JP2011119045A - Fuel battery system - Google Patents

Fuel battery system Download PDF

Info

Publication number
JP2011119045A
JP2011119045A JP2009273080A JP2009273080A JP2011119045A JP 2011119045 A JP2011119045 A JP 2011119045A JP 2009273080 A JP2009273080 A JP 2009273080A JP 2009273080 A JP2009273080 A JP 2009273080A JP 2011119045 A JP2011119045 A JP 2011119045A
Authority
JP
Japan
Prior art keywords
cooling water
fuel cell
water
pump
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009273080A
Other languages
Japanese (ja)
Other versions
JP5564916B2 (en
Inventor
Masatomo Yoshimura
昌知 吉村
Kouichi Kusumura
浩一 楠村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009273080A priority Critical patent/JP5564916B2/en
Publication of JP2011119045A publication Critical patent/JP2011119045A/en
Application granted granted Critical
Publication of JP5564916B2 publication Critical patent/JP5564916B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel battery system that fills a fuel cell with cooling water for a short time without having air entrainment and secures heat exchanging performance satisfying initial setting performances, thereby achieving a stable power generation. <P>SOLUTION: In the fuel battery system, a circulation pump 6 and supply pump 11 are operated to fill the cooling water to a cooling water circulation circuit 2 at filling initial water in the fuel battery system. This structure shortens time to fill the initial water although the filling-water operation has ever been performed by using only a cooling pump for cooling a fuel battery. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、燃料電池システムに関するものである。   The present invention relates to a fuel cell system.

固体高分子膜を電解質に用いた固体高分子型燃料電池(以下、「燃料電池」と略す)が燃料電池システムに組み込まれている。この燃料電池は、水素ガスを主成分とする燃料ガス中の水素と空気中の酸素との間の発熱反応である電気化学反応により発電する。なお、燃料ガスは、例えば、都市ガス等の炭化水素ガスを水蒸気改質すると得られる。   A polymer electrolyte fuel cell (hereinafter abbreviated as “fuel cell”) using a polymer electrolyte membrane as an electrolyte is incorporated in a fuel cell system. This fuel cell generates electricity by an electrochemical reaction that is an exothermic reaction between hydrogen in fuel gas containing hydrogen gas as a main component and oxygen in air. The fuel gas is obtained, for example, by steam reforming a hydrocarbon gas such as city gas.

前記燃料電池の発電では前述の電気化学反応(発熱反応)が進行するので、燃料電池の発電中の運転温度が、その反応に適した温度(例えば、70℃〜80℃程度)に維持されるよう、燃料電池の内部温度を一定に保つ機構が一般的に採用されている。   In the power generation of the fuel cell, the above-described electrochemical reaction (exothermic reaction) proceeds, so that the operating temperature during power generation of the fuel cell is maintained at a temperature suitable for the reaction (for example, about 70 ° C. to 80 ° C.). Thus, a mechanism for keeping the internal temperature of the fuel cell constant is generally employed.

例えば、燃料電池に冷却水が流れる冷却水経路が配され、当該経路を流れる冷却水の流量などの制御によって燃料電池の内部温度が調整されている。一方、燃料電池を通過した高温状態の冷却水の熱を熱交換によって熱媒体が回収して、このような熱媒体が蓄熱器に蓄えられると、燃料電池システムにおいて蓄熱することができる(例えば、特許文献1参照)。   For example, a cooling water path through which cooling water flows is arranged in the fuel cell, and the internal temperature of the fuel cell is adjusted by controlling the flow rate of the cooling water flowing through the path. On the other hand, if the heat medium recovers the heat of the high-temperature cooling water that has passed through the fuel cell by heat exchange and is stored in the heat accumulator, the heat can be stored in the fuel cell system (for example, Patent Document 1).

図5は、特許文献1に開示された、燃料電池システムに搭載された排熱回収装置を示したものである。   FIG. 5 shows an exhaust heat recovery device mounted on a fuel cell system disclosed in Patent Document 1. As shown in FIG.

図5において、スタック冷却水タンク3の冷却水は、スタック循環ポンプ4により、燃料電池スタック2から熱交換器8を通って再びスタック冷却水タンク3へ循環されている。   In FIG. 5, the cooling water in the stack cooling water tank 3 is circulated from the fuel cell stack 2 through the heat exchanger 8 to the stack cooling water tank 3 again by the stack circulation pump 4.

また、水素製造装置1から出た水素は熱交換器9を通り、燃料電池スタック2のアノード極を通り電気化学反応(発熱反応)後、熱交換器6を通り、機外へ排出される。   Further, hydrogen discharged from the hydrogen production apparatus 1 passes through the heat exchanger 9, passes through the anode electrode of the fuel cell stack 2, undergoes an electrochemical reaction (exothermic reaction), passes through the heat exchanger 6, and is discharged outside the apparatus.

また一方、排熱回収水は排熱回収水ポンプ5により熱交換器8へ搬送される。燃料電池スタック2内の発電により発生した熱量は熱交換器8により熱交換され、湯水となって図示しない貯湯槽へ回収される。   On the other hand, the exhaust heat recovery water is conveyed to the heat exchanger 8 by the exhaust heat recovery water pump 5. The amount of heat generated by the power generation in the fuel cell stack 2 is heat-exchanged by the heat exchanger 8 and is recovered as hot water in a hot water storage tank (not shown).

特開2005−100873号公報Japanese Patent Laid-Open No. 2005-100903

しかしながら、前記従来の構成では、運転初期に循環ポンプ4により冷却水タンク3及び燃料電池スタック2の冷却水部へ冷却水を充填する場合(以下初期水張りとする)、その冷却水の充填に多くの時間を要するという課題があった。   However, in the conventional configuration, when the cooling water is filled into the cooling water tank 3 and the cooling water portion of the fuel cell stack 2 by the circulation pump 4 in the initial stage of operation (hereinafter referred to as initial water filling), the cooling water is often filled. There was a problem that it took a long time.

すなわち、前記循環ポンプ4は燃料電池の発電時の運転温度を、その反応に適した温度に維持されるよう冷却水を循環させている。この循環量はきわめて微量に制御する必要があり、そのため前記循環ポンプ4は高揚程のものを使用することができない。また、連続使用に耐えるため自給能力はないが耐久性のある遠心式ポンプを使用する必要があった。
そしてこの循環ポンプ4を用いて前記冷却水タンク3及び燃料電池スタック2の冷却水部内へ冷却水を充填させるため、冷却タンクからの貯水の自然落下による循環ポンプ4の冷却水の充填をまって循環ポンプの運転をおこなう。この双方の理由により循環冷却水の充填完了に多くの時間を要していた。
That is, the circulation pump 4 circulates the cooling water so that the operating temperature of the fuel cell during power generation is maintained at a temperature suitable for the reaction. This circulation amount needs to be controlled to a very small amount, so that the circulation pump 4 cannot use a high pump. In addition, in order to withstand continuous use, it is necessary to use a durable centrifugal pump that does not have a self-sufficiency but is durable.
And since the cooling water is filled into the cooling water tank 3 and the cooling water portion of the fuel cell stack 2 using the circulation pump 4, the cooling water of the circulation pump 4 is filled by the natural fall of the stored water from the cooling tank. Operate the circulation pump. For both reasons, it took a lot of time to complete the filling of the circulating cooling water.

また、前記循環ポンプが低揚程のため前記循環ポンプ4を用いて前記冷却水タンク3及び燃料電池スタック2の冷却水部内への冷却水の充填が十分に行われず、いわゆるエア噛みが発生し、燃料電池スタック2の十分な冷却効果をえることができないという課題とポンプにキャビテーションが発生し、ポンプの耐久性能を低下させるという課題も複合的に有していた。   Further, since the circulating pump has a low head, the cooling water tank 3 and the cooling water portion of the fuel cell stack 2 are not sufficiently filled using the circulating pump 4, and so-called air biting occurs. The problem that the sufficient cooling effect of the fuel cell stack 2 cannot be obtained and the problem that cavitation occurs in the pump and the durability of the pump is lowered have been combined.

本発明は、上記課題に鑑み、燃料電池システム等に利用される冷却回路への初期水張り時間を短縮し、ひいては発電開始時間の短縮を実現するとともに、冷却回路内のエア噛みを防止して、使い勝手のよい、耐久性にすぐれた燃料電池システムを提供することを目的とする。   In view of the above problems, the present invention shortens the initial water filling time to a cooling circuit used in a fuel cell system and the like, thereby realizing a reduction in power generation start time and preventing air biting in the cooling circuit, The object is to provide a fuel cell system that is easy to use and has excellent durability.

従来の課題を解決するために、本発明の燃料電池システムは、燃料電池冷却用回路への初期水張り時に自給能力をもたない燃料電池冷却用循環ポンプと燃料処理機回路へ注水する自給能力のある供給ポンプを運転するものである。自給性能を有する前記供給ポンプにより燃料電池冷却用回路内の燃料電池冷却用循環ポンプに冷却水を充填する。すなわち、冷却タンクからの貯水の自然落下による循環ポンプ4の冷却水の充填を補助することができる。これにより前記冷却水ポンプの循環運転を早期に実施することができ初期水張り時間を短縮することができる。   In order to solve the conventional problems, the fuel cell system according to the present invention has a self-sufficiency capability of injecting water into a fuel cell cooling circulation pump and a fuel processor circuit that do not have a self-sufficiency capability during initial filling of the fuel cell cooling circuit. A certain supply pump is operated. The circulating pump for cooling the fuel cell in the fuel cell cooling circuit is filled with cooling water by the supply pump having self-sufficiency. That is, it is possible to assist the filling of the cooling water of the circulation pump 4 by the natural fall of the stored water from the cooling tank. Thereby, the circulating operation of the cooling water pump can be performed at an early stage, and the initial water filling time can be shortened.

また、本発明の燃料電池システムは初期水張り時に前記燃料電池冷却用冷却ポンプと供給ポンプを同時に運転するものである。この方式によれば、供給ポンプの運転による循環ポンプの冷却水の充填を待たずに、循環ポンプの運転を開始する。これにより、より循環ポンプの冷却水の充填を待って循環ポンプの運転を行う方式より、循環ポンプの冷却水の充填完了後すぐ、循環ポンプによる初期水張りが開始されるためタイムラグのない初期水張りを行うことができる。   In the fuel cell system of the present invention, the cooling pump for cooling the fuel cell and the supply pump are simultaneously operated at the time of initial water filling. According to this method, the operation of the circulation pump is started without waiting for the cooling water of the circulation pump to be filled by the operation of the supply pump. As a result, the initial water filling by the circulation pump is started immediately after the completion of the filling of the cooling water of the circulation pump rather than the method of operating the circulation pump waiting for the cooling water of the circulation pump to be filled. It can be carried out.

また、本発明の燃料電池システムは初期水張り時に前記燃料電池冷却用冷却ポンプと供給ポンプを交互に運転するものである。この方式によれば、供給ポンプによる、初期水張りと循環ポンプによる初期水張りを交互に行うことになる。このように初期水張りを複数回行うことにより1回の初期水張りで十分にできなかった冷却水回路内の空気抜きを十分に行うことができ、エア噛みのない水張りを行うことができる。そしてエア噛みを無くすことにより、燃料電池スタック2の十分な冷却効果をえることができるとともに、キャビテーションが発生せず、ポンプの耐久性能を向上することができる。   In the fuel cell system of the present invention, the cooling pump for cooling the fuel cell and the supply pump are alternately operated during initial water filling. According to this method, the initial water filling by the supply pump and the initial water filling by the circulation pump are alternately performed. By performing the initial water filling a plurality of times as described above, it is possible to sufficiently vent the air in the cooling water circuit, which could not be sufficiently performed by one initial water filling, and it is possible to perform the water filling without air biting. By eliminating the air bite, a sufficient cooling effect of the fuel cell stack 2 can be obtained, cavitation does not occur, and the durability of the pump can be improved.

本発明の燃料電池システムは、燃料電池システム等に利用される冷却回路への初期水張り時間を短縮し、発電開始時間の短縮を実現するとともに、冷却回路内のエア噛みを防止して、燃料電池の十分な冷却効果を得ることができるとともに、キャビテーションが発生せず、ポンプの耐久性能を向上することができる燃料電池システムを提供することができる。   The fuel cell system of the present invention shortens the initial water filling time to the cooling circuit used in the fuel cell system and the like, realizes shortening of the power generation start time, prevents air from being caught in the cooling circuit, and Thus, it is possible to provide a fuel cell system that can obtain a sufficient cooling effect and can improve the durability of the pump without causing cavitation.

本発明の実施の形態1における燃料電池システムを示す構成図1 is a configuration diagram showing a fuel cell system according to Embodiment 1 of the present invention. 本発明の実施の形態1における燃料電池システムのシーケンスを示すフローチャートThe flowchart which shows the sequence of the fuel cell system in Embodiment 1 of this invention. 本発明の実施の形態2における燃料電池システムのシーケンスを示すフローチャートThe flowchart which shows the sequence of the fuel cell system in Embodiment 2 of this invention. 本発明の実施の形態3における燃料電池システムのシーケンスを示すフローチャートThe flowchart which shows the sequence of the fuel cell system in Embodiment 3 of this invention. 従来の燃料電池システムを示す構成図Configuration diagram showing a conventional fuel cell system

第1の発明は、燃料電池と、前記燃料電池を冷却するための冷却水を循環する冷却水循環回路と、前記冷却水循環回路に設けられたヒーターを具備し冷却水を貯える冷却水タンクと、前記冷却水循環回路内の冷却水を循環させる自給能力のない低揚程の循環ポンプと、前記冷却水循環回路の廃熱を吸収して貯湯槽内に蓄熱する熱交換器と、前記冷却水タンクから分岐して燃料処理機に自給能力をもつ供給ポンプを介して反応用の水を供給する給水回路を備えた燃料電池システムであって、その燃料電池システムの初期水張り時に前記循環ポンプと前記供給ポンプを運転して、前記冷却水循環回路内へ冷却水の充填を行うことを特徴とする燃料電池システムであって、冷却水タンクからの貯水の水頭差による循環ポンプの冷却水の充填を補助することができる。この構成により、従来燃料電池冷却用冷却ポンプのみで行っていた、初期水張り時間を短縮することができる。   The first invention includes a fuel cell, a cooling water circulation circuit that circulates cooling water for cooling the fuel cell, a cooling water tank that includes a heater provided in the cooling water circulation circuit and stores cooling water, and A low-circulation circulation pump with no self-sufficiency that circulates cooling water in the cooling water circulation circuit, a heat exchanger that absorbs waste heat from the cooling water circulation circuit and stores it in the hot water storage tank, and a branch from the cooling water tank. A fuel cell system having a water supply circuit for supplying water for reaction via a supply pump having a self-supply capability to the fuel processor, and operating the circulation pump and the supply pump when the fuel cell system is initially filled with water Then, the fuel cell system is characterized in that the cooling water is filled into the cooling water circulation circuit, and assists the filling of the cooling water of the circulation pump by the head difference of the stored water from the cooling water tank. It is possible. With this configuration, it is possible to shorten the initial water filling time, which is conventionally performed only with the cooling pump for cooling the fuel cell.

第2の発明は、第1の発明の燃料電池システムの冷却水循環回路内へ冷却水の充填を行う時に、前記循環ポンプと前記供給ポンプを同時に運転することを特徴とする燃料電池システムであって、供給ポンプの運転による循環ポンプの冷却水の充填を待たずに、循環ポンプの運転を開始する。これにより、より循環ポンプの冷却水の充填を待って循環ポンプの運転を行う方式より、循環ポンプの冷却水の充填完了後すぐ、循環ポンプによる初期水張りが開始されるためタイムラグのない初期水張りを行うことができる。   According to a second aspect of the present invention, there is provided a fuel cell system wherein the circulating pump and the supply pump are simultaneously operated when charging the cooling water into the cooling water circulation circuit of the fuel cell system according to the first aspect of the invention. The operation of the circulation pump is started without waiting for the cooling water of the circulation pump to be filled by the operation of the supply pump. As a result, the initial water filling by the circulation pump is started immediately after the completion of the filling of the cooling water of the circulation pump rather than the method of operating the circulation pump waiting for the cooling water of the circulation pump to be filled. It can be carried out.

第3の発明は、第1の発明の燃料電池システムの冷却水循環回路内へ冷却水の充填を行う時に、前記循環ポンプと前記供給ポンプを交互に運転することを特徴とする燃料電池システムである。この方式によれば、供給ポンプによる、初期水張りと循環ポンプによる初期水張りを交互に行うことになる。このように複数回行うことにより1回の初期水張りで十分にできなかった冷却水回路内の空気抜きを十分に行うことができ、エア噛みのない水張りを行うことができる。そしてエア噛みを無くすことにより、ポンプにキャビテーションが発生せず、ポンプの耐久性能を向上することができる。また、エア噛みを無くすことにより、冷却回路内を冷却水で満たすことにより燃料電池、熱交換器の十分な冷却効果を得ることができる。   A third invention is a fuel cell system wherein the circulation pump and the supply pump are alternately operated when filling the cooling water into the cooling water circulation circuit of the fuel cell system of the first invention. . According to this method, the initial water filling by the supply pump and the initial water filling by the circulation pump are alternately performed. By performing a plurality of times as described above, air can be sufficiently removed from the cooling water circuit, which cannot be sufficiently obtained by one initial water filling, and water filling without air biting can be performed. By eliminating the air bite, cavitation does not occur in the pump, and the durability of the pump can be improved. Further, by eliminating the air bite, it is possible to obtain a sufficient cooling effect of the fuel cell and the heat exchanger by filling the cooling circuit with cooling water.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における燃料電池システムの構成を示すものであり、図2は初期水張りのシーケンスを示すフローチャートである。
(Embodiment 1)
FIG. 1 shows the configuration of the fuel cell system according to the first embodiment of the present invention, and FIG. 2 is a flowchart showing an initial water filling sequence.

以下、本発明の実施の形態の燃料電池システムの具体的な構成例および動作例について、燃料電池システムの構成例とシーケンスを示すフローチャートをもとに図面を参照しながら説明する。   Hereinafter, specific configuration examples and operation examples of the fuel cell system according to the embodiment of the present invention will be described with reference to the drawings based on flowcharts showing the configuration example and sequence of the fuel cell system.

図1は、本発明の実施の形態の燃料電池システムの一構成例を示したブロック図である。   FIG. 1 is a block diagram showing a configuration example of a fuel cell system according to an embodiment of the present invention.

図1に示すように、燃料電池システム100は、燃料ガス(水素ガス)を用いて発電および発熱する燃料電池1と燃焼ガス中のメタンと、改質反応を起こさせ、水素を発生させる燃料処理機10を備える。   As shown in FIG. 1, a fuel cell system 100 is a fuel cell that generates hydrogen by generating a reforming reaction between a fuel cell 1 that generates and generates heat using fuel gas (hydrogen gas) and methane in the combustion gas. A machine 10 is provided.

燃料電池1では、燃料電池1のアノード(図示せず)に供給された燃料ガスと、燃料電池1のカソード(図示せず)に供給された酸化ガス(例えば、空気)と、が電気化学的に反応(発熱反応)して、電力および熱が発生する。燃料電池1によって生成された電力は、例えば、様々な電気機器において利用できる。また、燃料電池1によって生成された熱は、様々な用途に利用でき、例えば、家庭の暖房や給湯などにおいても利用できる。   In the fuel cell 1, the fuel gas supplied to the anode (not shown) of the fuel cell 1 and the oxidizing gas (for example, air) supplied to the cathode (not shown) of the fuel cell 1 are electrochemical. In response to heat (exothermic reaction), power and heat are generated. The electric power generated by the fuel cell 1 can be used in various electric devices, for example. Further, the heat generated by the fuel cell 1 can be used for various purposes, for example, at home heating or hot water supply.

なお、燃料電池1の内部構造は公知である。よって、その詳細な説明は省略する。燃料電池1の発電では、上述の電気化学反応(発熱反応)が進行するので、燃料電池1の発電中の運転温度が、その反応に適した温度(例えば、70℃〜80℃程度)に維持されるよう、燃料電池1の温度を一定に保つ機構が一般的に採用されている。   The internal structure of the fuel cell 1 is known. Therefore, the detailed description is abbreviate | omitted. In the power generation of the fuel cell 1, since the above-described electrochemical reaction (exothermic reaction) proceeds, the operating temperature during power generation of the fuel cell 1 is maintained at a temperature suitable for the reaction (for example, about 70 ° C. to 80 ° C.). In general, a mechanism for keeping the temperature of the fuel cell 1 constant is generally employed.

まず燃料電池冷却回路について説明する。   First, the fuel cell cooling circuit will be described.

燃料電池冷却回路は、図1に示すように、燃料電池1の発電中に前記燃料電池1を冷却するための冷却水を循環する冷却水循環回路2と、前記冷却水循環回路2に設けられたヒーター3を具備し冷却水を貯える冷却水タンク4と、前記冷却水循環回路2内の冷却水を循環させる循環ポンプ6と、前記冷却水循環回路2の廃熱を吸収して貯湯槽20内に蓄熱する熱交換器5と、燃料電池1の冷却水出口に設けられた温度検出器7を備えたものである。図1では、冷却水の流れの方向が実線の矢印によって示されている。前記冷却水循環回路2は冷却水タンク4と熱交換器5をつなぐ冷却水循環回路a21と、熱交換器5と燃料電池1をつなぐ冷却水循環回路b22と、燃料電池1と循環ポンプ6をつなぐ冷却水循環回路c23と、循環ポンプ6と冷却タンク4をつなぐ冷却水循環回路d24で構成されている。   As shown in FIG. 1, the fuel cell cooling circuit includes a cooling water circulation circuit 2 that circulates cooling water for cooling the fuel cell 1 during power generation of the fuel cell 1, and a heater provided in the cooling water circulation circuit 2. 3, a cooling water tank 4 that stores cooling water, a circulation pump 6 that circulates the cooling water in the cooling water circulation circuit 2, and absorbs waste heat of the cooling water circulation circuit 2 to store heat in the hot water storage tank 20. A heat exchanger 5 and a temperature detector 7 provided at the cooling water outlet of the fuel cell 1 are provided. In FIG. 1, the flow direction of the cooling water is indicated by a solid arrow. The cooling water circulation circuit 2 includes a cooling water circulation circuit a21 that connects the cooling water tank 4 and the heat exchanger 5, a cooling water circulation circuit b22 that connects the heat exchanger 5 and the fuel cell 1, and a cooling water circulation that connects the fuel cell 1 and the circulation pump 6. A circuit c23 and a cooling water circulation circuit d24 connecting the circulation pump 6 and the cooling tank 4 are configured.

つぎに、燃料電池1に都市ガス等を用いて燃料ガス(水素ガス)を供給する燃料処理機10に改質反応のための反応用の水を供給する改質水供給回路について説明する。   Next, a reformed water supply circuit for supplying reaction water for the reforming reaction to the fuel processor 10 for supplying fuel gas (hydrogen gas) using city gas or the like to the fuel cell 1 will be described.

改質水供給回路は前記冷却水循環回路2の冷却水循環回路d24から分岐した給水回路12と、燃料処理機に反応用の水を供給する供給ポンプ11と、燃料処理機10への反応用の水の入り切りを行う燃料処理弁a15aと、供給ポンプ11から分岐した凝縮水回路14と、燃料処理弁b15bと、凝縮水タンク16と、冷却水供給ポンプ13と、冷却水供給回路17bを備えている。図1では、冷却水の流れの方向が点線の矢印によって示されている。前記給水回路12は、燃料電池1と循環ポンプ6をつなぐ冷却水循環回路c24から分岐して、供給ポンプ11をつなぐ給水回路aと、供給ポンプ11、燃料処理弁a15aをつなぐ給水回路b32と、燃料処理弁a15aと燃料処理機10をつなぐ給水回路c33と、前記給水回路b32の途中から分岐して燃料処理弁b15bをつなぐ給水回路d34と、燃料処理弁b15bと凝縮水タンク16をつなぐ給水回路e35で構成されている。   The reforming water supply circuit includes a water supply circuit 12 branched from the cooling water circulation circuit d24 of the cooling water circulation circuit 2, a supply pump 11 for supplying reaction water to the fuel processor, and water for reaction to the fuel processor 10. And a condensate water circuit 14 branched from the supply pump 11, a fuel processing valve b15b, a condensate water tank 16, a cooling water supply pump 13, and a cooling water supply circuit 17b. . In FIG. 1, the flow direction of the cooling water is indicated by dotted arrows. The water supply circuit 12 is branched from a cooling water circulation circuit c24 that connects the fuel cell 1 and the circulation pump 6, and a water supply circuit a that connects the supply pump 11, a water supply circuit b32 that connects the supply pump 11 and the fuel processing valve a15a, a fuel A water supply circuit c33 connecting the processing valve a15a and the fuel processor 10, a water supply circuit d34 branching from the water supply circuit b32 and connecting the fuel processing valve b15b, and a water supply circuit e35 connecting the fuel processing valve b15b and the condensed water tank 16. It consists of

また前記冷却水供給回路17bは冷却水供給回路c17c、冷却水供給回路d17d、冷却水供給回路e17e、で構成されている。   The cooling water supply circuit 17b includes a cooling water supply circuit c17c, a cooling water supply circuit d17d, and a cooling water supply circuit e17e.

つぎに燃料電池の発電工程を通水、循環回路の循環水充填運転(以下水張り)燃料処理、燃料電池の発電の順に説明する。   Next, the fuel cell power generation process will be described in the order of water flow, circulating water filling operation of the circulation circuit (hereinafter, water-filled) fuel treatment, and fuel cell power generation.

燃料電池システムの循環回路内へ水を充填するため、水張りを行う。   Water filling is performed to fill the circulation circuit of the fuel cell system with water.

まず凝縮水タンク16への水の補給を行う。貯湯循環ポンプ21を運転し、凝縮水タンク弁22を「開」にして貯湯槽内20の貯水を貯湯循環回路41、貯湯循環ポンプ21、貯湯循環回路b42から分岐した凝縮水回路a51、凝縮水回路b52を介して凝縮水タンク16に補給する。凝縮水タンク16内の水位が上昇すると凝縮水タンクレベルスイッチ17が満水を検知して、貯湯循環ポンプ21を停止するとともに凝縮水タンク弁22を「閉」にする(ステップS1)。   First, water is supplied to the condensed water tank 16. The hot water circulation pump 21 is operated, the condensate tank valve 22 is opened, and the water in the hot water tank 20 is separated from the hot water circulation circuit 41, the hot water circulation pump 21, the hot water circulation circuit b42, the condensed water circuit a51, and the condensed water. The condensed water tank 16 is replenished via the circuit b52. When the water level in the condensed water tank 16 rises, the condensed water tank level switch 17 detects full water, stops the hot water circulation pump 21 and closes the condensed water tank valve 22 (step S1).

次に冷却水タンク4への冷却水の補給を行う。まず冷却水供給ポンプ13の運転を実施する。これにより、凝縮水タンク16内の貯水が冷却水供給回路c17c、冷却水供給回路d17d、イオン交換樹脂18、冷却水供給回路e17e、を通り、冷却水タンク4に導かれる。冷却水タンク4内の水位が上昇すると冷却水タンクレベルスイッチ8が満水を検知して、冷却水供給ポンプ13を停止する。なおこの冷却水タンク4への冷却水の補給のために、凝縮水タンク16内の貯水が減少した場合は、凝縮水タンクレベルスイッチ17が減水を検知して、再度前述の凝縮水タンク16への水の補給水を行う(ステップS2)。   Next, cooling water is supplied to the cooling water tank 4. First, the cooling water supply pump 13 is operated. Accordingly, the water stored in the condensed water tank 16 is guided to the cooling water tank 4 through the cooling water supply circuit c17c, the cooling water supply circuit d17d, the ion exchange resin 18, and the cooling water supply circuit e17e. When the water level in the cooling water tank 4 rises, the cooling water tank level switch 8 detects full water and stops the cooling water supply pump 13. When the water stored in the condensed water tank 16 is reduced for replenishing the cooling water to the cooling water tank 4, the condensed water tank level switch 17 detects the reduced water and returns to the condensed water tank 16 again. Water is replenished (step S2).

冷却タンク4内に冷却水が補給されるとその冷却水が冷却水循環回路a21、熱交換器5、燃料電池1を通って水頭差により循環ポンプに充填される。   When the cooling water is replenished into the cooling tank 4, the cooling water passes through the cooling water circulation circuit a <b> 21, the heat exchanger 5, and the fuel cell 1, and is charged into the circulation pump due to a water head difference.

このとき燃料処理弁b15bを「開」にして自給能力のある供給ポンプ11を運転して前記水頭差による循環ポンプ6への貯水の充填を補助する(ステップS3、S5)。このとき供給ポンプ11の運転により冷却タンク4から供給された冷却水は凝縮タンク16へ排出され、凝縮水タンク16の貯水が一定量を超えるとオーバーフロー16bから機外に排出される。そして、タイマ等により循環ポンプへの貯水の充填完了を待って、循環ポンプ6の運転を行う(ステップS4、S6、S7、S8、S9)。循環ポンプ6は冷却水で満たされているため冷却水循環回路2内の冷却水の循環を問題なく実施できる。そして、タイマの完了により循環ポンプの運転を停止する(ステップS10、S11、S12)。   At this time, the fuel processing valve b15b is opened and the supply pump 11 having a self-supply capability is operated to assist the filling of the circulation pump 6 with the water head difference (steps S3 and S5). At this time, the cooling water supplied from the cooling tank 4 by the operation of the supply pump 11 is discharged to the condensing tank 16, and when the water stored in the condensing water tank 16 exceeds a certain amount, it is discharged from the overflow 16b to the outside of the apparatus. Then, the circulation pump 6 is operated after completion of filling of the water in the circulation pump by a timer or the like (steps S4, S6, S7, S8, S9). Since the circulation pump 6 is filled with cooling water, the cooling water in the cooling water circulation circuit 2 can be circulated without any problem. Then, when the timer is completed, the operation of the circulation pump is stopped (steps S10, S11, S12).

この循環ポンプ6の運転により、冷却水タンク4内の冷却水は熱交換器5、燃料電池1を循環し再度冷却水タンク4へ循環する。この冷却水循環回路2内へ冷却水を充填する工程の際に冷却水タンク4の減水を冷却水タンクレベルスイッチ8が検知した場合は、再度冷却水タンク4への補給水を実施する。   By the operation of the circulation pump 6, the cooling water in the cooling water tank 4 circulates through the heat exchanger 5 and the fuel cell 1 and is circulated again to the cooling water tank 4. When the cooling water tank level switch 8 detects a decrease in the cooling water tank 4 during the process of filling the cooling water circulation circuit 2 with the cooling water, the replenishing water to the cooling water tank 4 is performed again.

また、前記冷却水循環回路2内に冷却水を充填する工程終了後、燃料処理機10へ冷却水タンク4から燃焼ガス中のメタンと、改質反応を起こさせ、水素を発生させるために反応用の水を供給する。すなわち燃料処理弁a15aを「開」にし、供給ポンプ11を運転し、燃料処理機10へ導かれる。   In addition, after completion of the process of filling the cooling water circulation circuit 2 with the cooling water, the fuel processor 10 causes the reforming reaction with methane in the combustion gas from the cooling water tank 4 to generate the hydrogen for the reaction. Supply water. That is, the fuel processing valve a15a is opened, the supply pump 11 is operated, and the fuel processing valve 10 is guided.

前記の冷却水循環回路2内の冷却水の充填が完了すると燃料処理機10から燃料ガス(水素ガス)が燃料電池1に供給され酸化ガス(例えば、空気)と、反応して発電が開始される。そして、この発電により電力および熱が発生する。この電力は電気機器により消費され、発生した熱は熱交換器5により、貯湯槽20から貯湯循環ポンプ21により貯湯循環回路22を循環する貯湯水により熱交換され貯湯槽20に蓄熱される。   When filling of the cooling water in the cooling water circulation circuit 2 is completed, fuel gas (hydrogen gas) is supplied from the fuel processor 10 to the fuel cell 1 and reacts with the oxidizing gas (for example, air) to start power generation. . Then, electric power and heat are generated by this power generation. This electric power is consumed by the electric equipment, and the generated heat is heat-exchanged by the heat exchanger 5 from the hot water storage tank 20 by the hot water circulation circuit 21 by the hot water storage circuit 22 and is stored in the hot water storage tank 20.

前記貯湯循環回路22は貯湯槽20と貯湯循環ポンプ21をつなぐ貯湯循環回路a41と、貯湯循環ポンプ21と熱交換器5をつなぐ貯湯循環回路b42と、熱交換器5と貯湯槽20をつなぐ貯湯循環回路c43から構成されている。   The hot water storage circuit 22 includes a hot water storage circuit a 41 that connects the hot water tank 20 and the hot water storage pump 21, a hot water storage circuit b 42 that connects the hot water storage pump 21 and the heat exchanger 5, and hot water that connects the heat exchanger 5 and the hot water tank 20. It comprises a circulation circuit c43.

また、前記燃料電池システムにおいて発電時に余剰電量が生じた場合は、その余剰電力
をヒーターにより熱に変換し、貯湯槽20に蓄熱する。具体的には冷却水タンク4に設けられた余剰ヒーター3により余剰電力を温水に変換する。この冷却水タンク内の温水は循環ポンプ6により熱交換器5へ送られ、貯湯槽20から貯湯循環ポンプ21により貯湯循環回路22を循環する貯湯水により熱交換され貯湯槽20に蓄熱される。循環ポンプ6は余剰ヒーター3で加熱された冷却水タンク4内の貯水が高温になるため冷却水タンク6の直下へは設置することができず熱交換器5、燃料電池1より下流の冷却水タンク6から十分離れた位置に設置される。
Further, when surplus electricity is generated during power generation in the fuel cell system, the surplus power is converted into heat by a heater and stored in the hot water tank 20. Specifically, surplus power is converted into hot water by the surplus heater 3 provided in the cooling water tank 4. Hot water in the cooling water tank is sent to the heat exchanger 5 by the circulation pump 6, and heat is exchanged from the hot water storage tank 20 by the hot water circulating through the hot water storage circuit 22 by the hot water storage circulation pump 21 to be stored in the hot water storage tank 20. The circulation pump 6 cannot be installed directly below the cooling water tank 6 because the water stored in the cooling water tank 4 heated by the surplus heater 3 becomes high temperature, and the cooling water downstream from the heat exchanger 5 and the fuel cell 1. Installed at a position sufficiently away from the tank 6.

以上のように、構成された燃料電池システムにおける冷却水循環回路によれば、前記冷却水循環回路2内に冷却水を充填する際、循環ポンプ6、供給ポンプ11の2つを利用することにより、発明が解決しようとする課題で説明した低揚程の循環ポンプ6の弱点を供給ポンプ11で補うことにより従来の記冷却水循環回路2内に冷却水を充填する工程に要していた時間を、削減することができ、ひいては燃料電池の発電開始時間を短縮することができる。   As described above, according to the cooling water circulation circuit in the configured fuel cell system, when the cooling water circulation circuit 2 is filled with the cooling water, the two of the circulation pump 6 and the supply pump 11 are used to invent the invention. However, the supply pump 11 compensates for the weak point of the low-pump circulation pump 6 described in the problem to be solved, thereby reducing the time required for the conventional process of filling the cooling water circulation circuit 2 with the cooling water. As a result, the power generation start time of the fuel cell can be shortened.

(実施の形態2)
つぎに、本発明の第2の実施例について図1、および初期水張りのシーケンスを示すフローチャート図3を用いて説明を行う。
(Embodiment 2)
Next, a second embodiment of the present invention will be described with reference to FIG. 1 and a flowchart FIG. 3 showing a sequence of initial water filling.

燃料電池の発電工程、通水、循環回路の循環水充填運転、燃料処理、燃料電池の発電の順についての説明については(実施の形態1)と同様であるため省略する。本実施の形態は、循環ポンプ6と供給ポンプ11の運転時期に特徴を有する。   The description of the order of the power generation process of the fuel cell, water flow, circulating water filling operation of the circulation circuit, fuel processing, and power generation of the fuel cell is the same as (Embodiment 1), and is therefore omitted. This embodiment is characterized by the operation timing of the circulation pump 6 and the supply pump 11.

実施の形態1で説明した燃料電池システムの冷却水循環回路内へ冷却水の充填を行う時に、低揚程で自給能力のない循環ポンプ6と自給能力のある供給ポンプ11を同時に運転する。すなわち供給ポンプ11の運転による循環ポンプの冷却水の充填を待たずに、循環ポンプの運転を同時に開始する。これにより、循環ポンプの冷却水の充填を待って循環ポンプの運転を行う方式より、(実施の形態1)で説明した水頭差による循環ポンプの冷却水の充填完了後すぐ、循環ポンプによる初期水張りが開始されるためタイムラグのない初期水張りを行うことができる。   When charging the cooling water into the cooling water circulation circuit of the fuel cell system described in the first embodiment, the circulation pump 6 having a low head and having no self-supply capability and the supply pump 11 having a self-supply capability are simultaneously operated. That is, the operation of the circulation pump is started simultaneously without waiting for the cooling water of the circulation pump to be filled by the operation of the supply pump 11. As a result, the initial pumping by the circulation pump is performed immediately after completion of the filling of the cooling water of the circulation pump due to the water head difference described in the first embodiment, rather than the method of operating the circulation pump after waiting for the cooling water of the circulation pump to be filled. Therefore, initial water filling without time lag can be performed.

まず凝縮水タンク16、冷却水タンク4への初期水張りを行う(ステップS21、S22)。次に燃料処理弁b15bを「開」にしする(ステップS23)。   First, initial water filling is performed on the condensed water tank 16 and the cooling water tank 4 (steps S21 and S22). Next, the fuel processing valve b15b is opened (step S23).

次に供給ポンプ11と循環ポンプ6を同時に運転する(ステップS25)。   Next, the supply pump 11 and the circulation pump 6 are operated simultaneously (step S25).

そして、タイマの完了により燃料処理弁b15bを「閉」にし、循環ポンプの運転を停止する(ステップS27、S28)。   Then, upon completion of the timer, the fuel processing valve b15b is closed and the operation of the circulation pump is stopped (steps S27 and S28).

熱交換器5、燃料電池1はその性能を得るためにおきな通水抵抗を持っている。特に実施の形態1で説明したように、発電時に余剰電量が生じた場合は、その余剰電力をヒーターにより熱に変換し、貯湯槽20に蓄熱する。具体的には冷却水タンク4に設けられた余剰ヒーター3により余剰電力を高温水に変換する。このため循環ポンプ6が余剰ヒーター3で高温になる冷却水タンク4の貯水の影響を受けないように冷却水タンク4、熱交換器5、燃料電池1の下流の位置に設置された場合はさらにその影響を顕著に受けることになる。この課題に対しても供給ポンプ11に自給能力の高いポンプを同時に使用することにより、冷却水タンク4内の貯水を高揚程で吸い込むことで、前記冷却水循環回路2内に冷却水を充填する工程の際、熱交換器5、燃料電池1内の冷却水回路のエア噛みを防止することができ、これにより初期設定性能を満たす十分な熱交換性能を確保することができる。   The heat exchanger 5 and the fuel cell 1 have a great water resistance in order to obtain their performance. In particular, as described in the first embodiment, when surplus electricity is generated during power generation, the surplus power is converted into heat by a heater and stored in the hot water tank 20. Specifically, surplus power is converted into high-temperature water by the surplus heater 3 provided in the cooling water tank 4. For this reason, when the circulation pump 6 is installed at a position downstream of the cooling water tank 4, the heat exchanger 5, and the fuel cell 1 so as not to be affected by the stored water of the cooling water tank 4 that is heated by the surplus heater 3. The effect will be noticeable. Also in response to this problem, a process of filling the cooling water circulation circuit 2 with cooling water by simultaneously using a pump having a high self-sufficiency as the supply pump 11 and sucking water stored in the cooling water tank 4 at a high head. At this time, the air exchange of the heat exchanger 5 and the cooling water circuit in the fuel cell 1 can be prevented, so that sufficient heat exchange performance satisfying the initial setting performance can be ensured.

(実施の形態3)
つぎに、本発明の第3の実施例について図1、および初期水張りのシーケンスを示すフローチャート図4を用いて説明を行う。
(Embodiment 3)
Next, a third embodiment of the present invention will be described with reference to FIG. 1 and a flowchart of FIG. 4 showing an initial water filling sequence.

燃料電池の発電工程、通水、循環回路の循環水充填運転、燃料処理、燃料電池の発電の順についての説明については(実施の形態1)と同様であるため省略する。本実施の形態は、循環ポンプ6と供給ポンプ11の運転時期に特徴を有する。   The description of the order of the power generation process of the fuel cell, water flow, circulating water filling operation of the circulation circuit, fuel processing, and power generation of the fuel cell is the same as (Embodiment 1), and is therefore omitted. This embodiment is characterized by the operation timing of the circulation pump 6 and the supply pump 11.

実施の形態1で説明した燃料電池システムの冷却水循環回路内へ冷却水の充填を行う時に、低揚程で自給能力のない循環ポンプ6と自給能力のある供給ポンプ11を交互に運転することを特徴とする燃料電池システムである。   When charging the cooling water into the cooling water circulation circuit of the fuel cell system described in the first embodiment, the circulation pump 6 having a low head and having no self-supply capability and the supply pump 11 having a self-supply capability are alternately operated. This is a fuel cell system.

凝縮水タンク16、冷却タンク4内に冷却水が補給されるとその冷却水が冷却水循環回路a21、熱交換器5、燃料電池1を通って水頭差により循環ポンプに充填される(ステップS41、S42)。   When the condensed water tank 16 and the cooling tank 4 are replenished with cooling water, the cooling water passes through the cooling water circulation circuit a21, the heat exchanger 5 and the fuel cell 1 and is charged into the circulation pump by the head difference (step S41, S42).

このとき燃料処理弁b15bを「開」にして自給能力のある供給ポンプ11を運転して前記水頭差による循環ポンプ6への貯水の充填を補助する。このとき供給ポンプ11の運転により冷却タンク4から供給された冷却水は凝縮タンク16へ排出される(ステップS43、S45、)。そして、タイマ等により循環ポンプ6への貯水の充填完了を待って燃料処理弁b15bを「閉」にして、供給ポンプ11の運転を停止し(ステップS44、S46、S47、S48)、循環ポンプ6の運転を行う(ステップS49)。そして、前記循環ポンプ6の運転の所定時間経過後、循環ポンプ6を停止させる(ステップS50、S51、S52)。   At this time, the fuel processing valve b15b is set to “open” to operate the supply pump 11 having a self-sufficiency and assist the filling of the circulating pump 6 with the stored water by the water head difference. At this time, the cooling water supplied from the cooling tank 4 by the operation of the supply pump 11 is discharged to the condensation tank 16 (steps S43, S45). Then, after completion of filling of the water in the circulation pump 6 by a timer or the like, the fuel processing valve b15b is closed and the operation of the supply pump 11 is stopped (steps S44, S46, S47, S48). (Step S49). Then, after a predetermined time elapses, the circulation pump 6 is stopped (Steps S50, S51, S52).

その後前記供給ポンプ11と循環ポンプ6の運転サイクルを再度実装する。すなわち供給ポンプ11を再度運転し、前記タイマ等により循環ポンプ6への貯水の充填完了を待って供給ポンプ11の運転を停止し、循環ポンプ6の運転を行う(ステップS61〜S70)。   Thereafter, the operation cycle of the supply pump 11 and the circulation pump 6 is implemented again. That is, the supply pump 11 is operated again, the operation of the supply pump 11 is stopped by waiting for completion of filling of water in the circulation pump 6 by the timer or the like, and the operation of the circulation pump 6 is performed (steps S61 to S70).

この方式によれば、供給ポンプ11による初期水張りと循環ポンプ6による初期水張りを交互に行うことになる。このように初期水張りを交互に行うことにより1回の初期水張りで十分にできなかった冷却水回路内の空気抜きを十分に行うことができ、エア噛みのない水張りを行うことができる。そしてエア噛みを無くすことにより、ポンプにキャビテーションが発生せず、ポンプの耐久性能を向上することができる。また、エア噛みを無くすことにより、冷却回路内を冷却水で満たすことにより燃料電池の十分な冷却効果を得ることができる。   According to this method, the initial water filling by the supply pump 11 and the initial water filling by the circulation pump 6 are performed alternately. By alternately performing the initial water filling as described above, the air in the cooling water circuit, which cannot be sufficiently obtained by one initial water filling, can be sufficiently removed, and the water filling without air biting can be performed. By eliminating the air bite, cavitation does not occur in the pump, and the durability of the pump can be improved. Further, by eliminating the air bite, it is possible to obtain a sufficient cooling effect of the fuel cell by filling the cooling circuit with cooling water.

なおこの供給ポンプ11と循環ポンプ6の運転サイクルは更に数回繰り返して、より完全なエア噛み対策を行うことができる。   The operation cycle of the supply pump 11 and the circulation pump 6 can be repeated several more times to take a more complete countermeasure against air biting.

熱交換器5、燃料電池1はその性能を得るために大きな通水抵抗を持っている。とくに熱交換器5にプレート式熱交換器を採用した場合はその影響が顕著になる。プレート式熱交換器は凹凸形にプレス成形された伝熱板を重ね、交互にそれぞれの流体が流れるようにした構造の熱交換器ある。このため複数のプレートを組み合わせた場合、循環ポンプ6の能力が低い場合プレートの全てに冷却水が充填されず所定の伝熱性能をえることができない。特に実施の形態1で説明したように、発電時に余剰電量が生じた場合は、その余剰電力をヒーターにより熱に変換し、貯湯槽20に蓄熱する。具体的には冷却水タンク4に設けられた余剰ヒーター3により余剰電力を高温水に変換する。このため循環ポンプ6が余
剰ヒーター3で高温になる冷却水タンク4の冷却水の影響を受けないように冷却水タンク4、熱交換器5、燃料電池1の下流に設置された場合はさらにその影響を受けることになる。
The heat exchanger 5 and the fuel cell 1 have a large water flow resistance in order to obtain their performance. In particular, when a plate-type heat exchanger is adopted as the heat exchanger 5, the effect becomes remarkable. The plate heat exchanger is a heat exchanger having a structure in which heat transfer plates press-molded into a concavo-convex shape are stacked so that each fluid flows alternately. For this reason, when a plurality of plates are combined, if the capacity of the circulation pump 6 is low, all the plates are not filled with cooling water, and a predetermined heat transfer performance cannot be obtained. In particular, as described in the first embodiment, when surplus electricity is generated during power generation, the surplus power is converted into heat by a heater and stored in the hot water tank 20. Specifically, surplus power is converted into high-temperature water by the surplus heater 3 provided in the cooling water tank 4. Therefore, when the circulation pump 6 is installed downstream of the cooling water tank 4, the heat exchanger 5, and the fuel cell 1 so as not to be affected by the cooling water of the cooling water tank 4 that is heated by the excess heater 3, the Will be affected.

この課題に対しても供給ポンプ11に自給能力の高いポンプを使用して、循環ポンプ6を運転する前に供給ポンプ11を運転して、熱交換器5に冷却水タンク4内の冷却水を導きいれる。そして一定時間の供給ポンプ11の運転後循環ポンプ6を一定時間運転する。このサイクルを交互に繰り返すことにより、冷却水タンク4内の貯水が冷却水循環回路2、熱交換器5、燃料電池1と徐々に充填されていき最終的に冷却水循環回路2内を冷却水で充填することができる。そして、冷却水回路2が冷却水で充填されると、エア噛みを防止して、初期設定性能を満たす十分な熱交換性能を確保することができる。   Also for this problem, a pump having a high self-sufficiency is used as the supply pump 11, the supply pump 11 is operated before the circulation pump 6 is operated, and the cooling water in the cooling water tank 4 is supplied to the heat exchanger 5. I will guide you. After the operation of the supply pump 11 for a certain time, the circulation pump 6 is operated for a certain time. By repeating this cycle alternately, the water stored in the cooling water tank 4 is gradually filled with the cooling water circulation circuit 2, the heat exchanger 5, and the fuel cell 1, and finally the cooling water circulation circuit 2 is filled with cooling water. can do. Then, when the cooling water circuit 2 is filled with cooling water, it is possible to prevent air biting and ensure sufficient heat exchange performance that satisfies the initial setting performance.

以上のように、本発明に係る燃料電池システムは、冷却水循環回路、熱交換器、燃料電池に冷却水をエア噛み無く充填でき、これにより初期設定性能を満たす十分な熱交換性能を確保して、安定した発電を実施することができる燃料電池システムを提供することができる。   As described above, the fuel cell system according to the present invention can fill the cooling water circulation circuit, the heat exchanger, and the fuel cell with cooling water without biting air, thereby ensuring sufficient heat exchange performance that satisfies the initial setting performance. A fuel cell system capable of performing stable power generation can be provided.

1 燃料電池
2 冷却水循環回路
3 余剰ヒーター
4 冷却水タンク
5 熱交換器
6 循環ポンプ
7 温度検出器
8 冷却水タンクレベルスイッチ
10 燃料処理機
11 供給ポンプ
12 給水回路
13 冷却水供給ポンプ
14 凝縮水回路
15a 燃料処理弁1
15b 燃料処理弁2
16 凝縮水タンク
16b オーバーフロー
17 凝縮水タンクレベルスイッチ
17b 冷却水供給回路
18 イオン交換樹脂
20 貯湯槽
21 貯湯循環ポンプ
22 貯湯循環回路
DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Cooling water circulation circuit 3 Surplus heater 4 Cooling water tank 5 Heat exchanger 6 Circulation pump 7 Temperature detector 8 Cooling water tank level switch 10 Fuel processor 11 Supply pump 12 Water supply circuit 13 Cooling water supply pump 14 Condensate water circuit 15a Fuel processing valve 1
15b Fuel treatment valve 2
16 Condensate tank 16b Overflow 17 Condensate tank level switch 17b Cooling water supply circuit 18 Ion exchange resin 20 Hot water tank 21 Hot water circulation pump 22 Hot water circulation circuit

Claims (3)

燃料電池と、前記燃料電池を冷却するための冷却水を循環する冷却水循環回路と、前記冷却水循環回路に設けられたヒーターを具備し冷却水を貯える冷却水タンクと、前記冷却水循環回路内の冷却水を循環させる循環ポンプと、前記冷却水循環回路の廃熱を吸収して貯湯槽内に蓄熱する熱交換器と、前記冷却水タンクから分岐して燃料処理機に供給ポンプを介して反応用の水を供給する給水回路を備えた燃料電池システムであって、その燃料電池システムの初期水はり時に前記循環ポンプと前記供給ポンプを運転して、前記冷却水循環回路内へ冷却水の充填を行うことを特徴とする燃料電池システム。 A fuel cell, a cooling water circulation circuit for circulating cooling water for cooling the fuel cell, a cooling water tank provided with a heater provided in the cooling water circulation circuit for storing cooling water, and cooling in the cooling water circulation circuit A circulation pump for circulating water, a heat exchanger that absorbs waste heat from the cooling water circulation circuit and stores the heat in a hot water storage tank, and a reaction branch branched from the cooling water tank to a fuel processor via a supply pump A fuel cell system having a water supply circuit for supplying water, wherein the circulating pump and the supply pump are operated during initial water filling of the fuel cell system to fill the cooling water circulation circuit with cooling water. A fuel cell system. 前記燃料電池システムの冷却水循環回路内へ冷却水の充填を行う時に、前記循環ポンプと前記供給ポンプを同時に運転することを特徴とする請求項1に記載の燃料電池システム。 2. The fuel cell system according to claim 1, wherein when the cooling water is charged into the cooling water circulation circuit of the fuel cell system, the circulation pump and the supply pump are operated simultaneously. 前記燃料電池システムの冷却水循環回路内へ冷却水の充填を行う時に、前記循環ポンプと前記供給ポンプを交互に運転することを特徴とする請求項1に記載の燃料電池システム。 2. The fuel cell system according to claim 1, wherein when the cooling water is charged into the cooling water circulation circuit of the fuel cell system, the circulation pump and the supply pump are alternately operated.
JP2009273080A 2009-12-01 2009-12-01 Fuel cell system Active JP5564916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009273080A JP5564916B2 (en) 2009-12-01 2009-12-01 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009273080A JP5564916B2 (en) 2009-12-01 2009-12-01 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2011119045A true JP2011119045A (en) 2011-06-16
JP5564916B2 JP5564916B2 (en) 2014-08-06

Family

ID=44284168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009273080A Active JP5564916B2 (en) 2009-12-01 2009-12-01 Fuel cell system

Country Status (1)

Country Link
JP (1) JP5564916B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086156A (en) * 2012-10-19 2014-05-12 Tokyo Gas Co Ltd Fuel cell cogeneration system and control program and method thereof
CN106328971A (en) * 2016-08-31 2017-01-11 中车青岛四方机车车辆股份有限公司 Cooling system of hydrogen energy tramcar fuel cell
JP2017105700A (en) * 2015-12-07 2017-06-15 パナソニックIpマネジメント株式会社 Hydrogen gas generation system and fuel cell system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225729A (en) * 1990-12-26 1992-08-14 Sanyo Electric Co Ltd Hot water supply device
JP2005259425A (en) * 2004-03-10 2005-09-22 Hitachi Ltd Fuel cell power generation hot-water supply system
JP2008243540A (en) * 2007-03-27 2008-10-09 Fuji Electric Holdings Co Ltd Polymer electrolyte fuel cell power-generating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225729A (en) * 1990-12-26 1992-08-14 Sanyo Electric Co Ltd Hot water supply device
JP2005259425A (en) * 2004-03-10 2005-09-22 Hitachi Ltd Fuel cell power generation hot-water supply system
JP2008243540A (en) * 2007-03-27 2008-10-09 Fuji Electric Holdings Co Ltd Polymer electrolyte fuel cell power-generating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086156A (en) * 2012-10-19 2014-05-12 Tokyo Gas Co Ltd Fuel cell cogeneration system and control program and method thereof
JP2017105700A (en) * 2015-12-07 2017-06-15 パナソニックIpマネジメント株式会社 Hydrogen gas generation system and fuel cell system
CN106328971A (en) * 2016-08-31 2017-01-11 中车青岛四方机车车辆股份有限公司 Cooling system of hydrogen energy tramcar fuel cell

Also Published As

Publication number Publication date
JP5564916B2 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
JP4644704B2 (en) Fuel cell system
KR101022010B1 (en) Fuel Cell System
KR102044766B1 (en) High Efficiency Fuel Cell System Improved Thermal Efficiency and Performance of the Maintenance
JP5564916B2 (en) Fuel cell system
JP6134912B2 (en) Fuel cell system
KR101163704B1 (en) Fuel cell system using hydrogen from electrolyzer of sea water
JP5750570B2 (en) Fuel cell system
JP2008135356A (en) Fuel cell device
JP4106356B2 (en) Fuel cell system
JP2012221723A (en) Fuel cell system
EP4181247A2 (en) Fuel cell system with waste heat recovery and storage
JP2003217623A (en) Solid polymer electrolyte fuel cell generator
KR101215336B1 (en) Fuel cell system using hydrogen from electrolyzer of sea water
JP2004039430A (en) Fuel cell generator and its operation method
JP5371842B2 (en) Fuel cell system
JP5502521B2 (en) Fuel cell system
JP2007280638A (en) Solid polymer fuel cell generator
JP2006179346A (en) Fuel cell power generation system and its operation method
JP2004247084A (en) Fuel cell power generation system
JP5501750B2 (en) Fuel cell system
JP7109218B2 (en) fuel cell system
JP2007115715A5 (en)
JP2011086543A (en) Fuel cell system and its design method
KR101200689B1 (en) Heat recovery apparatus of fuel cell
JP2002319417A (en) Solid polymer fuel cell generating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121127

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140602

R151 Written notification of patent or utility model registration

Ref document number: 5564916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151