JP2011118510A - Method for evaluation of building strength - Google Patents

Method for evaluation of building strength Download PDF

Info

Publication number
JP2011118510A
JP2011118510A JP2009273356A JP2009273356A JP2011118510A JP 2011118510 A JP2011118510 A JP 2011118510A JP 2009273356 A JP2009273356 A JP 2009273356A JP 2009273356 A JP2009273356 A JP 2009273356A JP 2011118510 A JP2011118510 A JP 2011118510A
Authority
JP
Japan
Prior art keywords
building
damage
seismic
index
probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009273356A
Other languages
Japanese (ja)
Inventor
Masahito Koyama
雅人 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Homes Corp
Original Assignee
Asahi Kasei Homes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Homes Corp filed Critical Asahi Kasei Homes Corp
Priority to JP2009273356A priority Critical patent/JP2011118510A/en
Publication of JP2011118510A publication Critical patent/JP2011118510A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To establish a probabilistic design, that is, to establish a reliability design and an earthquake risk management method. <P>SOLUTION: The earthquake-proof design method of buildings whose member specifications and structural characteristics are common includes: a process of grasping the damaged state of every site of a building belonging to a building group in earthquake; a process of selecting a structural index having the highest correlation with the damage of the building site based on the damaged state of the building site, and setting it to the optimal structure index x' of the site; a process of expressing the damage probability Pf of the site with probability distribution functions using the optimal structure index x' of the site as variables; and a process of performing reliability design based on the optimal structure index x' and damage probability Pf of the site and separately calculated prescribed earthquake motion strength. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、建物の耐震信頼性設計方法および地震リスクアセスメント方法に関するものである。   The present invention relates to a seismic reliability design method for buildings and an earthquake risk assessment method.

建物の設計基準を規定する建築基準法等においては、主として、地震時の荷重を代表する所定の外力に対して発生する建物部材の応力が所定の値以下であることを基準に耐震設計を行うことが要求されているが、当該耐震計算においては荷重および耐力のばらつきについては明示的には表現されていないために、建物の損傷に対する余裕度が定量化できない。   In the Building Standards Act, etc., which prescribes the design standards for buildings, seismic design is performed based on the fact that the stress of building members generated against a predetermined external force that represents the load during an earthquake is below a predetermined value. However, in the seismic calculation, the variation in load and proof stress is not explicitly expressed, so the margin for damage to the building cannot be quantified.

また、建築基準法等では大地震における建物の「安全性(非倒壊・非崩壊)」と中地震における「構造体の無損傷」の2段階の照査を規定しているが、起こり得る地震動強さは無段階であり、建物の損傷状態も倒壊から無損傷まで中間的な状態をとりうるが、この各状態の建物の耐力は示されていない。   In addition, the Building Standards Law, etc. stipulates two-stage verification of “safety (non-collapsed / non-collapsed)” of buildings in large earthquakes and “no damage to structures” in medium earthquakes. However, the damage state of the building can be in an intermediate state from collapse to no damage, but the building strength of each state is not shown.

したがって、現実の建物が地震を受ける場合、地震動強さに応じて無損傷から倒壊までの様々な状態(例えば、軽微な補修で対応可能な状態、大掛かりな補修が必要な状態、主要部材の交換が必要な状態等)となりうるが、各状態に至る場合の建物の耐力は必ずしも明確ではない。   Therefore, when an actual building is subjected to an earthquake, various conditions ranging from no damage to collapse (for example, a state that can be handled with minor repairs, a state that requires major repairs, and replacement of major members) depending on the strength of the earthquake motion However, the strength of the building in each state is not always clear.

これらの問題を解決する方法として確率論的設計(信頼性設計)という手法がある。
この手法は、例えば、建物の耐力や応答(荷重)を確率変数として、建物が損傷を受ける確率を地震動強さをパラメータとして示すものである。
建物の損傷状態(損傷モード)毎の損傷の発生確率を示すフラジリティ曲線(=確率分布関数)を作成することによって、ある強さの地震動に対する損傷の程度を確率的に把握することができる。この場合、一般に地震動強さのパラメータとして用いられるのは、例えば地表面最大加速度である。
As a method for solving these problems, there is a method called probabilistic design (reliability design).
This technique shows, for example, a building's yield strength and response (load) as a random variable, and a probability that the building will be damaged using a seismic intensity as a parameter.
By creating a fragility curve (= probability distribution function) indicating the probability of occurrence of damage for each damage state (damage mode) of a building, it is possible to grasp the degree of damage against a certain level of ground motion. In this case, for example, the ground surface maximum acceleration is generally used as a parameter of the seismic intensity.

確率の精度を向上させるためには大量の実験データを必要とし、加速度をパラメータとした場合、様々な加速度の地震を建物(設計をする建物と同一カテゴリーの実験用建物)に実際に作用させて損傷状態を観察・計測する必要があり、膨大な時間と手間を要する、という問題があった。   In order to improve the accuracy of the probability, a large amount of experimental data is required. When acceleration is used as a parameter, earthquakes with various accelerations are actually applied to buildings (experimental buildings in the same category as the building to be designed). There is a problem that it is necessary to observe and measure the damaged state, which requires a great deal of time and effort.

この問題について扱った文献として、特開2005−310146号公報がある。当該出願公開公報は、建物耐力(フラジリティー曲線)の構造指標にIs値(構造耐震指標)を用いている。しかし、構造指標にIs値(構造耐震指標)を用いることは、建物の構造種別、詳細納まりなどによっては適切でない場合がある。例えば、鉄筋コンクリート造の建物においてラーメン構造の建物と壁式構造の建物のIs値が同じであった場合、耐力の低いラーメン構造に大きな層間変形が生じ、壁式構造よりも被害が大きくなる場合がある。本発明では、相関分析を行うことで、Is値を含む複数の構造指標の候補の中から、建物の構造種別毎、部位毎の損傷状態と最も相関が高いものを選定することを想定している。   As a document dealing with this problem, there is JP-A-2005-310146. The application publication uses an Is value (structural seismic index) as a structural index of building strength (fragility curve). However, it may not be appropriate to use the Is value (structural seismic index) as a structural index depending on the structural type of the building, detailed accommodation, and the like. For example, in the case of a reinforced concrete building, if the Is value of the ramen structure building and the wall type structure are the same, a large interlayer deformation may occur in the ramen structure having a low yield strength, and the damage may be greater than the wall type structure is there. In the present invention, it is assumed that a correlation analysis is performed to select a structural index candidate including the Is value that has the highest correlation with the damage state for each structural type of each building and each part. Yes.

特開2005−310146号公報JP 2005-310146 A

本発明は、上記のような技術の現状に鑑みてなされたものであって、建物が地震時にとり得る状態に対応した耐力を定め、応答を求めることによって損傷確率を定め耐震性能の定量化を可能にすること、確率論的設計すなわち、信頼性設計、地震リスクマネジメント手法を可能にすること、および、工業化住宅のような構造種別、建物各部詳細が類型化している建物に対して、建物耐力をデータベース化しコンピュータ内記録装置に記録しておくことにより効率よく確率論的耐震設計を可能とするを課題とする。   The present invention has been made in view of the current state of the art as described above, and determines the yield strength corresponding to the state that the building can take during an earthquake, determines the damage probability by determining the response, and quantifies the seismic performance. Building strength for buildings that have stochastic design, that is, reliability design, enabling seismic risk management techniques, and types of structures, such as industrialized houses. It is an object to enable probabilistic seismic design efficiently by creating a database and recording it in a computer recording device.

上記の課題を解決するための手段として、本発明は、部材規格及び構造特性が共通する建物の耐震設計方法であって、
地震時における、前記建物群に属する建物の部位ごとの損傷状態を把握する過程と、
上記建物部位の損傷状態に基づいて、当該建物部位の損傷と最も相関のある構造指標を選定して、当該部位の最適構造指標x’とする過程と、
当該部位の損傷確率Pfを、当該部位の最適構造指標x´を変数とする確率分布関数で表す過程と、
前記部位の最適構造指標x’と損傷確率Pfと、別途求めた所定の地震動強さをもとに信頼性設計を行う過程を有する、耐震設計方法を提案する。
As a means for solving the above problems, the present invention is a seismic design method for buildings having the same member standards and structural characteristics,
The process of grasping the damage state for each part of the building belonging to the building group at the time of the earthquake,
Selecting a structural index most correlated with the damage of the building part based on the damage state of the building part, and setting it as the optimum structural index x ′ of the part;
A process of expressing the damage probability Pf of the part as a probability distribution function having the optimum structure index x ′ of the part as a variable;
A seismic design method is proposed which includes a process of performing reliability design based on the optimum structural index x ′ of the part, the damage probability Pf, and a predetermined seismic intensity determined separately.

ここで、部材規格とは、部材断面や長さ等に関する統一的な思想を意味しており、部材規格が共通する建物とは、工業化住宅に見られるように、統一またはユニット化された部材を前提とした一群の建物を言うものとする。構造特性とは、鉄骨構造、鉄筋コンクリート構造、鉄骨鉄筋コンクリート構造等のような躯体構造の材料種別、あるいはラーメン構造、壁構造のような力学的区分等である。   Here, the member standard means a unified idea about the member cross section, length, etc., and a building having a common member standard is a united or unitized member as seen in industrialized houses. Assume a group of buildings on the premise. The structural characteristics include the material type of a frame structure such as a steel structure, a reinforced concrete structure, and a steel reinforced concrete structure, or a mechanical classification such as a ramen structure and a wall structure.

建物の部位とは、特定の柱・梁のように個別具体的な部材の意味であっても良いが、第1層の耐力柱等のように、部材の集合を意味するものであっても良い。損傷とは、部材の降伏、亀裂の発生、許容値以上の変形等に伴って補修、交換等の修復を必要とする事象のことである。構造指標とは、前記損傷を力学的に表現する際に用いる指標であって、例えば、最大変形、最大発生応力、最大ひずみ、累積吸収エネルギー等である。   The building part may mean an individual concrete member such as a specific column or beam, but may also mean a set of members such as a load-bearing column in the first layer. good. Damage is an event that requires repair such as repair or replacement in accordance with yielding of a member, occurrence of a crack, deformation exceeding an allowable value, or the like. The structure index is an index used when mechanically expressing the damage, and is, for example, maximum deformation, maximum generated stress, maximum strain, accumulated absorbed energy, or the like.

損傷確率Pfを表す、当該部位の最適構造指標x´を変数とする確率分布関数とは、一般には、最適構造指標x´の特定の値近傍で、実質的にゼロから1まで単調増加する分布関数である。地震動強さは、最大加速度、最大速度、ある周期帯の平均加速度応答スペクトル、スペクトラルインテンシティーIs等さまざまな指標によって定量化することができる。   The probability distribution function representing the damage probability Pf and having the optimum structure index x ′ of the part as a variable is generally a distribution that monotonously increases substantially from zero to 1 near a specific value of the optimum structure index x ′. It is a function. The seismic intensity can be quantified by various indices such as maximum acceleration, maximum speed, average acceleration response spectrum in a certain period band, spectral intensity Is, and the like.

前記損傷状態を把握する過程は、前記建物群に属する実験用建物を建設する工程と、
当該実験用建物に水平力を作用させ、建物の部位ごとの損傷状態を把握する過程とを含むものであっても良い。
The process of grasping the damage state includes a step of constructing an experimental building belonging to the building group,
It may include a process of applying a horizontal force to the experimental building and grasping the damage state for each part of the building.

建物群に属する実験用建物とは、共通する部材規格及び構造特性を有する一群の建物を代表する建物であって、例えば、規格化およびユニット化された鉄骨組部材と軽量コンクリート外壁材を有する2層または3層のラーメン構造からなる住宅建物の具体例のようなものである。実験用建物に採用させる水平力は、動的な力であっても静的な力であっても、あるいは擬動的な力であっても良い。   An experimental building belonging to a building group is a building that represents a group of buildings having common member standards and structural characteristics, and includes, for example, standardized and unitized steel frame members and lightweight concrete outer wall materials. It is like a concrete example of a residential building consisting of a three-layer or three-layer ramen structure. The horizontal force employed in the experimental building may be a dynamic force, a static force, or a pseudo-dynamic force.

また、前記損傷状態を把握する過程は、前記建物群に属する建物の解析用モデルを策定する工程と、
当該解析用モデルに水平力を作用させた際の、建物の部位ごとの損傷状態を把握する過程とを含むものであってもよい。
Further, the process of grasping the damage state is a step of formulating a model for analysis of buildings belonging to the group of buildings,
And a process of grasping the damage state for each part of the building when a horizontal force is applied to the analysis model.

ここで、解析用モデルは、部材ごとに非線形の荷重・変形関係を表現した3次元モデルとすることができる。損傷状態は、荷重に対する解析モデルの応力または変形を通じて把握することができる。   Here, the analysis model can be a three-dimensional model expressing a nonlinear load / deformation relationship for each member. The damage state can be grasped through the stress or deformation of the analytical model with respect to the load.

前記信頼性設計を行う過程は、前記所定の地震動強さにおける前記部位の応答を求めるものであってもよい。すなわち、地震入力を表す所定の地震動(時刻歴)あるいは等価な静的外力に対する前記部位の変形、応力等を求めるものであっても良い。   The process of performing the reliability design may be to obtain a response of the part at the predetermined seismic intensity. That is, the deformation, stress, or the like of the part with respect to a predetermined ground motion (time history) representing an earthquake input or an equivalent static external force may be obtained.

さらに、前記信頼性設計を行う過程は、最適構造指標x’と地震動強さIとの関係を求めることを含むものであってもよい。複数の最適構造指標x’の候補と地震動強さIの候補との間で最も高い相関が得られるものを選択するのが望ましい。   Furthermore, the process of performing the reliability design may include obtaining a relationship between the optimum structure index x ′ and the seismic intensity I. It is desirable to select the one that gives the highest correlation between the candidates for the plurality of optimum structure indices x 'and the ground motion intensity I candidates.

本発明はさらに、部材規格及び構造特性が共通する建物の耐震設計方法であって、
前記建物群に属する実験用建物を建設する工程と、
当該実験用建物に水平力を作用させ、建物の部位ごとの損傷状態を把握する過程と、
上記建物部位の損傷状態に基づいて、当該建物部位の損傷と最も相関のある構造指標を選定して、当該部位の最適構造指標x’とする過程と、
当該部位の損傷確率Pfを、当該部位の最適構造指標x’を変数とする確率分布関数で表す過程と、
最適構造指標x’と地震動強さIとの関係を求める過程と、
前記部位の損傷確率Pfを、地震動強さIを変数とする確率分布関数で表す過程と、
別途求めた所定の地震動強さをもとに信頼性設計を行う過程を有する、建物の耐震設計方法を提案する。
The present invention further relates to a seismic design method for buildings having the same member standards and structural characteristics,
Building a laboratory building belonging to the building group;
The process of applying a horizontal force to the experimental building and grasping the damage state for each part of the building,
Selecting a structural index most correlated with the damage of the building part based on the damage state of the building part, and setting it as the optimum structural index x ′ of the part;
A process of representing the damage probability Pf of the part by a probability distribution function having the optimum structure index x ′ of the part as a variable;
The process of determining the relationship between the optimal structural index x ′ and the seismic intensity I;
A process of expressing the damage probability Pf of the part by a probability distribution function having a seismic intensity I as a variable;
We propose a seismic design method for buildings, which has a process of reliability design based on separately determined seismic intensity.

前記最適構造指標x’と地震動強さIとの関係は、確定論的な関係であることを排除しないが、確率論的関係であることが望ましい。   The relationship between the optimum structure index x 'and the seismic intensity I is not a deterministic relationship, but is preferably a stochastic relationship.

前記信頼性設計は、対象部位の損傷確率Pfを所定の値以下とすることを目標とするものであってもよい。また、損傷確立Pfは、部位ごとにさらに入力地震動ごとに定められるものであっても良い。   The reliability design may be aimed at setting the damage probability Pf of the target part to be a predetermined value or less. Further, the damage establishment Pf may be determined for each input earthquake motion for each part.

前記信頼性設計は、建物の部位を構造体、非構造部材、設備部材およびその他の部位に分類し、それぞれの部位について前記損傷確率Pfを求め、部位ごとの損傷を条件付きで発生する事象と想定したイベントツリーに基づいて、所定のシーケンス群の発生確率が所定値以下になるようにおこなうものであってもよい。   The reliability design classifies building parts into structures, non-structural members, equipment members, and other parts, obtains the damage probability Pf for each part, and causes an event that damages each part conditionally occurs. Based on the assumed event tree, the generation probability of a predetermined sequence group may be set to be equal to or lower than a predetermined value.

本発明はさらに、部材規格及び構造特性が共通する建物の地震リスクアセスメント方法であって、
地震時における、前記建物群に属する建物の部位ごとの損傷状態を把握する過程と、
上記建物部位の損傷状態に基づいて、当該建物部位の損傷と最も相関のある構造指標を選定して、当該部位の最適構造指標x’とする過程と、
当該部位の損傷確率Pfを、当該部位の最適構造指標x´を変数とする確率分布関数で表す過程と、
前記部位の最適構造指標x’と損傷確率Pfと、別途求めた所定の地震動強さをもとに地震リスクを評価する過程を有する、地震リスクアセスメント方法を提案する。
The present invention further relates to a seismic risk assessment method for buildings having the same member standards and structural characteristics,
The process of grasping the damage state for each part of the building belonging to the building group at the time of the earthquake,
Selecting a structural index most correlated with the damage of the building part based on the damage state of the building part, and setting it as the optimum structural index x ′ of the part;
A process of expressing the damage probability Pf of the part as a probability distribution function having the optimum structure index x ′ of the part as a variable;
An earthquake risk assessment method is proposed, which includes a process of evaluating an earthquake risk based on an optimum structure index x ′ of the part, a damage probability Pf, and a predetermined seismic intensity determined separately.

ここでリスクアセスメント方法は、想定される地震に対して、特定の部位あるいは建物がどの程度の損傷受けるかを確率論的に評価する手法を言う。   Here, the risk assessment method is a method of probabilistically evaluating how much damage is caused to a specific part or building against an assumed earthquake.

本発明の効果は以下の通りである。すなわち、
1)建物各部位の損傷状態を確率で定量的に知ることができる。
2)精度の良い確率論的設計(信頼性設計、地震リスクマネジメント)が可能になる。
3)工業化住宅のような類型化された建物を確率論的手法で設計するときに効率的である。
4)実際の建物で損傷状態を観察あるいは計測する際に用いる層間変形角γや累積損傷値Dなどの構造指標は、地震動強さの指標である加速度を説明変数とする場合に比べて、損傷の発生との相関が高く、損傷の発生に関する確率分布関数(ローカルサイズミックフラジリティ曲線)を精度良く作成できる。
5)一度実験、或いは被害地震の観察により各損傷モードの損傷発生確率と地震動強さの関係(フラジリティ曲線或いは地震損傷度曲線)を作ってしまえば、地震時の建物各部位の損傷モード毎の損傷確率が容易に推測できる。
6)損傷発生確率と当該損傷の修復費用との積であるリスクを算定することにより、構造強度や建物の各部詳細を合理的あるいは最適に決定する為の指標とすることができる。
The effects of the present invention are as follows. That is,
1) The damage state of each part of the building can be known quantitatively with probability.
2) Probabilistic design (reliability design, earthquake risk management) with high accuracy becomes possible.
3) It is efficient when designing a categorized building such as an industrialized house using a probabilistic approach.
4) Structural indices such as the interlaminar deformation angle γ and cumulative damage value D used when observing or measuring damage in an actual building are more damaged than when acceleration, which is an index of seismic intensity, is used as an explanatory variable. The probability distribution function (local sizemic fragility curve) related to the occurrence of damage can be accurately created.
5) Once the relationship between the probability of occurrence of damage in each damage mode and the strength of ground motion (fragility curve or earthquake damage degree curve) is created by experiment or observation of damaged earthquakes, each damage mode of each part of the building at the time of the earthquake Damage probability can be easily estimated.
6) By calculating a risk that is the product of the probability of occurrence of damage and the repair cost of the damage, it can be used as an index for rationally or optimally determining the structural strength and details of each part of the building.

本発明に基づく部位・損傷モードの分類手順を示すフロー図Flow chart showing the site / damage mode classification procedure based on the present invention 本発明に基づく部位・損傷モードごとの損傷確率分布を求める手順を示すフロー図Flow chart showing a procedure for obtaining a damage probability distribution for each part / damage mode based on the present invention イベントツリー図Event tree diagram

以下に、実施例に基づいて本発明の具体的な態様を説明するが、実施例は発明の理解を助けるために記載するに過ぎないものであるから、本発明は以下に記載する実施例に限定されるものではないことはいうまでも無い。
Specific embodiments of the present invention will be described below on the basis of examples. However, the examples are only described to help the understanding of the invention, and therefore the present invention is not limited to the examples described below. Needless to say, it is not limited.

図1は、本発明に基づく、地震時における、前記建物群に属する建物の部位ごとの損傷状態を把握する過程を概念的に示すフロー図である。前記建物群に属する建物、好ましくは当該建物群を代表する建物を建設して、動的荷重又は静的荷重によって当該建物の地震応答実験を行い、その損傷を観察・計測する(図中100)。   FIG. 1 is a flowchart conceptually showing a process of grasping a damage state for each part of a building belonging to the building group at the time of an earthquake based on the present invention. A building belonging to the building group, preferably a building representing the building group, is constructed, and an earthquake response experiment is performed on the building with a dynamic load or a static load, and the damage is observed and measured (100 in the figure). .

上記実験に基づいて被害部位の分類を行う。被害部位の分類は、力学的な構造あるいは経験によって行っても良い(図中120)。被害部位の分類及び損傷実験の結果に基づいて、部位の損傷状態を示す損傷モードを分類する。損傷モードとは、例えば、建物外壁であれば、ひび割れの発生、大きな亀裂発生、崩落等である。損傷モードを分類する際には、補修工法や部材交換の要、不要等の補修にかかる手間や費用を勘案するのが好ましい。   Based on the above experiment, damage sites are classified. Classification of the damaged part may be performed by a dynamic structure or experience (120 in the figure). Based on the classification of the damaged part and the result of the damage experiment, the damage mode indicating the damage state of the part is classified. The damage mode is, for example, generation of cracks, generation of large cracks, collapse, etc. in the case of a building outer wall. When classifying the damage mode, it is preferable to take into account the labor and cost required for repairs such as the necessity of repair method and replacement of parts.

次に、図2に示すように、相関分析200を行って建物部位に生じた損傷の内容、損傷の程度と相関の高い構造指標xを選定する(220)。損傷は例えば、外壁のひび割れ、脱落、室内内装クロスの切れ、制震ダンパーの破断又は耐力低下などである。これに対して、構造指標とは、例えば、層間変形角γ、ダンパーの累積損傷値Dなどである。   Next, as shown in FIG. 2, a correlation analysis 200 is performed to select a structure index x that is highly correlated with the content of damage and the degree of damage that occurred in the building site (220). The damage is, for example, cracking of the outer wall, falling off, breakage of the interior / interior cross, breakage of the damping damper or reduction of the proof stress. On the other hand, the structure index is, for example, an interlayer deformation angle γ, a cumulative damage value D of the damper, or the like.

上記の解析に基づいて部位の損傷確率Pfを構造指標xの関数として表す。同一部位であっても損傷の内容ごとに、例えば、外壁の亀裂発生と外壁の崩落それぞれに対して損傷確率Pfをあらわす構造指標xの関数が得られる。図中には、部位・損傷モードごとの損傷確率分布関数260を概念的に示した。   Based on the above analysis, the damage probability Pf of the part is expressed as a function of the structure index x. Even for the same part, for each damage content, for example, a function of the structure index x representing the damage probability Pf with respect to the occurrence of a crack in the outer wall and the collapse of the outer wall is obtained. In the drawing, the damage probability distribution function 260 for each part / damage mode is conceptually shown.

さらに、解析用モデルの応答解析300を通じて、地震動強さIと構造指標xについて確率(または統計)的な関係を得ることができ、xを介して地震動強さIと損傷確率Pfが確率的に結び付けられることから、損傷確率Pfを地震動強さIを変数とした確率関数として表すことができる(400)。地震動強さIをパラメータとした部位・損傷モードごとの損傷確率分布関数を概念的に示したものが、図2中の500である。   Further, a probability (or statistical) relationship between the seismic intensity I and the structure index x can be obtained through the response analysis 300 of the analysis model, and the seismic intensity I and the damage probability Pf are stochastically obtained via x. Therefore, the damage probability Pf can be expressed as a probability function with the seismic intensity I as a variable (400). Reference numeral 500 in FIG. 2 conceptually shows the damage probability distribution function for each part / damage mode with the seismic intensity I as a parameter.

図3は、特定の地震動強さ(ここでは地震波の最大化速度Aを指標とした)における部位ごとの損傷の有無に基づいて作成したイベントツリーの例を示したものである。部位としては、構造体、非構造部材、設備部材を選択したが、相互に排他的で漏れがないものであれば、これ以外の選択が可能であることは言うまでもない。ここでは、それぞれの可能性(例えば、構造体の損傷:yes、非構造部材の損傷:yes、設備部材の損傷:Noつまり図中の)をシーケンスと称することにする。すべてのシーケンスの発生確率の合計は1である。 Figure 3 (here was used as an index to maximize speed A 0 seismic) specific ground motion intensity illustrates an example of an event tree created on the basis of the presence or absence of damage to each part in. As the part, a structural body, a non-structural member, and an equipment member are selected, but it goes without saying that other parts can be selected as long as they are mutually exclusive and have no leakage. Here, each possibility (for example, structural damage: yes, non-structural member damage: yes, equipment member damage: No, that is, b P 2 in the figure) will be referred to as a sequence. The total occurrence probability of all sequences is 1.

例えば、構造体に損傷がなく、非構造部材と設備部材の損傷の有無を問わない場合、そのような事象の発生確率は、図において下から4つのシーケンスの確率の合計である。したがって、特定の地震動強さに対して構造体に損傷がない建物を設計するには、このような事象の発生確率が1に近い値となるような構造を選択すればよいことになる。また、上から4つのシーケンスの確率の合計は、対象建物の構造体に損傷を与えるという尺度で見た地震動の強さを表していると共に、当該地震動に対する建物構造体の損傷評価を表す値である。   For example, when there is no damage to the structure and whether or not the non-structural member and the equipment member are damaged, the probability of occurrence of such an event is the sum of the probabilities of the four sequences from the bottom in the figure. Therefore, in order to design a building in which the structure is not damaged with respect to a specific seismic intensity, it is only necessary to select a structure in which the occurrence probability of such an event is a value close to 1. The total probability of the four sequences from the top represents the strength of seismic motion as seen on a scale that damages the structure of the target building, and is a value that represents the damage assessment of the building structure against the seismic motion. is there.

100 損傷実験
120 損傷部位の分類
140 部位の損傷モードの分類
200 相関分析
220 構造指標xの選定
240 Pf−x関係の特定
300 応答解析
400 Pf−I関係の特定
100 Damage Experiment 120 Classification of Damaged Site 140 Classification of Damage Mode of Site 200 Correlation Analysis 220 Selection of Structure Index x 240 Specification of Pf-x Relationship 300 Response Analysis 400 Specification of Pf-I Relationship

Claims (9)

部材規格及び構造特性が共通する建物の耐震設計方法であって、
地震時における、前記建物群に属する建物の部位ごとの損傷状態を把握する過程と、
上記建物部位の損傷状態に基づいて、当該建物部位の損傷と最も相関のある構造指標を選定して、当該部位の最適構造指標x’とする過程と、
当該部位の損傷確率Pfを、当該部位の最適構造指標x´を変数とする確率分布関数で表す過程と、
前記部位の最適構造指標x’と損傷確率Pfと、別途求めた所定の地震動強さをもとに信頼性設計を行う過程を有する、耐震設計方法。
It is a seismic design method for buildings with common member standards and structural characteristics,
The process of grasping the damage state for each part of the building belonging to the building group at the time of the earthquake,
Selecting a structural index most correlated with the damage of the building part based on the damage state of the building part, and setting it as the optimum structural index x ′ of the part;
A process of expressing the damage probability Pf of the part as a probability distribution function having the optimum structure index x ′ of the part as a variable;
A seismic design method including a process of performing reliability design based on the optimum structure index x ′ of the part, the damage probability Pf, and a predetermined seismic intensity determined separately.
前記損傷状態を把握する過程は、前記建物群に属する実験用建物を建設する工程と、
当該実験用建物に水平力を作用させ、建物の部位ごとの損傷状態を把握する過程とを含む請求項1に記載の耐震設計方法。
The process of grasping the damage state includes a step of constructing an experimental building belonging to the building group,
The seismic design method according to claim 1, further comprising: applying a horizontal force to the experimental building to grasp a damage state for each part of the building.
前記損傷状態を把握する過程は、前記建物群に属する建物の解析用モデルを策定する工程と、
当該解析用モデルに水平力を作用させた際の、建物の部位ごとの損傷状態を把握する過程とを含む請求項1に記載の耐震設計方法。
The process of grasping the damage state is a process of formulating a model for analysis of buildings belonging to the group of buildings,
The seismic design method of Claim 1 including the process of grasping | ascertaining the damage state for every site | part of a building when a horizontal force is made to act on the said model for analysis.
前記信頼性設計を行う過程は、前記所定の地震動強さにおける前記部位の応答を求めることを含む請求項1ないし3のいずれかに記載の耐震設計方法。   The earthquake-resistant design method according to any one of claims 1 to 3, wherein the process of performing the reliability design includes obtaining a response of the part at the predetermined seismic intensity. 前記信頼性設計を行う過程は、最適構造指標x’と地震動強さIとの関係を求めることを含む請求項1ないし3のいずれかに記載の耐震設計方法。   4. The earthquake-resistant design method according to claim 1, wherein the process of performing the reliability design includes obtaining a relationship between the optimum structure index x 'and the seismic intensity I. 部材規格及び構造特性が共通する建物の耐震設計方法であって、
前記建物群に属する実験用建物を建設する工程と、
当該実験用建物に水平力を作用させ、建物の部位ごとの損傷状態を把握する過程と、
上記建物部位の損傷状態に基づいて、当該建物部位の損傷と最も相関のある構造指標を選定して、当該部位の最適構造指標x’とする過程と、
当該部位の損傷確率Pfを、当該部位の最適構造指標x’を変数とする確率分布関数で表す過程と、
最適構造指標x’と地震動強さIとの関係を求める過程と、
前記部位の損傷確率Pfを、地震動強さIを変数とする確率分布関数で表す過程と、
別途求めた所定の地震動強さをもとに信頼性設計を行う過程を有する、建物の耐震設計方法。
It is a seismic design method for buildings with common member standards and structural characteristics,
Building a laboratory building belonging to the building group;
The process of applying a horizontal force to the experimental building and grasping the damage state for each part of the building,
Selecting a structural index most correlated with the damage of the building part based on the damage state of the building part, and setting it as the optimum structural index x ′ of the part;
A process of representing the damage probability Pf of the part by a probability distribution function having the optimum structure index x ′ of the part as a variable;
The process of determining the relationship between the optimal structural index x ′ and the seismic intensity I;
A process of expressing the damage probability Pf of the part by a probability distribution function having a seismic intensity I as a variable;
A seismic design method for buildings, which has a process of performing reliability design based on the separately determined seismic intensity.
前記信頼性設計は、対象部位の損傷確立Pfを所定の値以下とすることを目標とする、請求項1ないし6のいずれかに記載の耐震設計方法。   The seismic design method according to any one of claims 1 to 6, wherein the reliability design aims to set the damage establishment Pf of the target part to a predetermined value or less. 前記信頼性設計は、建物の部位を構造体、非構造部材、設備部材およびその他の部位に分類し、それぞれの部位について前記損傷確立Pfを求め、部位ごとの損傷を独立事象と想定したイベントツリーに基づいて、所定のシーケンス群の発生確率が所定値以下になるようにおこなう請求項1ないし7のいずれかに記載の耐震設計方法。   The reliability design classifies building parts into structures, non-structural members, equipment members, and other parts, determines the damage establishment Pf for each part, and assumes an event tree in which damage for each part is assumed to be an independent event. The seismic design method according to claim 1, wherein the generation probability of the predetermined sequence group is set to a predetermined value or less based on the above. 部材規格及び構造特性が共通する建物の地震リスクアセスメント方法であって、
地震時における、前記建物群に属する建物の部位ごとの損傷状態を把握する過程と、
上記建物部位の損傷状態に基づいて、当該建物部位の損傷と最も相関のある構造指標を選定して、当該部位の最適構造指標x’とする過程と、
当該部位の損傷確率Pfを、当該部位の最適構造指標x´を変数とする確率分布関数で表す過程と、
前記部位の最適構造指標x’と損傷確率Pfと、別途求めた所定の地震動強さをもとに地震リスクを評価する過程を有する、地震リスクアセスメント方法。
A seismic risk assessment method for buildings with common material standards and structural characteristics,
The process of grasping the damage state for each part of the building belonging to the building group at the time of the earthquake,
Selecting a structural index most correlated with the damage of the building part based on the damage state of the building part, and setting it as the optimum structural index x ′ of the part;
A process of expressing the damage probability Pf of the part as a probability distribution function having the optimum structure index x ′ of the part as a variable;
An earthquake risk assessment method comprising a step of evaluating an earthquake risk based on an optimum structure index x ′ of the part, a damage probability Pf, and a predetermined seismic intensity determined separately.
JP2009273356A 2009-12-01 2009-12-01 Method for evaluation of building strength Withdrawn JP2011118510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009273356A JP2011118510A (en) 2009-12-01 2009-12-01 Method for evaluation of building strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009273356A JP2011118510A (en) 2009-12-01 2009-12-01 Method for evaluation of building strength

Publications (1)

Publication Number Publication Date
JP2011118510A true JP2011118510A (en) 2011-06-16

Family

ID=44283786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009273356A Withdrawn JP2011118510A (en) 2009-12-01 2009-12-01 Method for evaluation of building strength

Country Status (1)

Country Link
JP (1) JP2011118510A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142282A (en) * 2013-01-24 2014-08-07 Daiwa House Industry Co Ltd Fragility curve creation method of buckling restraining brace and loss evaluation method of building employing the same
JP2014153191A (en) * 2013-02-08 2014-08-25 Ohbayashi Corp Calculation system of response value of building caused by earthquake, and method for creating research table of damage to building caused by earthquake
CN111401747A (en) * 2020-03-17 2020-07-10 上海市建筑科学研究院有限公司 Method for analyzing vulnerability of masonry structure under action of sequence type earthquake
JP2020148467A (en) * 2019-03-11 2020-09-17 ミサワホーム株式会社 Estimation method of experienced maximum interlayer deformation angle and program
CN114792020A (en) * 2022-04-12 2022-07-26 云昇昇安全科技(大连)有限责任公司 Method and system for quickly evaluating building earthquake resistance toughness based on machine learning

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142282A (en) * 2013-01-24 2014-08-07 Daiwa House Industry Co Ltd Fragility curve creation method of buckling restraining brace and loss evaluation method of building employing the same
JP2014153191A (en) * 2013-02-08 2014-08-25 Ohbayashi Corp Calculation system of response value of building caused by earthquake, and method for creating research table of damage to building caused by earthquake
JP2020148467A (en) * 2019-03-11 2020-09-17 ミサワホーム株式会社 Estimation method of experienced maximum interlayer deformation angle and program
JP7106472B2 (en) 2019-03-11 2022-07-26 ミサワホーム株式会社 Method and program for estimating empirical maximum interstory drift angle
CN111401747A (en) * 2020-03-17 2020-07-10 上海市建筑科学研究院有限公司 Method for analyzing vulnerability of masonry structure under action of sequence type earthquake
CN111401747B (en) * 2020-03-17 2023-05-19 上海市建筑科学研究院有限公司 Method for analyzing vulnerability of masonry structure under sequential earthquake action
CN114792020A (en) * 2022-04-12 2022-07-26 云昇昇安全科技(大连)有限责任公司 Method and system for quickly evaluating building earthquake resistance toughness based on machine learning
CN114792020B (en) * 2022-04-12 2024-05-03 大连理工大学 Quick evaluation method and system for building anti-seismic toughness based on machine learning

Similar Documents

Publication Publication Date Title
Li et al. Structural health monitoring for a 600 m high skyscraper
Oliveira et al. Minaret behavior under earthquake loading: The case of historical Istanbul
Mojtahedi et al. Developing a robust SHM method for offshore jacket platform using model updating and fuzzy logic system
Di Michele et al. Effects of the vertical seismic component on seismic performance of an unreinforced masonry structures
JP6120559B2 (en) Evaluation method for residual seismic performance of multi-layer structures
JP2011118510A (en) Method for evaluation of building strength
Hancilar et al. Fragility functions for code complying RC frames via best correlated IM–EDP pairs
Chencho et al. Development and application of random forest technique for element level structural damage quantification
Oh et al. Damage localization method for building structures based on the interrelation of dynamic displacement measurements using convolutional neural network
Jia et al. Bridge seismic damage assessment model applying artificial neural networks and the random forest algorithm
Su et al. Influence of ground motion duration on seismic behavior of RC bridge piers: The role of low-cycle fatigue damage of reinforcing bars
Zhou et al. Seismic fragility assessment of a tall reinforced concrete chimney
Kazemi et al. Development of fragility curves by incorporating new spectral shape indicators and a weighted damage index: case study of steel braced frames in the city of Mashhad, Iran
Mantawy et al. Convolutional neural network based structural health monitoring for rocking bridge system by encoding time‐series into images
Pham‐Bao et al. Energy dissipation‐based material deterioration assessment using random decrement technique and convolutional neural network: A case study of Saigon bridge in Ho Chi Minh City, Vietnam
Wang et al. Vulnerability assessment of a high‐rise building subjected to mainshock–aftershock sequences
Ji et al. Vision‐based seismic damage detection and residual capacity assessment for an RC shaking table test structure
Hamidia et al. Machine vision‐based automated earthquake‐induced drift ratio quantification for reinforced concrete columns
Hait et al. Damage assessment of reinforced concrete-framed building considering multiple demand parameters in Indian codal provisions
Jiang et al. Structural stiffness identification of traditional mortise-tenon joints based on statistical process control chart
You et al. Rapid probabilistic loss assessment of buildings based on post-earthquake structural deformation conditions
Shekhar et al. Influence of corrosion on failure modes and lifetime seismic vulnerability assessment of low‐ductility RC frames
Kanwar et al. Monitoring of RCC structures affected by earthquakes
Gislason et al. Rapid and automated damage detection in buildings through ARMAX analysis of wind induced vibrations
Azhdary et al. PERFORMANCE BASED DESIGN AND DAMAGES ESTIMATION OF STEEL FRAMES WITH CONSIDERATION OF UNCERTAINTIES.

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130205