JP2011119050A - Fuel cell power generation system, and hydrogen production device - Google Patents

Fuel cell power generation system, and hydrogen production device Download PDF

Info

Publication number
JP2011119050A
JP2011119050A JP2009273208A JP2009273208A JP2011119050A JP 2011119050 A JP2011119050 A JP 2011119050A JP 2009273208 A JP2009273208 A JP 2009273208A JP 2009273208 A JP2009273208 A JP 2009273208A JP 2011119050 A JP2011119050 A JP 2011119050A
Authority
JP
Japan
Prior art keywords
hydrogen
fuel cell
benzene
cyclohexane
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009273208A
Other languages
Japanese (ja)
Inventor
Koichiro Chiba
公一郎 千葉
Tomoyuki Hikosaka
知行 彦坂
Shigekatsu Sato
重勝 佐藤
Yukio Ishigaki
幸雄 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan AE Power Systems Corp
Original Assignee
Japan AE Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan AE Power Systems Corp filed Critical Japan AE Power Systems Corp
Priority to JP2009273208A priority Critical patent/JP2011119050A/en
Publication of JP2011119050A publication Critical patent/JP2011119050A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a closed-cycle fuel cell power generation system, in which high-purity hydrogen and benzene are produced with a simple construction by using cyclohexane, liquid at normal temperature, as a fuel, and then cyclohexane is reproduced by supplying them to a fuel cell, without supply of fuel from outside, and to provide a hydrogen production device capable of obtaining high-purity hydrogen. <P>SOLUTION: A fuel cell power generation system 10 is a closed-cycle type system and is equipped with a fuel container 11 storing cyclohexane, a hydrogen-separation container 14 providing a hydrogen-production unit producing hydrogen and benzene-rich liquid from cyclohexane, a hydrogen-separation unit separating the produced hydrogen from the benzene-rich liquid, and the fuel cell 15 in which the hydrogen is supplied to an anode 15a and the benzene-rich liquid is also supplied to a cathode 15b. And, the hydrogen-production unit is composed of a hydrogen-generation portion 12 having electrodes 12a, 12b arranged in opposition and a pulse power source 13 applying pulse voltage between the electrodes 12a, 12b. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は燃料電池発電システム及び水素製造装置に係り、特にシクロヘキサンをパルスパワーで分解して得た水素を使用する閉サイクル形の燃料電池発電システム及びパルスパワーを用いた水素製造装置に関する。   The present invention relates to a fuel cell power generation system and a hydrogen production apparatus, and more particularly to a closed cycle fuel cell power generation system using hydrogen obtained by decomposing cyclohexane with pulse power and a hydrogen production apparatus using pulse power.

燃料電池は、よく知られているように水素が供給されるアノード極と酸素が供給されるカソード極と電解質とを備えており、水素と酸素を反応させて電気エネルギを得るものである。燃料電池自体は発電効率も良好でしかも炭酸ガス(CO)の排出がないため、地球の環境面から注目されており、次第に活用されてきている。 As is well known, a fuel cell includes an anode electrode to which hydrogen is supplied, a cathode electrode to which oxygen is supplied, and an electrolyte, and obtains electric energy by reacting hydrogen and oxygen. Since fuel cells themselves have good power generation efficiency and do not emit carbon dioxide (CO 2 ), they are attracting attention from the global environmental viewpoint and are gradually being utilized.

燃料電池で発電させるには、多量の水素を継続的に必要とする。このため、通常燃料電池ではこの近傍に改質装置や燃料供給系統を備えており、天然ガスやメタノール等の燃料から水素を得るようにしている。しかし、改質装置や燃料供給系統の設備を備えるとなると、燃料電池全体が大型化することになる。   In order to generate electricity with a fuel cell, a large amount of hydrogen is required continuously. For this reason, a normal fuel cell is provided with a reformer and a fuel supply system in the vicinity thereof to obtain hydrogen from fuel such as natural gas and methanol. However, when the equipment of the reformer and the fuel supply system is provided, the entire fuel cell is increased in size.

それ故、燃料電池に多量の水素を、別の供給系統から供給せずに発電できるようにすることが検討されており、例えば特許文献1に記載されている如く水素を閉鎖系で繰り返し使用し得、新たに水素を供給せずに連続的に発電できる燃料電池システムが提案されている。この特許文献1の燃料電池システムは、被脱水素化合物を脱水素して脱水素化合物及び水素を生成するため、脱水素触媒を有する脱水素反応器を用い、脱水素反応器で生成した脱水素化合物及び水素を水素分離器で分離している。   Therefore, it has been studied to make it possible to generate electricity without supplying a large amount of hydrogen to a fuel cell from another supply system. For example, as described in Patent Document 1, hydrogen is repeatedly used in a closed system. Thus, a fuel cell system that can continuously generate power without supplying hydrogen has been proposed. The fuel cell system of Patent Document 1 uses a dehydrogenation reactor having a dehydrogenation catalyst to dehydrogenate a compound to be dehydrogenated to produce a dehydrogenation compound and hydrogen, and dehydrogenation produced in the dehydrogenation reactor. The compound and hydrogen are separated by a hydrogen separator.

そして、分離した水素を燃料電池のアノード極に供給、また脱水素化合物を燃料電池のカソード極に供給して発電させると共に、排気熱を活用した脱水素化合物水素化反応によって、脱水素化合物及び水素から被脱水素化合物を再生成することにより、水素を閉鎖サイクルで繰り返し使用するようにしている。   Then, the separated hydrogen is supplied to the anode electrode of the fuel cell, and the dehydrogenation compound is supplied to the cathode electrode of the fuel cell to generate electric power. The hydrogen is repeatedly used in a closed cycle by regenerating the dehydrogenated compound from

上記の燃料電池システムでは、被脱水素化合物にシクロヘキサンやイソプロパノ−ルを用いている。つまり、シクロヘキサン(C12)を脱水素してベンゼン(C)及び水素を生成、及びベンゼン水素化反応によりシクロヘキサンを再生成する場合と、イソプロパノ−ル(CO)を脱水素してアセトン(CO)及び水素を生成、及びアセトン水素化反応によりイソプロパノ−ルを再生成する場合とがある。 In the fuel cell system described above, cyclohexane or isopropanol is used as the dehydrogenated compound. That is, cyclohexane (C 6 H 12 ) is dehydrogenated to produce benzene (C 6 H 6 ) and hydrogen, and cyclohexane is regenerated by a benzene hydrogenation reaction, and isopropanol (C 3 H 8 O). May be dehydrogenated to produce acetone (C 3 H 6 O) and hydrogen, and isopropanol may be regenerated by an acetone hydrogenation reaction.

また、燃料電池に使用する水素を供給するため、例えば特許文献2には水素化芳香族化合物から多量の水素を取り出す方法が提案されている。この特許文献2の水素の取り出し方法は、貯蔵タンクに収納した常温で液体であるシクロヘキサン等の水素化芳香族化合物を用いている。   In order to supply hydrogen used in the fuel cell, for example, Patent Document 2 proposes a method for extracting a large amount of hydrogen from a hydrogenated aromatic compound. The hydrogen extraction method of Patent Document 2 uses a hydrogenated aromatic compound such as cyclohexane that is liquid at room temperature and stored in a storage tank.

そして、脱水素触媒を充填した触媒反応装置に水素化芳香族化合物を供給し、触媒反応装置の内部を液相状態に保持しながら、脱水素触媒の存在下で外部に設けた加熱器よって加熱し、水素ガスを生成する。生成した水素ガスは、水素分離膜の如き水素分離手段を用いて、未反応の水素化芳香族化合物や脱水素生成物から分離して取り出し、燃料電池に供給している。   Then, the hydrogenated aromatic compound is supplied to the catalytic reactor filled with the dehydrogenation catalyst, and heated by a heater provided outside in the presence of the dehydrogenation catalyst while maintaining the inside of the catalytic reactor in a liquid phase state. Then, hydrogen gas is generated. The generated hydrogen gas is separated from unreacted hydrogenated aromatic compounds and dehydrogenated products using a hydrogen separation means such as a hydrogen separation membrane, and supplied to the fuel cell.

特開2002−208430号公報JP 2002-208430 A 特開2006−265065号公報JP 2006-265065 A

上記した特許文献1の如き燃料電池発電システムでは、水素を燃料電池の閉サイクルで繰り返し使用できる利点がある。しかし、被脱水素化合物としてシクロヘキサン等を用い、これを脱水素反応器中の脱水素触媒で反応させて水素を発生させるものであるから、高純度の水素の製造及び分離する設備が高価となる。しかも、触媒反応を良好にするため所定温度に加温せねばならず、燃料電池発電システム全体を経済的に製作できなくなるという問題があった。   The fuel cell power generation system as described in Patent Document 1 has an advantage that hydrogen can be repeatedly used in a closed cycle of the fuel cell. However, since cyclohexane or the like is used as a dehydrogenated compound and this is reacted with a dehydrogenation catalyst in a dehydrogenation reactor to generate hydrogen, equipment for producing and separating high-purity hydrogen is expensive. . In addition, there is a problem that the entire fuel cell power generation system cannot be economically manufactured because it has to be heated to a predetermined temperature in order to improve the catalytic reaction.

また、特許文献2に記載の如き水素を取り出し方法により、燃料電池に使用する水素を製造して取り出す方法の場合も触媒反応装置を用いている。そして、脱水素触媒が存在する触媒反応装置の内部を液相状態に保持すると共に、外部に設けた加熱器よって脱水素触媒を加熱し、シクロヘキサン等の水素化芳香族化合物から水素ガスを生成するものであるから、同様に設備全体の構造を簡単に構成できず、経済的に製作できないという問題があった。   Further, the catalytic reaction apparatus is used also in the method of producing and taking out hydrogen used in the fuel cell by the method of taking out hydrogen as described in Patent Document 2. And while keeping the inside of the catalytic reaction apparatus in which a dehydrogenation catalyst exists in a liquid phase state, a dehydrogenation catalyst is heated with the heater provided outside, and hydrogen gas is produced | generated from hydrogenated aromatic compounds, such as a cyclohexane. As a result, there is a problem in that the structure of the entire equipment cannot be easily configured and cannot be manufactured economically.

本発明の目的は、燃料に常温で液体のシクロヘキサンを用い、簡単な構成で高純度の水素及びベンゼンを生成し、これらを燃料電池に供給してシクロヘキサンを再生成し、外部から燃料を供給しない閉サイクル形の燃料電池発電システムを提供することにある。   The object of the present invention is to use cyclohexane which is liquid at normal temperature as a fuel, generate high-purity hydrogen and benzene with a simple structure, supply these to the fuel cell to regenerate cyclohexane, and do not supply fuel from the outside The object is to provide a closed-cycle fuel cell power generation system.

また、本発明の別の目的は、燃料に常温で液体のシクロヘキサンを用い、高価な触媒を使用することなく簡単に高純度の水素が得られる水素製造装置を提供することにある。   Another object of the present invention is to provide a hydrogen production apparatus that can easily obtain high-purity hydrogen without using an expensive catalyst by using cyclohexane that is liquid at room temperature as a fuel.

本発明は、燃料容器から供給されるシクロヘキサンから水素及びベンゼンに富んだ液体を生成する水素生成手段と、前記水素生成手段からの水素及びベンゼンに富んだ液体を分離する水素分離手段と、前記水素分離手段で分離した水素がアノード極に供給されると共にベンゼンに富んだ液体がカソード極に供給される燃料電池とを備えた閉サイクル形の燃料電池発電システムとする際に、前記水素生成手段は、対向配置する電極を有する水素発生部と、前記電極間にパルス電圧を供給するパルスパワー電源とにより構成したことを特徴としている。   The present invention provides a hydrogen generating means for generating a liquid rich in hydrogen and benzene from cyclohexane supplied from a fuel container, a hydrogen separating means for separating the liquid rich in hydrogen and benzene from the hydrogen generating means, and the hydrogen In a closed cycle type fuel cell power generation system comprising a fuel cell in which hydrogen separated by the separation means is supplied to the anode electrode and a liquid rich in benzene is supplied to the cathode electrode, the hydrogen generation means is The hydrogen generating part having electrodes arranged opposite to each other and a pulse power power source for supplying a pulse voltage between the electrodes are characterized in that it is characterized in that

また、本発明の水素製造装置は、シクロヘキサンを収容する燃料容器と、対向配置する電極を有する水素発生部が設けられ、かつ前記水素発生部で前記燃料容器より供給されるシクロヘキサンから水素及びベンゼンに富んだ液体を生成分離する水素分離容器と、前記水素発生部の電極間にパルス電圧を印加するパルスパワー電源と、前記水素分離容器にて分離した水素を回収する水素回収容器と、ベンゼンに富んだ液体を回収する回収容器とにより構成したことを特徴としている。   Further, the hydrogen production apparatus of the present invention is provided with a hydrogen container containing cyclohexane and a hydrogen generation part having electrodes arranged opposite to each other, and from the cyclohexane supplied from the fuel container in the hydrogen generation part to hydrogen and benzene. A hydrogen separation container that produces and separates a rich liquid, a pulse power power source that applies a pulse voltage between the electrodes of the hydrogen generation unit, a hydrogen recovery container that recovers hydrogen separated in the hydrogen separation container, and a benzene-rich material It is characterized by comprising a recovery container for recovering the liquid.

本発明のような燃料電池発電システムとすれば、パルスパワー電源に連なる電極を備える水素発生部で、シクロヘキサンから生成する高純度の水素及びベンゼンを燃料電池に供給し、燃料電池においてシクロヘキサンを再生成して再循環できる。また、加温せねばならない触媒を使用することなく水素を発生させることができるため、外部から燃料を供給する必要がなく、しかも排熱量の少ない閉サイクルのシステムとすることができる。   If the fuel cell power generation system as in the present invention is used, a high-purity hydrogen generated from cyclohexane and benzene are supplied to the fuel cell in the hydrogen generator having electrodes connected to the pulse power source, and the cyclohexane is regenerated in the fuel cell. And can be recirculated. Further, since hydrogen can be generated without using a catalyst that must be heated, there is no need to supply fuel from the outside, and a closed cycle system with a small amount of exhaust heat can be obtained.

また本発明の如く水素製造装置を構成すれば、高価な触媒を使用せずにシクロヘキサンから、パルスパワーにより高純度の水素及びベンゼンを簡単に生成できるし、従来に比べて装置全体を経済的に製作することができる利点がある。   Further, if a hydrogen production apparatus is configured as in the present invention, high-purity hydrogen and benzene can be easily generated from cyclohexane by pulse power without using an expensive catalyst, and the entire apparatus can be economically compared with the conventional apparatus. There is an advantage that can be manufactured.

本発明の燃料電池発電システムの一実施例を示す概略構成図である。It is a schematic block diagram which shows one Example of the fuel cell power generation system of this invention. 本発明の水素製造装置の一実施例を示す概略構成図である。It is a schematic block diagram which shows one Example of the hydrogen production apparatus of this invention. (a)から(f)はそれぞれ水素の製造に使用する電極配置の例を示す概略図である。(A)-(f) is the schematic which shows the example of the electrode arrangement | positioning used for manufacture of hydrogen, respectively.

本発明の燃料電池発電システムは、燃料容器から供給されるシクロヘキサンから水素及びベンゼンに富んだ液体を生成する水素生成手段と、前記水素生成手段からの水素及びベンゼンに富んだ液体を分離する水素分離手段と、前記水素分離手段で分離した水素がアノード極に供給されると共にベンゼンに富んだ液体がカソード極に供給される燃料電池とを備えた閉サイクル形である。そして、水素生成手段は、対向配置する電極を有する水素発生部と、前記電極間にパルス電圧を供給するパルスパワー電源とにより構成している。   A fuel cell power generation system according to the present invention includes a hydrogen generation unit that generates a liquid rich in hydrogen and benzene from cyclohexane supplied from a fuel container, and a hydrogen separation that separates the liquid rich in hydrogen and benzene from the hydrogen generation unit. And a fuel cell in which hydrogen separated by the hydrogen separation means is supplied to the anode electrode and a benzene-rich liquid is supplied to the cathode electrode. The hydrogen generation means includes a hydrogen generation unit having electrodes arranged opposite to each other and a pulse power power source that supplies a pulse voltage between the electrodes.

また、本発明の水素製造装置は、対向配置する電極を有する水素発生部が設けられた水素分離容器を用いており、パルスパワー電源から電極間に印加するパルス電圧により、シクロヘキサンから水素及びベンゼンに富んだ液体を生成している。   Further, the hydrogen production apparatus of the present invention uses a hydrogen separation vessel provided with a hydrogen generation unit having electrodes arranged opposite to each other, and from a pulse power power source to a hydrogen and benzene from a cyclohexane by a pulse voltage applied between the electrodes. Produces a rich liquid.

以下、本発明の燃料電池発電システム及び水素製造装置について図1から図3を用いて説明する。図1に示す閉サイクルの再生形である本発明の燃料電池発電システム10では、水素発生用の燃料として常温で液体のシクロヘキサン(C12)を用いており、このシクロヘキサンは燃料容器11に貯蔵している。 Hereinafter, a fuel cell power generation system and a hydrogen production apparatus according to the present invention will be described with reference to FIGS. 1 to 3. In the fuel cell power generation system 10 of the present invention, which is a closed-cycle regeneration type shown in FIG. 1, cyclohexane (C 6 H 12 ) that is liquid at room temperature is used as the fuel for hydrogen generation. I store it.

燃料容器11に保管したシクロヘキサンは、バルブV1と液体ポンプP1を有する供給系統を経由して、水素生成手段として使用する水素発生部12に送られる。水素発生部12には、後述するような電極12a及び12bを有しており、高価な触媒は全く使用しない構造である。   The cyclohexane stored in the fuel container 11 is sent to a hydrogen generation unit 12 used as a hydrogen generation means via a supply system having a valve V1 and a liquid pump P1. The hydrogen generator 12 has electrodes 12a and 12b as described later, and has a structure in which an expensive catalyst is not used at all.

水素発生部12の電極12a及び12bは、パルスパワー電源13と接続されて所定のパルス電圧が印加される。このパルスパワーを利用し、水素発生部12において、シクロヘキサンはC12→3H+Cの如く、水素と分解されなかったシクロヘキサンを含むベンゼンに富んだ液体とを生成する。そして、生成した水素とベンゼンに富んだ液体は、水素分離手段として用いた水素分離容器14において気液分離された状態で保管される。なお、図1の例では水素分離容器14の一部に水素発生部12を設けたものであるが、独立させて設置することもできる。 The electrodes 12a and 12b of the hydrogen generator 12 are connected to a pulse power power supply 13 and applied with a predetermined pulse voltage. Utilizing this pulse power, in the hydrogen generation section 12, cyclohexane produces hydrogen and a benzene-rich liquid containing cyclohexane that has not been decomposed, such as C 6 H 12 → 3H 2 + C 6 H 6 . The produced hydrogen and benzene-rich liquid is stored in a gas-liquid separated state in the hydrogen separation container 14 used as the hydrogen separation means. In the example of FIG. 1, the hydrogen generation unit 12 is provided in a part of the hydrogen separation vessel 14, but can be installed independently.

パルスパワー電源13に連なる水素発生部12の電極12a及び12bは、図3(a)から(f)に例示するものが使用できる。即ち、図3(a)に示す同軸に配置する棒状電極と円筒電極の組み合せ、同(b)に示す同軸配置電極の並列配置する組み合せ、同(c)に示す棒状電極と円筒電極の組み合せ、同(d)に示す双方とも棒状電極の組み合せ、同(e)に示す棒状電極と平板電極の組み合せ、同(f)に示す剣山状電極と平板電極の組み合せ等が使用できる。   As the electrodes 12a and 12b of the hydrogen generator 12 connected to the pulse power source 13, those illustrated in FIGS. 3A to 3F can be used. That is, a combination of a coaxial electrode and cylindrical electrode shown in FIG. 3A, a parallel arrangement of coaxial electrodes shown in FIG. 3B, a combination of a cylindrical electrode and cylindrical electrode shown in FIG. Both of the combinations shown in (d) can be a combination of rod-shaped electrodes, a combination of a rod-shaped electrode and a plate electrode shown in (e), a combination of a sword-shaped electrode and a plate electrode shown in (f), or the like.

水素分離容器14中の水素は、バルブV2を有する供給系統から燃料電池15のアノード極15a側に供給され、また水素分離容器14中のベンゼンに富んだ液体は、バルブV3と液体ポンプP2を有する供給系統から燃料電池15のカソード極15b側に供給する。なお、水素は供給系統中に一時保管容器(図示せず)を設けて保管させ、この一時保管容器から燃料電池15に供給させることもできる。   Hydrogen in the hydrogen separation vessel 14 is supplied from the supply system having the valve V2 to the anode 15a side of the fuel cell 15, and the benzene-rich liquid in the hydrogen separation vessel 14 has a valve V3 and a liquid pump P2. The fuel is supplied from the supply system to the cathode 15b side of the fuel cell 15. Note that hydrogen can be stored by providing a temporary storage container (not shown) in the supply system and supplied to the fuel cell 15 from the temporary storage container.

燃料電池15では、水素とベンゼンに富んだ液体とを用いて電気を発生させて外部負荷16に供給すると共に、C+6H+6e→C12の如くシクロヘキサンを再生成している。このシクロヘキサンは、燃料容器11に再循環させて水素発生用燃料として再活用している。 In the fuel cell 15, electricity is generated using hydrogen and a liquid rich in benzene and supplied to the external load 16, and cyclohexane is regenerated as C 6 H 6 + 6H + + 6e → C 6 H 12. Yes. This cyclohexane is recycled to the fuel container 11 and reused as a fuel for hydrogen generation.

上記した閉サイクル形の燃料電池発電システムのように、対向配置する電極を有する水素発生部と、前記電極間にパルス電圧を供給するパルスパワー電源とにより水素生成手段を構成して用いると、次のような利点がある。即ち、水素生成手段を使用して常温で液体のシクロヘキサンから、水素と常温で液体のベンゼンに富んだ液体を生成すると、従来の触媒を用いる反応器のように、加熱器を準備して触媒を所定温度まで加熱する必要がなくなる。このため、水素生成時に温度上昇を伴うことがないから排熱量が著しく少なくなり、高純度の水素を生成して燃料電池に使用できる。   As in the above-described closed-cycle fuel cell power generation system, when the hydrogen generation means is configured and used by a hydrogen generator having electrodes arranged opposite to each other and a pulse power power source that supplies a pulse voltage between the electrodes, There are advantages like That is, when hydrogen-producing means is used to produce a liquid rich in hydrogen and benzene that is liquid at room temperature from cyclohexane that is liquid at room temperature, a heater is prepared and a catalyst is prepared like a reactor using a conventional catalyst. There is no need to heat to a predetermined temperature. For this reason, since the temperature does not increase during the hydrogen generation, the amount of exhaust heat is remarkably reduced, and high-purity hydrogen can be generated and used in the fuel cell.

本発明の燃料電池発電システムは常時運転も可能であって、当然のことながら電力需要の少ない時間帯に水素を生成して分離しておき、電力需要の高い時間帯や停電時に貯蔵しておいた水素を用いて燃料電池で発電させることもできる。なお、パルスパワー電源13には、通常の電力ばかりでなく、夜間電力や自然エネルギによる電力を活用することもできる。   The fuel cell power generation system of the present invention can also be operated at all times. Naturally, hydrogen is generated and separated during a time period when the power demand is low, and stored during a time when the power demand is high or during a power failure. It is also possible to generate electricity with a fuel cell using hydrogen. Note that the pulse power power supply 13 can utilize not only normal power but also nighttime power or natural energy.

次に、図2に示す本発明の水素製造装置20について説明する。処理対象のシクロヘキサンは、燃料容器21に収容され、燃料容器21はバルブVAを介在させた供給系統により、リーク用のバルブVBを設けた水素分離容器24に連なっている。   Next, the hydrogen production apparatus 20 of the present invention shown in FIG. 2 will be described. The cyclohexane to be treated is accommodated in a fuel container 21, and the fuel container 21 is connected to a hydrogen separation container 24 provided with a leak valve VB by a supply system having a valve VA interposed therebetween.

水素分離容器24には、供給されるシクロヘキサンの液中に存在させる対向配置の電極を有する水素発生部22が設けられている。水素発生部22の対向配置の電極は、上述と同様に図3(a)から(f)等の組み合わせから選択して用いられ、この電極間にパルス電圧を印加するパルスパワー電源23を接続している。   The hydrogen separation vessel 24 is provided with a hydrogen generator 22 having electrodes arranged oppositely to be present in the cyclohexane liquid supplied. The oppositely arranged electrodes of the hydrogen generator 22 are selected from the combinations shown in FIGS. 3A to 3F in the same manner as described above, and a pulse power source 23 for applying a pulse voltage is connected between the electrodes. ing.

この水素発生部22において、電極間に印加されたパルスパワーは、液体のシクロヘキサンを分解時に水素発生部22内の温度上昇に殆ど影響を与えず、分解反応は常温で促進されて、液体のシクロヘキサンから水素及び未分解のシクロヘキサンを含むベンゼンに富んだ液体を生成することができる。   In this hydrogen generation part 22, the pulse power applied between the electrodes hardly affects the temperature rise in the hydrogen generation part 22 when the liquid cyclohexane is decomposed, and the decomposition reaction is promoted at room temperature. Can produce a benzene-rich liquid containing hydrogen and undecomposed cyclohexane.

水素分離容器24で生成されて気液分離された水素は、バルブVCを介在させて連なっている水素回収容器25に回収保管される。また、ベンゼンに富んだ液体は、バルブVEを介在させて連なる回収容器26に回収保管され、必要時に燃料電池等に供給する。水素回収容器25には、バルブVD及び真空ポンプVPを有する排気系統が設けられている。   The hydrogen generated in the hydrogen separation container 24 and separated into gas and liquid is recovered and stored in the hydrogen recovery container 25 connected through the valve VC. The liquid rich in benzene is recovered and stored in a continuous recovery container 26 with a valve VE interposed, and supplied to a fuel cell or the like when necessary. The hydrogen recovery container 25 is provided with an exhaust system having a valve VD and a vacuum pump VP.

上記のように構成した水素製造装置20では、シクロヘキサンから水素及びベンゼンに富む液体の生成に、対向配置の電極を有する水素発生部22を用いており、高価な触媒を使用しないから装置全体を経済的に製作できるし、パルスパワーにより高純度の水素及びベンゼンを簡単に生成できる。   In the hydrogen production apparatus 20 configured as described above, the hydrogen generation unit 22 having opposed electrodes is used for producing a liquid rich in hydrogen and benzene from cyclohexane, and an expensive catalyst is not used. Highly pure hydrogen and benzene can be easily generated by pulse power.

続いて、上記した水素製造装置20の運転手順について説明する。まず、製造系統中のバルブVAを閉、バルブVBを閉、バルブVCを開、バルブVDを開、バルブVEを開の状態にしてから、真空ポンプVPを駆動し、水素分離容器24と水素回収容器25と回収容器26内を真空引きする。   Subsequently, an operation procedure of the above-described hydrogen production apparatus 20 will be described. First, the valve VA in the production system is closed, the valve VB is closed, the valve VC is opened, the valve VD is opened, and the valve VE is opened. Then, the vacuum pump VP is driven to recover the hydrogen separation vessel 24 and the hydrogen recovery The container 25 and the collection container 26 are evacuated.

その後、バルブVE、バルブVC、バルブVDを順に閉じてから、バルブVAを開き、所定量のシクロヘキサンを水素分離容器24に導入して少なくとも水素発生部22の電極間を液体で満たした後、バルブVAを閉じる。なお、必要に応じて、燃料容器21にシクロヘキサンを別の保管容器(図示せず)から補給する。   Thereafter, the valve VE, the valve VC, and the valve VD are closed in this order, then the valve VA is opened, a predetermined amount of cyclohexane is introduced into the hydrogen separation container 24, and at least the space between the electrodes of the hydrogen generator 22 is filled with liquid. Close VA. If necessary, cyclohexane is supplied to the fuel container 21 from another storage container (not shown).

水素発生部22の電極間には、パルスパワー電源23からパルス電圧を印加し、液体のシクロヘキサンをパルスパワーで分解し、気体の水素と液体のベンゼンを生成する。気液分離された水素は、水素分解容器24に一定量が溜まった後、バルブVCを開いて水素回収容器25に水素を回収する。水素の回収が終了した後、バルブVCを閉じてからバルブVBとバルブVEを開き、水素分離容器24内のベンゼンに富んだ液体を別の回収容器26に回収する。   A pulse voltage is applied between the electrodes of the hydrogen generator 22 from a pulse power power source 23 to decompose liquid cyclohexane with pulse power to generate gaseous hydrogen and liquid benzene. After a certain amount of the gas-liquid separated hydrogen is accumulated in the hydrogen decomposition vessel 24, the valve VC is opened and the hydrogen is collected in the hydrogen collection vessel 25. After the hydrogen recovery is completed, the valve VC is closed and then the valve VB and the valve VE are opened, and the benzene-rich liquid in the hydrogen separation container 24 is recovered in another recovery container 26.

10…燃料電池発電システム、11、21…燃料容器、12、22…水素発生部、12a、12b…電極、13、23…パルスパワー電源、14、24…水素分離容器、15…燃料電池、20…水素製造装置、25…水素回収容器、26…回収容器。 DESCRIPTION OF SYMBOLS 10 ... Fuel cell power generation system, 11, 21 ... Fuel container, 12, 22 ... Hydrogen generating part, 12a, 12b ... Electrode, 13, 23 ... Pulse power power supply, 14, 24 ... Hydrogen separation container, 15 ... Fuel cell, 20 ... hydrogen production apparatus, 25 ... hydrogen recovery container, 26 ... recovery container.

Claims (2)

燃料容器から供給されるシクロヘキサンから水素及びベンゼンに富んだ液体を生成する水素生成手段と、前記水素生成手段からの水素及びベンゼンに富んだ液体を分離する水素分離手段と、前記水素分離手段で分離した水素がアノード極に供給されると共にベンゼンに富んだ液体がカソード極に供給される燃料電池とを備えた閉サイクル形の燃料電池発電システムにおいて、前記水素生成手段は、対向配置する電極を有する水素発生部と、前記電極間にパルス電圧を供給するパルスパワー電源とにより構成したことを特徴とする燃料電池発電システム。   Separation by hydrogen generating means for generating a liquid rich in hydrogen and benzene from cyclohexane supplied from a fuel container, a hydrogen separating means for separating the liquid rich in hydrogen and benzene from the hydrogen generating means, and the hydrogen separating means In a closed-cycle fuel cell power generation system comprising a fuel cell in which the hydrogen is supplied to the anode electrode and a benzene-rich liquid is supplied to the cathode electrode, the hydrogen generating means has electrodes arranged opposite to each other A fuel cell power generation system comprising a hydrogen generator and a pulse power power source for supplying a pulse voltage between the electrodes. シクロヘキサンを収容する燃料容器と、対向配置する電極を有する水素発生部が設けられ、かつ前記水素発生部で前記燃料容器より供給されるシクロヘキサンから水素及びベンゼンに富んだ液体を生成分離する水素分離容器と、前記水素発生部の電極間にパルス電圧を印加するパルスパワー電源と、前記水素分離容器にて分離した水素を回収する水素回収容器と、ベンゼンに富んだ液体を回収する回収容器とにより構成したことを特徴とする水素製造装置。   A hydrogen separation container having a hydrogen container containing cyclohexane and a hydrogen generation part having electrodes arranged opposite to each other, and generating and separating a liquid rich in hydrogen and benzene from cyclohexane supplied from the fuel container in the hydrogen generation part And a pulse power power source that applies a pulse voltage between the electrodes of the hydrogen generation unit, a hydrogen recovery container that recovers hydrogen separated in the hydrogen separation container, and a recovery container that recovers a liquid rich in benzene A hydrogen production apparatus characterized by that.
JP2009273208A 2009-12-01 2009-12-01 Fuel cell power generation system, and hydrogen production device Pending JP2011119050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009273208A JP2011119050A (en) 2009-12-01 2009-12-01 Fuel cell power generation system, and hydrogen production device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009273208A JP2011119050A (en) 2009-12-01 2009-12-01 Fuel cell power generation system, and hydrogen production device

Publications (1)

Publication Number Publication Date
JP2011119050A true JP2011119050A (en) 2011-06-16

Family

ID=44284172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009273208A Pending JP2011119050A (en) 2009-12-01 2009-12-01 Fuel cell power generation system, and hydrogen production device

Country Status (1)

Country Link
JP (1) JP2011119050A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103748724A (en) * 2011-08-19 2014-04-23 丹麦科技大学 Method and system for purification of gas/liquid streams for fuel cells or electrolysis cells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103748724A (en) * 2011-08-19 2014-04-23 丹麦科技大学 Method and system for purification of gas/liquid streams for fuel cells or electrolysis cells

Similar Documents

Publication Publication Date Title
Graves et al. Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy
JP6260952B2 (en) Solid polymer electrolysis method and system.
US20100025232A1 (en) Recovering the compression energy in gaseous hydrogen and oxygen generated from high-pressure water electrolysis
US20090045073A1 (en) Electrolysis cell comprising sulfur dioxide-depolarized anode and method of using the same in hydrogen generation
US3829368A (en) Oxygen-hydrogen generation and sewage treatment method and system
EP3301206B1 (en) Solid polymer electrolysis method and system
US8470156B2 (en) Electrochemical process and production of novel complex hydrides
JP2018081870A (en) Fuel cell system and operation method thereof
KR20040077824A (en) Electrochemical generator
KR101749664B1 (en) Energy unit with safe and stable hydrogen storage
KR20140016049A (en) Hybrid-type hydrogen generator and the hydrogen production method by using the same
JP5934649B2 (en) Hydrocarbon production
KR20090095023A (en) Hydrogen tamping apparatus
KR20150047993A (en) Method for producing at least one selected from methanol, formaldehyde and hydrocarbon having C2 or more, and apparatus for conversion of methane, using plasma-catalyst
JP5167680B2 (en) Method and apparatus for recovering performance of hydrogen electrode of CO polymer contaminated polymer electrolyte reversible cell and fuel cell
ES2962359T3 (en) Process and apparatus for the production of compressed hydrogen
JP5044112B2 (en) High temperature steam electrolysis apparatus and electrolysis method thereof
JP2011119050A (en) Fuel cell power generation system, and hydrogen production device
JP2005203266A (en) Hydrogen production method and hydrogen production system
KR101807782B1 (en) Apparatus for C-H bond cleavage and method for producing hydrogen and/or hydrocarbon having C2 or more, using plasma-catalyst
JP2015227257A (en) Hydrogen supply system
JP6886753B2 (en) Hydrogen generator and hydrogen generation method
JP2009174018A (en) Hydrogen production device
Panayiotou et al. Solar hydrogen production and storage techniques
JP2007287357A (en) Heat regenerating type fuel cell system, and fuel circulation method of fuel cell