JP2011117044A - Optical thin film, production method therefor, optical multilayer film including optical thin film, optical component having optical thin film, aligner including optical component, and exposure method - Google Patents

Optical thin film, production method therefor, optical multilayer film including optical thin film, optical component having optical thin film, aligner including optical component, and exposure method Download PDF

Info

Publication number
JP2011117044A
JP2011117044A JP2009276118A JP2009276118A JP2011117044A JP 2011117044 A JP2011117044 A JP 2011117044A JP 2009276118 A JP2009276118 A JP 2009276118A JP 2009276118 A JP2009276118 A JP 2009276118A JP 2011117044 A JP2011117044 A JP 2011117044A
Authority
JP
Japan
Prior art keywords
thin film
optical
gadolinium
optical thin
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009276118A
Other languages
Japanese (ja)
Other versions
JP5526745B2 (en
Inventor
Yoshinobu Ezura
嘉信 江面
Hitoshi Ishizawa
均 石沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009276118A priority Critical patent/JP5526745B2/en
Publication of JP2011117044A publication Critical patent/JP2011117044A/en
Application granted granted Critical
Publication of JP5526745B2 publication Critical patent/JP5526745B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical thin film containing a fluoride, which can be produced by using a general-purpose production facility, and has a fine structure that shows a high refractive index at a wave length of 200 nm or less, and to provide a production method for the optical thin film. <P>SOLUTION: The optical thin film includes fluorides of lanthanum and gadolinium, and the ratio of the number of moles of gadolinium with respect to the total number of moles of lanthanum and gadolinium is 0.01-0.95. The method for producing the optical thin film includes: preparing a substrate; preparing a vapor deposition material in which lanthanum fluoride and gadolinium fluoride are mixed so that the ratio of the number of moles of gadolinium with respect to the total number of moles of lanthanum and gadolinium becomes 0.1-0.95; and vapor-depositing the vapor deposition material on the substrate. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光学薄膜およびその製造方法、光学薄膜を含む光学多層膜およびその光学多層膜を用いた光学部品に関する。更に、その光学部品を含む露光装置および露光方法に関する。   The present invention relates to an optical thin film and a manufacturing method thereof, an optical multilayer film including the optical thin film, and an optical component using the optical multilayer film. Furthermore, the present invention relates to an exposure apparatus and an exposure method including the optical component.

最近の半導体製造用縮小投影露光装置は、水銀ランプより短波長域の光を発振でき、かつ高出力なレーザを光源としている。光源であるレーザには、KrFエキシマレーザ(波長248nm)やArFエキシマレーザ(波長193nm)などがある。レーザを光源とした露光装置の光学系において、レンズなどの光学部品の表面反射による光量損失やフレア・ゴーストなどを低減するために、反射防止膜を形成する必要がある。また、レーザ光の光路折り曲げのためにはミラーを形成する必要がある。このような反射防止膜やミラーは、高屈折率の誘電体の薄膜(光学薄膜)と、低屈折率の誘電体の薄膜(光学薄膜)の交互積層体(光学多層膜)で構成される。そのほかにも、露光装置の性能を発揮させるため、露光装置には様々な目的で光学薄膜が使用されている。   Recent reduction projection exposure apparatuses for manufacturing semiconductors use a high-power laser as a light source, which can oscillate light in a shorter wavelength region than a mercury lamp. Examples of the laser that is a light source include a KrF excimer laser (wavelength 248 nm) and an ArF excimer laser (wavelength 193 nm). In an optical system of an exposure apparatus using a laser as a light source, it is necessary to form an antireflection film in order to reduce light loss, flare, ghost, and the like due to surface reflection of optical components such as lenses. Further, it is necessary to form a mirror for bending the optical path of the laser beam. Such an antireflection film or mirror is composed of an alternating laminate (optical multilayer film) of a dielectric thin film (optical thin film) having a high refractive index and a dielectric thin film (optical thin film) having a low refractive index. In addition, in order to exhibit the performance of the exposure apparatus, an optical thin film is used in the exposure apparatus for various purposes.

光に対して吸収の大きい物質や、耐レーザ性の低い物質によって光学薄膜(反射防止膜やミラー)を構成すると、吸収による光量損失、吸収発熱による基板面変化や膜破壊などを起こしやすくなる。このため、光学薄膜に使用する物質は、低吸収・高レーザ耐性を有しているものが望ましい。このような観点から、200nm以下の波長の光に対して使用できる物質は、主にフッ化ランタン(LaF)やフッ化マグネシウム(MgF)のようなフッ素化合物、また、一部の酸化物(酸化アルミニウム(Al)や二酸化ケイ素(SiO)等)である。特に波長200nm以下における高屈折物質の光学薄膜としては、フッ化ランタン(LaF)やフッ化ガドリニウム(GdF)が有効である。 If an optical thin film (antireflection film or mirror) is made of a material that absorbs light or has a low laser resistance, it tends to cause loss of light amount due to absorption, substrate surface change due to absorption heat generation, or film destruction. For this reason, it is desirable that the material used for the optical thin film has low absorption and high laser resistance. From such a viewpoint, substances that can be used for light with a wavelength of 200 nm or less are mainly fluorine compounds such as lanthanum fluoride (LaF 3 ) and magnesium fluoride (MgF 2 ), and some oxides (Aluminum oxide (Al 2 O 3 ), silicon dioxide (SiO 2 ), etc.). In particular, lanthanum fluoride (LaF 3 ) and gadolinium fluoride (GdF 3 ) are effective as an optical thin film of a high refractive material at a wavelength of 200 nm or less.

これらフッ化物の薄膜の製造には、抵抗加熱式の真空蒸着法が一般に用いられている。薄膜の製造方法には、電子ビーム加熱式真空蒸着法やスパッタ法など抵抗加熱式真空蒸着法よりも効率的な手法がいくつもあるが、フッ素欠陥を有さない薄膜を形成するためには、穏やかな成膜方法である抵抗加熱式の真空蒸着法が適している。   For the production of these fluoride thin films, a resistance heating vacuum deposition method is generally used. There are a number of methods that are more efficient than resistance heating vacuum deposition methods, such as electron beam heating vacuum deposition and sputtering, in order to form a thin film that does not have fluorine defects. A resistance heating type vacuum deposition method which is a gentle film formation method is suitable.

従来の真空蒸着法により形成されたフッ化物による光学薄膜は、そのほとんどが柱状構造を有し密度が低い。柱状構造の一つの柱の典型的な大きさは、大きいもので100nm程度であり、半導体製造用露光装置で使用する光の波長と同程度に大きいため、光の散乱を生ずる。また、柱状構造は、表面積が非常に大きい多孔質構造を取る。したがって、空気中の水分や酸素などによって表面が酸化・水酸化され、フッ化物膜が紫外線に対して吸収を持つ原因となる。さらに、膜は空隙部に空気・水蒸気を含み、フッ化物結晶と混合状態にあるため、稠密なフッ化物(例えば単結晶状のバルク体)に比べて、屈折率は低下してしまう。   Most of the optical thin films made of fluoride formed by the conventional vacuum deposition method have a columnar structure and a low density. A typical size of one column of the columnar structure is large, about 100 nm, and is as large as the wavelength of light used in an exposure apparatus for manufacturing a semiconductor, and thus causes light scattering. Further, the columnar structure has a porous structure with a very large surface area. Therefore, the surface is oxidized and hydroxylated by moisture, oxygen, etc. in the air, and this causes the fluoride film to absorb ultraviolet rays. Furthermore, since the film contains air and water vapor in the gap and is in a mixed state with fluoride crystals, the refractive index is lower than that of dense fluoride (for example, a single crystal bulk body).

これに対し、フッ素系ガスクラスターイオンビームを真空蒸着時に蒸着面へ照射し、フッ化物薄膜の表面粗さを低下させ、緻密な膜を得る技術がある(特許文献1)。本技術は、フッ化物原料を電子ビーム蒸着する一方で、フッ素系ガスを蒸着槽内に導入し、これをイオン化してガス分子同士が緩やかに結合された状態のビームを形成し、蒸着面に対して照射する手法である。この結果、薄膜の表面粗さが改善され、電子ビーム蒸着に伴う薄膜中のフッ素抜けを防止する。   On the other hand, there is a technique for obtaining a dense film by irradiating a vapor deposition surface with a fluorine-based gas cluster ion beam during vacuum deposition to reduce the surface roughness of the fluoride thin film (Patent Document 1). In this technology, while fluoride material is electron beam evaporated, a fluorine-based gas is introduced into a deposition tank, and this is ionized to form a beam in which gas molecules are loosely bonded to each other on the deposition surface. This is a method of irradiating the light. As a result, the surface roughness of the thin film is improved, and fluorine escape in the thin film due to electron beam evaporation is prevented.

一方、フッ化アルミニウム(AlF)やクリオライト(NaAlF)などは、真空蒸着法により成膜しても非晶質状となり、柱状構造は取らないことが知られている。このため、表面の凹凸は小さく、膜内部における結晶界面での散乱等も小さい。 On the other hand, it is known that aluminum fluoride (AlF 3 ), cryolite (Na 3 AlF 6 ), and the like are amorphous even when deposited by a vacuum deposition method, and do not take a columnar structure. For this reason, the unevenness of the surface is small, and scattering at the crystal interface inside the film is also small.

特開2005-232534号公報JP 2005-232534 A

本発明の態様の目的は、汎用の製造設備を用いて製造可能なフッ化物からなる光学薄膜であって、従来使用されている物質よりも高屈折率を示し、緻密な構造の光学薄膜およびその製造方法を提供することである。また、本発明の態様の目的は、光学薄膜を用いた多層膜、光学薄膜を有する光学部品を提供することである。更に、本発明の態様の目的は、その光学部品を用いた露光装置および露光方法を提供することである。   An object of an embodiment of the present invention is an optical thin film made of a fluoride that can be manufactured using a general-purpose manufacturing facility, and exhibits a higher refractive index than a conventionally used substance and has a dense structure and an optical thin film thereof It is to provide a manufacturing method. Another object of the present invention is to provide a multilayer film using an optical thin film and an optical component having the optical thin film. Furthermore, the objective of the aspect of this invention is to provide the exposure apparatus and exposure method using the optical component.

本発明の第1の態様に従えば、光学薄膜であって、ランタンとガドリニウムのフッ化物を含み、前記ランタンと前記ガドリニウムの合計モル数に対する前記ガドリニウムのモル数の比が0.01〜0.95である光学薄膜が提供される。   According to the first aspect of the present invention, the optical thin film includes a fluoride of lanthanum and gadolinium, and the ratio of the number of moles of gadolinium to the total number of moles of lanthanum and gadolinium is 0.01 to 0.00. An optical thin film that is 95 is provided.

本発明の第2の態様に従えば、光学薄膜の製造方法であって、基板を用意することと、ランタンとガドリニウムの合計モル数に対する前記ガドリニウムのモル数の比が0.01〜0.95となるように、フッ化ランタンとフッ化ガドリニウムを混合した蒸着原料を用意することと、真空中で前記蒸着原料を加熱して蒸発させ、前記基材上に前記蒸着原料を堆積させることを含む光学薄膜の製造方法が提供される。   According to the second aspect of the present invention, there is provided a method for producing an optical thin film, wherein a substrate is prepared, and a ratio of the number of moles of gadolinium to the total number of moles of lanthanum and gadolinium is 0.01 to 0.95. Preparing a vapor deposition material in which lanthanum fluoride and gadolinium fluoride are mixed, and heating and evaporating the vapor deposition material in a vacuum to deposit the vapor deposition material on the substrate. An optical thin film manufacturing method is provided.

本発明の第3の態様に従えば、第1の態様の前記光学薄膜と、前記光学薄膜より屈折率の低い、低屈折率薄膜を含む光学多層膜が提供される。   According to a third aspect of the present invention, there is provided an optical multilayer film including the optical thin film of the first aspect and a low refractive index thin film having a refractive index lower than that of the optical thin film.

本発明の第4の態様に従えは、第1の態様の前記光学薄膜を表面に有する光学部品が提供される。   According to a fourth aspect of the present invention, there is provided an optical component having the optical thin film according to the first aspect on a surface.

本発明の第5の態様に従えは、第4の態様の光学部品が用いられる露光装置が提供される。   According to a fifth aspect of the present invention, there is provided an exposure apparatus using the optical component of the fourth aspect.

本発明の第6の態様に従えは、第5の態様の露光装置を用いて露光を行う露光方法が提供される。   According to the sixth aspect of the present invention, there is provided an exposure method for performing exposure using the exposure apparatus of the fifth aspect.

本発明の態様によれば、光学薄膜のランタンとガドリニウムの合計モル数に対するガドリニウムのモル比を0.01〜0.95とすることで、フッ化ランタン及びフッ化ガドリニウムの各単一成分からなる薄膜よりも高い屈折率を得ることができる。   According to the aspect of the present invention, the molar ratio of gadolinium to the total number of moles of lanthanum and gadolinium in the optical thin film is set to 0.01 to 0.95, thereby comprising each single component of lanthanum fluoride and gadolinium fluoride. A refractive index higher than that of the thin film can be obtained.

本発明の態様の光学薄膜は、特別な設備を必要とせず、従来の設備をそのまま用いて製造することができる。   The optical thin film of the aspect of the present invention does not require special equipment, and can be manufactured using conventional equipment as it is.

実施例1における蒸着原料のランタンとガドリニウムの合計モル数に対するガドリニウムのモル比と、光学薄膜内のランタンとガドリニウムの合計モル数に対するガドリニウムのモル比との関係を示す図である。It is a figure which shows the relationship between the molar ratio of gadolinium with respect to the total number of moles of lanthanum and gadolinium of the vapor deposition raw material in Example 1, and the molar ratio of gadolinium with respect to the total number of moles of lanthanum and gadolinium in an optical thin film. 実施例1における蒸着原料のランタンとガドリニウムの合計モル数に対するガドリニウムのモル比と、波長550nmおよび193nmの光に対する光学薄膜の屈折率との関係を示す図である。It is a figure which shows the relationship between the molar ratio of gadolinium with respect to the total number of moles of the lanthanum and gadolinium of the vapor deposition raw material in Example 1, and the refractive index of the optical thin film with respect to the light of wavelength 550nm and 193nm. 試料1で作製した光学薄膜(LaF単独成分)の断面および表面のSEM写真である。It is a SEM photograph of a cross section and the surface of the optical thin film prepared in Sample 1 (LaF 3 single component). 試料7で作製した光学薄膜(x=0.5)の断面および表面のSEM写真である。2 is a SEM photograph of a cross section and a surface of an optical thin film (x = 0.5) produced in Sample 7. (a)〜(d)は、それぞれ、試料3(x=0.05)、試料5(x=0.10)、試料6(x=0.30)および試料7(x=0.50)で作製した光学薄膜の断面のSEM写真である。(A) to (d) are Sample 3 (x = 0.05), Sample 5 (x = 0.10), Sample 6 (x = 0.30), and Sample 7 (x = 0.50), respectively. It is a SEM photograph of the section of the optical thin film produced by. 実施例1における蒸着原料のランタンとガドリニウムの合計モル数に対するガドリニウムのモル比と、光学薄膜表面の表面粗さとの関係を示す図である。It is a figure which shows the relationship between the molar ratio of the gadolinium with respect to the total number of moles of the lanthanum and gadolinium of the vapor deposition raw material in Example 1, and the surface roughness of the optical thin film surface. 実施例1における蒸着原料のランタンとガドリニウムの合計モル数に対するガドリニウムのモル比と、光学薄膜の膜密度との関係を示す図である。It is a figure which shows the relationship between the molar ratio of gadolinium with respect to the total number of moles of the lanthanum and gadolinium of the vapor deposition raw material in Example 1, and the film density of an optical thin film. 実施例1で作製した光学薄膜のX線回折パターンを示す図である。FIG. 4 is a diagram showing an X-ray diffraction pattern of an optical thin film produced in Example 1. 実施例2でシュミレーションした、波長190〜250nmの光に対する反射防止膜の反射率を示す図である。It is a figure which shows the reflectance of the anti-reflective film with respect to the light of wavelength 190-250 nm simulated in Example 2. FIG. 実施例3でシュミレーションした、波長190〜250nmの光に対する誘電体ミラーの反射率を示す図である。It is a figure which shows the reflectance of the dielectric mirror with respect to the light of wavelength 190-250 nm simulated in Example 3. FIG. 実施例4における露光装置の構成を示す概略図である。FIG. 10 is a schematic diagram showing a configuration of an exposure apparatus in Embodiment 4. 実施例4における露光装置を用いた露光工程を含む、半導体デバイスの製造方法を示すフローチャートである。10 is a flowchart showing a method for manufacturing a semiconductor device, including an exposure process using an exposure apparatus in Example 4. 実施例4における露光装置を用いた露光工程を含む、液晶表示素子の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of a liquid crystal display element including the exposure process using the exposure apparatus in Example 4. FIG.

つぎに、本発明の光学薄膜およびその製造方法について、実施例を挙げて詳細に説明する。   Next, the optical thin film of the present invention and the production method thereof will be described in detail with reference to examples.

[蒸着原料の作製]
蒸着原料の合成には、特開2009-51966号公報に記載される水熱合成法により生成したフッ化ランタン(LaF)およびフッ化ガドリニウム(GdF)の微結晶粒子を使用した。蒸着原料におけるランタン(La)とガドリニウム(Gd)の合計モル数に対するガドリニウム(Gd)のモル比(Gd/(La+Gd)、以下、適宜xと称する)が所定の値となるように、LaFおよびGdFの微結晶粒子を秤量して混合し、水に分散させた。得られた分散液を乾燥して粉末を取り出し、円柱状ペレットに成形して、冷間等方圧加圧法(CIP法)により50〜100MPaに加圧した。この成形体を温度800〜900℃に設定した電気炉において1時間加熱して高温焼結した。本焼結体を粉砕し、粉砕片をふるいによって大きさ1〜4mm程度に分級した。この粉砕片を蒸着原料として成膜に使用した。
[Preparation of deposition materials]
For the synthesis of the vapor deposition raw material, microcrystalline particles of lanthanum fluoride (LaF 3 ) and gadolinium fluoride (GdF 3 ) produced by a hydrothermal synthesis method described in JP-A-2009-51966 were used. LaF 3 and LaF 3 so that the molar ratio of gadolinium (Gd) to the total number of moles of lanthanum (La) and gadolinium (Gd) in the vapor deposition source (Gd / (La + Gd), hereinafter referred to as x as appropriate) is a predetermined value. GdF 3 microcrystalline particles were weighed and mixed and dispersed in water. The obtained dispersion was dried to take out the powder, molded into a cylindrical pellet, and pressurized to 50 to 100 MPa by a cold isostatic pressing method (CIP method). This molded body was heated for 1 hour in an electric furnace set at a temperature of 800 to 900 ° C. and sintered at a high temperature. The sintered body was pulverized, and the pulverized pieces were classified to about 1 to 4 mm by a sieve. This crushed piece was used as a deposition material for film formation.

[光学薄膜の形成]
光学薄膜の成膜は金属ボートを用いて抵抗加熱式の真空蒸着法により行った。基板は平行平板形状の石英ガラス(Φ30mm)を使用し、成膜前に十分な洗浄を行った。成膜中は、基板を赤外線ヒータにより約300℃に加熱しつつ蒸着をおこなった。この際、水晶振動子によって蒸着レートおよび膜厚をモニターしながら成膜した。蒸着レートは試料1〜6については5Å/s、試料7〜12については2Å/sとし、膜厚は約100nmとした。蒸着時の真空度は4.0×10−4Paとした。
[Formation of optical thin film]
The optical thin film was formed by resistance heating type vacuum evaporation using a metal boat. The substrate used was parallel plate-shaped quartz glass (Φ30 mm), and was thoroughly cleaned before film formation. During film formation, vapor deposition was performed while heating the substrate to about 300 ° C. by an infrared heater. At this time, the film was formed while monitoring the vapor deposition rate and the film thickness with a crystal resonator. The deposition rate was 5 Å / s for samples 1 to 6, 2 Å / s for samples 7 to 12, and the film thickness was about 100 nm. The degree of vacuum during the deposition was 4.0 × 10 −4 Pa.

試料1〜12において光学薄膜の形成に用いた蒸着原料のLaとGdのモル比を表1に示す。   Table 1 shows the molar ratios of La and Gd of the vapor deposition raw materials used for forming the optical thin film in Samples 1-12.

Figure 2011117044
Figure 2011117044

[蒸着原料と光学薄膜の組成比較]
エネルギー分散型蛍光X線(EDX)分析法により、試料1〜12の光学薄膜中のLaとGdの合計モル数に対するGdのモル比を測定した。蒸着原料中のGdモル比(横軸)と、その蒸着原料を用いて作製した光学薄膜中のGdモル比(縦軸)の関係を図1に示す。図1において、各試料の測定結果が傾き1の直線を示すことから、光学薄膜中のGdのモル比は、蒸着原料中のGdのモル比とほぼ一致することがわかる。
[Comparison of composition of deposition material and optical thin film]
The molar ratio of Gd to the total number of moles of La and Gd in the optical thin films of Samples 1 to 12 was measured by energy dispersive X-ray fluorescence (EDX) analysis. FIG. 1 shows the relationship between the Gd molar ratio (horizontal axis) in the vapor deposition material and the Gd molar ratio (vertical axis) in the optical thin film produced using the vapor deposition material. In FIG. 1, since the measurement result of each sample shows a straight line with a slope of 1, it can be seen that the molar ratio of Gd in the optical thin film substantially coincides with the molar ratio of Gd in the vapor deposition material.

この結果から、所望の組成比の混合物を蒸着原料として用いることにより、蒸着原料と同組成比の光学薄膜が得られることがわかった。本実施例のように、混合物を蒸着原料とすると、蒸着源を2つ用意して互いの蒸着レートを制御して同時多元成膜を行う必要がなく、簡便な手法で所望の組成の光学薄膜が得られる。   From this result, it was found that an optical thin film having the same composition ratio as that of the vapor deposition material can be obtained by using a mixture having a desired composition ratio as the vapor deposition material. As in this embodiment, when the mixture is used as an evaporation source, it is not necessary to prepare two evaporation sources and control each other's evaporation rate to perform simultaneous multi-element film formation, and an optical thin film having a desired composition by a simple method. Is obtained.

[薄膜の屈折率測定]
各光学薄膜の波長550nmおよび193nmにおける屈折率を測定した。屈折率は、各光学薄膜試料の分光透過率と反射率を測定し、その結果からForouhi−Bloomerモデルに基づいて算出した。LaとGdの合計モル数に対するGdのモル比xと、光学薄膜の屈折率の関係を図2に示す。更に比較のため、図2に下記(式1)により求められる、GdFおよびLaFの単成分からなる薄膜の屈折率をそれらのモル分率によって平均した平均屈折率、すなわち屈折率に加成性が成立する場合の予測値も直線として示す。
[Measurement of refractive index of thin film]
The refractive indexes at wavelengths of 550 nm and 193 nm of each optical thin film were measured. The refractive index was calculated based on the Forouhi-Bloomer model from the measured spectral transmittance and reflectance of each optical thin film sample. FIG. 2 shows the relationship between the molar ratio x of Gd to the total number of moles of La and Gd and the refractive index of the optical thin film. For further comparison, the refractive index of a thin film composed of a single component of GdF 3 and LaF 3 obtained by the following (formula 1) in FIG. 2 is added to the average refractive index, that is, the refractive index, averaged by their molar fractions. The predicted value when the sex is established is also shown as a straight line.

Figure 2011117044
ave:薄膜の平均屈折率
LaF3:LaF薄膜の屈折率
GdF3: GdF薄膜の屈折率
Figure 2011117044
n ave : Average refractive index of thin film n LaF3 : Refractive index of LaF 3 thin film n GdF3 : Refractive index of GdF 3 thin film

図2より、波長550nmおよび波長193nmにおける光学薄膜の屈折率は、Gdのモル比xの増加に伴い高くなり、Gdのモル比xが0.5付近で最大となることがわかる。波長550nmにおける屈折率は、Gdのモル比xが0.1を超え0.8までの範囲で、平均屈折率より高い屈折率を示した。また、この範囲の波長550nmにおける屈折率は、LaF薄膜の屈折率およびGdF薄膜の屈折率より高い値を示す。また、波長193nmにおける屈折率は、Gdのモル比xが0.01〜0.95の範囲で、平均屈折率より高い屈折率を示し、更に、LaF薄膜の屈折率およびGdF薄膜の屈折率と同等以上の屈折率であった。以上から、LaF−GdF系薄膜は、少なくともGdのモル比xが0.01〜0.95の範囲において、波長200nm以下の光学薄膜に用いる高屈折材料として、従来の高屈折率材料よりも高い屈折率を有することが分かる。 FIG. 2 shows that the refractive index of the optical thin film at the wavelength of 550 nm and the wavelength of 193 nm increases with an increase in the molar ratio x of Gd, and becomes maximum when the molar ratio x of Gd is around 0.5. The refractive index at a wavelength of 550 nm showed a refractive index higher than the average refractive index in the range where the molar ratio x of Gd exceeded 0.1 and reached 0.8. Further, the refractive index at a wavelength of 550 nm in this range is higher than the refractive index of the LaF 3 thin film and the refractive index of the GdF 3 thin film. The refractive index at a wavelength of 193 nm is higher than the average refractive index when the molar ratio x of Gd is in the range of 0.01 to 0.95. Further, the refractive index of the LaF 3 thin film and the refractive index of the GdF 3 thin film are shown. The refractive index was equal to or higher than the refractive index. From the above, LaF 3 GDF8 3 based thin film, the range of the molar ratio x of at least Gd is 0.01 to 0.95, as a high refractive index material used for the following optical thin wavelength 200 nm, than conventional high refractive index material It can be seen that it has a high refractive index.

[薄膜の表面および断面の観察]
各薄膜試料の表面および断面の観察を高分解能走査電子顕微鏡(SEM)を用いて行った。試料1(x=0)および試料7(x=0.5)の表面および断面のSEM写真を図3および図4にそれぞれ示す。また、試料3(x=0.05)、試料5(x=0.1)、試料6(x=0.3)および試料7(x=0.5)の断面のSEM写真を図5(a)〜(d)にそれぞれ示す。
[Observation of thin film surface and cross section]
Observation of the surface and cross section of each thin film sample was performed using a high-resolution scanning electron microscope (SEM). The SEM photographs of the surface and cross section of Sample 1 (x = 0) and Sample 7 (x = 0.5) are shown in FIGS. 3 and 4, respectively. Further, SEM photographs of cross sections of Sample 3 (x = 0.05), Sample 5 (x = 0.1), Sample 6 (x = 0.3), and Sample 7 (x = 0.5) are shown in FIG. Shown in a) to (d), respectively.

図3に示すように、Gdのモル比xが0、つまりGdFを含まないLaF単独成分の光学薄膜は、おおよそ60nm程度の大きさをもつ結晶状の突起が密集していた。これに対し、図4に示す、Gdのモル比xが0.5の光学薄膜は、密集する突起部が細かくなり(約2〜30nm)、粒子の境界が不明瞭でいくつかの柱同士が融合していた。更に、Gdのモル比xが0.5の光学薄膜は、薄膜内部の構造の変化に伴い、LaF単独成分の薄膜と比較して、光学薄膜の表面の粗さが小さくなっていることが観察できた。 As shown in FIG. 3, in the optical thin film of LaF 3 single component having a Gd molar ratio x of 0, that is, not containing GdF 3 , crystalline protrusions having a size of about 60 nm are densely packed. On the other hand, in the optical thin film having a Gd molar ratio x of 0.5 shown in FIG. 4, the dense protrusions are fine (about 2 to 30 nm), the boundaries of the particles are unclear, and some columns are It was fused. Furthermore, the optical thin film having a molar ratio x of Gd of 0.5 has a smaller surface roughness of the optical thin film than the thin film of LaF 3 single component due to the change in the structure inside the thin film. I was able to observe.

図5に示すように、Gdのモル比xが大きくなるにしたがって柱状結晶間の境界が不明瞭となり、Gdのモル比が0.3以上では明確な柱状構造が観察できなくなり、薄膜内部の微細構造に変化が生じることがわかった。以上の観察結果から、少なくともガドリニウムのモル比xが0.3以上の薄膜では、柱状結晶と柱状結晶の間隙が減少し、薄膜が高密度化していることがわかる。   As shown in FIG. 5, the boundary between the columnar crystals becomes unclear as the molar ratio x of Gd increases, and when the molar ratio of Gd is 0.3 or more, a clear columnar structure cannot be observed, and the fine structure inside the thin film cannot be observed. It was found that the structure changed. From the above observation results, it can be seen that the gap between the columnar crystals is reduced and the thin film is densified in at least a thin film having a gadolinium molar ratio x of 0.3 or more.

図2において、LaF−GdF系薄膜の屈折率が平均屈折率より高くなる理由は、図3〜5のSEM写真が示すように、LaとGdが共存する薄膜ではLaF単一相の薄膜にみられる柱状結晶が微細化または消滅し、膜が緻密化して空隙が減少するなど、膜構造の変化が生じるためと考えられる。 2, why LaF 3 GDF8 3 system refractive index of the thin film is higher than the average refractive index, as indicated by the SEM photograph of FIG. 3-5, the films La and Gd coexist of LaF 3 single phase This is presumably because the columnar crystals found in the thin film become finer or disappear, and the film structure changes, such as the film becoming dense and voids decreasing.

[薄膜の表面粗さ測定]
次に、各薄膜試料の表面粗さを走査プローブ顕微鏡(SPM)により測定した。測定領域は1μm×1μmとした。LaとGdの合計モル数に対するGdのモル比xと、表面粗さ(Ra)との関係を図6に示す。
[Surface roughness measurement of thin film]
Next, the surface roughness of each thin film sample was measured with a scanning probe microscope (SPM). The measurement area was 1 μm × 1 μm. FIG. 6 shows the relationship between the molar ratio x of Gd to the total number of moles of La and Gd and the surface roughness (Ra).

図6に示すように、まず、Gdのモル比xが増加すると表面粗さRaは低下し、さらにxが増加すると表面粗さRaは増加に転じる。Gdのモル比xが0.7ではLaF単独成分の薄膜(x=0)と同等であり、更に、Gdのモル比xの増加に伴いRaは増加する。 As shown in FIG. 6, first, when the molar ratio x of Gd increases, the surface roughness Ra decreases, and when x further increases, the surface roughness Ra starts to increase. When the molar ratio x of Gd is 0.7, it is equivalent to a thin film of LaF 3 single component (x = 0), and Ra increases as the molar ratio x of Gd increases.

図6から、Gdのモル比xが、少なくとも0.7までの範囲の薄膜の表面粗さxは、LaF単独成分の薄膜およびGdF単独成分の薄膜の表面粗さの同等以下であることがわかる。更に、ガドリニウムのモル比xが0.1から0.5の範囲では、表面粗さは約1nmであり、GdF単独成分の薄膜(x=100)の表面粗さに対して約70%、LaF単独成分の薄膜(x=0)の表面粗さに対して約35%、表面粗さが減少している。 From FIG. 6, the surface roughness x of the thin film in which the molar ratio x of Gd is at least 0.7 is equal to or less than the surface roughness of the thin film of LaF 3 single component and the thin film of GdF 3 single component. I understand. Furthermore, when the molar ratio x of gadolinium is in the range of 0.1 to 0.5, the surface roughness is about 1 nm, about 70% with respect to the surface roughness of the thin film of GdF 3 single component (x = 100), The surface roughness is reduced by about 35% with respect to the surface roughness of the LaF 3 single component thin film (x = 0).

このように、LaF−GdF系薄膜の表面粗さが小さくなる理由は、図3〜5のSEM写真が示すように、LaとGdの共存によってLaFの薄膜にみられる柱状結晶が微細化または消滅し、膜が緻密化して空隙が減少するなど、膜構造の変化が生じるためと考えられる。LaF単独成分の薄膜と比較して、Gdのモル比xが0.5の薄膜の表面の粗さが小さくなっているという薄膜表面観察の結果(図3および4のSEM写真)は、図6に示す表面粗さの測定結果と一致する。 As described above, the reason why the surface roughness of the LaF 3 -GdF 3 thin film is small is that the columnar crystals found in the LaF 3 thin film are fine due to the coexistence of La and Gd, as shown in the SEM photographs of FIGS. This is thought to be due to a change in the film structure, such as the formation or disappearance of the film, the film becoming dense, and the voids are reduced. The thin film surface observation results (SEM photographs of FIGS. 3 and 4) show that the surface roughness of the thin film having a Gd molar ratio x of 0.5 is smaller than that of the LaF 3 single component thin film. This agrees with the surface roughness measurement results shown in FIG.

[膜密度]
次に、各薄膜の膜密度をX線反射率法(XRR)を用いて測定した。LaとGdの合計モル数に対するGdのモル比xと、膜密度との関係を図7に示す。更に比較のため、図7に下記(式2)により求められる、GdFおよびLaFの単成分からなる薄膜の膜密度をそれらのモル分率によって平均した平均膜密度、すなわち膜密度の予測値も直線として示す。
[Film density]
Next, the film density of each thin film was measured using the X-ray reflectivity method (XRR). FIG. 7 shows the relationship between the molar ratio x of Gd to the total number of moles of La and Gd and the film density. For further comparison, the average film density obtained by averaging the film densities of thin films composed of a single component of GdF 3 and LaF 3 by their molar fraction, that is, the predicted value of the film density, which is obtained by the following (Formula 2) in FIG. Is also shown as a straight line.

Figure 2011117044
ρave :薄膜の平均膜密度
ρLaF3:LaF薄膜の膜密度
ρGdF3: GdF薄膜の膜密度
Figure 2011117044
[rho ave: average of the thin film density ρ LaF3: LaF 3 thin film density ρ GdF3: GdF 3 thin film density

図7より、膜密度は、蒸着原料中のGdのモル比xの増加に伴い高くなり、ピークを迎え、それ以降は、Gdのモル比xの増加に伴い低下することがわかる。また、GdとLaを混合した全ての範囲において、各薄膜の膜密度は、理論膜密度よりも高い。Gdモル比xが0.7の薄膜では、理論膜密度に対して約5%高密度化した。   FIG. 7 shows that the film density increases as the molar ratio x of Gd in the vapor deposition material increases, reaches a peak, and thereafter decreases as the molar ratio x of Gd increases. In addition, in all ranges where Gd and La are mixed, the film density of each thin film is higher than the theoretical film density. The thin film having a Gd molar ratio x of 0.7 was densified by about 5% of the theoretical film density.

図7において、LaF−GdF系薄膜の膜密度が平均膜密度より高くなる理由は、図3〜5のSEM写真が示すように、LaとGdの共存によってLaF単独成分の薄膜にみられる柱状結晶が微細化または消滅し、膜が緻密化して空隙が減少するなど、膜構造の変化が生じるためと考えられる。 In FIG. 7, the reason why the film density of the LaF 3 -GdF 3 series thin film is higher than the average film density is that the LaF 3 single component thin film is formed by the coexistence of La and Gd as shown in the SEM photographs of FIGS. This is presumably because the columnar crystal is made finer or disappears, the film is densified, and voids are reduced.

以上の評価結果から、以下のことがわかる。図2から、LaF−GdF系薄膜は、高屈折材料として用いられるLaF単独成分の薄膜およびGdF単独成分の薄膜と同等以上の高屈折の薄膜であることがわかる。高屈折率の薄膜の使用条件を考慮すると、高屈折率であるという他に、膜密度が高く、表面粗さが小さい薄膜であることが好ましい。図6から、表面粗さを低減するためには、蒸着原料中のGdのモル比xが0.01〜0.7であることが好ましく、更に、0.1〜0.5が特に好ましい。図3〜5に示す薄膜の断面観察および図7に示す薄膜の密度測定結果から、明確に薄膜の結晶構造が変化して膜密度を向上させるには、少なくともGdのモル比xが0.3以上が好ましい。以上を総合的に勘案すると、高屈折率材料として用いる光学薄膜は、LaとGdの合計モル数に対するGdのモル比xの下限は、0.01以上であることが好ましく、0.1以上であることがより好ましく、0.3以上であることが更に好ましい。また、LaとGdの合計モル数に対するGdのモル比xの上限は、0.95以下であることが好ましく、0.7以下であることがより好ましく、0.5以下であることが更に好ましい。 From the above evaluation results, the following can be understood. From Figure 2, LaF 3 GDF8 3 based thin film, it can be seen that a LaF 3 single component of the thin film and GdF 3 single component thin film and a high refractive thin films or equivalent to be used as a high refractive material. Considering the use conditions of the thin film having a high refractive index, it is preferable that the thin film has a high film density and a small surface roughness in addition to the high refractive index. From FIG. 6, in order to reduce the surface roughness, the molar ratio x of Gd in the vapor deposition raw material is preferably 0.01 to 0.7, and more preferably 0.1 to 0.5. From the cross-sectional observation of the thin film shown in FIGS. 3 to 5 and the density measurement result of the thin film shown in FIG. 7, in order to improve the film density by clearly changing the crystal structure of the thin film, at least the molar ratio x of Gd is 0.3. The above is preferable. Considering the above comprehensively, in the optical thin film used as the high refractive index material, the lower limit of the molar ratio x of Gd to the total number of moles of La and Gd is preferably 0.01 or more, more preferably 0.1 or more. More preferably, it is more preferably 0.3 or more. Further, the upper limit of the molar ratio x of Gd to the total number of moles of La and Gd is preferably 0.95 or less, more preferably 0.7 or less, and even more preferably 0.5 or less. .

本実施例の光学薄膜は、緻密な構造をとるので空気中の水分や酸素などによる酸化・水酸化が抑制され、長期間に渡って安定した光学性能を維持することができる。また、フッ化物からなる高密度かつ高屈折率の薄膜でありながら、フッ素系ガスの安全対策や、特別なイオンビーム照射装置等を必要とせず、従来の真空蒸着装置を用いて容易に製造することができるという特徴を有するものである。   Since the optical thin film of this example has a dense structure, oxidation and hydroxylation due to moisture and oxygen in the air are suppressed, and stable optical performance can be maintained over a long period of time. In addition, although it is a high-density and high-refractive-index thin film made of fluoride, it does not require a fluorine-based gas safety measure or special ion beam irradiation device, and is easily manufactured using a conventional vacuum vapor deposition device. It has the feature that it can be.

[X線回折]
次に、実施例1において作製した各光学薄膜の結晶構造を解析するために、各光学薄膜のX線回折(XRD)を測定した。図8に、横軸を面間隔dとしたXRDの測定結果を示す。
[X-ray diffraction]
Next, in order to analyze the crystal structure of each optical thin film produced in Example 1, X-ray diffraction (XRD) of each optical thin film was measured. FIG. 8 shows the XRD measurement results with the horizontal axis as the surface interval d.

図8において、●印のピークはLaF結晶に帰属されるピーク、×印のピークは、GdF結晶に帰属されるピークを示す。Gdのモル比xが、0〜0.7までの薄膜では、主なピークはLaF結晶のXRDパターンに帰属できる。更に、Gdのモル比xが増加した、Gdのモル比xが0.8の薄膜では、LaF結晶のピークに加えて、GdF結晶のピークもみられる。Gdのモル比xが0.9〜1.0の薄膜では、主なピークはGdF結晶のXRDパターンに帰属できる。また、Gdのモル比xが0〜0.7までの薄膜では、Gdのモル比xの増加に伴い、LaFの(002)面の面間隔dが徐々に小さくなっている。 In FIG. 8, the peak marked with ● represents the peak attributed to the LaF 3 crystal, and the peak marked with x represents the peak attributed to the GdF 3 crystal. In a thin film having a molar ratio x of Gd of 0 to 0.7, the main peak can be attributed to the XRD pattern of the LaF 3 crystal. Further, in the thin film having the Gd molar ratio x increased and the Gd molar ratio x 0.8, a peak of the GdF 3 crystal is observed in addition to the peak of the LaF 3 crystal. In a thin film having a Gd molar ratio x of 0.9 to 1.0, the main peak can be attributed to the XRD pattern of the GdF 3 crystal. Further, in a thin film having a Gd molar ratio x of 0 to 0.7, the interplanar spacing d of the (002) plane of LaF 3 gradually decreases as the Gd molar ratio x increases.

以上の結果から、Gdのモル比xが0.7以下のLaF−GdF系薄膜は、LaF結晶のLaサイトにGdが固溶した(La、Gd)F固溶体であるといえる。この範囲の薄膜はLaF型の結晶構造をとっているが、GdがLaを置換する形で固溶しているため結晶構造が歪み、(002)面の面間隔dが徐々に小さくなったと考える。この結晶構造の歪みが、図3〜5のSEM写真が示す、柱状結晶の微細化、膜の緻密化等の膜構造の変化の原因と考えられる。光学薄膜中のLaとGdの合計モル数に対するGdのモル比が0.3〜0.7の光学薄膜は、(La、Gd)F固溶体であり、そのため、屈折率および膜密度が高く、表面粗さが小さいと考える。 From the above results, it can be said that the LaF 3 -GdF 3 -based thin film having a Gd molar ratio x of 0.7 or less is a (La, Gd) F 3 solid solution in which Gd is solid-solved at the La site of the LaF 3 crystal. The thin film in this range has a LaF 3 type crystal structure. However, since Gd is dissolved in a form of replacing La, the crystal structure is distorted, and the interplanar spacing d of the (002) plane gradually decreases. Think. This distortion of the crystal structure is considered to be the cause of changes in the film structure such as columnar crystal miniaturization and film densification shown in the SEM photographs of FIGS. An optical thin film in which the molar ratio of Gd to the total number of moles of La and Gd in the optical thin film is 0.3 to 0.7 is a (La, Gd) F 3 solid solution, and thus has a high refractive index and film density. The surface roughness is considered small.

実施例1で作製した薄膜(x=0.5)を用いた多層膜からなる反射防止膜を想定し、その光学特性についてシミュレーションを行った。基板、反射防止膜各層の材料および膜厚を表2に示す。ここで、λは設計中心波長であり、193.4nmとした。光学膜厚(屈折率n×膜厚d)は、中心波長λに対する比で示した。実施例1で作製した薄膜は、第2層および第4層に用いた。尚、媒体は空気とした。 Assuming an antireflection film composed of a multilayer film using the thin film (x = 0.5) produced in Example 1, simulation was performed on its optical characteristics. Table 2 shows the material and film thickness of each layer of the substrate and the antireflection film. Here, λ 0 is the design center wavelength, which is 193.4 nm. The optical film thickness (refractive index n × film thickness d) is shown as a ratio to the center wavelength λ 0 . The thin film produced in Example 1 was used for the second layer and the fourth layer. The medium was air.

Figure 2011117044
Figure 2011117044

反射防止膜の光学特性として、波長190〜250nmにおける反射率を計算し、図9にその結果を示す。本実施例の反射防止膜の反射率は、中心波長λ(193.4nm)で0.002%以下であり、反射防止性能を有している。 As an optical characteristic of the antireflection film, the reflectance at a wavelength of 190 to 250 nm is calculated, and the result is shown in FIG. The reflectance of the antireflection film of this example is 0.002% or less at the center wavelength λ 0 (193.4 nm), and has antireflection performance.

実施例1で作製した光学薄膜は緻密で膜密度が高い。したがって、本実施例の反射防止膜は、曲率の大きなレンズ表面へ形成しても、レンズ周辺部において発生する、膜密度の低下に起因する特性の悪化が軽減される。   The optical thin film produced in Example 1 is dense and has a high film density. Therefore, even if the antireflection film of this embodiment is formed on the lens surface having a large curvature, the deterioration of the characteristics due to the decrease in the film density, which occurs in the periphery of the lens, is reduced.

実施例1で作製した光学薄膜(x=0.5)を用いた多層膜ミラー(レーザミラー)を想定し、その光学特性についてシミュレーションを行った。基板は石英ガラスとし、その上に高屈折率材料および低屈折率材料を交互に積層することを20回繰り返した構造を想定した。高屈折率材料および低屈折率材料は、それぞれ、実施例2で作製した光学薄膜(x=0.5)およびフッ化マグネシウムとした。設計中心波長λは193.4nmとし、いずれの光学膜厚(屈折率n×膜厚d)も中心波長λの1/4とした。また、媒質は空気とした。 A multilayer mirror (laser mirror) using the optical thin film (x = 0.5) produced in Example 1 was assumed, and simulation was performed on its optical characteristics. The substrate was made of quartz glass, and a structure was assumed in which high refractive index materials and low refractive index materials were alternately laminated thereon 20 times. The high refractive index material and the low refractive index material were the optical thin film (x = 0.5) and magnesium fluoride prepared in Example 2, respectively. The design center wavelength λ 0 was 193.4 nm, and any optical film thickness (refractive index n × film thickness d) was ¼ of the center wavelength λ 0 . The medium was air.

多層膜ミラーの光学特性として、波長190〜250nmにおける反射率を計算し、図10にその結果を示す。本実施例の多層膜ミラーの反射率は、中心波長λ(193.4nm)で98%以上の高い反射率を示す。 As the optical characteristics of the multilayer mirror, the reflectance at a wavelength of 190 to 250 nm is calculated, and the result is shown in FIG. The reflectivity of the multilayer mirror of this example shows a high reflectivity of 98% or more at the center wavelength λ 0 (193.4 nm).

実施例2で作製した光学薄膜は緻密で表面粗さが小さい。したがって、本実施例のように数十層からなる多層膜ミラーを構成した場合でも、従来の光学薄膜を用いたものより表面の凹凸が抑制され、散乱損失が低減される。   The optical thin film produced in Example 2 is dense and has a small surface roughness. Therefore, even when a multilayer mirror composed of several tens of layers is configured as in this embodiment, surface irregularities are suppressed and scattering loss is reduced as compared with the conventional optical thin film.

次に、実施例2の反射防止膜が形成された光学レンズおよび実施例3の多層膜ミラーを用いた露光装置および露光方法を含むデバイスの製造方法について説明する。   Next, a device manufacturing method including an exposure apparatus and an exposure method using the optical lens on which the antireflection film of Example 2 is formed and the multilayer mirror of Example 3 will be described.

[露光装置]
図11に示すように、露光装置100は、主に光源1、照明光学系IL、レチクルRを保持するレチクルステージRS、投影光学系PLおよびウェハWを保持するウェハステージWSを備える。図11には、投影光学系PLの基準光軸AXを示す。図11において、投影光学系PLの基準光軸AXに平行にZ軸を、基準光軸AXに垂直な面内において図11の紙面に平行にY軸を、図11の紙面に垂直にX軸をそれぞれ設定している。
[Exposure equipment]
As shown in FIG. 11, the exposure apparatus 100 mainly includes a light source 1, an illumination optical system IL, a reticle stage RS that holds a reticle R, a projection optical system PL, and a wafer stage WS that holds a wafer W. FIG. 11 shows the reference optical axis AX of the projection optical system PL. In FIG. 11, the Z axis is parallel to the reference optical axis AX of the projection optical system PL, the Y axis is parallel to the paper surface of FIG. 11 in the plane perpendicular to the reference optical axis AX, and the X axis is perpendicular to the paper surface of FIG. Are set respectively.

光源1は、紫外領域の照明光を供給するArFエキシマレーザ光源を備えている。光源1から射出された光は、照明光学系ILを介して、所定のパターンが形成されたレチクルRを重畳的に照明する。なお、光源1と照明光学系ILとの間の光路はケーシング(不図示)で密封されており、光源1から照明光学系IL中の最もレチクル側の光学部材までの空間は、露光光の吸収率が低い気体であるヘリウムガスや窒素などの不活性ガスで置換されているか、あるいはほぼ真空状態に保持されている。   The light source 1 includes an ArF excimer laser light source that supplies illumination light in the ultraviolet region. The light emitted from the light source 1 illuminates the reticle R on which a predetermined pattern is formed in a superimposed manner via the illumination optical system IL. The optical path between the light source 1 and the illumination optical system IL is sealed with a casing (not shown), and the space from the light source 1 to the optical member closest to the reticle in the illumination optical system IL absorbs exposure light. It is replaced with an inert gas such as helium gas or nitrogen, which is a low-rate gas, or is kept in a substantially vacuum state.

レチクルRは、レチクルホルダRHを介して、レチクルステージRS上においてXY平面に平行に保持されている。レチクルRには転写すべきパターンが形成されており、パターン領域全体のうちX方向に沿って長辺を有し且つY方向に沿って短辺を有する矩形状(スリット状)のパターン領域が照明される。レチクルステージRSは、図示を省略した駆動系の作用により、レチクル面(すなわちXY平面)に沿って二次元的に移動可能であり、その位置座標はレチクル移動鏡RMを用いた干渉計RIFによって計測され且つ位置制御されるように構成されている。   The reticle R is held parallel to the XY plane on the reticle stage RS via the reticle holder RH. A pattern to be transferred is formed on the reticle R, and a rectangular (slit-like) pattern region having a long side along the X direction and a short side along the Y direction is illuminated in the entire pattern region. Is done. Reticle stage RS can be moved two-dimensionally along the reticle plane (ie, XY plane) by the action of a drive system (not shown), and its position coordinates are measured by interferometer RIF using reticle moving mirror RM. And the position is controlled.

レチクルRに形成されたパターンからの光は、投影光学系PLを介して、感光性基板であるウェハW上にレチクルパターン像を形成する。ウェハWは、ウェハホルダテーブルWTを介して、ウェハステージWS上においてXY平面に平行に保持されている。そして、レチクルR上での矩形状の照明領域に光学的に対応するように、ウェハW上ではX方向に沿って長辺を有し且つY方向に沿って短辺を有する矩形状の露光領域にパターン像が形成される。ウェハステージWSは、図示を省略した駆動系の作用によりウェハ面(すなわちXY平面)に沿って二次元的に移動可能であり、その位置座標はウェハ移動鏡WMを用いた干渉計WIFによって計測され且つ位置制御されるように構成されている。   Light from the pattern formed on the reticle R forms a reticle pattern image on the wafer W, which is a photosensitive substrate, via the projection optical system PL. The wafer W is held parallel to the XY plane on the wafer stage WS via the wafer holder table WT. A rectangular exposure area having a long side along the X direction and a short side along the Y direction on the wafer W so as to optically correspond to the rectangular illumination area on the reticle R. A pattern image is formed. The wafer stage WS can be moved two-dimensionally along the wafer surface (that is, the XY plane) by the action of a drive system (not shown), and its position coordinates are measured by an interferometer WIF using a wafer moving mirror WM. In addition, the position is controlled.

本実施例の照明光学系ILは、光源1からの露光光を反射させる複数のミラーからなるミラー光学系2を備える。ミラー光学系2には、実施例3の多層膜ミラーを用いる。また、本実施例の投影光学系PLは、複数のレンズからなるレンズ光学系3を備える。レンズ光学系3のレンズの表面には、実施例2の反射防止膜が形成されている。   The illumination optical system IL of this embodiment includes a mirror optical system 2 composed of a plurality of mirrors that reflect the exposure light from the light source 1. For the mirror optical system 2, the multilayer mirror of Example 3 is used. Further, the projection optical system PL of the present embodiment includes a lens optical system 3 composed of a plurality of lenses. The antireflection film of Example 2 is formed on the surface of the lens of the lens optical system 3.

本実施例の露光装置を構成する光学系は、実施例2の反射防止膜及び実施例3の多層膜ミラーを備えているので、従来の光学系よりも反射損失及び散乱損失が低減され、耐久性に優れたものになっている。したがって本実施例の露光装置は従来の露光装置よりもスループットが高く、長期間安定して稼動させることができるという特徴を有する。   Since the optical system constituting the exposure apparatus of this embodiment includes the antireflection film of Embodiment 2 and the multilayer mirror of Embodiment 3, the reflection loss and the scattering loss are reduced as compared with the conventional optical system, and durability is improved. It is excellent in nature. Therefore, the exposure apparatus of this embodiment has a feature that it has a higher throughput than the conventional exposure apparatus and can be operated stably for a long period of time.

[露光方法を含むデバイスの製造方法]
上述の露光装置100は、光源1および照明光学系ILによってマスク(レチクルR)を照明し(照明工程)、投影光学系PLを用いてマスクに形成された転写用のパターンを感光性基板(ウェハW)に露光する(露光工程)ことができる。露光した基板を現像し、加工及び組み立てることにより、マイクロデバイス(半導体素子、撮像素子、液晶表示素子、薄膜磁気ヘッド等)を製造することができる。
[Device Manufacturing Method Including Exposure Method]
The above-described exposure apparatus 100 illuminates a mask (reticle R) with the light source 1 and the illumination optical system IL (illumination process), and transfers a transfer pattern formed on the mask using the projection optical system PL to a photosensitive substrate (wafer). W) can be exposed (exposure process). By developing, processing and assembling the exposed substrate, a microdevice (semiconductor element, imaging element, liquid crystal display element, thin film magnetic head, etc.) can be manufactured.

以下、本実施形態の露光装置100を用いてウェハWに所定の回路パターンを露光する工程を含む、マイクロデバイスとしての半導体デバイスを製造する方法を図12のフローチャートを参照して説明する。   Hereinafter, a method of manufacturing a semiconductor device as a micro device including the step of exposing a predetermined circuit pattern onto the wafer W using the exposure apparatus 100 of the present embodiment will be described with reference to the flowchart of FIG.

先ず、図12のステップ1において、ウェハ上に金属膜を蒸着する。次のステップ2において、そのウェハ上の金属膜上にフォトレジストを塗布する。その後、ステップ3において、図11に示す露光装置100を用いて、マスク上のパターンの像をその投影光学系を介して、ウェハ上の各ショット領域に順次露光転写する。その後、ステップ4において、ウェハ上のフォトレジストの現像が行われた後、ステップ5において、ウェハ上でレジストパターンをマスクとしてエッチングを行う。これにより、マスク上のパターンに対応する回路パターンが、各ウェハ上の各ショット領域に形成される。その後、更に上のレイヤの回路パターンの形成等を行うことによって、半導体素子等のデバイスを製造する。   First, in step 1 of FIG. 12, a metal film is deposited on the wafer. In the next step 2, a photoresist is applied on the metal film on the wafer. Thereafter, in step 3, the exposure apparatus 100 shown in FIG. 11 is used to sequentially expose and transfer the pattern image on the mask to each shot area on the wafer via the projection optical system. Then, after developing the photoresist on the wafer in step 4, etching is performed on the wafer using the resist pattern as a mask in step 5. Thereby, a circuit pattern corresponding to the pattern on the mask is formed in each shot area on each wafer. Thereafter, devices such as semiconductor elements are manufactured by forming a circuit pattern of an upper layer.

なお、ステップ1〜ステップ3では、ウェハ上に金属を蒸着し、その金属膜上にレジストを塗布、そして露光、現像、エッチングの各工程を行っているが、これらの工程に先立って、ウェハ上にシリコンの酸化膜を形成後、そのシリコンの酸化膜上にレジストを塗布、そして露光、現像、エッチング等の各工程を行ってもよい。   In steps 1 to 3, a metal is vapor-deposited on the wafer, a resist is applied on the metal film, and exposure, development, and etching processes are performed. Prior to these processes, on the wafer. After forming a silicon oxide film, a resist may be applied on the silicon oxide film, and the steps such as exposure, development, and etching may be performed.

更に、本実施形態の露光装置100を用いて、プレート(ガラス基板)上に所定のパターン(回路パターン、電極パターン等)を形成することによって、マイクロデバイスとしての液晶表示素子を製造することもできる。以下、図13のフローチャートを参照して説明する。図13において、パターン形成工程(ステップ11)では、本実施形態の露光装置100を用いてマスクのパターンを感光性基板(レジストが塗布されたガラス基板等)に転写露光する、所謂光リソグラフィ工程が実行される。この光リソグラフィ工程によって、感光性基板上には複数の電極等を含む所定パターンが形成される。その後、露光された基板は、現像工程、エッチング工程、レジスト剥離工程等の各工程を経ることによって、基板上に所定のパターンが形成され、次のカラーフィルター形成工程(ステップ12)へ移行する。   Furthermore, a liquid crystal display element as a micro device can be manufactured by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate) using the exposure apparatus 100 of the present embodiment. . Hereinafter, a description will be given with reference to the flowchart of FIG. In FIG. 13, the pattern forming process (step 11) is a so-called photolithography process in which the exposure pattern 100 of the present embodiment is used to transfer and expose a mask pattern onto a photosensitive substrate (such as a glass substrate coated with a resist). Executed. By this photolithography process, a predetermined pattern including a plurality of electrodes and the like is formed on the photosensitive substrate. Thereafter, the exposed substrate is subjected to processes such as a developing process, an etching process, and a resist stripping process, whereby a predetermined pattern is formed on the substrate, and the process proceeds to the next color filter forming process (step 12).

カラーフィルター形成工程(ステップ12)では、R(Red)、G(Green)、B(Blue)に対応した3つのドットの組がマトリックス状に複数配列されたり、またはR、G、Bの3本のストライプのフィルターの組を複数水平走査線方向に配列されたりしたカラーフィルターを形成する。そして、カラーフィルター形成工程(ステップ12)の後に、セル組み立て工程(ステップ13)が実行される。セル組み立て工程(ステップ13)では、パターン形成工程にて得られた所定パターンを有する基板、およびカラーフィルター形成工程にて得られたカラーフィルター等を用いて液晶パネル(液晶セル)を組み立てる。セル組み立て工程では、例えば、パターン形成工程にて得られた所定パターンを有する基板とカラーフィルター形成工程にて得られたカラーフィルターとの間に液晶を注入して、液晶パネル(液晶セル)を製造する。   In the color filter forming step (step 12), a plurality of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix or three of R, G, and B A color filter is formed by arranging a plurality of stripe filter sets in the horizontal scanning line direction. Then, after the color filter forming step (step 12), a cell assembling step (step 13) is executed. In the cell assembly process (step 13), a liquid crystal panel (liquid crystal cell) is assembled using the substrate having a predetermined pattern obtained in the pattern formation process, the color filter obtained in the color filter formation process, and the like. In the cell assembly process, for example, liquid crystal is injected between the substrate having the predetermined pattern obtained in the pattern formation process and the color filter obtained in the color filter formation process to manufacture a liquid crystal panel (liquid crystal cell). To do.

その後、モジュール組み立て工程(ステップ14)にて、組み立てられた液晶パネル(液晶セル)の表示動作を行わせる電気回路、バックライト等の各部品を取り付けて液晶表示素子として完成させる。   Thereafter, in the module assembling step (step 14), components such as an electric circuit and a backlight for performing a display operation of the assembled liquid crystal panel (liquid crystal cell) are attached to complete a liquid crystal display element.

なお、本実施例では、マスクおよび基板を投影光学系に対して相対移動させながら基板の各露光領域に対してマスクパターンをスキャン露光するステップ・アンド・スキャン方式の露光装置を用いた例である。しかしながら、これに限定されることなく、マスクと基板とを静止させた状態でマスクのパターンを基板へ一括的に転写し、基板を順次ステップ移動させて各露光領域にマスクパターンを逐次露光するステップ・アンド・リピート方式の露光装置を用いることができる。また、本実施例では、実施例2の反射防止膜が形成された光学レンズおよび実施例3の多層膜ミラーを含む露光装置を用いた例を説明したが、本発明の態様の光学薄膜を有する光学部品が、光学レンズまたは多層膜ミラーの一方のみである露光装置を用いることもできる。   In this embodiment, a step-and-scan type exposure apparatus that scans and exposes a mask pattern to each exposure region of the substrate while moving the mask and the substrate relative to the projection optical system is used. . However, the present invention is not limited to this, and the mask pattern is collectively transferred to the substrate while the mask and the substrate are stationary, and the mask pattern is sequentially exposed to each exposure region by sequentially moving the substrate stepwise. An AND / REPEAT type exposure apparatus can be used. Further, in this embodiment, the example using the exposure apparatus including the optical lens on which the antireflection film of Embodiment 2 is formed and the multilayer mirror of Embodiment 3 is described, but the optical thin film according to the embodiment of the present invention is provided. An exposure apparatus in which the optical component is only one of an optical lens or a multilayer mirror can also be used.

100 露光装置
1 光源
2 ミラー光学系
3 レンズ光学系
IL 照明光学系
R レチクル
RS レチクルステージ
PL 投影光学系
W ウェハ
WS ウェハステージ
AX 基準光軸
RH レチクルホルダ
RS レチクルステージ
RM レチクル移動鏡
RIF 干渉計
WT ウェハホルダテーブル
WM ウェハ移動鏡
WIF 干渉計
DESCRIPTION OF SYMBOLS 100 Exposure apparatus 1 Light source 2 Mirror optical system 3 Lens optical system IL Illumination optical system R Reticle RS Reticle stage PL Projection optical system W Wafer WS Wafer stage AX Reference optical axis RH Reticle holder RS Reticle stage RM Reticle moving mirror RIF Interferometer WT Wafer Holder table WM Wafer moving mirror WIF interferometer

Claims (16)

光学薄膜であって、
ランタンとガドリニウムのフッ化物を含み、
前記ランタンと前記ガドリニウムの合計モル数に対する前記ガドリニウムのモル数の比が0.01〜0.95である光学薄膜。
An optical thin film,
Including fluoride of lanthanum and gadolinium,
An optical thin film in which the ratio of the number of moles of gadolinium to the total number of moles of lanthanum and gadolinium is 0.01 to 0.95.
前記ランタンと前記ガドリニウムの合計モル数に対する前記ガドリニウムのモル数の比が0.3〜0.7である請求項1に記載の光学薄膜。   2. The optical thin film according to claim 1, wherein a ratio of the number of moles of gadolinium to the total number of moles of lanthanum and gadolinium is 0.3 to 0.7. 前記フッ化物が、(La,Gd)F固溶体である請求項1または2に記載の光学薄膜。 The optical thin film according to claim 1 or 2, wherein the fluoride is a (La, Gd) F 3 solid solution. 前記光学薄膜の屈折率が、フッ化ランタンのみからなる薄膜の屈折率より高く、且つフッ化ガドリニウムのみからなる薄膜の屈折率より高い請求項1〜3のいずれか一項に記載の光学薄膜。   The optical thin film according to any one of claims 1 to 3, wherein a refractive index of the optical thin film is higher than a refractive index of a thin film made of only lanthanum fluoride and higher than a refractive index of a thin film made of only gadolinium fluoride. 前記光学薄膜の表面粗さが、フッ化ランタンのみからなる薄膜の表面粗さより小さく、且つフッ化ガドリニウムのみからなる薄膜の表面粗さより小さい請求項1〜4のいずれか一項に記載の光学薄膜。   The optical thin film according to any one of claims 1 to 4, wherein the surface roughness of the optical thin film is smaller than the surface roughness of the thin film made of only lanthanum fluoride and smaller than the surface roughness of the thin film made of only gadolinium fluoride. . 光学薄膜の製造方法であって、
基板を用意することと、
ランタンとガドリニウムの合計モル数に対する前記ガドリニウムのモル数の比が0.1〜0.95となるように、フッ化ランタンとフッ化ガドリニウムを混合した蒸着原料を用意することと、
前記基材上に前記蒸着原料を蒸着することを含む光学薄膜の製造方法。
An optical thin film manufacturing method comprising:
Preparing a substrate,
Preparing a deposition material in which lanthanum fluoride and gadolinium fluoride are mixed so that the ratio of the number of moles of gadolinium to the total number of moles of lanthanum and gadolinium is 0.1 to 0.95;
The manufacturing method of an optical thin film including vapor-depositing the said vapor deposition raw material on the said base material.
請求項1〜5のいずれか一項に記載の前記光学薄膜と、
前記光学薄膜より屈折率の低い低屈折率薄膜を含む光学多層膜。
The optical thin film according to any one of claims 1 to 5,
An optical multilayer film comprising a low refractive index thin film having a refractive index lower than that of the optical thin film.
前記光学薄膜と前記低屈折率薄膜を交互に積層した多層膜である請求項7記載の光学多層膜。   8. The optical multilayer film according to claim 7, which is a multilayer film in which the optical thin film and the low refractive index thin film are alternately laminated. 前記光学多層膜が、反射防止膜である請求項8記載の光学多層膜。   The optical multilayer film according to claim 8, wherein the optical multilayer film is an antireflection film. 請求項1〜5のいずれか一項に記載の前記光学薄膜を表面に有する光学部品。   The optical component which has the said optical thin film as described in any one of Claims 1-5 on the surface. 請求項7〜9のいずれか一項に記載の前記光学多層膜を表面に有する光学部品。   The optical component which has the said optical multilayer film as described in any one of Claims 7-9 on the surface. 前記光学部品が、レンズである請求項11に記載の光学部品。   The optical component according to claim 11, wherein the optical component is a lens. 前記光学部品が、レーザミラーである請求項11記載の光学部品。   The optical component according to claim 11, wherein the optical component is a laser mirror. 請求項10〜13のいずれか一項に記載の光学部品を備える露光装置。   An exposure apparatus comprising the optical component according to claim 10. 前記露光装置は、
波長200nm以下のレーザ光源と、
前記レーザ光を所望の方向へ反射させるレーザミラーを有する照明光学系と、
所定のパターンが形成されたマスクを保持するマスクステージと、
複数のレンズを有する投影光学系と
前記マスクのパターンが投影される基板を保持する基板ステージを備えており、
前記レーザミラーおよび/または前記レンズが、前記光学部品である請求項14記載の露光装置。
The exposure apparatus includes:
A laser light source having a wavelength of 200 nm or less;
An illumination optical system having a laser mirror that reflects the laser light in a desired direction;
A mask stage for holding a mask on which a predetermined pattern is formed;
A projection optical system having a plurality of lenses, and a substrate stage for holding a substrate on which the mask pattern is projected,
The exposure apparatus according to claim 14, wherein the laser mirror and / or the lens is the optical component.
請求項14または15に記載の露光装置を用いて露光を行う露光方法。   An exposure method for performing exposure using the exposure apparatus according to claim 14.
JP2009276118A 2009-12-04 2009-12-04 Optical thin film and manufacturing method thereof, optical multilayer film including optical thin film, optical component having optical thin film, exposure apparatus including optical component, and exposure method Active JP5526745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009276118A JP5526745B2 (en) 2009-12-04 2009-12-04 Optical thin film and manufacturing method thereof, optical multilayer film including optical thin film, optical component having optical thin film, exposure apparatus including optical component, and exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009276118A JP5526745B2 (en) 2009-12-04 2009-12-04 Optical thin film and manufacturing method thereof, optical multilayer film including optical thin film, optical component having optical thin film, exposure apparatus including optical component, and exposure method

Publications (2)

Publication Number Publication Date
JP2011117044A true JP2011117044A (en) 2011-06-16
JP5526745B2 JP5526745B2 (en) 2014-06-18

Family

ID=44282699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009276118A Active JP5526745B2 (en) 2009-12-04 2009-12-04 Optical thin film and manufacturing method thereof, optical multilayer film including optical thin film, optical component having optical thin film, exposure apparatus including optical component, and exposure method

Country Status (1)

Country Link
JP (1) JP5526745B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004803A (en) * 1999-06-17 2001-01-12 Nikon Corp Reflection preventing film and optical element
JP2002014202A (en) * 2000-06-30 2002-01-18 Nikon Corp Optical thin film, optical element and exposure system
JP2003149404A (en) * 2001-11-09 2003-05-21 Canon Inc Optical thin film, its manufacturing method, optical element using optical thin film, optical system, and image pickup device, recording device and exposure device provided with optical system
JP2003221663A (en) * 2002-01-30 2003-08-08 Canon Inc Film-forming method and method for forming optical element
JP2006065140A (en) * 2004-08-30 2006-03-09 Canon Inc Antireflection film, optical system having the antireflection film, exposure apparatus and manufacturing method of device
JP2006089843A (en) * 2004-09-27 2006-04-06 Canon Inc Film deposition method, optical element, exposure apparatus and device production method
JP2007133102A (en) * 2005-11-09 2007-05-31 Canon Inc Optical element having reflection preventing film, and exposure apparatus having the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004803A (en) * 1999-06-17 2001-01-12 Nikon Corp Reflection preventing film and optical element
JP2002014202A (en) * 2000-06-30 2002-01-18 Nikon Corp Optical thin film, optical element and exposure system
JP2003149404A (en) * 2001-11-09 2003-05-21 Canon Inc Optical thin film, its manufacturing method, optical element using optical thin film, optical system, and image pickup device, recording device and exposure device provided with optical system
JP2003221663A (en) * 2002-01-30 2003-08-08 Canon Inc Film-forming method and method for forming optical element
JP2006065140A (en) * 2004-08-30 2006-03-09 Canon Inc Antireflection film, optical system having the antireflection film, exposure apparatus and manufacturing method of device
JP2006089843A (en) * 2004-09-27 2006-04-06 Canon Inc Film deposition method, optical element, exposure apparatus and device production method
JP2007133102A (en) * 2005-11-09 2007-05-31 Canon Inc Optical element having reflection preventing film, and exposure apparatus having the same

Also Published As

Publication number Publication date
JP5526745B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
Louis et al. Nanometer interface and materials control for multilayer EUV-optical applications
JP5406602B2 (en) Multilayer mirror and lithographic apparatus
JP5061903B2 (en) MULTILAYER REFLECTOR, MULTILAYER REFLECTOR MANUFACTURING METHOD, OPTICAL SYSTEM, EXPOSURE APPARATUS, AND DEVICE MANUFACTURING METHOD
CN103901737B (en) Pellicle and multilayer mirror for EUV mask version
TWI286678B (en) Method for the removal of deposition on an optical element, method for the protection of an optical element, semiconductor manufacturing method, apparatus including an optical element, and lithographic apparatus
TWI528117B (en) Spectral purity filter
TWI687756B (en) Materials, components, and methods for use with extreme ultraviolet radiation in lithography and other applications
JP2008523426A (en) Transmission optical element and objective lens for microlithography projection exposure apparatus
JP2004246366A (en) Photomask blank, photomask, method and apparatus for manufacturing photomask blank
KR102273266B1 (en) Manufacturing method for a Pellicle including integrated frame and membrane
KR20110127135A (en) Multilayer mirror and lithographic apparatus
JP2007169683A (en) Apparatus for forming film, method therefor, aligner, and method for manufacturing device
JP2009260183A (en) Method of manufacturing reflective mask blank for euv lithography
JP2007108194A (en) Method for manufacturing multilayer film mirror, method for manufacturing optical system, exposure device, and method for manufacturing device
KR101625934B1 (en) Multilayer mirror and lithographic apparatus
JP5526745B2 (en) Optical thin film and manufacturing method thereof, optical multilayer film including optical thin film, optical component having optical thin film, exposure apparatus including optical component, and exposure method
JP5059283B2 (en) Substrate materials for X-ray optical components
JP2006194764A (en) Multilayer reflection mirror and exposure system
JP4780412B2 (en) Projection optical system, projection optical system manufacturing method, exposure apparatus, and exposure method
JP2000147198A (en) Multi-layer film reflecting mirror and its manufacture
RU205730U1 (en) PYROLYZED LENS FOR X-RAY RADIATION
JP2005259949A (en) Mirror and illumination optical device
JP2005260072A (en) Reflection element and exposure apparatus
JP2005302963A (en) Exposure device
JP2006029915A (en) Reflecting element, and exposure device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5526745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250