Furthermore, in order to solve the above-mentioned problems, the present invention is characterized in that a fuel cell separator is manufactured by the method for manufacturing a fuel cell separator according to claim 1, 2 or 3.

ここで、特許請求の範囲における所定の樹脂と黒鉛粒子とは、加熱混練する前に攪拌混合することができる。所定の樹脂は、熱可塑性樹脂あるいは熱硬化性樹脂とすることができる。粉体化した予備成形材料は、分級機や篩等で適宜分級することができる。   Here, the predetermined resin and the graphite particles in the claims can be agitated and mixed before heating and kneading. The predetermined resin can be a thermoplastic resin or a thermosetting resin. The powdered preforming material can be appropriately classified with a classifier or a sieve.

本発明によれば、成形不良や導電性の不足を招くことがなく、耐久性を向上させることができるという効果がある。
また、燃料電池用セパレータの面方向における線膨張係数を、成形用金型の線膨張係数の−60〜+20%以下の範囲とすれば、成形用金型から燃料電池用セパレータを脱型する際、燃料電池用セパレータにクラックや割れが発生したり、成形不良を招くおそれを排除することができる。
According to the present invention, there is an effect that durability can be improved without causing molding defects and lack of conductivity.
Further, when the linear expansion coefficient in the surface direction of the fuel cell separator is set to a range of −60 to + 20% or less of the linear expansion coefficient of the molding die, the fuel cell separator is removed from the molding die. Further, it is possible to eliminate the possibility that cracks and cracks occur in the fuel cell separator and that molding defects are caused.

また、予備成形材料中の黒鉛粒子の添加量を、成形材料中の黒鉛粒子の添加量×0.5以上、かつ成形材料中の黒鉛粒子の添加量×1.0未満とすれば、所定の樹脂と黒鉛粒子のばらつきが減少し、燃料電池用セパレータの機械的強度や導電性を向上させ、ガス透過性の増大防止が期待できる。また、黒鉛粒子の表面に樹脂が過度に付着することが少なく、燃料電池用セパレータの導電性低下を抑制することができる。また、黒鉛粒子の添加量を増やす必要がないので、成形材料の流動性を向上させ、燃料電池用セパレータを容易に加工できる。   Further, if the addition amount of the graphite particles in the preforming material is not less than 0.5 addition amount of the graphite particles in the molding material and less than 1.0 addition amount of the graphite particles in the molding material, the predetermined amount The variation between the resin and the graphite particles is reduced, the mechanical strength and conductivity of the fuel cell separator are improved, and an increase in gas permeability can be expected to be prevented. In addition, the resin is less likely to adhere to the surface of the graphite particles, and the decrease in conductivity of the fuel cell separator can be suppressed. In addition, since it is not necessary to increase the amount of graphite particles added, the fluidity of the molding material can be improved and the fuel cell separator can be easily processed.

また、黒鉛粒子の平均粒径を5〜500μmとすれば、作業環境が悪化したり、二次凝集が生じて所定の樹脂との均一分散性が低下するのを防ぐことができ、しかも、燃料電池用セパレータ内における機械強度や導電性の低下防止を図ることが可能になる。また、成形材料の溶融流動性が低下するのを抑制できるので、燃料電池用セパレータを容易に成形することが可能になる。さらに、黒鉛粒子間の隙間が大きくなるのを防ぐことができ、導電性が低下したり、所定の樹脂との接触面積が低下して機械的特性が低下するのを抑制することができる。   Further, if the average particle diameter of the graphite particles is 5 to 500 μm, it is possible to prevent the working environment from deteriorating or secondary aggregation to occur and the uniform dispersibility with a predetermined resin from being lowered, and the fuel It becomes possible to prevent a decrease in mechanical strength and conductivity in the battery separator. Moreover, since it can suppress that the melt fluidity of a molding material falls, it becomes possible to shape | mold a separator for fuel cells easily. Furthermore, it is possible to prevent an increase in the gap between the graphite particles, and it is possible to suppress a decrease in electrical conductivity or a decrease in mechanical properties due to a decrease in contact area with a predetermined resin.

本発明に係る燃料電池用セパレータの製造方法の実施形態における成形用金型を模式的に示す断面説明図である。It is a section explanatory view showing typically the molding die in the embodiment of the manufacturing method of the separator for fuel cells concerning the present invention. 本発明に係る燃料電池用セパレータの実施形態を模式的に示す平面説明図である。It is a plane explanatory view showing typically an embodiment of a separator for fuel cells concerning the present invention. 本発明に係る燃料電池用セパレータの実施形態を模式的に示す断面説明図である。It is a section explanatory view showing typically an embodiment of a separator for fuel cells concerning the present invention.

以下、図面を参照して本発明の実施形態を説明すると、本実施形態における燃料電池用セパレータの製造方法は、図1ないし図3に示すように、粉状の成形材料1を成形用金型10に充填して加熱加圧し、その後、加圧冷却して複数の溝22を有する燃料電池用セパレータ20を成形する製法であり、所定の樹脂と黒鉛粒子とを加熱混練して成形材料1を調製し、この成形材料1を粉体化して黒鉛粒子を添加混合することにより、粉状の成形材料1を調製するようにしている。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. A method for manufacturing a fuel cell separator according to this embodiment includes a powdery molding material 1 as a molding die as shown in FIGS. 10 is a method of forming a fuel cell separator 20 having a plurality of grooves 22 by heating and pressurizing and then pressurizing and cooling. A molding resin 1 is obtained by heating and kneading a predetermined resin and graphite particles. The powdery molding material 1 is prepared by preparing and molding this molding material 1 and adding and mixing graphite particles.

粉状の成形材料1は、少なくとも所定の樹脂と黒鉛粒子とを所定の樹脂の溶融開始温度以上の温度で加熱混練して成形材料1を調製し、この成形材料1を粉砕して粉体化した後、この粉体化した成形材料1に黒鉛粒子を添加して所定の樹脂の溶融開始温度未満の温度で混合することにより調製される。
成形材料1の所定の樹脂は、熱可塑性樹脂あるいは熱硬化性樹脂を使用することができ、熱可塑性樹脂としては、結晶性熱可塑性樹脂、又は非晶性熱可塑性樹脂を用いることができる。
The powdery molding material 1 is prepared by molding the molding material 1 by heating and kneading at least a predetermined resin and graphite particles at a temperature equal to or higher than the melting start temperature of the predetermined resin. Thereafter, graphite particles are added to the powdered molding material 1 and mixed at a temperature lower than the melting start temperature of a predetermined resin.
As the predetermined resin of the molding material 1, a thermoplastic resin or a thermosetting resin can be used. As the thermoplastic resin, a crystalline thermoplastic resin or an amorphous thermoplastic resin can be used.

熱可塑性樹脂としては、例えばオレフィン系樹脂〔低密度ポリエチレン(LDPE)樹脂、高密度ポリエチレン(HDPE)樹脂、超低密度ポリエチレン(VLDPE)樹脂、直鎖状低密度ポリエチレン(LLDPE)樹脂、超高分子量ポリエチレン(UHMW‐PE)樹脂、ホモポリプロピレン樹脂、ブロックポリプロピレン樹脂あるいはランダムポリプロピレン樹脂等のポリプロピレン(PP)樹脂、ポリメチルペンテン(PMP)樹脂、あるいは環状オレフィン樹脂等〕、ポリスチレン(PS)樹脂〔アタクチックポリスチレン樹脂、シンジオタクチックポリスチレン樹脂等〕、ポリエステル系樹脂〔ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリトリメチレンナフタレート(PTT)樹脂、ポリエチレンナフタレート(PEN)樹脂、ポリブチレンナフタレート(PBN)樹脂、あるいはポリ乳酸(PLA)樹脂等〕、ポリカーボネート(PC)樹脂、ポリアミド系樹脂〔ナイロン6、ナイロン11、ナイロン12、ナイロン46、ナイロン66、ナイロン6T、ナイロン61、ナイロン9T、ナイロンM5T、ナイロンMXD、ナイロン610、ナイロン612等〕、ポリフタルアミド樹脂、ポリアリーレン(PAR)樹脂、変性ポリフェニレンエーテル樹脂、フッ素系樹脂〔テトラフルオロエチレン・エチレン共重合体(ETFE)樹脂、テトラフルオロエチレン・ヘキサフルオロプロピル共重合体(FEP)樹脂、あるいはテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)樹脂等〕、ポリサルホン系樹脂〔ポリサルホン(PSU)樹脂、ポリエーテルサルホン(PES)樹脂、ポリフェニルサルホン(PPSU)樹脂等〕、ポリアリーレンスルフィド系樹脂〔ポリフェニレンスルフィド(PPS)樹脂、ポリフェニレンスルフィドスルホン樹脂、あるいはポリフェニレンスルフィドケトン樹脂〕、液晶ポリマー、あるいはポリアリーレンケトン系樹脂〔ポリエーテルケトン(PEK)樹脂、ポリエーテルケトンケトン(PEKK)樹脂、ポリエーテルエーテルケトンケトン(PEEKK)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエーテルケトンエーテルケトンケトン(PEKEKK)樹脂等〕、ポリイミド系樹脂〔ポリエーテルイミド(PEI)樹脂、ポリアミドイミド(PAI)樹脂、ポリイミド(PI)樹脂等〕があげられるが、何らこれらに限定されるものではない。   Examples of the thermoplastic resin include an olefin resin [low density polyethylene (LDPE) resin, high density polyethylene (HDPE) resin, very low density polyethylene (VLDPE) resin, linear low density polyethylene (LLDPE) resin, ultra high molecular weight]. Polyethylene (UHMW-PE) resin, homopolypropylene resin, polypropylene (PP) resin such as block polypropylene resin or random polypropylene resin, polymethylpentene (PMP) resin, cyclic olefin resin, etc.], polystyrene (PS) resin [Atactic Polystyrene resin, syndiotactic polystyrene resin, etc.], polyester resin [polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polytrimethylene naphthalate (PTT) Resin, polyethylene naphthalate (PEN) resin, polybutylene naphthalate (PBN) resin, polylactic acid (PLA) resin, etc.], polycarbonate (PC) resin, polyamide resin [nylon 6, nylon 11, nylon 12, nylon 46 , Nylon 66, nylon 6T, nylon 61, nylon 9T, nylon M5T, nylon MXD, nylon 610, nylon 612, etc.], polyphthalamide resin, polyarylene (PAR) resin, modified polyphenylene ether resin, fluorine-based resin [tetrafluoro Ethylene / ethylene copolymer (ETFE) resin, tetrafluoroethylene / hexafluoropropyl copolymer (FEP) resin, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) resin, etc. Polysulfone resins (polysulfone (PSU) resin, polyethersulfone (PES) resin, polyphenylsulfone (PPSU) resin, etc.), polyarylene sulfide resins (polyphenylene sulfide (PPS) resin, polyphenylene sulfide sulfone resin, or Polyphenylene sulfide ketone resin], liquid crystal polymer, or polyarylene ketone resin [polyetherketone (PEK) resin, polyetherketoneketone (PEKK) resin, polyetheretherketoneketone (PEEKK) resin, polyetheretherketone (PEEK) Resin, polyetherketone etherketoneketone (PEKEKK) resin, etc.], polyimide resin [polyetherimide (PEI) resin, polyamideimide (PAI) resin, polyimide ( PI) resin, etc.], but is not limited thereto.

これらの熱可塑性樹脂の中では、燃料電池用セパレータ20の機械的性質、化学的安定性(耐加水分解性)、入手のし易さ、コストの観点から、ポリプロピレン樹脂、環状オレフィン樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルイミド樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、あるいはポリフェニレンサルホン樹脂等のポリサルホン系樹脂が好ましい。熱可塑性樹脂は、1種単独で使用しても良いし、2種以上を併用することもできる。熱可塑性樹脂の形状は、粉体状、顆粒状、塊状、粒状、ペレット状等を特に問うものではない。   Among these thermoplastic resins, from the viewpoint of mechanical properties, chemical stability (hydrolysis resistance), availability, and cost of the fuel cell separator 20, polypropylene resin, cyclic olefin resin, polyphenylene sulfide Polysulfone-based resins such as resins, polyetherimide resins, polysulfone resins, polyether sulfone resins, and polyphenylene sulfone resins are preferable. A thermoplastic resin may be used individually by 1 type, and can also use 2 or more types together. The shape of the thermoplastic resin is not particularly limited to powder, granule, lump, granule, pellet or the like.

熱硬化性樹脂としては、例えばフェノール樹脂、エポキシ樹脂、ジアリルフタレート樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、シリコーン樹脂、ポリウレタン樹脂、ユリア樹脂、メラミン樹脂等が該当するが、何らこれに限定されるものではない。これらの熱硬化性樹脂は、1種単独で使用しても良いし、2種以上を併用することもできる。熱硬化性樹脂の形状は、粉体状、顆粒状、塊状、粒状、ペレット状等を問うものではない。   Examples of the thermosetting resin include phenol resin, epoxy resin, diallyl phthalate resin, unsaturated polyester resin, polyimide resin, silicone resin, polyurethane resin, urea resin, melamine resin, etc., but are not limited thereto. is not. These thermosetting resins may be used alone or in combination of two or more. The shape of the thermosetting resin is not limited to powder, granule, lump, granule, pellet or the like.

所定の樹脂は、熱可塑性樹脂と熱硬化性樹脂のいずれでも良いが、好ましくは熱可塑性樹脂が良い。これは、熱硬化性樹脂の場合には、硬化に長時間を要し、生産性の向上を図ることができないからである。また、未硬化成分や反応生成物が燃料電池用セパレータ20中に残留しやすく、燃料電池の作動中に残留物が溶出して燃料電池の耐久性を低下させるからである。また、熱硬化性樹脂は、硬化収縮が生じるため、成形用金型10の設計が煩雑化するからである。さらに、熱可塑性樹脂はリサイクルが可能であるものの、熱硬化性樹脂は硬化後のリサイクルが不可能なので、製品コストが上昇し、廃棄物の量が増大するという理由に基づく。   The predetermined resin may be either a thermoplastic resin or a thermosetting resin, but is preferably a thermoplastic resin. This is because in the case of a thermosetting resin, it takes a long time to cure, and the productivity cannot be improved. In addition, uncured components and reaction products are likely to remain in the fuel cell separator 20, and the residue is eluted during the operation of the fuel cell, thereby reducing the durability of the fuel cell. Moreover, since thermosetting resin undergoes curing shrinkage, the design of the molding die 10 becomes complicated. Furthermore, although thermoplastic resins can be recycled, thermosetting resins cannot be recycled after curing, this is based on the reason that product costs increase and the amount of waste increases.

黒鉛粒子としては、鱗片状黒鉛、鱗状黒鉛、塊状黒鉛、土状黒鉛等からなる天然黒鉛、鱗片状黒鉛を濃硫酸等で化学処理することで得られる膨張黒鉛、膨張黒鉛を高温で加熱処理することで得られる膨張化黒鉛、人造黒鉛等があげられる。これらの黒鉛粒子のうち、不純物や溶出性が少なく、純度の高い人造黒鉛を用いれば、優れた導電性を得ることができる。黒鉛粒子は、1種単独で使用しても良いし、2種以上を併用することができる。   As graphite particles, natural graphite composed of scaly graphite, scaly graphite, massive graphite, earthy graphite, etc., expanded graphite obtained by chemically treating scaly graphite with concentrated sulfuric acid, etc., and heat-treating expanded graphite at high temperature Expanded graphite, artificial graphite, and the like. Among these graphite particles, excellent conductivity can be obtained by using artificial graphite which has few impurities and elution and has high purity. The graphite particles may be used alone or in combination of two or more.

黒鉛粒子の平均粒径は、5〜500μm以下、好ましくは10〜300μm以下、より好ましくは3〜200μm以下が好適である。これは、黒鉛粒子の平均粒径が5μm未満の場合には、作業中に黒鉛粒子が舞い上がって作業環境が悪化したり、二次凝集が生じて所定の樹脂との均一分散性が低下し、燃料電池用セパレータ20の導電性が低下するという理由に基づく。また、成形材料1の溶融流動性が低下するので、薄い燃料電池用セパレータ20を成形することが困難になるという理由に基づく。   The average particle diameter of the graphite particles is 5 to 500 μm or less, preferably 10 to 300 μm or less, more preferably 3 to 200 μm or less. This is because when the average particle size of the graphite particles is less than 5 μm, the graphite particles soar during the work, the working environment is deteriorated, or secondary agglomeration occurs and the uniform dispersibility with a predetermined resin is reduced, This is based on the reason that the conductivity of the fuel cell separator 20 is lowered. Further, since the melt fluidity of the molding material 1 is lowered, it is based on the reason that it is difficult to mold the thin fuel cell separator 20.

これに対し、黒鉛粒子の平均粒径が500μmを越える場合には、黒鉛粒子間の隙間が大きくなるので高充填化が困難になり、所定の樹脂との接触面積が低下して機械的特性が低下するからである。また、黒鉛粒子は、粒子径の異なる2種以上を併用することができ、この併用する場合には、高充填化が可能になるので、高導電性の燃料電池用セパレータ20を得ることができる。   On the other hand, when the average particle diameter of the graphite particles exceeds 500 μm, the gap between the graphite particles becomes large, so that it is difficult to achieve high filling, and the contact area with a predetermined resin is reduced, resulting in mechanical characteristics. It is because it falls. In addition, two or more kinds of graphite particles having different particle diameters can be used in combination, and in the case of using these in combination, since high packing is possible, a highly conductive fuel cell separator 20 can be obtained. .

黒鉛粒子は、例えばシランカップリング剤〔3‐グリシドキシプロピルトリメトキシシラン、3‐メタクリロキシプロピルトリメトキシシラン、3‐アミノプロピルエトキシシラン等〕、チタネート系カップリング剤〔イソプロピルトリイソステアロイルチタネート、テトラオクチルビス(ジオクチルホスファイト)チタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、イソプロピルトリ(N‐アミトエチル・アミノエチル)チタネート等〕、アルミネート系カップリング剤〔アセトアルコキシアルミニウムジイソプロピレート等〕等の各種カップリング剤、界面活性剤〔陰イオン系界面活性剤、陽イオン系界面活性剤、両性イオン系界面活性剤、非イオン性界面活性剤等〕、スチレン、アクリル等の有機化合物で処理することができる。   Graphite particles include, for example, silane coupling agents [3-glycidoxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-aminopropylethoxysilane, etc.], titanate coupling agents [isopropyl triisostearoyl titanate, Tetraoctyl bis (dioctyl phosphite) titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, tetraisopropyl bis (dioctyl phosphite) titanate, isopropyl tri (N-amitoethyl / aminoethyl) titanate, etc.), aluminate coupling agent Various coupling agents such as [acetoalkoxyaluminum diisopropylate], surfactants [anionic surfactants, cationic surfactants, zwitterionic surfactants , Nonionic surfactants, etc.], styrene, can be treated with an organic compound such as acrylic.

成形材料1の樹脂と黒鉛粒子との組成比率は、使用する樹脂の種類により異なるが、黒鉛粒子の組成体積比率で50体積%〜80体積%、好ましくは60体積%〜75体積%が良い。これは、50体積%未満の場合には、燃料電池用セパレータ20として必要な導電性を得ることができないという理由に基づく。これに対し、80体積%を越える場合には、成形材料1の溶融流動性が低下し、機械的強度や加工性の低下を招くからである。   The composition ratio between the resin of the molding material 1 and the graphite particles varies depending on the type of resin used, but the composition volume ratio of the graphite particles is 50% by volume to 80% by volume, preferably 60% by volume to 75% by volume. This is based on the reason that the conductivity required for the fuel cell separator 20 cannot be obtained when the amount is less than 50% by volume. On the other hand, when it exceeds 80% by volume, the melt fluidity of the molding material 1 is lowered, and the mechanical strength and workability are lowered.

所定の樹脂と黒鉛粒子とを所定の樹脂の溶融開始温度以上の温度で加熱混練して成形材料1を調製する際の成形材料1中の黒鉛粒子の添加量は、成形材料1中の黒鉛粒子の添加量×0.5以上、かつ成形材料1中の黒鉛粒子の添加量×1.0未満が良い。これは、黒鉛粒子の添加量が成形材料1中の黒鉛粒子の添加量×0.5未満の場合には、樹脂と黒鉛粒子との局部的なばらつきが大きくなり、燃料電池用セパレータ20の表面に鱗状の模様やアバタ状の細かい凹みが現れ、燃料電池用セパレータ20の機械的強度や導電性が低下し、ガス透過性が増大するからである。   When the molding material 1 is prepared by heating and kneading a predetermined resin and graphite particles at a temperature equal to or higher than the melting start temperature of the predetermined resin, the amount of graphite particles in the molding material 1 is as follows. The addition amount of x 0.5 or more and the addition amount of graphite particles in the molding material 1 x less than 1.0 are preferable. This is because when the addition amount of graphite particles is less than the addition amount of graphite particles in the molding material 1 × 0.5, local variation between the resin and the graphite particles becomes large, and the surface of the fuel cell separator 20 is increased. This is because scale-like patterns and avatar-shaped fine dents appear on the surface, the mechanical strength and conductivity of the fuel cell separator 20 decrease, and the gas permeability increases.

これに対し、黒鉛粒子の添加量が成形材料1中の黒鉛粒子の添加量×1.0以上の場合には、黒鉛粒子の表面に樹脂が過度に付着するので、黒鉛粒子同士が接して形成される導電パスが減少するため、燃料電池用セパレータ20の導電性が大幅に低下することとなる。したがって、黒鉛粒子の添加量が増加することになるので、成形材料1の溶融流動性が低下し、燃料電池用セパレータ20の加工性に支障を来たすからである。   On the other hand, when the addition amount of the graphite particles is not less than 1.0 addition amount of the graphite particles in the molding material 1, the resin adheres excessively to the surface of the graphite particles, so the graphite particles are in contact with each other. As a result, the conductivity of the fuel cell separator 20 is greatly reduced. Therefore, since the amount of graphite particles added is increased, the melt fluidity of the molding material 1 is lowered, and the workability of the fuel cell separator 20 is hindered.

成形材料1には、所定の樹脂と黒鉛粒子の他、導電材料を選択的に添加することができる。この導電材料としては、金属系材料や炭素系材料等があげられ、これらは、単独で使用しても良いし、併用することも可能である。金属系材料としては、ニッケル、鉄、コバルト、ホウ素、鉛、クロム、銅、アルミニウム、チタン、ビスマス、錫、タングステン、モリブデン、白金、金、銀、特開2007−273458号公報記載の導電性セラミック等を使用することができる。この導電性セラミックには、例えば金属炭化物、金属窒化物、金属炭窒化物、金属ホウ化物、金属珪化物等が該当する。   In addition to a predetermined resin and graphite particles, a conductive material can be selectively added to the molding material 1. Examples of the conductive material include a metal-based material and a carbon-based material, and these may be used alone or in combination. Examples of metal materials include nickel, iron, cobalt, boron, lead, chromium, copper, aluminum, titanium, bismuth, tin, tungsten, molybdenum, platinum, gold, silver, and conductive ceramics described in JP-A-2007-273458. Etc. can be used. Examples of the conductive ceramic include metal carbide, metal nitride, metal carbonitride, metal boride, and metal silicide.

金属炭化物には、例えば炭化タングステン、炭化ケイ素、炭化タンタル、炭化チタン、炭化ニオブ、炭化ジルコニウム、炭化モリブデン、炭化バナジウム、炭化クロム、炭化ホウ素等が該当する。また、金属窒化物には、例えば窒化クロム、窒化アルミニウム、窒化モリブデン、窒化ジルコニウム、窒化タンタル、窒化チタン、窒化ガリウム、窒化ニオブ、窒化バナジウム、窒化スカンジウム、窒化ランタン、窒化珪素、窒化ホウ素等が該当する。また、金属炭窒化物には、例えば炭窒化チタンや炭窒化ジルコニウム等が該当する。   Examples of the metal carbide include tungsten carbide, silicon carbide, tantalum carbide, titanium carbide, niobium carbide, zirconium carbide, molybdenum carbide, vanadium carbide, chromium carbide, and boron carbide. Examples of the metal nitride include chromium nitride, aluminum nitride, molybdenum nitride, zirconium nitride, tantalum nitride, titanium nitride, gallium nitride, niobium nitride, vanadium nitride, scandium nitride, lanthanum nitride, silicon nitride, and boron nitride. To do. The metal carbonitride includes, for example, titanium carbonitride and zirconium carbonitride.

金属ホウ化物としては、ホウ化チタン、ホウ化ジルコニウム、ホウ化ハフニウム、ホウ化バナジウム、ホウ化ニオブ、ホウ化タンタル、ホウ化クロム、ホウ化モリブデン、ホウ化タングステン、ホウ化ランタン等があげられる。また、金属珪化物としては、珪化チタン、珪化ジルコニウム、珪化ハフニウム、珪化ニオブ、珪化タンタル、珪化クロム、珪化モリブデン、珪化バナジウム、珪化ランタン、珪化マンガン、珪化コバルト、珪化ニッケル、珪化銅、珪化タングステンがあげられる。   Examples of the metal boride include titanium boride, zirconium boride, hafnium boride, vanadium boride, niobium boride, tantalum boride, chromium boride, molybdenum boride, tungsten boride, and lanthanum boride. Metal silicides include titanium silicide, zirconium silicide, hafnium silicide, niobium silicide, tantalum silicide, chromium silicide, molybdenum silicide, vanadium silicide, lanthanum silicide, manganese silicide, cobalt silicide, nickel silicide, copper silicide, tungsten silicide. can give.

炭素系材料としては、カーボンブラック、カーボンナノチューブ、カーボンナノホーン、フラーレン、アモルファスカーボン、炭素繊維等を使用することができる。カーボンブラックとしては、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック等を使用することができる。また、カーボンナノチューブとしては、単層カーボンナノチューブや多層カーボンナノチューブ等を使用することができる。炭素繊維には、パン系炭素繊維やピッチ系炭素繊維等が該当する。   As the carbon-based material, carbon black, carbon nanotube, carbon nanohorn, fullerene, amorphous carbon, carbon fiber and the like can be used. As carbon black, furnace black, channel black, acetylene black, thermal black, etc. can be used. Moreover, as a carbon nanotube, a single wall carbon nanotube, a multi-walled carbon nanotube, etc. can be used. Examples of the carbon fiber include bread-based carbon fiber and pitch-based carbon fiber.

成形材料1には、所定の樹脂、黒鉛粒子、導電材料の他、所定の添加剤を選択的に添加することができる。この所定の添加剤としては、酸化防止剤、光安定剤、紫外線吸収剤、可塑剤、滑剤、難燃剤、帯電防止剤、耐熱向上剤、無機充填剤、有機充填剤等があげられる。   In addition to a predetermined resin, graphite particles, and conductive material, a predetermined additive can be selectively added to the molding material 1. Examples of the predetermined additive include an antioxidant, a light stabilizer, an ultraviolet absorber, a plasticizer, a lubricant, a flame retardant, an antistatic agent, a heat resistance improver, an inorganic filler, and an organic filler.

所定の樹脂と黒鉛粒子とを所定の樹脂の溶融開始温度以上の温度で加熱混練して成形材料1を調製する際の溶融開始温度は、所定の樹脂の種類により異なる。所定の樹脂が熱可塑性樹脂の場合には、ホモポリプロピレン樹脂あるいはポリフェニレンサルファイド樹脂等の結晶性熱可塑性樹脂と、ポリエーテルイミド樹脂あるいはポリエーテルサルホン樹脂等の非晶性熱可塑性樹脂とでは異なる。溶融開始温度は、結晶性熱可塑性樹脂の場合には融点、非晶性熱可塑性樹脂の場合にはガラス転移点温度を指す。   The melting start temperature when preparing the molding material 1 by heating and kneading a predetermined resin and graphite particles at a temperature equal to or higher than the melting start temperature of the predetermined resin varies depending on the type of the predetermined resin. When the predetermined resin is a thermoplastic resin, it differs between a crystalline thermoplastic resin such as homopolypropylene resin or polyphenylene sulfide resin and an amorphous thermoplastic resin such as polyetherimide resin or polyethersulfone resin. The melting start temperature indicates a melting point in the case of a crystalline thermoplastic resin and a glass transition temperature in the case of an amorphous thermoplastic resin.

所定の樹脂と黒鉛粒子との加熱混練温度は、結晶性熱可塑性樹脂の場合には、溶融開始温度〜熱分解温度未満、好ましくは溶融開始温度+30℃〜熱分解温度未満であり、非晶性熱可塑性樹脂の場合には、溶融開始温度〜熱分解温度未満、好ましくは溶融開始温度+50℃〜熱分解温度未満、より好ましくは溶融開始温度+100℃〜熱分解温度未満が良い。   In the case of a crystalline thermoplastic resin, the heating and kneading temperature between the predetermined resin and the graphite particles is from the melting start temperature to less than the thermal decomposition temperature, preferably from the melting start temperature + 30 ° C. to less than the thermal decomposition temperature, and is amorphous. In the case of a thermoplastic resin, the melting start temperature is lower than the thermal decomposition temperature, preferably the melting start temperature + 50 ° C. is lower than the thermal decomposition temperature, more preferably the melting start temperature + 100 ° C. is lower than the thermal decomposition temperature.

所定の樹脂と黒鉛粒子との加熱混練は、加圧ニーダー、フラッシングニーダー、ケーエックスニーダー等の各種ニーダー、単軸押出機、二軸押出機、三軸押出機、四軸押出機等の各種押出機、バンバリーミキサー、プラネタリーミキサー等の加熱混練機を用いて行うことができる。なお、必要に応じ、所定の樹脂と黒鉛粒子とを加熱混練する前に、分散性を向上させる観点から、所定の樹脂の溶融開始温度未満の温度でナウターミキサー、タンブラーミキサー、ヘンシルミキサー、リボンブレンダー、V型混合機等の攪拌機、ボールミル等を使用して攪拌混合しても良い。   Heat kneading of a predetermined resin and graphite particles is performed by various types of kneaders such as a pressure kneader, a flashing kneader, and a KEX kneader, and various types of extrusion such as a single screw extruder, a twin screw extruder, a triaxial extruder, and a four screw extruder. It can be carried out using a heating kneader such as a machine, a Banbury mixer, or a planetary mixer. In addition, from the viewpoint of improving dispersibility before heating and kneading the predetermined resin and graphite particles as necessary, a Nauter mixer, a tumbler mixer, a hensil mixer, at a temperature lower than the melting start temperature of the predetermined resin, Stirring and mixing may be performed using a ribbon blender, a stirrer such as a V-type mixer, or a ball mill.

加熱混練して調製された成形材料1は、再度黒鉛粒子を混合するため、粉砕して粉体化される。この成形材料1の粉砕は、必要に応じ、1段階、2段階、複数段階で実施することができる。この成形材料1を粉砕する方法としては、例えばせん断粉砕法、衝撃粉砕法、衝突粉砕法、冷凍粉砕法、溶液粉砕法等があげられ、これらの中では、工程の簡素化とコスト削減の観点から、せん断粉砕法と衝撃粉砕法が最適である。   The molding material 1 prepared by heating and kneading is pulverized and pulverized in order to mix the graphite particles again. The pulverization of the molding material 1 can be performed in one step, two steps, or a plurality of steps as required. Examples of the method for pulverizing the molding material 1 include a shear pulverization method, an impact pulverization method, a collision pulverization method, a freeze pulverization method, and a solution pulverization method. Among these, the viewpoint of simplification of the process and cost reduction Therefore, the shear pulverization method and the impact pulverization method are optimal.

他の粉砕方法、すなわち、衝突粉砕法の場合には、特殊な粉砕装置を必要とするのでコスト高となり、冷凍粉砕法の場合には、液体窒素等の低温の液体で一旦加熱混練物を凍結させた後に粉砕するので、工程が複雑化してコスト高を招くこととなる。また、溶液粉砕法の場合には、粉砕工程が複雑となり、しかも、溶液を使用するので粉砕品中に溶液が残存するおそれがある。   In the case of other pulverization methods, that is, the collision pulverization method, a special pulverization apparatus is required, which increases the cost. In the case of the freeze pulverization method, the heated kneaded material is once frozen with a low-temperature liquid such as liquid nitrogen. Since it grind | pulverizes after making it process, a process will become complicated and will cause a high cost. In the case of the solution pulverization method, the pulverization process is complicated, and the solution is used, so that the solution may remain in the pulverized product.

成形材料1の粉砕温度は、樹脂の種類により異なるものの、通常は溶融開始温度未満の温度、好ましくは溶融開始温度−70℃以下、好ましくは溶融開始温度−100℃以下が最適である。これは、成形材料1の粉砕温度が溶融開始温度以上であると、成形材料1が軟化して粉砕することができなくなるからである。また、成形材料1の具体的な粉砕に際しては、ハンマーミル、カッターミル、フェザーミル、フレーククラッシャー、ピンミル、インパクトミル、ビクトリミル、ボールミル、ジェットミル等の粉砕機、解砕機、裁断機等を用いることができる。   Although the pulverization temperature of the molding material 1 varies depending on the type of resin, it is usually optimum that the temperature is lower than the melting start temperature, preferably the melting start temperature is −70 ° C. or lower, preferably the melting start temperature is −100 ° C. This is because if the pulverization temperature of the molding material 1 is equal to or higher than the melting start temperature, the molding material 1 is softened and cannot be pulverized. Moreover, when concretely crushing the molding material 1, use a grinder such as a hammer mill, a cutter mill, a feather mill, a flake crusher, a pin mill, an impact mill, a Victory mill, a ball mill, a jet mill, etc., a crusher, and a cutting machine. Can do.

粉体化された成形材料1の平均粒径は、好ましくは5〜500μm以下、より好ましくは10〜300μm以下、さらに好ましくは30〜200μm以下の範囲が良い。これは、成形材料1の平均粒径が5μm未満の場合には、作業時に成形材料1が舞い上がって作業環境が悪化し、しかも、二次凝集を招いて再添加する黒鉛粒子との均一分散性が低下するという理由に基づく。これに対し、成形材料1の平均粒径が500μmを越える場合には、燃料電池用セパレータ20の表面に小さな凹みが発生するので、燃料電池用セパレータ20の機械的強度や導電性が局部的に低下し、ガス透過性が局部的に増大するという理由に基づく。   The average particle size of the powdered molding material 1 is preferably 5 to 500 μm or less, more preferably 10 to 300 μm or less, and still more preferably 30 to 200 μm or less. This is because, when the average particle size of the molding material 1 is less than 5 μm, the molding material 1 is swollen during the working, the working environment is deteriorated, and the uniform dispersion with the graphite particles to be added again due to secondary agglomeration. Based on the reason for the decline. On the other hand, when the average particle diameter of the molding material 1 exceeds 500 μm, a small dent is generated on the surface of the fuel cell separator 20, so that the mechanical strength and conductivity of the fuel cell separator 20 are locally increased. Based on the reason that it decreases and the gas permeability increases locally.

粉体化された成形材料1は、必要に応じ、篩網、振動篩、振動スクリーン、超音波篩、ミクロセパレータ、ミクロンセパレータ、ターボクラシフィア分級機や篩で適宜分級される。   The powdered molding material 1 is appropriately classified with a sieve screen, a vibrating sieve, a vibrating screen, an ultrasonic sieve, a micro separator, a micron separator, a turbo classifier classifier or a sieve as necessary.

粉体化された成形材料1は、黒鉛粒子が添加され、所定の樹脂の溶融開始温度未満の温度で混合されることにより、粉状の成形材料1が調製される。成形材料1と黒鉛粒子とは、ナウターミキサー、タンブラーミキサー、ヘンシルミキサー、リボンブレンダー、V型混合機等の攪拌機、ボールミル等を使用して混合することができる。この混合時間は、5〜120分間、好ましくは10〜90分間、より好ましくは30〜60分間が良い。   The powdered molding material 1 is prepared by adding graphite particles and mixing at a temperature lower than the melting start temperature of a predetermined resin. The molding material 1 and the graphite particles can be mixed using a nauter mixer, a tumbler mixer, a hensil mixer, a ribbon blender, a stirrer such as a V-type mixer, a ball mill, or the like. The mixing time is 5 to 120 minutes, preferably 10 to 90 minutes, more preferably 30 to 60 minutes.

粉状の成形材料1を調製したら、この成形材料1を予備成形することなく、成形用金型10に所定量の成形材料1を充填して加熱加圧し、その後、加圧冷却して燃料電池用セパレータ20を圧縮成形する。
成形用金型10は、図1に示すように、成形部12を備えた凸型の上型11と、成形部12を備えた凹型の下型13とを型締め可能に対向させて備え、これら上型11と下型13とが所定の材料により構成されており、図示しない成形機に装着される。
Once the powdery molding material 1 is prepared, the molding die 10 is filled with a predetermined amount of the molding material 1 without being preformed, heated and pressurized, and then pressurized and cooled to produce a fuel cell. The separator 20 is compression molded.
As shown in FIG. 1, the molding die 10 includes a convex upper mold 11 having a molding portion 12 and a concave lower mold 13 having a molding portion 12 facing each other so as to be capable of clamping. The upper mold 11 and the lower mold 13 are made of a predetermined material and are mounted on a molding machine (not shown).

この成形用金型10の材料としては、例えば炭素鋼(低炭素鋼、高炭素鋼、普通鋼、特殊鋼、低合金鋼、高張力鋼等)、ステンレス鋼(フェライト系ステンレス鋼、マルテンサイト系ステンレス鋼等からなる鉄‐クロム系ステンレス鋼、オーステナイト系ステンレス鋼、オーステナイト・フェライト系ステンレス鋼等の鉄‐クロム‐ニッケル系ステンレス鋼等)、低合金鋼(モリブデン鋼、クロム‐モリブデン鋼、モリブデン‐バナジウム鋼、クロム‐モリブデン‐バナジウム鋼、クロム‐ニッケル‐モリブデン鋼等)、クロム量16%以上のフェライト系耐熱鋼、耐熱合金(ニッケル‐鉄‐コバルト合金、ニッケル‐クロム‐チタン合金、コバルト‐クロム‐タングステン合金等)、プリハードン鋼等の鋼材があげられる。   Examples of the material of the molding die 10 include carbon steel (low carbon steel, high carbon steel, ordinary steel, special steel, low alloy steel, high tensile steel, etc.), stainless steel (ferritic stainless steel, martensite type). Iron-chromium stainless steel made of stainless steel, austenitic stainless steel, iron-chromium-nickel stainless steel such as austenitic / ferritic stainless steel), low alloy steel (molybdenum steel, chromium-molybdenum steel, molybdenum-) Vanadium steel, chromium-molybdenum-vanadium steel, chromium-nickel-molybdenum steel, etc.), ferritic heat-resistant steel with a chromium content of 16% or more, heat-resistant alloys (nickel-iron-cobalt alloy, nickel-chromium-titanium alloy, cobalt-chromium) -Tungsten alloy, etc.) and steel materials such as pre-hardened steel.

各種鋼材の線膨張係数は種類や組成により異なる。例えば、炭素鋼の線膨張係数は、炭素の含有量により異なるものの、10×10−6〜13×10−6/℃である。また、ステンレス鋼の線膨張係数は、組成により異なるが、フェライト系ステンレス鋼の場合には9×10−6〜11×10−6/℃、オーステナイト系ステンレス鋼の場合には10×10−6〜13×10−6/℃である。また、プリハード鋼の線膨張係数は、組成により異なるが、10×10−6〜13×10−6/℃である。 The linear expansion coefficient of various steel materials varies depending on the type and composition. For example, the linear expansion coefficient of carbon steel is 10 × 10 −6 to 13 × 10 −6 / ° C., although it varies depending on the carbon content. The linear expansion coefficient of stainless steel varies depending on the composition, but in the case of ferritic stainless steel, 9 × 10 −6 to 11 × 10 −6 / ° C., and in the case of austenitic stainless steel, 10 × 10 −6. to 13 is a × 10 -6 / ℃. The linear expansion coefficient of the Purihado steel varies depending on the composition, it is 10 × 10 -6 ~13 × 10 -6 / ℃.

成形用金型10の上型11と下型13とには、必要に応じ、硬質クロム、亜鉛、ニッケルクロム、窒化ニッケル、窒化チタン、ニッケル‐リン‐ポリテトラフルオロエチレン、ニッケル‐リン、ニッケル‐ホウ素、ニッケル‐リン‐ホウ素等でのメッキ処理、ダイヤモンドライクカーボン(DLC)コーティング、TiAlコーティング、窒化チタンコーティング、炭化チタンコーティング、炭化ケイ素コーティング、窒化クロムコーティング等のコーティングで表面処理を施すことができる。   If necessary, the upper mold 11 and the lower mold 13 of the molding die 10 are made of hard chromium, zinc, nickel chromium, nickel nitride, titanium nitride, nickel-phosphorus-polytetrafluoroethylene, nickel-phosphorus, nickel- Surface treatment can be applied by plating with boron, nickel-phosphorus-boron, etc., diamond-like carbon (DLC) coating, TiAl coating, titanium nitride coating, titanium carbide coating, silicon carbide coating, chromium nitride coating, etc. .

成形用金型10に所定量の成形材料1を充填する場合には、燃料電池用セパレータ20の成形箇所により成形材料1の成形量が相違するので、この点を考慮して充填する。具体的な充填方法としては、(1)成形用金型10の下型13に計量した成形材料1を充填してスクレーバ等により均一にならし、燃料電池用セパレータ20の複数の溝22を成形する成形用金型10の成形部12をスクレーバ等によりかき取り、成形材料1をバランス良く充填する方法、(2)燃料電池用セパレータ20の形状を考慮し、成形用金型10の下型13に成形材料1をディスペンサーにより増減させながら充填する方法等が該当する。   When the molding die 10 is filled with a predetermined amount of the molding material 1, the molding amount of the molding material 1 differs depending on the molding location of the fuel cell separator 20. As a specific filling method, (1) the lower mold 13 of the molding die 10 is filled with the measured molding material 1 and made uniform with a scraper or the like, and a plurality of grooves 22 of the fuel cell separator 20 are molded. Scraping the molding part 12 of the molding die 10 to be scraped off with a scraper or the like and filling the molding material 1 in a well-balanced manner. (2) Considering the shape of the fuel cell separator 20, the lower mold 13 of the molding die 10. A method of filling the molding material 1 while increasing / decreasing it with a dispenser is applicable.

成形用金型10に所定量の成形材料1を充填する場合、成形用金型10の成形温度を所定の樹脂の溶融開始温度よりも低く設定しておくことが好ましい。また、成形用金型10の加熱加圧に際しては、成形材料1の充填された成形用金型10を、成形機の所定の温度まで加熱した一対の熱板間にセットして加熱加圧する。また、成形用金型10の加熱温度は、樹脂の結晶性と非晶性とを問わず、溶融開始温度〜熱分解温度未満、好ましくは溶融開始温度+30℃〜+150℃程度が好適である。成形用金型10の加圧圧力は、300kg/cm以上が必要となる。 When filling the molding die 10 with a predetermined amount of the molding material 1, it is preferable to set the molding temperature of the molding die 10 lower than the melting start temperature of the predetermined resin. When the molding die 10 is heated and pressurized, the molding die 10 filled with the molding material 1 is set between a pair of hot plates heated to a predetermined temperature of the molding machine and heated and pressurized. Further, the heating temperature of the molding die 10 is preferably about the melting start temperature to less than the thermal decomposition temperature, preferably about the melting start temperature + 30 ° C. to + 150 ° C., regardless of the crystallinity and the amorphous property of the resin. The pressing pressure of the molding die 10 needs to be 300 kg / cm 2 or more.

成形用金型10が加熱加圧されると、成形材料1が加圧され、多数の黒鉛粒子同士が接触してその間に樹脂の流入する空隙が区画される。そして、成形用金型10の加熱により、樹脂の溶融開始温度以上の温度域で樹脂が流動を開始し、多数の黒鉛粒子同士の空隙に樹脂が流入する。したがって、黒鉛粒子の周辺に樹脂が過度に密着することなく、良好な導電性が期待できる。   When the molding die 10 is heated and pressurized, the molding material 1 is pressurized, a large number of graphite particles come into contact with each other, and a void into which the resin flows is defined therebetween. Then, by heating the molding die 10, the resin starts to flow in a temperature range equal to or higher than the melting start temperature of the resin, and the resin flows into the gaps between the many graphite particles. Therefore, good conductivity can be expected without excessive adhesion of the resin around the graphite particles.

成形用金型10の加熱加圧時間としては、多数の黒鉛粒子同士の空隙に樹脂が流入する時間であれば良い。具体的には、例えばポリフェニレンスルフィド樹脂の場合には、溶融開始温度+100℃、燃料電池用セパレータ20の投影面積に対して加圧圧力800kg/cmの条件で20〜100秒以下が良い。 The heating and pressing time of the molding die 10 may be a time for the resin to flow into the gaps between the many graphite particles. Specifically, for example, in the case of polyphenylene sulfide resin, the melting start temperature is + 100 ° C. and the pressure of 800 kg / cm 2 with respect to the projected area of the fuel cell separator 20 is preferably 20 to 100 seconds or less.

成形用金型10を加熱加圧したら、成形用金型10を加圧冷却して型開きし、燃料電池用セパレータ20を脱型することにより、図2や図3に示す燃料電池用セパレータ20を製造することができる。成形用金型10を加圧圧力800kg/cmの条件で加圧冷却する方法としては、(1)成形用金型10を取り外して別の成形機の冷却された一対の熱板間にセットし、加圧冷却する方法、(2)成形用金型10を成形機の一対の熱板間にセットしたままで加圧冷却する方法等があげられる。 When the molding die 10 is heated and pressurized, the molding die 10 is pressurized and cooled, the mold is opened, and the fuel cell separator 20 is removed, whereby the fuel cell separator 20 shown in FIGS. Can be manufactured. As a method of pressurizing and cooling the molding die 10 under a pressure of 800 kg / cm 2 , (1) the molding die 10 is removed and set between a pair of cooled hot plates of another molding machine. And (2) a method of pressurizing and cooling while the molding die 10 is set between a pair of hot plates of a molding machine.

成形用金型10は、成形材料1中の樹脂により異なるものの、結晶性樹脂の場合には、溶融開始温度以下、好ましくは結晶化温度以下、より好ましくはガラス転移点以下まで冷却される。これに対し、非晶性樹脂の場合には、溶融開始温度以下、好ましくは溶融開始温度−100℃以下、より好ましくは溶融開始温度−150℃以下まで冷却される。これは、係る温度範囲まで成形用金型10を冷却すれば、燃料電池用セパレータ20の導電性が向上したり、反りや曲がりの低減に資するからである。   Although the molding die 10 varies depending on the resin in the molding material 1, in the case of a crystalline resin, it is cooled to a melting start temperature or lower, preferably a crystallization temperature or lower, more preferably a glass transition point or lower. On the other hand, in the case of an amorphous resin, it is cooled to a melting start temperature or lower, preferably a melting start temperature −100 ° C. or lower, more preferably a melting start temperature −150 ° C. or lower. This is because if the molding die 10 is cooled to such a temperature range, the conductivity of the fuel cell separator 20 can be improved, and the warpage and the bending can be reduced.

但し、冷却温度の低下で生産性が悪化するので、導電性を満足する範囲の高温で燃料電池用セパレータ20を脱型し、結晶性樹脂の場合には、ガラス転移点−30℃以上〜結晶化温度以下、非晶性樹脂の場合には、溶融開始温度−30℃以上〜溶融開始温度未満でアリーニングし、燃料電池用セパレータ20の反りや曲がりを矯正しても良い。アリーニングは、燃料電池用セパレータ20を積層して0.05kg/cmの錘を載せて実施することが好ましい。 However, since the productivity deteriorates due to a decrease in the cooling temperature, the fuel cell separator 20 is demolded at a high temperature that satisfies the electrical conductivity, and in the case of a crystalline resin, a glass transition point of −30 ° C. or higher to a crystal In the case of an amorphous resin below the crystallization temperature, the warping or bending of the fuel cell separator 20 may be corrected by aligning at a melting start temperature of −30 ° C. or higher and lower than the melting start temperature. The aligning is preferably performed by stacking the fuel cell separator 20 and placing a weight of 0.05 kg / cm 2 thereon.

燃料電池用セパレータ20の成形方法は、圧縮成形法、射出成形法、射出圧縮成形等、いずれの方法でも良いが、優れた耐熱性や耐水性を得ることができ、しかも、燃料電池の耐久性に悪影響を及ぼす溶出イオンや重金属分の少ない圧縮成形法の採用が好ましい。また、圧縮成形法によれば、所定の樹脂量を多く、黒鉛粒子量を削減することができるので、少ない黒鉛粒子で良好な導電性を得ることができ、機械的な強度低下や成形不良を招くことがなく、寸法精度の向上も期待できる。   The fuel cell separator 20 may be formed by any method such as compression molding, injection molding, injection compression molding, etc., but excellent heat resistance and water resistance can be obtained, and the durability of the fuel cell can be obtained. It is preferable to employ a compression molding method with a small amount of eluted ions and heavy metals that adversely affect the process. In addition, according to the compression molding method, the amount of the predetermined resin can be increased and the amount of graphite particles can be reduced, so that good conductivity can be obtained with a small number of graphite particles, and mechanical strength reduction and molding defects can be prevented. It can be expected to improve dimensional accuracy.

さらに、所定の樹脂と黒鉛粒子とを所定の樹脂の溶融開始温度以上の温度で加熱混練して成形材料1を調製する工程、この成形材料1を粉砕粉体化する工程、この粉体化した成形材料1に黒鉛粒子を添加して所定の樹脂の溶融開始温度未満の温度で混合することにより成形材料1を調製する工程とにより、成形不良や導電性を不足するおそれを有効に排除し、機械的強度の向上が期待できる。   Further, a step of preparing a molding material 1 by heating and kneading a predetermined resin and graphite particles at a temperature equal to or higher than a melting start temperature of the predetermined resin, a step of pulverizing the molding material 1, and making the powder The process of preparing the molding material 1 by adding graphite particles to the molding material 1 and mixing at a temperature lower than the melting start temperature of the predetermined resin effectively eliminates the possibility of molding defects and insufficient conductivity, Improvement of mechanical strength can be expected.

燃料電池用セパレータ20は、図2や図3に示すように、平面矩形のベース板21を備え、このベース板21の平坦な表裏両面の中央部には、横一列に並ぶ燃料用あるいは生成水排出用の複数の溝22が平面略S字形に配列形成されており、電解質層、空気極、燃料極と共に積層されて燃料電池を構成するよう機能する。   As shown in FIGS. 2 and 3, the fuel cell separator 20 includes a planar rectangular base plate 21, and the center or flat surface of the base plate 21 has fuel or product water lined up in a horizontal row. A plurality of discharge grooves 22 are arranged in a substantially plane S shape and function to be stacked together with an electrolyte layer, an air electrode, and a fuel electrode to constitute a fuel cell.

燃料電池用セパレータ20には、親水性を増大させるため、表面処理が選択的に適宜施される。具体的には、成形された燃料電池用セパレータ20の表面に、火炎処理、コロナ処理、紫外線処理、プラズマ処理が施されたり、金属粒子、セラミックス粒子、ガラスビーズ、樹脂粒子、植物系粒子等でブラスト処理が施される。また、複数の溝22は、その周囲に複数の貫通口23が並べて穿孔され、各溝22が断面略U字形に凹み形成される。   In order to increase the hydrophilicity, the fuel cell separator 20 is selectively subjected to surface treatment selectively. Specifically, the surface of the molded fuel cell separator 20 is subjected to flame treatment, corona treatment, ultraviolet treatment, plasma treatment, metal particles, ceramic particles, glass beads, resin particles, plant particles, etc. A blasting process is performed. In addition, the plurality of grooves 22 are perforated with a plurality of through holes 23 arranged in the periphery thereof, and each groove 22 is formed to have a substantially U-shaped cross section.

燃料電池用セパレータ20に複数の溝22を形成する方法としては、成形された燃料電池用セパレータ20に複数の溝22を切削等の機械的加工法により形成する方法、成形用金型10で複数の溝22を備えた燃料電池用セパレータ20を成形する方法、燃料電池用セパレータ20に複数の溝22をスタッピング法により形成する方法等があるが、いずれでも良い。   As a method of forming the plurality of grooves 22 in the fuel cell separator 20, a method of forming the plurality of grooves 22 in the molded fuel cell separator 20 by a mechanical processing method such as cutting or the like, a plurality of molding molds 10 are used. There are a method for forming the fuel cell separator 20 having the grooves 22 and a method for forming the plurality of grooves 22 in the fuel cell separator 20 by a stapling method, and any of them may be used.

燃料電池用セパレータ20の面方向における線膨張係数は、成形用金型10の線膨張係数の−60〜+20%以下の範囲とされる。これは、燃料電池用セパレータ20の面方向における線膨張係数が係る範囲から外れると、成形用金型10から燃料電池用セパレータ20を脱型する際、燃料電池用セパレータ20にクラックや割れが発生し、成形不良を招くという理由に基づく。   The linear expansion coefficient in the surface direction of the fuel cell separator 20 is in the range of −60 to + 20% or less of the linear expansion coefficient of the molding die 10. This is because when the linear expansion coefficient in the surface direction of the fuel cell separator 20 is out of the range, cracks and cracks occur in the fuel cell separator 20 when the fuel cell separator 20 is removed from the molding die 10. However, it is based on the reason of causing a molding defect.

上記によれば、黒鉛の比率を減少させ、成形材料1の流動性を向上させることができるので、成形材料1を容易に調製することができる。また、黒鉛粒子の周辺に所定の樹脂が過度に密着して導電性を阻害することがないので、導電性不足を解消することができる。また、成形材料1の所定の樹脂と黒鉛の局部的なばらつきを抑制することができるので、燃料電池用セパレータ20の表面状態が悪化したり、燃料電池用セパレータ20の機械的特性や導電性の不良が局部的に発生するという問題を解消することができる。   According to the above, since the ratio of graphite can be reduced and the fluidity of the molding material 1 can be improved, the molding material 1 can be easily prepared. In addition, since the predetermined resin does not excessively adhere to the periphery of the graphite particles and the conductivity is not hindered, the lack of conductivity can be solved. Moreover, since the local dispersion | variation of the predetermined resin and graphite of the molding material 1 can be suppressed, the surface state of the separator 20 for fuel cells deteriorates, or the mechanical characteristics and electroconductivity of the separator 20 for fuel cells are deteriorated. It is possible to solve the problem that the defect occurs locally.

また、成形材料1の所定の樹脂として熱可塑性樹脂を使用すれば、樹脂の硬化を要しないので、生産性の向上やリサイクルを図ることが可能になる。さらに、未硬化成分や反応生成物が燃料電池用セパレータ20中に残留物として残留することがないので、燃料電池の作動中に残留物が溶出して燃料電池の耐久性を低下させるおそれを排除できる。   Further, if a thermoplastic resin is used as the predetermined resin of the molding material 1, it is not necessary to cure the resin, so that it is possible to improve productivity and recycle. Furthermore, since uncured components and reaction products do not remain as residues in the fuel cell separator 20, there is no possibility of the residues eluting during the operation of the fuel cell and reducing the durability of the fuel cell. it can.

なお、上記実施形態では成形用金型10に成形材料1を充填して単に加熱加圧したが、エネルギーコスト対策の観点から、加熱加圧の際に加熱機構を使用したり、加圧冷却する際に冷却機構を使用しても良い。具体的には、成形用金型10に、電気ヒータからなる加熱機構を設置したり、冷却水用の流路からなる冷却機構を内蔵しても良い。また、成形用金型10内に流路を形成して加熱用の蒸気や冷却用の冷却水を流通させても良い。   In the above embodiment, the molding material 10 is filled with the molding material 1 and is simply heated and pressurized. However, from the viewpoint of energy cost countermeasures, a heating mechanism is used during heating and pressing, or pressure cooling is performed. In this case, a cooling mechanism may be used. Specifically, the molding die 10 may be provided with a heating mechanism composed of an electric heater or a cooling mechanism composed of a cooling water flow path. Further, a flow path may be formed in the molding die 10 so that heating steam or cooling water is circulated.

また、成形用金型10内に流路を形成して加熱用の蒸気を流通させる際、過熱蒸気を用いれば、常温で高温を得ることができ、しかも、良好な加熱効率を得ることができる。また、燃料電池用セパレータ20の複数の溝22を平面略直線形や蛇行形等に形成することもできる。さらに、燃料電池用セパレータ20の各溝22は、断面長方形、正方形、台形、三角形、半円形等に適宜形成することも可能である。   Further, when the heating steam is circulated in the molding die 10 by using the superheated steam, a high temperature can be obtained at room temperature, and good heating efficiency can be obtained. . Further, the plurality of grooves 22 of the fuel cell separator 20 may be formed in a substantially planar shape or a meandering shape. Further, each groove 22 of the fuel cell separator 20 can be appropriately formed in a cross-sectional rectangle, square, trapezoid, triangle, semicircle, or the like.

次に、本発明の実施例を比較例と共に説明する。
〔実施例1〕
先ず、樹脂製の容器に、結晶性熱可塑性樹脂である2.5kgのホモポリプロピレン樹脂〔プライムポリマー社製:商品名 プライムポリプロ E200GV〕38.2体積%、10.0kgの人造黒鉛〔オリエント産業社製:商品名 AT−No.5S、平均粒径53.3μm〕61.8体積%、攪拌媒体としてφ10mmのジルコニアボール3kgをそれぞれ投入して蓋を取り付け、この容器をタンブラーミキサーに装着して27℃、1時間の条件で回転させ、これらホモポリプロピレン樹脂、人造黒鉛、ジルコニアボールを分散混合させて分散混合物を調製した。
Next, examples of the present invention will be described together with comparative examples.
[Example 1]
First, 2.5 kg of homopolypropylene resin, which is a crystalline thermoplastic resin (manufactured by Prime Polymer Co., Ltd .: trade name: Prime Polypro E200GV), 38.2% by volume, 10.0 kg of artificial graphite [Orient Sangyo Co., Ltd.] Product name: AT-No. 5S, average particle size 53.3 μm] 61.8% by volume, and 3 kg of zirconia balls with φ10 mm as a stirring medium were put in each, a lid was attached, this container was attached to a tumbler mixer, and rotated at 27 ° C. for 1 hour. These homopolypropylene resins, artificial graphite, and zirconia balls were dispersed and mixed to prepare a dispersion mixture.

こうして分散混合物を調製したら、この分散混合物からジルコニアボールを取り出してホモポリプロピレン樹脂と人造黒鉛の分散混合物を調製した。ホモポリプロピレン樹脂の融点を示差走査熱量測定したところ、ホモポリプロピレン樹脂の融点は172℃であった。また、ホモポリプロピレン樹脂は、結晶性熱可塑性樹脂であるので、融点を溶融開始温度とした。また、人造黒鉛の平均粒径をレーザ回折散乱法又はマイクロトラック法により測定し、累積重量が50%となる粒子径を平均粒径とした。   When the dispersion mixture was prepared in this way, zirconia balls were taken out from the dispersion mixture to prepare a dispersion mixture of homopolypropylene resin and artificial graphite. When the melting point of the homopolypropylene resin was measured by differential scanning calorimetry, the melting point of the homopolypropylene resin was 172 ° C. Moreover, since the homopolypropylene resin is a crystalline thermoplastic resin, the melting point was set as the melting start temperature. Further, the average particle diameter of the artificial graphite was measured by a laser diffraction scattering method or a microtrack method, and the particle diameter at which the cumulative weight was 50% was defined as the average particle diameter.

示差走査熱量測定による溶融開始温度は、熱可塑性樹脂試料約10mgを精量し、示差走査熱量計にて10℃/分の昇温速度で昇温し、このときに得られる示差走査熱量曲線から求めた。ここで、融点は示差走査熱量曲線において最大吸熱ピークを示す温度とし、ガラス転移点は示差走査熱量曲線のベースラインと変曲点の接線の交点とした。示差走査熱量計は、セイコー電子工業社製〔商品名 PSC220〕を使用した。   The melting start temperature by differential scanning calorimetry is obtained by accurately weighing about 10 mg of a thermoplastic resin sample and raising the temperature at a rate of temperature increase of 10 ° C./min with a differential scanning calorimeter. Asked. Here, the melting point was a temperature showing the maximum endothermic peak in the differential scanning calorimetry curve, and the glass transition point was the intersection of the base line of the differential scanning calorimetry curve and the tangent of the inflection point. As the differential scanning calorimeter, Seiko Electronics Co., Ltd. [trade name PSC220] was used.

次いで、分散混合物を200℃に加熱した10Lの加圧ニーダーに投入して30分間溶融混練し、加圧ニーダーから溶融混練物を取り出して50℃以下に冷却し、この溶融混練物をφ10mmのパンチングメタルを備えたハンマーミルに投入して粉砕した。こうして溶融混練物を粉砕したら、この粉砕した溶融混練物をφ0.3mmのパンチングメタルを取り付けたピンミルに再度投入して粉砕した。この粉砕した溶融混練物の平均粒径を測定したところ、85.5μmであった。
なお、粉砕した溶融混練物の平均粒径については、レーザ回折散乱法又はマイクロトラック法により測定し、累積重量が50%となる粒子径を平均粒径とした。
Next, the dispersion mixture was put into a 10 L pressure kneader heated to 200 ° C. and melt-kneaded for 30 minutes. The melt-kneaded product was taken out from the pressure kneader and cooled to 50 ° C. or less, and this melt-kneaded product was punched into φ10 mm. It was put into a hammer mill equipped with metal and pulverized. When the melt-kneaded material was pulverized in this way, the pulverized melt-kneaded material was again put into a pin mill equipped with a punching metal of φ0.3 mm and pulverized. It was 85.5 micrometers when the average particle diameter of this pulverized melt-kneaded material was measured.
In addition, about the average particle diameter of the pulverized melt-kneaded material, it measured by the laser diffraction scattering method or the microtrack method, and made the particle diameter in which an accumulated weight becomes 50% into the average particle diameter.

溶融混練物を粉砕したら、樹脂製の容器に、粉砕した10.0kgの溶融混練物、人造黒鉛の体積比率が69.0体積%となるよう、3.0kgの人造黒鉛〔オリエント産業社製:商品名 AT−No.5S、平均粒径53.3μm〕、攪拌媒体としてφ10mmのジルコニアボール3kgをそれぞれ投入して蓋を取り付けた。蓋を取り付けたら、容器をタンブラーミキサーに装着して27℃、1時間の条件で回転させ、これら溶融混練物、人造黒鉛、ジルコニアボールを分散混合させた後、ジルコニアボールを取り出して燃料電池用セパレータの成形材料を調製した。   When the melt-kneaded product is pulverized, 3.0 kg of artificial graphite (manufactured by Orient Sangyo Co., Ltd.) so that the volume ratio of the pulverized 10.0 kg of melt-kneaded product and artificial graphite becomes 69.0% by volume in a resin container. Product name AT-No. 5S, average particle size of 53.3 μm], and 3 kg of zirconia balls having a diameter of 10 mm were added as stirring media, and lids were attached. Once the lid is attached, the container is attached to a tumbler mixer and rotated at 27 ° C. for 1 hour to disperse and mix these melt-kneaded material, artificial graphite and zirconia balls, and then the zirconia balls are taken out to separate the fuel cell separator. A molding material was prepared.

次いで、成形用金型である溝なしの平板成形用金型内に成形材料を均一に充填し、圧縮成形機の上下一対の熱板により、成形用金型の側面温度が200℃に達するまで加熱加圧して燃料電池用セパレータを圧縮成形した。成形用金型は、プリハードン鋼の表面を硬質クロムでメッキした金型を用いた。また、加熱加圧に際しては、熱板の温度を250℃とし、成形圧力を燃料電池用セパレータの面積に対して800kg/cmとした。 Next, the molding material is uniformly filled into the molding die without a groove, which is a molding die, until the side surface temperature of the molding die reaches 200 ° C. by the pair of upper and lower hot plates of the compression molding machine. The fuel cell separator was compression molded by heating and pressing. As the mold for molding, a mold in which the surface of pre-hardened steel was plated with hard chrome was used. Further, at the time of heating and pressing, the temperature of the hot plate was 250 ° C., and the molding pressure was 800 kg / cm 2 with respect to the area of the fuel cell separator.

成形用金型の側面温度が200℃に達したら、成形用金型を上下一対の熱板の温度が30℃の冷却用の圧縮成形機に直ちに移載し、成形用金型の側面温度が50℃以下になるまで加圧冷却し、成形用金型から210mm×297mm×3mmの外形を有する燃料電池用セパレータを脱型した。   When the side temperature of the molding die reaches 200 ° C., the molding die is immediately transferred to a cooling compression molding machine having a pair of upper and lower hot plates at a temperature of 30 ° C., and the side temperature of the molding die is increased. The fuel cell separator having an outer shape of 210 mm × 297 mm × 3 mm was removed from the molding die by pressurization and cooling to 50 ° C. or lower.

燃料電池用セパレータを製造したら、この燃料電池用セパレータの特性、すなわち導電性と表面状態の欠点とを評価し、表1にまとめた。燃料電池用セパレータの導電性については体積抵抗値〔mΩ・cm〕により評価し、この体積抵抗値は四端子四探針法により測定した。体積抵抗値は測定サンプルを10枚測定した測定値の平均値とし、測定器は低抵抗率計〔三菱油化社製:商品名 ロレスタ AP MCP−T400〕を用いた。   Once the fuel cell separator was manufactured, the characteristics of the fuel cell separator, that is, conductivity and surface state defects were evaluated and summarized in Table 1. The conductivity of the fuel cell separator was evaluated by a volume resistance [mΩ · cm], and the volume resistance was measured by a four-terminal four-probe method. The volume resistance value was an average value of 10 measurement values obtained by measuring 10 measurement samples, and a low resistivity meter [manufactured by Mitsubishi Oil Chemical Co., Ltd .: trade name: Loresta AP MCP-T400] was used as the measuring instrument.

燃料電池用セパレータの表面状態の欠点については、10枚の燃料電池用セパレータの表面状態を目視によりそれぞれ評価し、表面に鱗状の模様あるいはアバタ状の小さな凹みが生じた場合に欠点ありとした。   Regarding the defects in the surface state of the fuel cell separator, the surface states of the 10 fuel cell separators were each evaluated by visual observation, and were found to be defective when a scale-like pattern or a small avatar-shaped dent was generated on the surface.

〔実施例2〕
先ず、樹脂製の容器に、実施例1で使用した2.0kgのホモポリプロピレン樹脂〔プライムポリマー社製:商品名 プライムポリプロ E200GV〕31.1体積%、11.0kgの鱗片状黒鉛〔中越黒鉛工業所社製:商品名 HG−50A、平均粒径50μm(カタログ値)〕68.9体積%、攪拌媒体としてφ10mmのジルコニアボール3kgをそれぞれ投入して蓋を取り付けた。
[Example 2]
First, 2.0 kg of homopolypropylene resin used in Example 1 [manufactured by Prime Polymer Co., Ltd .: trade name: Prime Polypro E200GV] 31.1% by volume, 11.0 kg of flaky graphite [Chuetsu Graphite Industries, Ltd.] Product name: HG-50A, average particle size 50 μm (catalog value)] 68.9% by volume, 3 kg of zirconia balls having a diameter of 10 mm were added as stirring media, and a lid was attached.

こうして蓋を取り付けたら、容器をタンブラーミキサーに装着して26℃、1時間の条件で回転させ、これらホモポリプロピレン樹脂、鱗片状黒鉛、ジルコニアボールを分散混合させ、ジルコニアボールを取り出してホモポリプロピレン樹脂と鱗片状黒鉛の分散混合物を調製した。   After the lid is attached in this manner, the container is attached to a tumbler mixer and rotated under the conditions of 26 ° C. for 1 hour to disperse and mix these homopolypropylene resin, flaky graphite and zirconia balls, and the zirconia balls are taken out and homopolypropylene resin A dispersion mixture of flaky graphite was prepared.

次いで、分散混合物を200℃に加熱した10Lの加圧ニーダーに投入して30分間溶融混練し、加圧ニーダーから溶融混練物を取り出して50℃以下に冷却し、この溶融混練物をφ6mmのパンチングメタルを備えたカッターミルに投入して粉砕した。こうして溶融混練物を粉砕したら、この粉砕した溶融混練物をφ0.5mmのパンチングメタルを取り付けたピンミルに再度投入して粉砕した。この粉砕した溶融混練物の平均粒径を測定したところ、108.7μmであった。   Next, the dispersion mixture was put into a 10 L pressure kneader heated to 200 ° C. and melt-kneaded for 30 minutes. The melt-kneaded product was taken out from the pressure kneader and cooled to 50 ° C. or less. It was put into a cutter mill equipped with metal and pulverized. When the melt-kneaded product was pulverized in this way, the pulverized melt-kneaded product was again put into a pin mill equipped with a φ0.5 mm punching metal and pulverized. The average particle size of the crushed melt-kneaded product was measured and found to be 108.7 μm.

溶融混練物を粉砕したら、樹脂製の容器に、粉砕した6.5kgの溶融混練物、鱗片状黒鉛の体積比率が70.7体積%となるよう、0.5kgの鱗片状黒鉛〔中越黒鉛工業所社製:商品名 HG−50A、平均粒径50μm〕、φ10mmのジルコニアボール3kgをそれぞれ投入して蓋を取り付けた。蓋を取り付けたら、容器をタンブラーミキサーに装着して25℃、1時間の条件で回転させ、これら溶融混練物、鱗片状黒鉛、ジルコニアボールを分散混合させた後、ジルコニアボールを取り出して燃料電池用セパレータの成形材料を調製した。   When the melt-kneaded product is pulverized, 0.5 kg of flaky graphite [Chuetsu Graphite Industry Co., Ltd.] is placed in a resin container so that the volume ratio of the crushed 6.5 kg of melt-kneaded product and flaky graphite is 70.7% by volume. [Product name: HG-50A, average particle size of 50 μm] and 3 kg of zirconia balls of φ10 mm were introduced and attached with lids. Once the lid is attached, the container is attached to a tumbler mixer and rotated under the conditions of 25 ° C. and 1 hour. After these melt-kneaded materials, flaky graphite and zirconia balls are dispersed and mixed, the zirconia balls are taken out and used for fuel cells. A molding material for the separator was prepared.

次いで、成形用金型である溝なしの平板成形用金型内に成形材料を均一に充填し、圧縮成形機の上下一対の熱板により、成形用金型の側面温度が200℃に達するまで加熱加圧して燃料電池用セパレータを圧縮成形した。成形用金型の側面温度が200℃に達したら、上下一対の熱板の温度が30℃の冷却用の圧縮成形機に直ちに移載し、成形用金型の側面温度が50℃以下になるまで加圧冷却し、成形用金型から210mm×297mm×3mmの外形を有する燃料電池用セパレータを脱型した。   Next, the molding material is uniformly filled into the molding die without a groove, which is a molding die, until the side surface temperature of the molding die reaches 200 ° C. by the pair of upper and lower hot plates of the compression molding machine. The fuel cell separator was compression molded by heating and pressing. When the side surface temperature of the molding die reaches 200 ° C., the temperature of the pair of upper and lower hot plates is immediately transferred to a cooling compression molding machine having a temperature of 30 ° C., and the side temperature of the molding die becomes 50 ° C. or less. The fuel cell separator having an outer shape of 210 mm × 297 mm × 3 mm was removed from the molding die.

燃料電池用セパレータを製造したら、この燃料電池用セパレータの特性、すなわち導電性と表面状態の欠点とを評価し、表1にまとめた。その他の部分については、実施例1と同様とした。   Once the fuel cell separator was manufactured, the characteristics of the fuel cell separator, that is, conductivity and surface state defects were evaluated and summarized in Table 1. The other parts were the same as in Example 1.

〔実施例3〕
先ず、樹脂製の容器に、結晶性熱可塑性樹脂である10.0kgのポリフェニレンサルファイド樹脂〔東レ社製:商品名 トレリナE2180〕52.6体積%、15.0kgの人造黒鉛〔オリエント産業社製:商品名 AT−No.5S、平均粒径53.3μm〕47.4体積%、攪拌媒体としてφ10mmのジルコニアボール3kgをそれぞれ投入して蓋を取り付けた。
Example 3
First, in a resin container, 10.0 kg of polyphenylene sulfide resin (made by Toray Industries, Inc .: trade name Torelina E2180), which is a crystalline thermoplastic resin, 52.6% by volume, 15.0 kg of artificial graphite [made by Orient Sangyo Co., Ltd .: Product name AT-No. 5S, average particle size 53.3 μm] 47.4% by volume, and 3 kg of zirconia balls having a diameter of 10 mm were added as stirring media, and lids were attached.

こうして蓋を取り付けたら、容器をタンブラーミキサーに装着して28℃、1時間の条件で回転させ、これらポリフェニレンサルファイド樹脂、人造黒鉛、ジルコニアボールを分散混合させ、ジルコニアボールを取り出してポリフェニレンサルファイド樹脂と人造黒鉛の分散混合物を調製した。ポリフェニレンサルファイド樹脂の融点を示差走査熱量測定したところ、ポリフェニレンサルファイド樹脂の溶融開始温度は286℃であった。   After the lid is attached in this manner, the container is attached to a tumbler mixer and rotated at 28 ° C. for 1 hour to disperse and mix these polyphenylene sulfide resin, artificial graphite, and zirconia balls, and the zirconia balls are taken out to obtain the polyphenylene sulfide resin and the artificial resin. A dispersed mixture of graphite was prepared. When the melting point of the polyphenylene sulfide resin was measured by differential scanning calorimetry, the melting start temperature of the polyphenylene sulfide resin was 286 ° C.

次いで、分散混合物を320℃に加熱した混練押出機に投入して溶融混練し、50℃以下に冷却し、この溶融混練物をφ6mmのパンチングメタルを備えたハンマーミルに投入して粉砕した。こうして溶融混練物を粉砕したら、この粉砕した溶融混練物をφ0.3mmのパンチングメタルを取り付けたピンミルに再度投入して粉砕した。この粉砕した溶融混練物の平均粒径を測定したところ、80.3μmであった。   Next, the dispersion mixture was put into a kneading extruder heated to 320 ° C., melted and kneaded, cooled to 50 ° C. or lower, and this melt-kneaded product was put into a hammer mill equipped with a φ6 mm punching metal and pulverized. When the melt-kneaded material was pulverized in this way, the pulverized melt-kneaded material was again put into a pin mill equipped with a punching metal of φ0.3 mm and pulverized. The average particle diameter of the pulverized melt-kneaded product was measured and found to be 80.3 μm.

溶融混練物を粉砕したら、樹脂製の容器に、粉砕した10.0kgの溶融混練物、人造黒鉛の体積比率が67.7体積%となるよう、8.0kgの人造黒鉛〔オリエント産業社製:商品名 AT−No.5S、平均粒径53.3μm〕、φ10mmのジルコニアボール3kgをそれぞれ投入して蓋を取り付けた。蓋を取り付けたら、容器をタンブラーミキサーに装着して30℃、1時間の条件で回転させ、これら溶融混練物、人造黒鉛、ジルコニアボールを分散混合させた後、ジルコニアボールを取り出して燃料電池用セパレータの成形材料を調製した。   When the melt-kneaded product is pulverized, 8.0 kg of artificial graphite (manufactured by Orient Sangyo Co., Ltd.) so that the volume ratio of the pulverized 10.0 kg of melt-kneaded product and artificial graphite is 67.7% by volume in a resin container. Product name AT-No. 5S, average particle diameter of 53.3 μm], and 3 kg of zirconia balls having a diameter of 10 mm were introduced and a lid was attached. Once the lid is attached, the container is attached to a tumbler mixer and rotated at 30 ° C. for 1 hour to disperse and mix these melt-kneaded product, artificial graphite, and zirconia balls, and then the zirconia balls are taken out to separate the fuel cell separator. A molding material was prepared.

次いで、離型剤〔ダイキン工業社製:商品名 ダイフリーGA−6010〕を均一に塗布した成形用金型である溝なしの平板成形用金型内に成形材料を均一に充填し、圧縮成形機の上下一対の熱板により、成形用金型の側面温度が320℃に達するまで加熱加圧して燃料電池用セパレータを圧縮成形した。加熱加圧に際しては、熱板の温度を360℃とし、成形圧力を燃料電池用セパレータの面積に対して800kg/cmとした。 Next, the molding material is uniformly filled in a flat plate molding die without grooves, which is a molding die uniformly applied with a mold release agent [manufactured by Daikin Industries, Ltd .: trade name: Die Free GA-6010], and compression molding is performed. The fuel cell separator was compression molded by heating and pressurizing with a pair of upper and lower hot plates of the machine until the side surface temperature of the molding die reached 320 ° C. At the time of heating and pressing, the temperature of the hot plate was 360 ° C., and the molding pressure was 800 kg / cm 2 with respect to the area of the fuel cell separator.

成形用金型の側面温度が320℃に達したら、上下一対の熱板の温度が30℃の冷却用の圧縮成形機に直ちに移載し、成形用金型の側面温度が80℃以下になるまで加圧冷却し、成形用金型から210mm×297mm×3mmの外形を有する燃料電池用セパレータを脱型した。
燃料電池用セパレータを製造したら、この燃料電池用セパレータの特性、すなわち導電性と表面状態の欠点とを評価し、表1にまとめた。その他の部分については、実施例1と同様とした。
When the side surface temperature of the molding die reaches 320 ° C., the temperature of the pair of upper and lower hot plates is immediately transferred to a cooling compression molding machine whose temperature is 30 ° C., and the side temperature of the molding die becomes 80 ° C. or less. The fuel cell separator having an outer shape of 210 mm × 297 mm × 3 mm was removed from the molding die.
Once the fuel cell separator was manufactured, the characteristics of the fuel cell separator, that is, conductivity and surface state defects were evaluated and summarized in Table 1. The other parts were the same as in Example 1.

〔実施例4〕
先ず、樹脂製の容器に、実施例3で使用した10.0kgのポリフェニレンサルファイド樹脂〔東レ社製:商品名 トレリナE2180〕62.5体積%、10.0kgの人造黒鉛〔東海カーボン社製:商品名 8020S、平均粒径140μm〕37.5体積%、攪拌媒体としてφ10mmのジルコニアボール3kgをそれぞれ投入して蓋を取り付けた。
Example 4
First, 10.0 kg of polyphenylene sulfide resin used in Example 3 (made by Toray Industries, Inc .: trade name Torelina E2180), 62.5% by volume, 10.0 kg of artificial graphite [made by Tokai Carbon Co., Ltd .: goods Name 8020S, average particle size 140 μm] 37.5% by volume, 3 kg of zirconia balls having a diameter of 10 mm were added as stirring media, and lids were attached.

蓋を取り付けたら、容器をタンブラーミキサーに装着して30℃、1時間の条件で回転させ、これらポリフェニレンサルファイド樹脂、人造黒鉛、ジルコニアボールを分散混合させ、ジルコニアボールを取り出してポリフェニレンサルファイド樹脂と人造黒鉛の分散混合物を調製した。   Once the lid is attached, the container is attached to a tumbler mixer and rotated under the conditions of 30 ° C. for 1 hour to disperse and mix these polyphenylene sulfide resin, artificial graphite and zirconia balls, and the zirconia balls are taken out to obtain polyphenylene sulfide resin and artificial graphite. A dispersion mixture of was prepared.

次いで、分散混合物を320℃に加熱した混練押出機に投入して溶融混練し、50℃以下に冷却し、この溶融混練物をφ6mmのパンチングメタルを備えたカッターミルに投入して粉砕した。こうして溶融混練物を粉砕したら、この粉砕した溶融混練物をφ0.5mmのパンチングメタルを取り付けたピンミルに再度投入して粉砕した。この粉砕した溶融混練物の平均粒径を測定したところ、100.5μmであった。   Next, the dispersion mixture was put into a kneading extruder heated to 320 ° C., melted and kneaded, cooled to 50 ° C. or less, and this melt-kneaded product was put into a cutter mill equipped with a φ6 mm punching metal and pulverized. When the melt-kneaded product was pulverized in this way, the pulverized melt-kneaded product was again put into a pin mill equipped with a φ0.5 mm punching metal and pulverized. The average particle size of the crushed melt-kneaded product was measured and found to be 100.5 μm.

溶融混練物を粉砕したら、樹脂製の容器に、粉砕した5kgの溶融混練物、人造黒鉛の体積比率が70.6体積%となるよう、7.5kgの人造黒鉛〔東海カーボン社製:商品名 8020S、平均粒径140μm〕、φ10mmのジルコニアボール3kgをそれぞれ投入して蓋を取り付けた。蓋を取り付けたら、容器をタンブラーミキサーに装着して27℃、1時間の条件で回転させ、これら溶融混練物、人造黒鉛、ジルコニアボールを分散混合させた後、ジルコニアボールを取り出して燃料電池用セパレータの成形材料を調製した。   When the melt-kneaded product is pulverized, 7.5 kg of artificial graphite (made by Tokai Carbon Co., Ltd .: trade name) is placed in a resin container so that the volume ratio of the pulverized 5 kg of melt-kneaded product and artificial graphite is 70.6% by volume. 8020S, average particle diameter of 140 μm], and 3 kg of zirconia balls having a diameter of 10 mm were introduced and a lid was attached. Once the lid is attached, the container is attached to a tumbler mixer and rotated at 27 ° C. for 1 hour to disperse and mix these melt-kneaded material, artificial graphite and zirconia balls, and then the zirconia balls are taken out to separate the fuel cell separator. A molding material was prepared.

次いで、離型剤〔ダイキン工業社製:商品名 ダイフリーGA−6010〕を均一に塗布した成形用金型である溝なしの平板成形用金型内に成形材料を均一に充填し、圧縮成形機の上下一対の熱板により、成形用金型の側面温度が320℃に達するまで加熱加圧して燃料電池用セパレータを圧縮成形した。   Next, the molding material is uniformly filled in a flat plate molding die without grooves, which is a molding die uniformly applied with a mold release agent [manufactured by Daikin Industries, Ltd .: trade name: Die Free GA-6010], and compression molding is performed. The fuel cell separator was compression molded by heating and pressurizing with a pair of upper and lower hot plates of the machine until the side surface temperature of the molding die reached 320 ° C.

成形用金型の側面温度が320℃に達したら、上下一対の熱板の温度が30℃の冷却用の圧縮成形機に直ちに移載し、成形用金型の側面温度が80℃以下になるまで加圧冷却し、成形用金型から210mm×297mm×3mmの外形を有する燃料電池用セパレータを脱型した。
燃料電池用セパレータを製造したら、この燃料電池用セパレータの特性、すなわち導電性と表面状態の欠点とを評価し、表1にまとめた。その他の部分については、実施例1と同様とした。
When the side surface temperature of the molding die reaches 320 ° C., the temperature of the pair of upper and lower hot plates is immediately transferred to a cooling compression molding machine whose temperature is 30 ° C., and the side temperature of the molding die becomes 80 ° C. or less. The fuel cell separator having an outer shape of 210 mm × 297 mm × 3 mm was removed from the molding die.
Once the fuel cell separator was manufactured, the characteristics of the fuel cell separator, that is, conductivity and surface state defects were evaluated and summarized in Table 1. The other parts were the same as in Example 1.

〔実施例5〕
先ず、樹脂製の容器に、非晶性樹脂である4.0kgの環状オレフィン樹脂〔JSR社製:商品名 アートン R5000〕51.0体積%、8.0kgの人造黒鉛〔オリンタル産業社製:商品名 AT−No.5S、平均粒径53.3μm〕49.0体積%、攪拌媒体としてφ10mmのジルコニアボール3kgをそれぞれ投入して蓋を取り付けた。
Example 5
First, 4.0 kg of cyclic olefin resin (made by JSR: trade name: Arton R5000) 51.0% by volume, 8.0 kg of artificial graphite (made by OLYTAL SANGYO Co., Ltd .: product), which is an amorphous resin, is placed in a resin container. Name AT-No. 5S, average particle size 53.3 μm] 49.0% by volume, 3 kg of zirconia balls having a diameter of 10 mm were added as stirring media, and lids were attached.

蓋を取り付けたら、容器をタンブラーミキサーに装着して25℃、1時間の条件で回転させ、これら環状オレフィン樹脂、人造黒鉛、ジルコニアボールを分散混合させ、ジルコニアボールを取り出して環状オレフィン樹脂と人造黒鉛の分散混合物を調製した。環状オレフィン樹脂の融点を示差走査熱量測定したところ、溶融開始温度は143℃であった。また、環状オレフィン樹脂は、非晶性樹脂であるので、ガラス転移点を溶融開始温度とした。   Once the lid is attached, the container is attached to a tumbler mixer and rotated under the conditions of 25 ° C. for 1 hour to disperse and mix these cyclic olefin resin, artificial graphite and zirconia balls, and the zirconia balls are taken out and the cyclic olefin resin and artificial graphite are removed. A dispersion mixture of was prepared. When the melting point of the cyclic olefin resin was measured by differential scanning calorimetry, the melting start temperature was 143 ° C. Moreover, since cyclic olefin resin is an amorphous resin, the glass transition point was made into melting start temperature.

次いで、分散混合物を230℃に加熱した10Lの加圧ニーダーに投入して30分間溶融混練し、加圧ニーダーから溶融混練物を取り出して50℃以下に冷却し、この溶融混練物をφ10mmのパンチングメタルを備えたハンマーミルに投入して粉砕した。こうして溶融混練物を粉砕したら、この粉砕した溶融混練物をφ0.3mmのパンチングメタルを取り付けたピンミルに再度投入して粉砕した。この粉砕した溶融混練物の平均粒径を測定したところ、76.3μmであった。   Next, the dispersion mixture was put into a 10 L pressure kneader heated to 230 ° C. and melt-kneaded for 30 minutes. The melt-kneaded product was taken out from the pressure kneader and cooled to 50 ° C. or less. It was put into a hammer mill equipped with metal and pulverized. When the melt-kneaded material was pulverized in this way, the pulverized melt-kneaded material was again put into a pin mill equipped with a punching metal of φ0.3 mm and pulverized. The average particle size of the pulverized melt-kneaded product was measured and found to be 76.3 μm.

溶融混練物を粉砕したら、樹脂製の容器に、粉砕した9.0kgの溶融混練物、人造黒鉛の体積比率が75.7体積%となるよう、13.5kgの人造黒鉛〔オリンタル産業社製:商品名 AT−No.5S、平均粒径53.3μm〕、φ10mmのジルコニアボール3kgをそれぞれ投入して蓋を取り付けた。蓋を取り付けたら、容器をタンブラーミキサーに装着して24℃、1時間の条件で回転させ、これら溶融混練物、人造黒鉛、ジルコニアボールを分散混合させた後、ジルコニアボールを取り出して燃料電池用セパレータの成形材料を調製した。   After the melt-kneaded product is pulverized, 13.5 kg of artificial graphite (manufactured by Olympus Industrial Co., Ltd.) so that the volume ratio of the pulverized 9.0 kg of melt-kneaded product and artificial graphite is 75.7% by volume in a resin container. Product name AT-No. 5S, average particle diameter of 53.3 μm], and 3 kg of zirconia balls having a diameter of 10 mm were introduced and a lid was attached. Once the lid is attached, the container is attached to a tumbler mixer and rotated under the conditions of 24 ° C. for 1 hour to disperse and mix these melt-kneaded material, artificial graphite, and zirconia balls, and then the zirconia balls are taken out to separate the fuel cell separator. A molding material was prepared.

次いで、離型剤〔ダイキン工業社製:商品名 ダイフリーGA−6010〕を均一に塗布した成形用金型である溝なしの平板成形用金型内に成形材料を均一に充填し、圧縮成形機の上下一対の熱板により、成形用金型の側面温度が230℃に達するまで加熱加圧して燃料電池用セパレータを圧縮成形した。加熱加圧に際しては、熱板の温度を260℃とし、成形圧力を燃料電池用セパレータの面積に対して800kg/cmとした。 Next, the molding material is uniformly filled in a flat plate molding die without grooves, which is a molding die uniformly applied with a mold release agent [manufactured by Daikin Industries, Ltd .: trade name: Die Free GA-6010], and compression molding is performed. The fuel cell separator was compression molded by heating and pressurizing with a pair of upper and lower hot plates of the machine until the side surface temperature of the molding die reached 230 ° C. At the time of heating and pressing, the temperature of the hot plate was 260 ° C., and the molding pressure was 800 kg / cm 2 with respect to the area of the fuel cell separator.

成形用金型の側面温度が230℃に達したら、上下一対の熱板の温度が30℃の冷却用の圧縮成形機に直ちに移載し、成形用金型の側面温度が80℃以下になるまで加圧冷却し、成形用金型から210mm×297mm×3mmの外形を有する燃料電池用セパレータを脱型した。
燃料電池用セパレータを製造したら、この燃料電池用セパレータの特性、すなわち導電性と表面状態の欠点とを評価し、表1にまとめた。その他の部分については、実施例1と同様とした。
When the side surface temperature of the molding die reaches 230 ° C., the temperature of the pair of upper and lower hot plates is immediately transferred to a cooling compression molding machine whose temperature is 30 ° C., and the side surface temperature of the molding die becomes 80 ° C. or less. The fuel cell separator having an outer shape of 210 mm × 297 mm × 3 mm was removed from the molding die.
Once the fuel cell separator was manufactured, the characteristics of the fuel cell separator, that is, conductivity and surface state defects were evaluated and summarized in Table 1. The other parts were the same as in Example 1.

〔実施例6〕
図1に示す溝付きの成形用金型内に実施例1で調製した成形材料を均一に充填し、圧縮成形機の上下一対の熱板により、成形用金型の側面温度が200℃に達するまで加熱加圧して燃料電池用セパレータを圧縮成形した。成形用金型は、線膨張係数が12.5×10−6/℃のプリハードン鋼の表面を硬質クロムでメッキした金型を用いた。また、加熱加圧に際しては、熱板の温度を250℃とし、成形圧力を燃料電池用セパレータの面積に対して800kg/cmとした。
Example 6
1 is uniformly filled with the molding material prepared in Example 1, and the side temperature of the molding die reaches 200 ° C. by a pair of upper and lower hot plates of a compression molding machine. The fuel cell separator was compression molded by heating and pressurizing. As the molding die, a die obtained by plating the surface of prehardened steel having a linear expansion coefficient of 12.5 × 10 −6 / ° C. with hard chromium was used. Further, at the time of heating and pressing, the temperature of the hot plate was 250 ° C., and the molding pressure was 800 kg / cm 2 with respect to the area of the fuel cell separator.

成形用金型の側面温度が200℃に達したら、上下一対の熱板の温度が30℃の冷却用の圧縮成形機に直ちに移載し、成形用金型の側面温度が50℃以下になるまで加圧冷却し、成形用金型から148mm×210mm×1mmの外形を有する燃料電池用セパレータを脱型した。こうして燃料電池用セパレータを製造したら、この燃料電池用セパレータの面方向の線膨張係数を測定するとともに、燃料電池用セパレータの状態、具体的にはクラックや割れ等の破損の発生を目視により評価し、これらを表2にまとめた。   When the side surface temperature of the molding die reaches 200 ° C., the temperature of the pair of upper and lower hot plates is immediately transferred to a cooling compression molding machine having a temperature of 30 ° C., and the side temperature of the molding die becomes 50 ° C. or less. The fuel cell separator having an outer shape of 148 mm × 210 mm × 1 mm was removed from the molding die. After the fuel cell separator is manufactured in this way, the linear expansion coefficient in the surface direction of the fuel cell separator is measured, and the state of the fuel cell separator, specifically, occurrence of breakage such as cracks and cracks is visually evaluated. These are summarized in Table 2.

燃料電池用セパレータの面方向の線膨張係数を測定したところ、8.1〔×10−6/℃〕であった。この燃料電池用セパレータの面方向の線膨張係数については、実施例1で得られた燃料電池用セパレータをグラインダーで厚さ1mm以下になるよう切削して縦15mm×横4mmに裁断し、熱応力歪測定装置〔セイコー電子社製:商品名 MA/SS120C型〕を用い、窒素雰囲気下、引張りモードにより、10℃/分の昇温速度で30℃から150℃まで昇温し、30℃から100℃のときの値を測定して求めた。 The coefficient of linear expansion in the surface direction of the fuel cell separator was measured and found to be 8.1 [× 10 −6 / ° C.]. Regarding the linear expansion coefficient in the surface direction of this fuel cell separator, the fuel cell separator obtained in Example 1 was cut with a grinder to a thickness of 1 mm or less and cut into a length of 15 mm and a width of 4 mm to obtain thermal stress. Using a strain measuring device (manufactured by Seiko Electronics Co., Ltd .: trade name: MA / SS120C type), the temperature was increased from 30 ° C. to 150 ° C. at a temperature increase rate of 10 ° C./min under a nitrogen atmosphere in a tension mode. It was determined by measuring the value at ° C.

〔実施例7〕
図1に示す溝付きの成形用金型内に実施例2で調製した成形材料を均一に充填し、圧縮成形機の上下一対の熱板により、成形用金型の側面温度が200℃に達するまで加熱加圧して燃料電池用セパレータを圧縮成形した。成形用金型は、線膨張係数が12.5×10−6/℃のプリハードン鋼の表面を硬質クロムでメッキした金型を用いた。また、加熱加圧に際しては、熱板の温度を250℃とし、成形圧力を燃料電池用セパレータの面積に対して800kg/cmとした。
Example 7
1 is uniformly filled with the molding material prepared in Example 2, and the side temperature of the molding die reaches 200 ° C. by a pair of upper and lower hot plates of the compression molding machine. The fuel cell separator was compression molded by heating and pressurizing. As the molding die, a die obtained by plating the surface of prehardened steel having a linear expansion coefficient of 12.5 × 10 −6 / ° C. with hard chromium was used. Further, at the time of heating and pressing, the temperature of the hot plate was 250 ° C., and the molding pressure was 800 kg / cm 2 with respect to the area of the fuel cell separator.

成形用金型の側面温度が200℃に達したら、上下一対の熱板の温度が30℃の冷却用の圧縮成形機に直ちに移載し、成形用金型の側面温度が50℃以下になるまで加圧冷却し、成形用金型から148mm×210mm×1mmの外形を有する燃料電池用セパレータを脱型した。こうして燃料電池用セパレータを製造したら、この燃料電池用セパレータの面方向の線膨張係数を測定するとともに、クラックや割れ等の破損の発生を目視により評価し、これらを表2にまとめた。   When the side surface temperature of the molding die reaches 200 ° C., the temperature of the pair of upper and lower hot plates is immediately transferred to a cooling compression molding machine having a temperature of 30 ° C., and the side temperature of the molding die becomes 50 ° C. or less. The fuel cell separator having an outer shape of 148 mm × 210 mm × 1 mm was removed from the molding die. When the fuel cell separator was manufactured in this way, the linear expansion coefficient in the surface direction of the fuel cell separator was measured, and the occurrence of breakage such as cracks or cracks was visually evaluated, and these are summarized in Table 2.

燃料電池用セパレータの面方向の線膨張係数を測定したところ、6.5〔×10−6/℃〕であった。この燃料電池用セパレータの面方向の線膨張係数については、実施例2で得られた燃料電池用セパレータをグラインダーで厚さ1mm以下になるよう切削し、熱応力歪測定装置〔セイコー電子社製:商品名 MA/SS120C型〕を用い、窒素雰囲気下、引張りモードにより、10℃/分の昇温速度で30℃から150℃まで昇温し、30℃から100℃のときの値を測定して求めた。 The coefficient of linear expansion in the surface direction of the fuel cell separator was measured and found to be 6.5 [× 10 −6 / ° C.]. Regarding the linear expansion coefficient in the surface direction of this fuel cell separator, the fuel cell separator obtained in Example 2 was cut with a grinder so as to have a thickness of 1 mm or less, and a thermal stress strain measuring apparatus [manufactured by Seiko Electronics Co., Ltd .: Product name MA / SS120C type], in a nitrogen atmosphere, in a tension mode, the temperature was raised from 30 ° C. to 150 ° C. at a heating rate of 10 ° C./min, and the value at 30 ° C. to 100 ° C. was measured. Asked.

〔実施例8〕
図1に示す溝付きの成形用金型内に実施例3で調製した成形材料を均一に充填し、圧縮成形機の上下一対の熱板により、成形用金型の側面温度が320℃に達するまで加熱加圧して燃料電池用セパレータを圧縮成形した。成形用金型は、線膨張係数が12.5×10−6/℃のプリハードン鋼の表面を硬質クロムでメッキした金型を用い、金型の表面に離型剤〔ダイキン工業社製:商品名 ダイフリーGA−6010〕を均一に塗布した。また、加熱加圧に際しては、熱板の温度を360℃とし、成形圧力を燃料電池用セパレータの面積に対して800kg/cmとした。
Example 8
1 is uniformly filled with the molding material prepared in Example 3, and the side temperature of the molding die reaches 320 ° C. by a pair of upper and lower hot plates of a compression molding machine. The fuel cell separator was compression molded by heating and pressurizing. The mold for molding uses a mold in which the surface of a prehardened steel having a linear expansion coefficient of 12.5 × 10 −6 / ° C. is plated with hard chromium, and a mold release agent [manufactured by Daikin Industries, Ltd .: commodity Name Die Free GA-6010] was uniformly applied. Further, at the time of heating and pressing, the temperature of the hot plate was 360 ° C., and the molding pressure was 800 kg / cm 2 with respect to the area of the fuel cell separator.

成形用金型の側面温度が320℃に達したら、上下一対の熱板の温度が30℃の冷却用の圧縮成形機に直ちに移載し、成形用金型の側面温度が80℃以下になるまで加圧冷却し、成形用金型から148mm×210mm×1mmの外形を有する燃料電池用セパレータを脱型した。   When the side surface temperature of the molding die reaches 320 ° C., the temperature of the pair of upper and lower hot plates is immediately transferred to a cooling compression molding machine whose temperature is 30 ° C., and the side temperature of the molding die becomes 80 ° C. or less. The fuel cell separator having an outer shape of 148 mm × 210 mm × 1 mm was removed from the molding die.

こうして燃料電池用セパレータを製造したら、この燃料電池用セパレータの面方向の線膨張係数を測定するとともに、クラックや割れ等の破損の発生を目視により評価し、これらを表2にまとめた。実施例3で得られた燃料電池用セパレータの面方向の線膨張係数を測定したところ、12.2〔×10−6/℃〕であった。その他は実施例6と同様とした。 When the fuel cell separator was manufactured in this way, the linear expansion coefficient in the surface direction of the fuel cell separator was measured, and the occurrence of breakage such as cracks or cracks was visually evaluated, and these are summarized in Table 2. When the linear expansion coefficient in the surface direction of the fuel cell separator obtained in Example 3 was measured, it was 12.2 [× 10 −6 / ° C.]. Others were the same as in Example 6.

〔実施例9〕
図1に示す溝付きの成形用金型内に実施例4で調製した成形材料を均一に充填し、圧縮成形機の上下一対の熱板により、成形用金型の側面温度が320℃に達するまで加熱加圧して燃料電池用セパレータを圧縮成形した。成形用金型は、線膨張係数が12.5×10−6/℃のプリハードン鋼の表面を硬質クロムでメッキした金型を用い、金型の表面に離型剤〔ダイキン工業社製:商品名 ダイフリーGA−6010〕を均一に塗布した。また、加熱加圧に際しては、熱板の温度を360℃とし、成形圧力を燃料電池用セパレータの面積に対して800kg/cmとした。
Example 9
1 is uniformly filled with the molding material prepared in Example 4, and the side temperature of the molding die reaches 320 ° C. by a pair of upper and lower hot plates of a compression molding machine. The fuel cell separator was compression molded by heating and pressurizing. The mold for molding uses a mold in which the surface of a prehardened steel having a linear expansion coefficient of 12.5 × 10 −6 / ° C. is plated with hard chromium, and a mold release agent [manufactured by Daikin Industries, Ltd .: commodity Name Die Free GA-6010] was uniformly applied. Further, at the time of heating and pressing, the temperature of the hot plate was 360 ° C., and the molding pressure was 800 kg / cm 2 with respect to the area of the fuel cell separator.

成形用金型の側面温度が320℃に達したら、上下一対の熱板の温度が30℃の冷却用の圧縮成形機に直ちに移載し、成形用金型の側面温度が80℃以下になるまで加圧冷却し、成形用金型から148mm×210mm×1mmの外形を有する燃料電池用セパレータを脱型した。   When the side surface temperature of the molding die reaches 320 ° C., the temperature of the pair of upper and lower hot plates is immediately transferred to a cooling compression molding machine whose temperature is 30 ° C., and the side temperature of the molding die becomes 80 ° C. or less. The fuel cell separator having an outer shape of 148 mm × 210 mm × 1 mm was removed from the molding die.

こうして燃料電池用セパレータを製造したら、この燃料電池用セパレータの面方向の線膨張係数を測定するとともに、クラックや割れ等の破損の発生を目視により評価し、これらを表2にまとめた。実施例4で得られた燃料電池用セパレータの面方向の線膨張係数を測定したところ、9.8〔×10−6/℃〕であった。その他は実施例6と同様とした。 When the fuel cell separator was manufactured in this way, the linear expansion coefficient in the surface direction of the fuel cell separator was measured, and the occurrence of breakage such as cracks or cracks was visually evaluated, and these are summarized in Table 2. When the linear expansion coefficient in the surface direction of the fuel cell separator obtained in Example 4 was measured, it was 9.8 [× 10 −6 / ° C.]. Others were the same as in Example 6.

〔実施例10〕
図1に示す溝付きの成形用金型内に実施例5で調製した成形材料を均一に充填し、圧縮成形機の上下一対の熱板により、成形用金型の側面温度が230℃に達するまで加熱加圧して燃料電池用セパレータを圧縮成形した。成形用金型は、線膨張係数が12.5×10−6/℃のプリハードン鋼の表面を硬質クロムでメッキした金型を用い、この金型の表面に離型剤〔ダイキン工業社製:商品名 ダイフリーGA−6010〕を均一に塗布した。また、加熱加圧に際しては、熱板の温度を260℃とし、成形圧力を燃料電池用セパレータの面積に対して800kg/cmとした。
Example 10
1 is filled uniformly with the molding material prepared in Example 5, and the side surface temperature of the molding die reaches 230 ° C. by a pair of upper and lower hot plates of a compression molding machine. The fuel cell separator was compression molded by heating and pressurizing. As the molding die, a die obtained by plating the surface of prehardened steel having a linear expansion coefficient of 12.5 × 10 −6 / ° C. with hard chrome is used, and a mold release agent [manufactured by Daikin Industries, Ltd .: Product name Die Free GA-6010] was uniformly applied. Further, at the time of heating and pressing, the temperature of the hot plate was 260 ° C., and the molding pressure was 800 kg / cm 2 with respect to the area of the fuel cell separator.

成形用金型の側面温度が230℃に達したら、上下一対の熱板の温度が30℃の冷却用の圧縮成形機に直ちに移載し、成形用金型の側面温度が80℃以下になるまで加圧冷却し、成形用金型から148mm×210mm×1mmの外形を有する燃料電池用セパレータを脱型した。   When the side surface temperature of the molding die reaches 230 ° C., the temperature of the pair of upper and lower hot plates is immediately transferred to a cooling compression molding machine whose temperature is 30 ° C., and the side surface temperature of the molding die becomes 80 ° C. or less. The fuel cell separator having an outer shape of 148 mm × 210 mm × 1 mm was removed from the molding die.

こうして燃料電池用セパレータを製造したら、この燃料電池用セパレータの面方向の線膨張係数を測定するとともに、クラックや割れ等の破損の発生を目視により評価し、これらを表2にまとめた。実施例5で得られた燃料電池用セパレータの面方向の線膨張係数を測定したところ、6.2〔×10−6/℃〕であった。その他は実施例6と同様とした。 When the fuel cell separator was manufactured in this way, the linear expansion coefficient in the surface direction of the fuel cell separator was measured, and the occurrence of breakage such as cracks or cracks was visually evaluated, and these are summarized in Table 2. The linear expansion coefficient in the surface direction of the fuel cell separator obtained in Example 5 was measured and found to be 6.2 [× 10 −6 / ° C.]. Others were the same as in Example 6.

〔比較例1〕
先ず、実施例1で使用したホモポリプロピレン樹脂〔プライムポリマー社製:商品名 プライムポリプロ E200GV〕を溶液粉砕法で粉砕した後、150メッシュの篩で分級し、予備成形材料を調製しなかった。
[Comparative Example 1]
First, the homopolypropylene resin [manufactured by Prime Polymer Co., Ltd .: trade name: Prime Polypro E200GV] used in Example 1 was pulverized by a solution pulverization method, and then classified by a 150 mesh sieve, and a preforming material was not prepared.

次いで、篩を通過した2.0kgのホモポリプロピレン樹脂29.2体積%、12.0kgの人造黒鉛〔オリエント産業社製:商品名 AT−No.5S、平均粒径53.3μm〕70.8体積%、攪拌媒体としてφ10mmのジルコニアボール3kgを樹脂製の容器に投入して蓋を取り付け、この容器をタンブラーミキサーに装着して30℃、1時間の条件で回転させ、これらホモポリプロピレン樹脂、人造黒鉛、ジルコニアボールを分散混合させ、ジルコニアボールを取り出して燃料電池用セパレータの成形材料を調製した。   Next, 2.0 kg of homopolypropylene resin that passed through the sieve was 29.2% by volume, 12.0 kg of artificial graphite [trade name AT-No. 5S, average particle size 53.3 μm] 70.8% by volume, 3 kg of zirconia balls having a diameter of 10 mm as a stirring medium were put into a resin container and a lid was attached, and this container was attached to a tumbler mixer at 30 ° C. for 1 hour. The homopolypropylene resin, artificial graphite, and zirconia balls were dispersed and mixed, and the zirconia balls were taken out to prepare a molding material for a fuel cell separator.

次いで、成形用金型である溝なしの平板成形用金型内に成形材料を均一に充填し、圧縮成形機の上下一対の熱板により、成形用金型の側面温度が200℃に達するまで加熱加圧して燃料電池用セパレータを圧縮成形した。成形用金型は、プリハードン鋼の表面を硬質クロムでメッキした金型を用いた。また、加熱加圧に際しては、熱板の温度を250℃とし、成形圧力を燃料電池用セパレータの面積に対して800kg/cmとした。 Next, the molding material is uniformly filled into the molding die without a groove, which is a molding die, until the side surface temperature of the molding die reaches 200 ° C. by the pair of upper and lower hot plates of the compression molding machine. The fuel cell separator was compression molded by heating and pressing. As the mold for molding, a mold in which the surface of pre-hardened steel was plated with hard chrome was used. Further, at the time of heating and pressing, the temperature of the hot plate was 250 ° C., and the molding pressure was 800 kg / cm 2 with respect to the area of the fuel cell separator.

成形用金型の側面温度が200℃に達したら、上下一対の熱板の温度が30℃の冷却用の圧縮成形機に直ちに移載し、成形用金型の側面温度が50℃以下になるまで加圧冷却し、成形用金型から210mm×297mm×3mmの外形を有する燃料電池用セパレータを脱型した。燃料電池用セパレータを製造したら、実施例同様、燃料電池用セパレータの特性、すなわち導電性と表面状態の欠点とを評価し、表3にまとめた。   When the side surface temperature of the molding die reaches 200 ° C., the temperature of the pair of upper and lower hot plates is immediately transferred to a cooling compression molding machine having a temperature of 30 ° C., and the side temperature of the molding die becomes 50 ° C. or less. The fuel cell separator having an outer shape of 210 mm × 297 mm × 3 mm was removed from the molding die. Once the fuel cell separator was manufactured, the characteristics of the fuel cell separator, that is, conductivity and surface state defects, were evaluated and summarized in Table 3, as in the Examples.

〔比較例2〕
先ず、樹脂製の容器に、実施例1で使用した5.5kgのホモポリプロピレン樹脂〔プライムポリマー社製:商品名 プライムポリプロ E200GV〕71.2体積%、5.5kgの人造黒鉛〔オリエント産業社製:商品名 AT−No.5S、平均粒径53.3μm〕28.8体積%、攪拌媒体としてφ10mmのジルコニアボール3kgをそれぞれ投入して蓋を取り付けた。
[Comparative Example 2]
First, 5.5 kg of homopolypropylene resin used in Example 1 (manufactured by Prime Polymer Co., Ltd .: trade name Prime Polypro E200GV) 71.2% by volume, 5.5 kg of artificial graphite [manufactured by Orient Sangyo Co., Ltd.] : Product name AT-No. 5S, average particle size 53.3 μm] 28.8% by volume, 3 kg of zirconia balls having a diameter of 10 mm were added as stirring media, and a lid was attached.

こうして蓋を取り付けたら、容器をタンブラーミキサーに装着して28℃、1時間の条件で回転させ、これらホモポリプロピレン樹脂、人造黒鉛、ジルコニアボールを分散混合させ、ジルコニアボールを取り出してホモポリプロピレン樹脂と人造黒鉛の分散混合物を調製した。   After the lid is attached in this manner, the container is mounted on a tumbler mixer and rotated under the conditions of 28 ° C. for 1 hour to disperse and mix these homopolypropylene resin, artificial graphite and zirconia balls, and the zirconia balls are taken out and homopolypropylene resin and artificial A dispersed mixture of graphite was prepared.

次いで、分散混合物を200℃に加熱した10Lの加圧ニーダーに投入して30分間溶融混練し、加圧ニーダーから溶融混練物を取り出して50℃以下に冷却し、この溶融混練物をφ10mmのパンチングメタルを備えたハンマーミルに投入して粉砕した。こうして溶融混練物を粉砕したら、この粉砕した溶融混練物をφ0.5mmのパンチングメタルを取り付けたピンミルに再度投入して粉砕した。この粉砕した溶融混練物の平均粒径を測定したところ、109.7μmであった。   Next, the dispersion mixture was put into a 10 L pressure kneader heated to 200 ° C. and melt-kneaded for 30 minutes. The melt-kneaded product was taken out from the pressure kneader and cooled to 50 ° C. or less, and this melt-kneaded product was punched into φ10 mm. It was put into a hammer mill equipped with metal and pulverized. When the melt-kneaded product was pulverized in this way, the pulverized melt-kneaded product was again put into a pin mill equipped with a φ0.5 mm punching metal and pulverized. The average particle diameter of the crushed melt-kneaded product was measured and found to be 109.7 μm.

溶融混練物を粉砕したら、樹脂製の容器に、粉砕した10kgの溶融混練物、人造黒鉛の体積比率が69.0体積%となるよう、22.5kgの人造黒鉛〔オリエント産業社製:商品名 商品名 AT−No.5S、平均粒径53.3μm〕、φ10mmのジルコニアボール3kgをそれぞれ投入して蓋を取り付けた。蓋を取り付けたら、容器をタンブラーミキサーに装着して27℃、1時間の条件で回転させ、これら溶融混練物、人造黒鉛、ジルコニアボールを分散混合させた後、ジルコニアボールを取り出して燃料電池用セパレータの成形材料を調製した。   When the melt-kneaded product is pulverized, 22.5 kg of artificial graphite (made by Orient Sangyo Co., Ltd .: trade name) so that the volume ratio of the crushed 10 kg of melt-kneaded product and artificial graphite is 69.0% by volume in a resin container. Product name AT-No. 5S, average particle diameter of 53.3 μm], and 3 kg of zirconia balls having a diameter of 10 mm were introduced and a lid was attached. Once the lid is attached, the container is attached to a tumbler mixer and rotated at 27 ° C. for 1 hour to disperse and mix these melt-kneaded product, artificial graphite and zirconia balls, and then the zirconia balls are taken out to separate the fuel cell separator. A molding material was prepared.

次いで、成形用金型である溝なしの平板成形用金型内に成形材料を均一に充填し、圧縮成形機の上下一対の熱板により、成形用金型の側面温度が200℃に達するまで加熱加圧して燃料電池用セパレータを圧縮成形した。成形用金型の側面温度が200℃に達したら、上下一対の熱板の温度が30℃の冷却用の圧縮成形機に直ちに移載し、成形用金型の側面温度が50℃以下になるまで加圧冷却し、成形用金型から210mm×297mm×3mmの外形を有する燃料電池用セパレータを脱型した。   Next, the molding material is uniformly filled into the molding die without a groove, which is a molding die, until the side surface temperature of the molding die reaches 200 ° C. by the pair of upper and lower hot plates of the compression molding machine. The fuel cell separator was compression molded by heating and pressing. When the side surface temperature of the molding die reaches 200 ° C., the temperature of the pair of upper and lower hot plates is immediately transferred to a cooling compression molding machine having a temperature of 30 ° C., and the side temperature of the molding die becomes 50 ° C. or less. The fuel cell separator having an outer shape of 210 mm × 297 mm × 3 mm was removed from the molding die.

燃料電池用セパレータを製造したら、実施例同様、燃料電池用セパレータの特性、すなわち導電性と表面状態の欠点とを評価し、表3にまとめた。   Once the fuel cell separator was manufactured, the characteristics of the fuel cell separator, that is, conductivity and surface state defects, were evaluated and summarized in Table 3, as in the Examples.

〔比較例3〕
先ず、樹脂製の容器に、実施例2で使用した5kgのポリフェニレンサルファイド樹脂〔東レ社製:商品名 トレリナE2180〕32.3体積%、17.5kgの人造黒鉛〔東海カーボン社製:商品名 8020S、平均粒径140μm〕67.7体積%、攪拌媒体としてφ10mmのジルコニアボール3kgをそれぞれ投入して蓋を取り付けた。
[Comparative Example 3]
First, 5 kg of polyphenylene sulfide resin used in Example 2 (made by Toray Industries, Inc .: trade name Torelina E2180) 32.3% by volume, 17.5 kg of artificial graphite [made by Tokai Carbon Co., Ltd .: trade name 8020S] , Average particle size 140 μm] 67.7% by volume, 3 kg of zirconia balls having a diameter of 10 mm were added as stirring media, and lids were attached.

蓋を取り付けたら、容器をタンブラーミキサーに装着して28℃、1時間の条件で回転させ、これらポリフェニレンサルファイド樹脂、人造黒鉛、ジルコニアボールを分散混合させ、ジルコニアボールを取り出してポリフェニレンサルファイド樹脂と人造黒鉛の分散混合物を調製した。   After the lid is attached, the container is mounted on a tumbler mixer and rotated at 28 ° C. for 1 hour, and these polyphenylene sulfide resin, artificial graphite and zirconia balls are dispersed and mixed, and the zirconia balls are taken out to obtain polyphenylene sulfide resin and artificial graphite A dispersion mixture of was prepared.

次いで、分散混合物を320℃に加熱した混練押出機に投入して溶融混練するとともに、50℃以下に冷却し、この溶融混練物をφ6mmのパンチングメタルを備えたカッターミルに投入して粉砕した。こうして溶融混練物を粉砕したら、この粉砕した溶融混練物をφ0.3mmのパンチングメタルを取り付けたピンミルに再度投入して粉砕し、燃料電池用セパレータの成形材料を調製した。この成形材料の平均粒径は、測定したところ、79.6μmであった。   Next, the dispersion mixture was charged into a kneading extruder heated to 320 ° C., melted and kneaded, cooled to 50 ° C. or lower, and the molten kneaded material was charged into a cutter mill equipped with a φ6 mm punching metal and pulverized. When the melt-kneaded material was pulverized in this way, the pulverized melt-kneaded material was again put into a pin mill equipped with a punching metal of φ0.3 mm and pulverized to prepare a molding material for a fuel cell separator. The average particle diameter of the molding material was measured and found to be 79.6 μm.

次いで、離型剤〔ダイキン工業社製:商品名 ダイフリーGA−6010〕を均一に塗布した成形用金型である溝なしの平板成形用金型内に成形材料を均一に充填し、圧縮成形機の上下一対の熱板により、成形用金型の側面温度が320℃に達するまで加熱加圧して燃料電池用セパレータを圧縮成形した。   Next, the molding material is uniformly filled in a flat plate molding die without grooves, which is a molding die uniformly applied with a mold release agent [manufactured by Daikin Industries, Ltd .: trade name: Die Free GA-6010], and compression molding is performed. The fuel cell separator was compression molded by heating and pressurizing with a pair of upper and lower hot plates of the machine until the side surface temperature of the molding die reached 320 ° C.

成形用金型の側面温度が320℃に達したら、上下一対の熱板の温度が30℃の冷却用の圧縮成形機に直ちに移載し、成形用金型の側面温度が80℃以下になるまで加圧冷却し、成形用金型から210mm×297mm×3mmの外形を有する燃料電池用セパレータを脱型した。
燃料電池用セパレータを製造したら、実施例同様、燃料電池用セパレータの特性、すなわち導電性と表面状態の欠点とを評価し、表3にまとめた。その他の部分については、比較例1と同様とした。
When the side surface temperature of the molding die reaches 320 ° C., the temperature of the pair of upper and lower hot plates is immediately transferred to a cooling compression molding machine whose temperature is 30 ° C., and the side temperature of the molding die becomes 80 ° C. or less. The fuel cell separator having an outer shape of 210 mm × 297 mm × 3 mm was removed from the molding die.
Once the fuel cell separator was manufactured, the characteristics of the fuel cell separator, that is, conductivity and surface state defects, were evaluated and summarized in Table 3, as in the Examples. The other parts were the same as those in Comparative Example 1.

〔比較例4〕
先ず、樹脂製の容器に、実施例1で使用した12kgのホモポリプロピレン樹脂〔プライムポリマー社製:商品名 プライムポリプロ E200GV〕83.2体積%、6kgの人造黒鉛〔オリエント産業社製:商品名 AT−No.5S、平均粒径53.3μm〕16.8体積%、攪拌媒体としてφ10mmのジルコニアボール3kgをそれぞれ投入して蓋を取り付けた。
[Comparative Example 4]
First, 12 kg of the homopolypropylene resin used in Example 1 (manufactured by Prime Polymer Co., Ltd .: trade name: Prime Polypro E200GV), 83.2% by volume, 6 kg of artificial graphite (manufactured by Orient Sangyo Co., Ltd .: trade name: AT) -No. 5S, average particle size 53.3 μm] 16.8% by volume, 3 kg of zirconia balls having a diameter of 10 mm were added as stirring media, and lids were attached.

蓋を取り付けたら、容器をタンブラーミキサーに装着して27℃、1時間の条件で回転させ、これらホモポリプロピレン樹脂、人造黒鉛、ジルコニアボールを分散混合させ、ジルコニアボールを取り出してホモポリプロピレン樹脂と人造黒鉛の分散混合物を調製した。   Once the lid is attached, the container is attached to a tumbler mixer and rotated under the conditions of 27 ° C. for 1 hour to disperse and mix these homopolypropylene resin, artificial graphite and zirconia balls. The zirconia balls are taken out and homopolypropylene resin and artificial graphite are removed. A dispersion mixture of was prepared.

次いで、分散混合物を200℃に加熱した10Lの加圧ニーダーに投入して30分間溶融混練し、加圧ニーダーから溶融混練物を取り出して50℃以下に冷却し、この溶融混練物を冷凍粉砕法により粉砕した。この粉砕した溶融混練物の平均粒径を測定したところ、83μmであった。   Next, the dispersion mixture is put into a 10 L pressure kneader heated to 200 ° C. and melt-kneaded for 30 minutes. The melt-kneaded product is taken out from the pressure kneader and cooled to 50 ° C. or lower. By grinding. The average particle diameter of the crushed melt-kneaded product was measured and found to be 83 μm.

溶融混練物を粉砕したら、樹脂製の容器に、粉砕した12kgの溶融混練物、人造黒鉛の体積比率が44.7体積%となるよう、12kgの人造黒鉛〔オリエント産業社製:商品名 商品名 AT−No.5S、平均粒径53.3μm〕、φ10mmのジルコニアボール3kgをそれぞれ投入して蓋を取り付けた。蓋を取り付けたら、容器をタンブラーミキサーに装着して28℃、1時間の条件で回転させ、これら溶融混練物、人造黒鉛、ジルコニアボールを分散混合させた後、ジルコニアボールを取り出して燃料電池用セパレータの成形材料を調製した。   When the melt-kneaded product is pulverized, 12 kg of artificial graphite (made by Orient Sangyo Co., Ltd .: trade name, product name) so that the volume ratio of the crushed 12 kg of melt-kneaded product and artificial graphite is 44.7% by volume in a resin container. AT-No. 5S, average particle diameter of 53.3 μm], and 3 kg of zirconia balls having a diameter of 10 mm were introduced and a lid was attached. Once the lid is attached, the container is mounted on a tumbler mixer and rotated under the conditions of 28 ° C. for 1 hour to disperse and mix these melt-kneaded material, artificial graphite and zirconia balls, and then the zirconia balls are taken out to separate the fuel cell separator. A molding material was prepared.

次いで、溝付きの成形用金型内に成形材料を均一に充填し、圧縮成形機の上下一対の熱板により、成形用金型の側面温度が200℃に達するまで加熱加圧して燃料電池用セパレータを圧縮成形した。成形用金型は、線膨張係数が12.5×10−6/℃のプリハードン鋼の表面を硬質クロムでメッキした金型を用いた。加熱加圧に際しては、熱板の温度を250℃とし、成形圧力を燃料電池用セパレータの面積に対して800kg/cmとした。 Next, the molding material is uniformly filled in the grooved molding die, and is heated and pressurized by a pair of upper and lower hot plates of the compression molding machine until the side surface temperature of the molding die reaches 200 ° C. The separator was compression molded. As the molding die, a die obtained by plating the surface of prehardened steel having a linear expansion coefficient of 12.5 × 10 −6 / ° C. with hard chromium was used. At the time of heating and pressing, the temperature of the hot plate was 250 ° C., and the molding pressure was 800 kg / cm 2 with respect to the area of the fuel cell separator.

成形用金型の側面温度が200℃に達したら、上下一対の熱板の温度が30℃の冷却用の圧縮成形機に直ちに移載し、成形用金型の側面温度が50℃以下になるまで加圧冷却し、成形用金型から148mm×210mm×1mmの外形を有する燃料電池用セパレータを脱型した。こうして燃料電池用セパレータを製造したら、この燃料電池用セパレータのクラックや割れ等の破損の発生を目視により評価した。   When the side surface temperature of the molding die reaches 200 ° C., the temperature of the pair of upper and lower hot plates is immediately transferred to a cooling compression molding machine having a temperature of 30 ° C., and the side temperature of the molding die becomes 50 ° C. or less. The fuel cell separator having an outer shape of 148 mm × 210 mm × 1 mm was removed from the molding die. When the fuel cell separator was manufactured in this manner, the occurrence of breakage such as cracks or cracks of the fuel cell separator was visually evaluated.

また、燃料電池用セパレータの面方向の線膨張係数を測定するため、溝なしの成形用金型内に均一に充填し、圧縮成形機の上下一対の熱板により、成形用金型の側面温度が200℃に達するまで加熱加圧した。この加熱加圧に際しては、熱板の温度を250℃とし、成形圧力を燃料電池用セパレータの面積に対して800kg/cmとした。 Further, in order to measure the linear expansion coefficient in the surface direction of the separator for the fuel cell, the molding die without grooves is uniformly filled, and the side temperature of the molding die is set by a pair of upper and lower hot plates of a compression molding machine. Was heated and pressurized until the temperature reached 200 ° C. In this heating and pressing, the temperature of the hot plate was 250 ° C., and the molding pressure was 800 kg / cm 2 with respect to the area of the fuel cell separator.

成形用金型の側面温度が200℃に達したら、上下一対の熱板の温度が30℃の冷却用の圧縮成形機に直ちに移載し、成形用金型の側面温度が50℃以下になるまで加圧冷却し、成形用金型から210mm×297mm×3mmの外形を有する燃料電池用セパレータを脱型した。そして、脱型した燃料電池用セパレータをグラインダーで厚さ1mm以下になるよう切削した後、実施例6と同様に測定して線膨張係数を求め、表4にまとめた。この燃料電池用セパレータの面方向の線膨張係数は、19.4〔×10−6/℃〕であった。 When the side surface temperature of the molding die reaches 200 ° C., the temperature of the pair of upper and lower hot plates is immediately transferred to a cooling compression molding machine having a temperature of 30 ° C., and the side temperature of the molding die becomes 50 ° C. or less. The fuel cell separator having an outer shape of 210 mm × 297 mm × 3 mm was removed from the molding die. The removed fuel cell separator was cut with a grinder to a thickness of 1 mm or less, and then measured in the same manner as in Example 6 to obtain the linear expansion coefficient. The linear expansion coefficient in the surface direction of this fuel cell separator was 19.4 [× 10 −6 / ° C.].

〔比較例5〕
先ず、樹脂製の容器に、実施例3で使用した1.0kgのポリフェニレンサルファイド樹脂〔東レ社製:商品名 トレリナE2180〕17.2体積%、8.0kgの人造黒鉛〔オリエント産業社製:商品名 AT−No.5S、平均粒径53.3μm〕82.3体積%、攪拌媒体としてφ10mmのジルコニアボール3kgをそれぞれ投入して蓋を取り付けた。
[Comparative Example 5]
First, 1.0 kg of polyphenylene sulfide resin used in Example 3 (product name: Torelina E2180), 17.2% by volume, 8.0 kg of artificial graphite (product manufactured by Orient Sangyo Co., Ltd .: product) used in a resin container. Name AT-No. 5S, average particle diameter 53.3 μm] 82.3 vol%, and 3 kg of zirconia balls having a diameter of 10 mm as a stirring medium were put in each case and a lid was attached.

こうして蓋を取り付けたら、容器をタンブラーミキサーに装着して29℃、1時間の条件で回転させ、これらポリフェニレンサルファイド樹脂、人造黒鉛、ジルコニアボールを分散混合させ、ジルコニアボールを取り出してポリフェニレンサルファイド樹脂と人造黒鉛の分散混合物を調製した。   After the lid is attached in this manner, the container is attached to a tumbler mixer and rotated at 29 ° C. for 1 hour to disperse and mix these polyphenylene sulfide resin, artificial graphite and zirconia balls. A dispersed mixture of graphite was prepared.

次いで、分散混合物を320℃に加熱した混練押出機に投入して溶融混練した後、溶融混練物を取り出して50℃以下に冷却し、この溶融混練物をφ10mmのパンチングメタルを備えたハンマーミルに投入して粉砕した。こうして溶融混練物を粉砕したら、この粉砕した溶融混練物をφ0.3mmのパンチングメタルを取り付けたピンミルに再度投入して粉砕した。この粉砕した溶融混練物の平均粒径を測定したところ、94.3μmであった。   Next, the dispersion mixture was put into a kneading extruder heated to 320 ° C. and melt-kneaded, and then the melt-kneaded product was taken out and cooled to 50 ° C. or less. The melt-kneaded product was placed in a hammer mill equipped with a φ10 mm punching metal. Added and crushed. When the melt-kneaded material was pulverized in this way, the pulverized melt-kneaded material was again put into a pin mill equipped with a punching metal of φ0.3 mm and pulverized. The average particle size of the pulverized melt-kneaded product was measured and found to be 94.3 μm.

次いで、溝付きの成形用金型内に成形材料を均一に充填し、圧縮成形機の上下一対の熱板により、成形用金型の側面温度が320℃に達するまで加熱加圧して燃料電池用セパレータを圧縮成形した。成形用金型は、線膨張係数が12.5×10−6/℃のプリハードン鋼の表面を硬質クロムでメッキした金型を用いた。また、成形材料は、成形用金型の表面に離型剤〔ダイキン工業社製:商品名 ダイフリーGA−6010〕を均一に塗布した後に充填した。また、加熱加圧に際しては、熱板の温度を360℃とし、成形圧力を燃料電池用セパレータの面積に対して800kg/cmとした。 Next, the molding material is uniformly filled in the grooved molding die, and is heated and pressurized by a pair of upper and lower hot plates of the compression molding machine until the side surface temperature of the molding die reaches 320 ° C. The separator was compression molded. As the molding die, a die obtained by plating the surface of prehardened steel having a linear expansion coefficient of 12.5 × 10 −6 / ° C. with hard chromium was used. Further, the molding material was filled after uniformly applying a release agent [manufactured by Daikin Industries, Ltd .: trade name: Die Free GA-6010] to the surface of the molding die. Further, at the time of heating and pressing, the temperature of the hot plate was 360 ° C., and the molding pressure was 800 kg / cm 2 with respect to the area of the fuel cell separator.

成形用金型の側面温度が320℃に達したら、上下一対の熱板の温度が30℃の冷却用の圧縮成形機に直ちに移載し、成形用金型の側面温度が80℃以下になるまで加圧冷却し、成形用金型から148mm×210mm×1mmの外形を有する燃料電池用セパレータを脱型した。こうして燃料電池用セパレータを製造したら、この燃料電池用セパレータのクラックや割れ等の破損の発生を目視により評価した。   When the side surface temperature of the molding die reaches 320 ° C., the temperature of the pair of upper and lower hot plates is immediately transferred to a cooling compression molding machine whose temperature is 30 ° C., and the side temperature of the molding die becomes 80 ° C. or less. The fuel cell separator having an outer shape of 148 mm × 210 mm × 1 mm was removed from the molding die. When the fuel cell separator was manufactured in this manner, the occurrence of breakage such as cracks or cracks of the fuel cell separator was visually evaluated.

また、燃料電池用セパレータの面方向の線膨張係数を測定するため、離型剤〔ダイキン工業社製:商品名 ダイフリーGA−6010〕を均一に塗布した溝なしの成形用金型内に充填し、圧縮成形機の上下一対の熱板により、成形用金型の側面温度が320℃に達するまで加熱加圧した。この加熱加圧に際しては、熱板の温度を360℃とし、成形圧力を燃料電池用セパレータの面積に対して800kg/cmとした。 In addition, in order to measure the linear expansion coefficient in the surface direction of the separator for a fuel cell, it is filled in a molding die without a groove uniformly coated with a release agent [manufactured by Daikin Industries, Ltd .: trade name: Die Free GA-6010]. The pair of hot plates of the compression molding machine was heated and pressurized until the side surface temperature of the molding die reached 320 ° C. In this heating and pressing, the temperature of the hot plate was 360 ° C., and the molding pressure was 800 kg / cm 2 with respect to the area of the fuel cell separator.

成形用金型の側面温度が320℃に達したら、上下一対の熱板の温度が30℃の冷却用の圧縮成形機に直ちに移載し、成形用金型の側面温度が80℃以下になるまで加圧冷却し、成形用金型から210mm×297mm×3mmの外形を有する燃料電池用セパレータを脱型した。そして、脱型した燃料電池用セパレータをグラインダーで厚さ1mm以下になるよう切削した後、実施例6と同様に測定して線膨張係数を求め、表4にまとめた。この燃料電池用セパレータの面方向の線膨張係数は、3.3〔×10−6/℃〕であった。 When the side surface temperature of the molding die reaches 320 ° C., the temperature of the pair of upper and lower hot plates is immediately transferred to a cooling compression molding machine whose temperature is 30 ° C., and the side temperature of the molding die becomes 80 ° C. or less. The fuel cell separator having an outer shape of 210 mm × 297 mm × 3 mm was removed from the molding die. The removed fuel cell separator was cut with a grinder to a thickness of 1 mm or less, and then measured in the same manner as in Example 6 to obtain the linear expansion coefficient. The linear expansion coefficient in the surface direction of this fuel cell separator was 3.3 [× 10 −6 / ° C.].

Figure 2011119124
Figure 2011119124

Figure 2011119124
Figure 2011119124

Figure 2011119124
Figure 2011119124

Figure 2011119124
Figure 2011119124

〔結 果〕
実施例1〜5の場合には、燃料電池用セパレータの体積抵抗値が10mΩ・cm以下で必要な導電性を十分に有しており、しかも、燃料電池用セパレータの表面に鱗状の模様やアバタ状の小さな凹み等も何ら認められず、実に良好な燃料電池用セパレータを得ることができた。また、実施例6〜10の場合には、燃料電池用セパレータにクラックや割れ等の破損が認められず、高品質の燃料電池用セパレータを得ることができた。
[Result]
In the case of Examples 1 to 5, the fuel cell separator has a volume resistance of 10 mΩ · cm or less and has sufficient conductivity, and the surface of the fuel cell separator has a scale-like pattern or avatar. No small dents or the like were observed, and a very good fuel cell separator could be obtained. Moreover, in Examples 6 to 10, no breakage such as cracks or cracks was observed in the fuel cell separator, and a high-quality fuel cell separator could be obtained.

これに対し、比較例1、2の場合には、燃料電池用セパレータの導電性については十分であったが、燃料電池用セパレータの表面に鱗状の模様やアバタ状の小さな凹み等が生じ、燃料電池用セパレータに成形不良が生じた。また、比較例3の場合には、燃料電池用セパレータの体積抵抗値が10mΩ・cmを大幅に越え、燃料電池用セパレータの導電性に問題が生じた。さらに、比較例4、5の場合には、燃料電池用セパレータにクラックが認められ、燃料電池用セパレータに成形不良が発生した。   On the other hand, in the case of Comparative Examples 1 and 2, the conductivity of the fuel cell separator was sufficient, but the surface of the fuel cell separator had a scale-like pattern or a small avatar-like dent. A molding defect occurred in the battery separator. Further, in the case of Comparative Example 3, the volume resistance value of the fuel cell separator significantly exceeded 10 mΩ · cm, causing a problem in the conductivity of the fuel cell separator. Furthermore, in Comparative Examples 4 and 5, cracks were observed in the fuel cell separator, and molding defects occurred in the fuel cell separator.

1 成形材料
10 成形用金型
11 上型
12 成形部
13 下型
20 燃料電池用セパレータ
21 ベース板
22 溝
DESCRIPTION OF SYMBOLS 1 Molding material 10 Molding die 11 Upper mold 12 Molding part 13 Lower mold 20 Fuel cell separator 21 Base plate 22 Groove

Claims (4)

粉状の成形材料を成形用金型に充填して加熱加圧し、その後、加圧冷却して燃料電池用セパレータを得る燃料電池用セパレータの製造方法であって、
所定の樹脂と黒鉛粒子とを所定の樹脂の溶融開始温度以上の温度で加熱混練して予備成形材料を調製し、この予備成形材料を粉砕して粉体化し、この粉体化した予備成形材料に黒鉛粒子を添加して所定の樹脂の溶融開始温度未満の温度で混合することにより、粉状の成形材料を調製することを特徴とする燃料電池用セパレータの製造方法。
A method for producing a fuel cell separator by filling a molding die with a powdery molding material, heating and pressurizing, and then pressurizing and cooling to obtain a fuel cell separator,
A predetermined resin and graphite particles are heated and kneaded at a temperature equal to or higher than the melting start temperature of the predetermined resin to prepare a preformed material, the preformed material is pulverized and powdered, and the powdered preformed material A method for producing a separator for a fuel cell, comprising preparing a powdery molding material by adding graphite particles to a mixture and mixing at a temperature lower than a melting start temperature of a predetermined resin.
燃料電池用セパレータの面方向における線膨張係数を、成形用金型の線膨張係数の−60〜+20%以下の範囲とする請求項1記載の燃料電池用セパレータの製造方法。   2. The method for producing a fuel cell separator according to claim 1, wherein the linear expansion coefficient in the surface direction of the fuel cell separator is in the range of -60 to + 20% or less of the linear expansion coefficient of the molding die. 予備成形材料中の黒鉛粒子の添加量を、成形材料中の黒鉛粒子の添加量×0.5以上、かつ成形材料中の黒鉛粒子の添加量×1.0未満とし、黒鉛粒子の平均粒径を5〜500μmとする請求項1又は2記載の燃料電池用セパレータの製造方法。   The addition amount of graphite particles in the preforming material is the addition amount of graphite particles in the molding material × 0.5 or more and the addition amount of graphite particles in the molding material × less than 1.0, and the average particle size of the graphite particles The manufacturing method of the separator for fuel cells of Claim 1 or 2 which is 5-500 micrometers. 請求項1、2、又は3記載の燃料電池用セパレータの製造方法により製造されたことを特徴とする燃料電池用セパレータ。   A fuel cell separator manufactured by the method for manufacturing a fuel cell separator according to claim 1, 2 or 3.
JP2009275531A 2009-12-03 2009-12-03 Manufacturing method of fuel cell separator and fuel cell separator Active JP5349267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009275531A JP5349267B2 (en) 2009-12-03 2009-12-03 Manufacturing method of fuel cell separator and fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009275531A JP5349267B2 (en) 2009-12-03 2009-12-03 Manufacturing method of fuel cell separator and fuel cell separator

Publications (2)

Publication Number Publication Date
JP2011119124A true JP2011119124A (en) 2011-06-16
JP5349267B2 JP5349267B2 (en) 2013-11-20

Family

ID=44284233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009275531A Active JP5349267B2 (en) 2009-12-03 2009-12-03 Manufacturing method of fuel cell separator and fuel cell separator

Country Status (1)

Country Link
JP (1) JP5349267B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120737A (en) * 2011-12-08 2013-06-17 Shin Etsu Polymer Co Ltd Water-repellent fuel cell separator, and method of manufacturing the same
JP2014022096A (en) * 2012-07-13 2014-02-03 Shin Etsu Polymer Co Ltd Fuel battery separator, and method for manufacturing the same
JP2015207467A (en) * 2014-04-21 2015-11-19 日本ピラー工業株式会社 Separator for fuel cell and method of manufacturing the same
CN106626011A (en) * 2017-01-12 2017-05-10 齐鲁工业大学 Microstructure graphite punch machining device
CN112655104A (en) * 2018-09-21 2021-04-13 阿科玛法国公司 Composition for bipolar plates and method for manufacturing said composition
CN112956055A (en) * 2018-09-21 2021-06-11 阿科玛法国 Composition for bipolar plate and preparation method thereof
CN116836543A (en) * 2023-07-09 2023-10-03 东莞市进升五金制品有限公司 Preparation method of watch hardware key

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108591A (en) * 2003-09-30 2005-04-21 Nichias Corp Molding material for fuel cell separator
JP2005190846A (en) * 2003-12-25 2005-07-14 Osaka Gas Co Ltd Conductive molding and reduction method of its resistance value
JP2006210223A (en) * 2005-01-31 2006-08-10 Nichias Corp Separator for fuel cell
JP2008078023A (en) * 2006-09-22 2008-04-03 Shin Etsu Polymer Co Ltd Manufacturing method of separator for fuel cell, and separator for the fuel cell
JP2009231034A (en) * 2008-03-24 2009-10-08 Shin Etsu Polymer Co Ltd Fuel cell separator, and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108591A (en) * 2003-09-30 2005-04-21 Nichias Corp Molding material for fuel cell separator
JP2005190846A (en) * 2003-12-25 2005-07-14 Osaka Gas Co Ltd Conductive molding and reduction method of its resistance value
JP2006210223A (en) * 2005-01-31 2006-08-10 Nichias Corp Separator for fuel cell
JP2008078023A (en) * 2006-09-22 2008-04-03 Shin Etsu Polymer Co Ltd Manufacturing method of separator for fuel cell, and separator for the fuel cell
JP2009231034A (en) * 2008-03-24 2009-10-08 Shin Etsu Polymer Co Ltd Fuel cell separator, and its manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120737A (en) * 2011-12-08 2013-06-17 Shin Etsu Polymer Co Ltd Water-repellent fuel cell separator, and method of manufacturing the same
JP2014022096A (en) * 2012-07-13 2014-02-03 Shin Etsu Polymer Co Ltd Fuel battery separator, and method for manufacturing the same
JP2015207467A (en) * 2014-04-21 2015-11-19 日本ピラー工業株式会社 Separator for fuel cell and method of manufacturing the same
CN106626011A (en) * 2017-01-12 2017-05-10 齐鲁工业大学 Microstructure graphite punch machining device
CN106626011B (en) * 2017-01-12 2023-05-26 齐鲁工业大学 Micro-texture graphite male die processing device
CN112655104A (en) * 2018-09-21 2021-04-13 阿科玛法国公司 Composition for bipolar plates and method for manufacturing said composition
CN112956055A (en) * 2018-09-21 2021-06-11 阿科玛法国 Composition for bipolar plate and preparation method thereof
US20210354332A1 (en) * 2018-09-21 2021-11-18 Arkema France Compositions for bipolar plates and methods for manufacturing said compositions
JP2022501464A (en) * 2018-09-21 2022-01-06 アルケマ フランス Compositions for bipolar plates and methods for producing said compositions
JP7460610B2 (en) 2018-09-21 2024-04-02 アルケマ フランス Composition for bipolar plates and method for producing said composition
CN116836543A (en) * 2023-07-09 2023-10-03 东莞市进升五金制品有限公司 Preparation method of watch hardware key

Also Published As

Publication number Publication date
JP5349267B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5349267B2 (en) Manufacturing method of fuel cell separator and fuel cell separator
Zhang et al. Fused deposition modeling 3D printing of polyamide-based composites and its applications
Gao et al. Influence of filler size on the properties of poly (lactic acid)(PLA)/graphene nanoplatelet (GNP) nanocomposites
CN102365158B (en) Sheet press molding method and method for manufacturing separator for fuel cell
Radzuan et al. The effect of milled carbon fibre filler on electrical conductivity in highly conductive polymer composites
Yang et al. Preparation mechanism of hierarchical layered structure of graphene/copper composite with ultrahigh tensile strength
JP5214313B2 (en) Composite powder for selective laser sintering
KR101229706B1 (en) Sheet press molding method and method of fabricating fuel cell separators
TWI352716B (en)
EP3508534A1 (en) Resin composition, filament and resin powder for three-dimensional printer, and shaped object and production rpocess therefor
Akhtar et al. Multi-component MWCNT/NG/EP-based bipolar plates with enhanced mechanical and electrical characteristics fabricated by compression moulding
JP2016028887A (en) Heat-melting lamination type filament for three-dimensional printer, and method for producing the same
Arai et al. Comparison of crystallization characteristics and mechanical properties of poly (butylene terephthalate) processed by laser sintering and injection molding
Khanna et al. Engineering electrical and thermal attributes of two-dimensional graphene reinforced copper/aluminium metal matrix composites for smart electronics
Çantı et al. Effects of micro particle reinforcement on mechanical properties of 3D printed parts
Li et al. Simultaneous enhancement of electrical conductivity and interlaminar fracture toughness of carbon fiber/epoxy composites using plasma-treated conductive thermoplastic film interleaves
WO2005112161A1 (en) Conductive structure, process for producing the same, and separator for fuel cell
JP5797164B2 (en) Manufacturing method of fuel cell separator
TW201920387A (en) Shaped article and method for producing same
JP2006294407A (en) Manufacturing method of separator for fuel cell and separator for fuel cell
Mokhtari et al. A review of electrically conductive poly (ether ether ketone) materials
Onyu et al. Evaluation of the possibility for using polypropylene/graphene composite as bipolar plate material instead of polypropylene/graphite composite
JP5465091B2 (en) Manufacturing method of fuel cell separator and fuel cell separator
Karimi et al. Development of highly filled nickel-polymer feedstock from recycled and biodegradable resources for low-cost material extrusion additive manufacturing of metals
JP2013058414A (en) Fuel cell separator and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130820

R150 Certificate of patent or registration of utility model

Ref document number: 5349267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350