JP2011117040A - Hot-dip galvannealed steel sheet and method for producing the same - Google Patents
Hot-dip galvannealed steel sheet and method for producing the same Download PDFInfo
- Publication number
- JP2011117040A JP2011117040A JP2009275630A JP2009275630A JP2011117040A JP 2011117040 A JP2011117040 A JP 2011117040A JP 2009275630 A JP2009275630 A JP 2009275630A JP 2009275630 A JP2009275630 A JP 2009275630A JP 2011117040 A JP2011117040 A JP 2011117040A
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- hot
- base material
- plating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、合金化溶融亜鉛めっき鋼板およびその製造方法に関し、より具体的には、Si、Mn、Alを比較的多量に含有する鋼板に合金化溶融亜鉛めっきを施して製造される合金化溶融亜鉛めっき鋼板およびその製造方法に関する。 The present invention relates to an alloyed hot-dip galvanized steel sheet and a method for producing the same, and more specifically, an alloying melt produced by subjecting a steel sheet containing a relatively large amount of Si, Mn, and Al to alloy hot-dip galvanizing. The present invention relates to a galvanized steel sheet and a method for producing the same.
周知のように、燃費性能および衝突安全性の向上が自動車に求められる。このため、自動車用鋼板として用いられるめっき鋼板には、高い機械的特性および優れた耐食性を有するとともに、原料価格、設備投資さらには原単位を抑制するため、母材の合金元素が少なく、現行の設備により少ない工程で、かつ少ないエネルギー消費で製造可能なことが求められる。 As is well known, automobiles are required to improve fuel efficiency and collision safety. For this reason, plated steel sheets used as automotive steel sheets have high mechanical properties and excellent corrosion resistance, and have low alloying elements in the base material in order to suppress raw material prices, capital investment, and basic units, It is required that the equipment can be manufactured with fewer processes and less energy consumption.
高い機械的特性、つまり高い引張強度および全伸びを兼ね備えることは、母材におけるC、SiさらにはMn等の強化元素の含有量を最適化することにより、達成される。これらの元素のうち特にSiは易酸化性を有する。このため、連続溶融亜鉛めっきライン(CGL)において、Si含有量が概ね0.3%以上(本明細書では特に断りがない限り組成に関する「%」は「質量%」を意味する)であるといったようにSiを比較的多量に含有する鋼板を、普通鋼のめっき条件と同じ条件でめっきすると、めっき直前のめっき母材である鋼板の表層に形成されるSiの酸化物がめっきとの濡れ性を阻害するため、不めっき欠陥が発生し易い。そこで、これまでにも、この問題を解決するために様々な発明が提案されている。 Combining high mechanical properties, that is, high tensile strength and total elongation, is achieved by optimizing the content of reinforcing elements such as C, Si and Mn in the base material. Of these elements, particularly Si is easily oxidizable. For this reason, in the continuous hot dip galvanizing line (CGL), the Si content is approximately 0.3% or more (“%” in the present specification means “mass%” unless otherwise specified). When a steel sheet containing a relatively large amount of Si is plated under the same conditions as the plating conditions for ordinary steel, the Si oxide formed on the surface layer of the steel sheet, which is the plating base material just before plating, is wettable with the plating. Therefore, non-plating defects are likely to occur. Thus, various inventions have been proposed so far to solve this problem.
特許文献1には、CGLにおける焼鈍工程の前で鋼板にプレめっきを行う発明が開示され、また、特許文献2には、CGLにおける焼鈍工程の前で鋼板の表面を研削する発明が開示されている。しかし、これらの発明を実施するには、プレめっき工程や研削工程を設けるための新たな設備投資が必要になるとともに、工程が増加するという問題がある。 Patent Document 1 discloses an invention in which pre-plating is performed on a steel sheet before the annealing process in CGL, and Patent Document 2 discloses an invention in which the surface of the steel sheet is ground before the annealing process in CGL. Yes. However, in order to implement these inventions, there is a problem that a new equipment investment for providing a pre-plating step and a grinding step is required, and the number of steps increases.
特許文献3には、鋼中の合金元素としてSiに加えてNiおよびCuを0.001〜0.4%含有する鋼板を用いる発明が開示されている。しかし、この発明には、合金元素の含有量が増加するためにコストの上昇が避けられないという問題がある。 Patent Document 3 discloses an invention using a steel sheet containing 0.001 to 0.4% of Ni and Cu in addition to Si as an alloy element in steel. However, this invention has a problem that an increase in cost is inevitable due to an increase in the content of alloy elements.
特許文献4には、CGLにおける酸化帯で鋼板の表面に火炎を照射して酸化することによって鋼板の表面に厚い酸化膜を形成してから、還元焼鈍してめっきする発明が開示されている。Siは上記酸化膜(ほぼ鉄の酸化物)中にほとんど拡散してこないため、このような厚い酸化膜を還元することでSi(の酸化物)がほとんど存在しない鋼材表面を得ることができ、これによりめっき性が改善される。しかし、厚く形成された酸化膜は、比較的脱落し易いため、例えばCGLの焼鈍炉を通板中に炉内のロールに付着し、後続の鋼板の表面に影響して製品の表面欠陥を生じる恐れがある。 Patent Document 4 discloses an invention in which a thick oxide film is formed on the surface of a steel sheet by irradiating and oxidizing the surface of the steel sheet with an oxidation band in CGL, and then plated by reduction annealing. Since Si hardly diffuses into the oxide film (substantially iron oxide), it is possible to obtain a steel material surface in which Si (oxide) hardly exists by reducing such a thick oxide film, This improves the plating properties. However, since a thick oxide film is relatively easy to drop off, it adheres to, for example, a roll in the furnace through a CGL annealing furnace, and affects the surface of the subsequent steel sheet to cause surface defects of the product. There is a fear.
また、Siを鋼板母材の表面から少し内側で酸化させること(これをSiの「内部酸化」と呼ばれることがあり、本明細書でも同様の趣旨でこの語を用いる)により母材表面でのSi酸化物の形成を抑制してめっき性を向上させるという、特許文献3、4により開示された発明とは異なる技術思想に基づく発明も知られている。内部酸化を利用する発明として、例えば特許文献5には、Si、Mn、Crを合計で0.7%以上含有する鋼板に溶融亜鉛めっきする場合に、この鋼板の製造工程における熱間圧延後の鋼板の巻き取り温度を、780×(Si[%]+Mn[%]/10+Cr[%]/10)0.148(℃)以上と高く設定する発明が開示されている。しかし、熱間圧延における巻取温度を高く設定すると、母材の結晶粒の粗大化や粒界酸化に起因した問題を生じ易い。例えば、粒界酸化された熱延鋼板は後続の酸洗工程で粒界が優先的に侵食されて深い凹凸が形成され、その後の冷間圧延によって、いわばノッチが入ったようなかさぶた上の表面が形成される。この鋼板表面(めっき後のめっき−母材界面)は、めっきの濡れ性には有利に働くものの、合金化溶融亜鉛めっき鋼板をプレス成形する際にノッチの入った結晶粒が脱落し易いため、耐パウダリング性に劣る。なお、「パウダリング」とは、通常、めっき層自体の粉化による脱落を意味し、上記のめっき層の脱落とは脱落の機構が相違するが、実際の成型品の評価では区別されない。 Further, by oxidizing Si slightly inside from the surface of the steel plate base metal (this is sometimes referred to as “internal oxidation” of Si, and this term is also used in this specification for the same purpose), There is also known an invention based on a technical idea different from the inventions disclosed in Patent Documents 3 and 4, in which the formation of Si oxide is suppressed to improve the plating property. As an invention utilizing internal oxidation, for example, in Patent Document 5, when hot dip galvanizing is performed on a steel sheet containing 0.7% or more of Si, Mn, and Cr, after hot rolling in the manufacturing process of this steel sheet An invention is disclosed in which the coiling temperature of the steel sheet is set as high as 780 × (Si [%] + Mn [%] / 10 + Cr [%] / 10) 0.148 (° C.) or higher. However, when the coiling temperature in hot rolling is set high, problems due to coarsening of crystal grains of the base material and grain boundary oxidation are likely to occur. For example, hot-rolled steel sheets that have undergone grain boundary oxidation preferentially erode the grain boundaries in the subsequent pickling process to form deep irregularities, and then cold-rolled to create a notched surface on the scab. Is formed. Although this steel sheet surface (plating after plating-base metal interface) works favorably on the wettability of plating, when notching the alloyed hot-dip galvanized steel sheet, notched crystal grains are likely to fall off. Poor powdering resistance. Note that “powdering” usually means dropping due to powdering of the plating layer itself, and the dropping mechanism is different from that of the above plating layer, but it is not distinguished in the evaluation of an actual molded product.
特許文献6には、熱間圧延後または冷間圧延後に、鋼板を焼鈍設備で加熱及び冷却してから、さらにCGLにおいて焼鈍及びめっきを行う際に、焼鈍設備やCGLでの加熱冷却時の温度や雰囲気等を制御する発明が開示されており、好ましい形態として、巻取温度を600℃以上850℃以下とするとともに、巻取り後の冷却速度を3℃/min以下とすることが開示されている。しかし、この方法は、CGLの前にもう一段階の熱処理工程を追加する必要があり、工程的に煩雑でコスト的にも不利となる。 In Patent Document 6, after hot rolling or after cold rolling, the steel sheet is heated and cooled with an annealing facility, and when annealing and plating are further performed in CGL, the temperature during heating and cooling in the annealing facility or CGL is disclosed. And the invention for controlling the atmosphere and the like are disclosed, and as a preferred embodiment, it is disclosed that the winding temperature is 600 ° C. or higher and 850 ° C. or lower, and the cooling rate after winding is 3 ° C./min or lower. Yes. However, this method requires the addition of another heat treatment step before CGL, which is cumbersome in process and disadvantageous in cost.
特許文献7には、連続溶融亜鉛めっき設備の還元炉における温度および雰囲気(水蒸気分圧および水素分圧)を制御することによって、C、Si、Mnを含有する鋼板を基材とし、めっき層との界面から2μm以下の鋼板内部に、平均直径が1μm以下のSi等の内部酸化物が形成された溶融亜鉛めっき鋼板を製造することが開示されている。 In Patent Document 7, by controlling the temperature and atmosphere (water vapor partial pressure and hydrogen partial pressure) in a reduction furnace of a continuous hot dip galvanizing facility, a steel sheet containing C, Si, Mn is used as a base, Manufacturing a hot-dip galvanized steel sheet in which an internal oxide such as Si having an average diameter of 1 μm or less is formed inside a steel sheet having a mean diameter of 2 μm or less from the interface.
しかしながら、特許文献7により開示された発明では、内部酸化物が粗大であるためにめっき鋼板の表面に凹凸が形成され、製品特性に好ましくない問題(例えば部材の鮮映性が劣ること)を生じる。 However, in the invention disclosed in Patent Document 7, since the internal oxide is coarse, irregularities are formed on the surface of the plated steel sheet, causing problems unfavorable for product characteristics (for example, poor visibility of the member). .
本発明では、Siの内部酸化という機構を参考にしながら、特許文献6により開示された発明のように合金化溶融亜鉛めっき鋼板の通常の製造プロセスにない工程を追加する方法ではなく、プロセス自体は通常のものであるものの、例えば特許文献7により開示された発明とは異なる製造条件でめっき性(濡れ性および合金化処理性)の改善を図ることができることを知見した。さらに、このような方法により製造される鋼板は、前述した特許文献7により開示された発明にはない特徴を有することを知見した。本発明は、これらの知見に基づくものである。 In the present invention, referring to the mechanism of internal oxidation of Si, the process itself is not a method of adding a step that is not in the normal manufacturing process of an alloyed hot dip galvanized steel sheet as in the invention disclosed by Patent Document 6, Although it is a normal one, it has been found that, for example, it is possible to improve the plating property (wetting property and alloying treatment property) under production conditions different from the invention disclosed in Patent Document 7. Furthermore, it discovered that the steel plate manufactured by such a method has the characteristic which is not in the invention disclosed by patent document 7 mentioned above. The present invention is based on these findings.
本発明は、C:0.01〜0.25%、Si:0.3〜2.0%、Mn:0.030〜3.0%、P:0.050%以下、S:0.010%以下、N:0.0060%以下、およびsol.Al:0.5%以下、残部Feおよび不純物からなる化学組成を有する鋼板母材の表面に、Fe:8.0〜15%、およびAl:0.15〜0.50%を含有するめっき層を備える合金化溶融亜鉛めっき鋼板であって、このめっき層と鋼板母材との界面から深さ2μm以内の鋼板母材中に、Si、MnまたはAlの単独酸化物、これらの二種以上を含む酸化物、又はこれらとFeのうち二種以上を含む複合酸化物が存在し、この酸化物の最大粒径が0.10μm以下であることを特徴とする合金化溶融亜鉛めっき鋼板である。 In the present invention, C: 0.01 to 0.25%, Si: 0.3 to 2.0%, Mn: 0.030 to 3.0%, P: 0.050% or less, S: 0.010 % Or less, N: 0.0060% or less, and sol. A plating layer containing Fe: 8.0 to 15% and Al: 0.15 to 0.50% on the surface of a steel plate base material having a chemical composition comprising Al: 0.5% or less, the balance Fe and impurities An alloyed hot-dip galvanized steel sheet comprising: a single oxide of Si, Mn, or Al, or two or more of these in a steel sheet base material having a depth of 2 μm or less from the interface between the plating layer and the steel sheet base material. The alloyed hot-dip galvanized steel sheet is characterized in that there is an oxide containing or a composite oxide containing two or more of these and Fe, and the maximum particle size of the oxide is 0.10 μm or less.
また、本発明は、C:0.01〜0.25%、Si:0.3〜2.0%、Mn:0.030〜3.0%、P:0.050%以下、S:0.010%以下、N:0.0060%以下、およびsol.Al:0.01%未満、残部Feおよび不純物からなる化学組成を有する鋼板母材の表面に、Fe:8.0〜15%、およびAl:0.15〜0.50%を含有するめっき層を備える合金化溶融亜鉛めっき鋼板であって、このめっき層と鋼板母材との界面から深さ2μm以内の鋼板母材中に、Si、MnまたはAlの単独酸化物、これらの二種以上を含む酸化物、又はこれらとFeのうち二種以上を含む複合酸化物が存在し、この酸化物の最大粒径が0.10μm以下であることを特徴とする合金化溶融亜鉛めっき鋼板である。 Moreover, this invention is C: 0.01-0.25%, Si: 0.3-2.0%, Mn: 0.030-3.0%, P: 0.050% or less, S: 0 .010% or less, N: 0.0060% or less, and sol. A plating layer containing Fe: 8.0 to 15% and Al: 0.15 to 0.50% on the surface of a steel plate base material having a chemical composition consisting of Al: less than 0.01%, the balance Fe and impurities. An alloyed hot-dip galvanized steel sheet comprising: a single oxide of Si, Mn, or Al, or two or more of these in a steel sheet base material having a depth of 2 μm or less from the interface between the plated layer and the steel sheet base material. The alloyed hot-dip galvanized steel sheet is characterized in that there is an oxide containing or a composite oxide containing two or more of these and Fe, and the maximum particle size of the oxide is 0.10 μm or less.
別の観点からは、本発明は、C:0.01〜0.25%、Si:0.3〜2.0%、Mn:0.030〜3.0%、P:0.050%以下、S:0.010%以下、N:0.0060%以下、およびsol.Al:0.5%以下を有する化学組成の鋼スラブに熱間圧延を行い、得られた熱延鋼板を650℃以下の巻き取り温度で巻き取る熱間圧延工程と、この熱延鋼板を酸洗する酸洗工程と、この酸洗工程で酸洗された熱延鋼板を圧下率50%以上で冷間圧延する冷間圧延工程と、この冷間圧延工程を経た冷延鋼板を連続溶融亜鉛めっきラインでの還元焼鈍炉で鋼板表面を還元する際に700℃以上の温度域では水素濃度:1〜30体積%および露点:−30℃〜10℃の窒素―水素雰囲気で焼鈍を行ってから、溶融亜鉛めっきを行い、ついで合金化処理を行う溶融亜鉛めっき工程とを備えることを特徴とする合金化溶融亜鉛めっき鋼板の製造方法である。この本発明に係る製造方法により、上述した本発明に係る合金化溶融亜鉛めっき鋼板を製造することができる。 From another viewpoint, the present invention provides C: 0.01 to 0.25%, Si: 0.3 to 2.0%, Mn: 0.030 to 3.0%, P: 0.050% or less. , S: 0.010% or less, N: 0.0060% or less, and sol. A hot slab is obtained by hot rolling a steel slab having a chemical composition having Al: 0.5% or less and winding the obtained hot rolled steel sheet at a coiling temperature of 650 ° C. or less. A pickling process to wash, a cold rolling process to cold-roll the hot-rolled steel sheet pickled in this pickling process at a reduction ratio of 50% or more, and a continuous hot-dip zinc to the cold-rolled steel sheet that has undergone this cold rolling process When reducing the surface of a steel sheet in a reduction annealing furnace on a plating line, annealing is performed in a nitrogen-hydrogen atmosphere at a hydrogen concentration of 1 to 30% by volume and a dew point of −30 ° C. to 10 ° C. in a temperature range of 700 ° C. or higher. And a hot dip galvanizing step, followed by a hot dip galvanizing step in which an alloying treatment is performed. The alloyed hot-dip galvanized steel sheet according to the present invention described above can be manufactured by the manufacturing method according to the present invention.
これらの本発明では、化学組成が、(a)Ti:0.50%以下、好ましくは0.0040〜0.50%、Nb:0.50%以下、好ましくは0.0040〜0.50%およびB:0.0050%以下、好ましくは0.0001〜0.0050%からなる群から選ばれた一種または二種以上を有すること、(b)Cu:1.0%以下、Ni:1.0%以下、Cr:1.0%以下およびMo:1.0%以下からなる群から選ばれた一種または二種以上を有すること、または(c)Bi:0.05%以下、及びCa:0.01%以下の一種または二種を有することの少なくとも一つを満足することが好ましい。 In these present inventions, the chemical composition is (a) Ti: 0.50% or less, preferably 0.0040 to 0.50%, Nb: 0.50% or less, preferably 0.0040 to 0.50%. And B: 0.0050% or less, preferably one or more selected from the group consisting of 0.0001 to 0.0050%, (b) Cu: 1.0% or less, Ni: 1. 1 type or 2 or more types selected from the group consisting of 0% or less, Cr: 1.0% or less, and Mo: 1.0% or less, or (c) Bi: 0.05% or less, and Ca: It is preferable to satisfy at least one of having one or two of 0.01% or less.
本発明によれば、Siを比較的多量に含有する鋼板をめっき基材として合金化溶融亜鉛めっきが施される合金化溶融亜鉛めっき鋼板を、めっきの濡れ性を改善しながら低コストで製造することができる。 According to the present invention, an alloyed hot-dip galvanized steel sheet that is subjected to alloying hot-dip galvanizing using a steel sheet containing a relatively large amount of Si as a plating base is manufactured at a low cost while improving the wettability of plating. be able to.
以下、本発明を実施するための最良の形態を説明する。
本発明では、熱間圧延工程と、この熱間圧延工程で形成される鋼板の表面のスケールを除去する酸洗工程と、この酸洗工程を経た鋼板を冷間圧延する冷間圧延工程と、この冷間圧延された鋼板に連続溶融めっき設備で還元焼鈍及び溶融めっきをこの順で行う連続溶融亜鉛めっき工程とを経て、合金化溶融亜鉛めっき鋼板を製造する。
Hereinafter, the best mode for carrying out the present invention will be described.
In the present invention, a hot rolling process, a pickling process for removing the scale of the surface of the steel sheet formed in the hot rolling process, a cold rolling process for cold rolling the steel sheet that has undergone the pickling process, An alloyed hot-dip galvanized steel sheet is produced through a continuous hot-dip galvanizing step in which reduction annealing and hot-dip plating are performed in this order on the cold-rolled steel sheet in a continuous hot-dip plating facility.
この鋼板の化学組成を限定する理由を説明する。
[C:0.01〜0.25%]
本発明に係る合金化溶融亜鉛めっき鋼板は、Cを多く含むことにより強度および延性のバランスを向上させる。C含有量は、狙いとする強度により適宜変更すればよいが、延性を向上させるために、0.01%以上とする。しかし、C含有量が0.25%を超えると局部延性の劣化が著しくなるために0.25%以下とする。
The reason for limiting the chemical composition of this steel sheet will be described.
[C: 0.01 to 0.25%]
The galvannealed steel sheet according to the present invention improves the balance between strength and ductility by containing a large amount of C. The C content may be appropriately changed depending on the target strength, but is set to 0.01% or more in order to improve ductility. However, if the C content exceeds 0.25%, the local ductility deteriorates remarkably, so the content is made 0.25% or less.
[Si:0.3〜2.0%]
Siは、低コストで固溶強化により鋼板を高強度化する有用であるので、強度向上を目的として、0.3%以上含有する。しかし、Si含有量が2.0%を超えるとスケール疵が生じやすくなるので2.0%以下とする。
[Si: 0.3-2.0%]
Since Si is useful for increasing the strength of a steel sheet by solid solution strengthening at low cost, it is contained in an amount of 0.3% or more for the purpose of improving the strength. However, if the Si content exceeds 2.0%, scale wrinkles are likely to occur, so the content is made 2.0% or less.
[Mn:0.030〜3.0%]
Mnは、固溶強化により鋼板を高強度化する。Mn含有量が3.0%超では降伏強度が上昇して伸びが劣化し、加工時にしわや割れが生じやすくなるので3.0%以下とする。しかし、Mn含有量が0.030%を下回ると強度を確保することが難しいので、0.030%以上とする。
[Mn: 0.030 to 3.0%]
Mn increases the strength of the steel sheet by solid solution strengthening. If the Mn content exceeds 3.0%, the yield strength increases and the elongation deteriorates, and wrinkles and cracks are likely to occur during processing. However, if the Mn content is less than 0.030%, it is difficult to ensure the strength, so the content is made 0.030% or more.
[P:0.050%以下]
Pは、不純物として不可避的に含有するが、積極的に含有することにより鋼板の強度を上昇させる。しかし、Pを過剰に含有すると、合金化溶融亜鉛めっき鋼板の製造の際に合金化処理性が低下するため、P含有量は0.050%以下とする。
[P: 0.050% or less]
P is unavoidably contained as an impurity, but positively increases the strength of the steel sheet. However, if P is excessively contained, the alloying processability is lowered during the production of the galvannealed steel sheet, so the P content is 0.050% or less.
[S:0.010%以下]
S含有量は、不純物として鋼中に含有されるため、低濃度であるほうが好ましい。S含有量が0.010%を越えると、MnSの析出が目立つようになり、鋼板の延性を阻害するのみならず、オーステナイト安定元素のMnを析出物として消費してしまう。そこで、S含有量は0.010%以下とする。
[S: 0.010% or less]
Since S content is contained in steel as an impurity, it is preferable that the S content is low. When the S content exceeds 0.010%, precipitation of MnS becomes conspicuous, which not only inhibits the ductility of the steel sheet but also consumes Mn as an austenite stable element. Therefore, the S content is set to 0.010% or less.
[N:0.0060%以下]
Nは、伸びフランジ性を劣化させる不純物である。そこで、本発明では、N含有量は0.0060%以下とする。
[N: 0.0060% or less]
N is an impurity that deteriorates stretch flangeability. Therefore, in the present invention, the N content is set to 0.0060% or less.
[sol.Al:0.5%以下]
Alは、鋼を脱酸させるために含有する元素であり、Ti等の炭窒化物形成元素の歩留まりを向上させるのに有効に作用する元素でもある。一方で、めっき性の改善にあたって鋼中Siを十分に内部酸化させるためには、Si同様に易酸化元素であるAlは極力少ないのが好ましい。この観点からAlは0.5%以下とする。
[Sol. Al: 0.5% or less]
Al is an element that is contained for deoxidizing steel, and is also an element that effectively acts to improve the yield of carbonitride-forming elements such as Ti. On the other hand, in order to sufficiently internally oxidize Si in steel for improving plating properties, it is preferable that Al, which is an easily oxidizable element, be as small as possible in the same manner as Si. From this viewpoint, Al is made 0.5% or less.
なお、Siが0.5%以上含有される場合は、機械特性改善目的でAlを多量に含有する必要が薄れるので、めっき性の観点でAl含有量を0.01%以下にさらに低減することが好ましい。 If Si is contained in an amount of 0.5% or more, the need to contain a large amount of Al for the purpose of improving mechanical properties is reduced, so that the Al content should be further reduced to 0.01% or less from the viewpoint of plating properties. Is preferred.
次に、任意元素について説明する。
[Ti:0.0040〜0.50%、Nb:0.0040〜0.50%、およびB:0.0050%以下からなる群から選ばれた1種または2種以上]
Ti、NbまたはBを、単独でまたは2種以上複合して含有することにより、強度、穴広げ性および伸びが向上する。しかし、Ti、Nbは0.50%超、Bにあっては0.0050%超含有しても特性の向上効果が飽和するだけで、コスト高となる。そこで、これらの元素を含有する場合は、Ti、Nbは0.50%以下、Bは0.0050%以下である。さらに、強度、穴広げ性および伸びの向上効果を確実に得るには、Ti、Nbは0.0040%以上含有し、Bにあっては0.0001以上含有することが好ましい。
Next, arbitrary elements will be described.
[Ti: 0.0040 to 0.50%, Nb: 0.0040 to 0.50%, and B: one or more selected from the group consisting of 0.0050% or less]
By containing Ti, Nb or B alone or in combination of two or more, the strength, hole expansibility and elongation are improved. However, even if Ti and Nb are contained in excess of 0.50% and B is contained in excess of 0.0050%, the effect of improving the characteristics is saturated and the cost is increased. Therefore, when these elements are contained, Ti and Nb are 0.50% or less, and B is 0.0050% or less. Furthermore, in order to surely obtain the effect of improving the strength, hole expansibility and elongation, Ti and Nb are contained in an amount of 0.0040% or more, and in B, 0.0001 or more is preferably contained.
[Cu:1.0%以下、Ni:1.0%以下、Cr:1.0%以下およびMo:1.0%以下からなる群から選ばれた一種または二種以上]
Cu、Ni、CrおよびMoは、いずれも、強度向上に寄与する元素であり、必要に応じて含有させることができる任意元素である。980MPa以上の引張強度を確保するには、Cu、Ni、CrおよびMoの1種または2種以上含有することが有効である。上記効果をより確実に得るには、いずれかの元素を0.01%以上含有することが好ましい。ただし、それぞれ1%を超えてCr、Mo、CuおよびNiを含有しても上記効果が飽和し、経済的に無駄であるだけでなく、熱延鋼板が硬質となって冷間圧延を行うことが困難となる。このため、Cr、Mo、CuおよびNiの1種または2種以上を上記の量で含有する。
[One or more selected from the group consisting of Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.0% or less, and Mo: 1.0% or less]
Cu, Ni, Cr, and Mo are all elements that contribute to strength improvement, and are optional elements that can be contained as necessary. In order to ensure a tensile strength of 980 MPa or more, it is effective to contain one or more of Cu, Ni, Cr and Mo. In order to acquire the said effect more reliably, it is preferable to contain any element 0.01% or more. However, if Cr, Mo, Cu and Ni are contained in excess of 1%, the above effect is saturated and not only economically wasteful, but the hot-rolled steel sheet is hard and cold-rolled. It becomes difficult. For this reason, 1 type (s) or 2 or more types of Cr, Mo, Cu, and Ni are contained in said amount.
[Bi:0.005%以下、及びCa:0.01%以下の一種または二種]
Mnを多量に含む鋼板では、Mn偏析により鋼板の機械特性が劣化することがあるが、BiまたはCaを単独でまたは複合して含有することによりこれを防止することができる。しかし、Bi含有量が0.05%を超えると熱間加工性が低下し熱間圧延が困難になる。また、Ca含有量が0.01%を超えると、表面性状が劣化する。このため、Bi含有量は0.05%以下とし、Ca含有量は0.01%以下とする。このような効果を確実に得るためには、Bi含有量は0.0001%以上であることが好ましく、Ca含有量は0.0001%以上であることが好ましい。
[Bi: 0.005% or less and Ca: 0.01% or less]
In a steel sheet containing a large amount of Mn, the mechanical properties of the steel sheet may deteriorate due to Mn segregation, but this can be prevented by containing Bi or Ca alone or in combination. However, when the Bi content exceeds 0.05%, hot workability is lowered and hot rolling becomes difficult. If the Ca content exceeds 0.01%, the surface properties deteriorate. For this reason, Bi content shall be 0.05% or less, and Ca content shall be 0.01% or less. In order to reliably obtain such an effect, the Bi content is preferably 0.0001% or more, and the Ca content is preferably 0.0001% or more.
上記以外の残部は、Feおよび不純物である。
次に、本発明に係る合金化溶融亜鉛めっき鋼板のめっき層の化学組成の限定理由を説明する。
The balance other than the above is Fe and impurities.
Next, the reason for limiting the chemical composition of the plating layer of the galvannealed steel sheet according to the present invention will be described.
[Fe:8〜15%]
亜鉛めっき中のFe含有量が8%以上15%以下であることにより、合金化溶融亜鉛めっき鋼板の溶接性および塗装後耐食性が向上する。しかし、過少に含有するとプレス成形時にプレス金型とめっきが凝着し、鋼板の割れやめっき層の剥離(フレーキング)の原因となるので、下限を8%とする。また、過剰に含有するとプレス成形時のめっき層が粉状に剥離しプレス疵の原因となるため、上限を15%とする。
[Fe: 8 to 15%]
When the Fe content in the galvanizing is 8% or more and 15% or less, the weldability and post-coating corrosion resistance of the galvannealed steel sheet are improved. However, if the content is too small, the press mold and the plating adhere to each other at the time of press forming, causing cracks in the steel sheet and peeling (flaking) of the plated layer, so the lower limit is made 8%. Moreover, since the plating layer at the time of press molding will peel off in powder form and cause a press wrinkle if it contains excessively, an upper limit shall be 15%.
[Al:0.15〜0.50%]
めっき層中のAl含有量が0.15%未満であると、FeとZnの合金化が過剰となり、一方0.50%を超えると合金化処理の際の反応速度が劣る。そこで、めっき層中のAl含有量は0.15%以上0.50%以下とする。
[Al: 0.15 to 0.50%]
When the Al content in the plating layer is less than 0.15%, Fe and Zn are excessively alloyed. On the other hand, when the Al content exceeds 0.50%, the reaction rate during the alloying treatment is inferior. Then, Al content in a plating layer shall be 0.15% or more and 0.50% or less.
[めっき/母材の界面近傍における母材内部の酸化物]
めっき層と鋼板母材との界面から2μm以内に、Si、MnまたはAlの単独酸化物、Si、MnまたはAlの単独酸化物、これらの二種以上を含む酸化物、又はこれらとFeのうち二種以上を含む複合酸化物が存在する。
[Oxide in the base metal near the plating / base metal interface]
Within 2 μm from the interface between the plating layer and the steel plate base material, a single oxide of Si, Mn or Al, a single oxide of Si, Mn or Al, an oxide containing two or more of these, or these and Fe There are composite oxides containing two or more.
従来の合金化溶融亜鉛めっき鋼板では、鋼板の表層に形成されるSi酸化物がめっきとの濡れ性を阻害するため、不めっき欠陥が発生し易い。本発明では、Si、Mn、Alを母材のめっき/母材界面から2μm以内の内部で酸化物とすることによって、鋼板表層の酸化物の生成を阻害しめっき性を確保する。 In the conventional alloyed hot-dip galvanized steel sheet, non-plating defects are likely to occur because the Si oxide formed on the surface layer of the steel sheet inhibits the wettability with the plating. In the present invention, Si, Mn, and Al are converted into oxides within 2 μm from the base metal plating / base metal interface, thereby inhibiting the generation of oxides on the steel sheet surface layer and ensuring plating properties.
[酸化物の最大粒径:0.10μm以下]
上記の酸化物の最大粒径は、0.10μm以下である。この理由は、酸化物のサイズが大きい場合、めっき鋼板の製造時のめっき中に母材のFeを拡散させる合金化工程において、酸化物が存在する領域と存在しない領域とで反応性の差が発生し、めっき厚さの凹凸が発生するためである。めっき厚さの凹凸は、塗装時に気泡が混入して異物の発生起点となったり、プレス成形時に摩擦係数を増加させ、加工性の劣化の原因となったりするため、好ましくない。このため、酸化物のサイズは小さい方が好ましく、具体的には酸化物の最大粒径を0.10μm以下とし、好ましくは0.05μm以下とする。
[Maximum particle size of oxide: 0.10 μm or less]
The maximum particle size of the above oxide is 0.10 μm or less. The reason for this is that, when the oxide size is large, there is a difference in reactivity between the region where the oxide is present and the region where the oxide is not present in the alloying process in which Fe of the base material is diffused during plating during the production of the plated steel sheet. This is because unevenness of the plating thickness occurs. Unevenness in the plating thickness is not preferable because air bubbles are mixed in during coating and become a starting point of generation of foreign matter, or the friction coefficient is increased during press molding, resulting in deterioration of workability. For this reason, it is preferable that the size of the oxide is small. Specifically, the maximum particle size of the oxide is 0.10 μm or less, preferably 0.05 μm or less.
図5は、後述する表2のNo.1のめっき鋼板のSEM画像を示す金属組織写真である。この写真は、鋼板から試験片を採取し、断面を機械研磨し、C蒸着してSEM(加速電圧10kV)で撮影したものである。 FIG. 5 shows No. 2 in Table 2 described later. It is a metallographic photograph which shows the SEM image of the plated steel plate of 1. FIG. In this photograph, a test piece was taken from a steel plate, the cross section was mechanically polished, C-deposited, and photographed with SEM (acceleration voltage 10 kV).
図5のように、めっき/母材の界面、あるいは母材結晶粒界から2μm以内に複数の白点が観察される。この白点をEDXで元素分析すると、Si、Mn、Alのいずれか1種または2種以上が検出され、これらの単独または複合酸化物であると認められる。これらの酸化物は、非常に細かく、その最大値が0.10μm以下である。 As shown in FIG. 5, a plurality of white spots are observed within 2 μm from the plating / base metal interface or the base crystal grain boundary. When this white spot is subjected to elemental analysis by EDX, one or more of Si, Mn, and Al are detected, and these are recognized as single or complex oxides. These oxides are very fine and have a maximum value of 0.10 μm or less.
本発明に係る合金化溶融亜鉛めっき鋼板は、以上のように構成される。次に、本発明にかかる合金化溶融亜鉛めっき鋼板の製造方法を説明する。
本発明に係る合金化溶融亜鉛めっき鋼板の製造方法は、必ずしも限定されないが、特徴とする内部酸化物の存在、及びその最大直径には、熱間圧延、酸洗、冷間圧延、およびめっき(含む焼鈍)のいずれの工程も影響を及ぼすので、以下に最適な製造条件を説明する。
The galvannealed steel sheet according to the present invention is configured as described above. Next, the manufacturing method of the galvannealed steel plate concerning this invention is demonstrated.
The manufacturing method of the galvannealed steel sheet according to the present invention is not necessarily limited, but the presence of the characteristic internal oxide and the maximum diameter thereof include hot rolling, pickling, cold rolling, and plating ( Since any process of annealing) has an influence, the optimum manufacturing conditions will be described below.
本発明に係る合金化溶融亜鉛めっき鋼板は、めっき鋼板の製造の常法のとおり、スラブ作成、熱間圧延、酸洗、冷間圧延、連続溶融亜鉛めっき設備での脱脂、焼鈍、亜鉛めっきおよび合金化という製造工程により、製造される。 The alloyed hot-dip galvanized steel sheet according to the present invention is slab-created, hot-rolled, pickled, cold-rolled, degreased in a continuous hot-dip galvanizing facility, annealed, galvanized and It is manufactured by a manufacturing process called alloying.
スラブ作成は、常法にしたがって行えばよい。
熱間圧延では、巻取温度を650℃以下とすることが好ましい。巻取温度が高すぎると、Siの内部酸化が生じるもののその粒径が成長して大きな酸化物が形成されることがある。また、結晶粒界での酸化が進行して前述したパウダリングの問題も生じ得る。
Slab creation may be performed according to a conventional method.
In hot rolling, the winding temperature is preferably set to 650 ° C. or less. When the coiling temperature is too high, although internal oxidation of Si occurs, the grain size may grow and a large oxide may be formed. In addition, the oxidation at the grain boundary proceeds and the above-mentioned powdering problem may occur.
酸洗では、熱間圧延での巻取温度が高い場合はもちろん、低めとしてもなお形成される比較的大きな酸化物について、これを除去するために、常法よりも強めの酸洗条件とするのが好ましい。具体的には酸洗液の温度を85℃以上とし、塩酸濃度を12%以上とすることが好ましい。塩酸濃度を20%以上にするのがより好ましい。過酸洗を抑制するようなインヒビターを添加してもよい。 In pickling, not only when the coiling temperature in hot rolling is high, but also for relatively large oxides that are formed even if they are low, pickling conditions that are stronger than usual are used to remove them. Is preferred. Specifically, it is preferable that the temperature of the pickling solution is 85 ° C. or higher and the hydrochloric acid concentration is 12% or higher. The hydrochloric acid concentration is more preferably 20% or more. You may add the inhibitor which suppresses per pickling.
冷間圧延では、圧下率を50%以上とすることが好ましく、より好ましくは65%以上である。もちろん、圧下率は、所定の機械特性が得られるように設定される必要があるが、冷間圧延率を高く設定するほうが、酸洗までで除去されなかった大きな酸化物が機械的に破壊され易いことに加え、鋼板に転移が多数導入され焼鈍時の酸化物生成起点が増えて酸化物が微細化する。 In cold rolling, the rolling reduction is preferably 50% or more, and more preferably 65% or more. Of course, the rolling reduction needs to be set so as to obtain a predetermined mechanical characteristic. However, if the cold rolling reduction is set higher, large oxides that have not been removed until pickling are mechanically destroyed. In addition to being easy, a large number of transitions are introduced into the steel sheet, increasing the number of oxide generation starting points during annealing and making the oxide finer.
次に、連続溶融亜鉛めっきライン(CGL)での各段階について説明する。
CGLの入側では、鋼板の汚れを除去するアルカリ洗浄や必要に応じ酸洗が行われ、また洗浄に先だって鋼板表面の研削が行われてもよい。
Next, each stage in the continuous hot dip galvanizing line (CGL) will be described.
On the entry side of the CGL, alkali cleaning for removing dirt on the steel plate or pickling as necessary may be performed, and the surface of the steel plate may be ground prior to cleaning.
さらに、無酸化炉(NOF)等の設備を備えるCGLにおいては、空燃比を1以下程度とし500〜600℃程度に加熱することが好ましい。前酸化では、鋼板表面を十分に酸化させるほうがめっきの濡れ性のためには有利であり、そのためには、逆に空燃比が高いほうが有利であるが、還元炉内での酸化膜の脱落による問題が生じやすくなる。なお、近年のCGLでは、無酸化炉等が無い(焼鈍前の前酸化も還元雰囲気で行われる)ことも多く、このCGLでは特に限定されない。 Furthermore, in a CGL equipped with equipment such as a non-oxidizing furnace (NOF), it is preferable that the air-fuel ratio is set to about 1 or less and heated to about 500 to 600 ° C. In the pre-oxidation, it is advantageous for the wettability of the plating to sufficiently oxidize the surface of the steel sheet. For that purpose, the higher the air-fuel ratio is advantageous, but due to the fall of the oxide film in the reduction furnace. Problems are likely to occur. In recent CGLs, there are often no non-oxidizing furnaces (pre-oxidation before annealing is also performed in a reducing atmosphere), and this CGL is not particularly limited.
還元焼鈍の条件は、鋼にとって還元雰囲気である限り、還元性が小さい(典型的には水素濃度が低い、露点が高い)ほうが、Siの内部酸化が生じやすい。ただし、この方向は、鋼板表面(めっき後はめっき界面)の脱炭も生じ易くなる。好適な条件は、700℃以上の範囲(最高温度は鋼成分や要求される機械特性によって異なる)において窒素−水素混合雰囲気を用いる場合は水素濃度を1体積%以上30体積%以下とし、露点を−30℃超±10℃未満とすることが好ましい。 As long as the reduction annealing is performed in a reducing atmosphere for the steel, the lower the reducibility (typically the lower the hydrogen concentration and the higher the dew point), the easier the internal oxidation of Si occurs. However, this direction also tends to cause decarburization of the steel sheet surface (plating interface after plating). Suitable conditions are as follows: When a nitrogen-hydrogen mixed atmosphere is used in the range of 700 ° C. or higher (the maximum temperature varies depending on the steel components and required mechanical properties), the hydrogen concentration is 1% by volume to 30% by volume and the dew point is It is preferable to be more than −30 ° C. and less than ± 10 ° C.
このようにして還元焼鈍を行った後に合金化溶融亜鉛めっきを行う。例えば、めっき浴温は440℃以上470℃以下とし、浴中Al濃度は0.10%以上0.50%以下とし、さらに、侵入材温の下限は浴温安定の観点から浴温と同等温度とすることが、例示される。合金化溶融亜鉛めっき鋼板の製造における合金化処理の条件も、所定の合金化度やめっきの組織が得られるように適宜決定すればよい。 Thus, after carrying out reduction annealing, alloying hot dip galvanization is performed. For example, the plating bath temperature is 440 ° C. or more and 470 ° C. or less, the Al concentration in the bath is 0.10% or more and 0.50% or less, and the lower limit of the intrusion material temperature is the same temperature as the bath temperature from the viewpoint of bath temperature stability. Is exemplified. What is necessary is just to determine suitably the conditions of the alloying process in manufacture of a galvannealed steel plate so that a predetermined alloying degree and the structure | tissue of plating may be obtained.
本発明を、実施例を参照しながら具体的に説明する。
表1に示す化学組成(単位:質量%、表1に示す以外の残部:Feおよび不純物)を有するスラブを数本ずつ準備した。
The present invention will be specifically described with reference to examples.
Several slabs having the chemical composition shown in Table 1 (unit: mass%, balance other than those shown in Table 1: Fe and impurities) were prepared.
これらを、熱間圧延ラインで2.8mm厚にまで熱間圧延した後、コイルに巻き取った。続いて、この熱間圧延された鋼帯を、酸洗ラインに通板して表面のスケールを除去した。酸洗条件は2種類行い、液温85℃および塩酸濃度13%の酸洗を「1」とし、液温85℃および塩酸濃度20%の酸洗を「2」とした。 These were hot rolled to a thickness of 2.8 mm on a hot rolling line, and then wound on a coil. Subsequently, the hot-rolled steel strip was passed through a pickling line to remove the surface scale. Two types of pickling conditions were performed: pickling at a liquid temperature of 85 ° C. and a hydrochloric acid concentration of 13% was set to “1”, and pickling at a liquid temperature of 85 ° C. and a hydrochloric acid concentration of 20% was set to “2”.
さらに酸洗された鋼帯を冷間圧延ラインで0.8mm厚(冷間圧延率70%)、1.4mm厚(冷間圧延率50%)、2.0mm(冷間圧延率30%)に冷間圧延した。
さらに連続溶融亜鉛めっき設備により、還元焼鈍、亜鉛めっきおよび合金化処理を行い、合金化溶融亜鉛めっき鋼板を作成した。
Further, the pickled steel strip is 0.8 mm thick (cold rolling rate 70%), 1.4 mm thick (cold rolling rate 50%), 2.0 mm (cold rolling rate 30%) in the cold rolling line. Cold rolled.
Furthermore, reduction annealing, galvanization, and alloying treatment were performed by a continuous hot dip galvanizing facility to prepare an alloyed hot dip galvanized steel sheet.
還元時の雰囲気(窒素−20%水素)の水蒸気濃度の実績は露点に換算し、本発明の製造の際には−30℃〜+5℃の範囲、比較例の製造の際には−50〜−20℃とした。露点範囲は成分と巻取温度との条件の組み合わせの相違のため一部重複する(実施例:本発明と比較例の露点実績範囲をそれぞれ記載)。 The actual water vapor concentration in the atmosphere during reduction (nitrogen-20% hydrogen) is converted into a dew point. In the production of the present invention, the range is from -30 ° C to + 5 ° C, and in the production of the comparative example, from -50 It was set to -20 ° C. The dew point range partially overlaps due to the difference in the combination of conditions between the components and the coiling temperature (Example: Dew point actual ranges of the present invention and comparative examples are described respectively).
作成した亜鉛めっき板を、500℃塩浴中で20秒間から120秒間保持し、めっき中のFe%が8〜15%となるよう合金化した。
作成した合金化溶融亜鉛めっき鋼板の機械特性は、JIS Z 2201により評価し、引張強さ(MPa)と伸び(%)の値の積(MPa×%)が17500以上を○と判定し、それ未満を×と判定した。
The prepared galvanized plate was held in a 500 ° C. salt bath for 20 seconds to 120 seconds, and alloyed so that Fe% during plating was 8 to 15%.
The mechanical properties of the alloyed hot-dip galvanized steel sheet were evaluated according to JIS Z 2201, and the product (MPa x%) of the values of tensile strength (MPa) and elongation (%) was determined to be 17500 or more. Less than was judged as x.
この合金化溶融亜鉛めっき鋼板のめっき濡れ性は、不めっき欠陥(めっきが存在せず母材が露出している部分)で評価した。不めっき欠陥が全く存在しなければ○とし、不めっき欠陥が存在し最大サイズが5mm以下ならば△とし、不めっき欠陥が存在し最大サイズが5mmを超えるものを×とした。 The plating wettability of the alloyed hot-dip galvanized steel sheet was evaluated by non-plating defects (parts where the base material was exposed without plating). When there was no non-plating defect, it was marked as ◯, when there was a non-plating defect and the maximum size was 5 mm or less, it was marked as Δ, and when there was a non-plating defect and the maximum size exceeded 5 mm, it was marked as x.
めっき厚さの凹凸の大小は、めっき表面の粗さRaにより評価した。Raは、東京精密製の表面粗さ・輪郭形状測定器SURFCOM1900DXを用いて測定した。Raが1.5μm以下であるものを○とし、1.5μm超2.0μm以下であるものを△とし、2.5μm超のものを×とした。 The unevenness of the plating thickness was evaluated by the roughness Ra of the plating surface. Ra was measured using a surface roughness / contour shape measuring instrument SURFCOM1900DX manufactured by Tokyo Seimitsu. The case where Ra was 1.5 μm or less was rated as ◯, the case where Ra was more than 1.5 μm and 2.0 μm or less was rated as Δ, and the case where Ra was more than 2.5 μm was rated as x.
この合金化溶融亜鉛めっき鋼板は、SEM−EDX測定と、FIB−STEM測定とを行った。
SEM−EDX測定時には、鋼板から試験片を採取し、断面を機械研磨し、C蒸着してSEM観察−EDX(加速電圧10kV)測定し、酸化物の有無、酸化物の直径の最大値を評価した。薄片化せず、加速電圧10kVで測定したことから、測定範囲はおよそ直径1μmの領域であり、検出したFeは酸化物ではなく周辺の母材のFeの可能性が高い。
This alloyed hot-dip galvanized steel sheet was subjected to SEM-EDX measurement and FIB-STEM measurement.
At the time of SEM-EDX measurement, a test piece is taken from the steel plate, the cross section is mechanically polished, C is deposited, SEM observation-EDX (acceleration voltage 10 kV) is measured, and the presence or absence of oxide and the maximum value of the oxide diameter are evaluated. did. Since measurement was performed at an accelerating voltage of 10 kV without slicing, the measurement range was an area having a diameter of about 1 μm, and the detected Fe is not an oxide but a possibility of being a surrounding base material Fe.
FIB−STEM観察は、FIBで厚さ100nm以下に薄片化した後、FE−STEM/EDS(加速電圧300kV)測定を行った。
表2に、作成した合金化溶融亜鉛めっき鋼板の、母材中の酸化物の有無、および酸化物の最大直径をまとめて示す。
The FIB-STEM observation was performed by FE-STEM / EDS (acceleration voltage 300 kV) measurement after slicing to a thickness of 100 nm or less with FIB.
Table 2 summarizes the presence / absence of oxides in the base metal and the maximum diameter of the oxides of the galvannealed steel sheets prepared.
表2に示すように、めっき/母材界面または母材結晶粒界から2μm以内にSi、Mn、Al酸化物を有するものはめっき性が良好であったが、そうでないものはめっき性が不芳であった。 As shown in Table 2, those having Si, Mn, and Al oxide within 2 μm from the plating / matrix interface or matrix grain boundary showed good plating properties, while those not having poor plating properties. It was good.
表2のNo.11のめっき鋼板のSEM画像、EDX点分析結果を図1と表3に示し、FIB加工した断面STEM、EDS測定結果を、図2および図3に示す。 No. in Table 2 11 and Table 3 show the SEM images and EDX point analysis results of the plated steel sheet, and FIG. 2 and FIG. 3 show the FIB-processed cross-sectional STEM and EDS measurement results.
図1〜3および表3より、No.11のめっき鋼板には、めっき/母材界面の母材側の界面近傍に、主成分をSi,Mn,Alとする内部酸化物が存在しているものの、その粒径が大きかった。これは巻取温度が高いことが影響していると考えられる。 1 to 3 and Table 3, No. In 11 plated steel sheets, although internal oxides whose main components are Si, Mn, and Al exist in the vicinity of the base metal side interface of the plating / base metal interface, the grain size was large. This is thought to be due to the high winding temperature.
また、表2のNo.6のめっき鋼板のSEM画像、EDX点分析結果を図4と表4に示す。 In Table 2, No. The SEM image and EDX point analysis result of the plated steel sheet 6 are shown in FIG.
図4および表4より、No.6のめっき鋼板には、めっき/母材界面の母材側の界面近傍に、Siと主成分をする内部酸化物が存在しているものの、その粒径が大きかった。これは冷間圧延率が小さいことが影響していると考えられる。 From FIG. In the plated steel sheet No. 6, although the internal oxide mainly composed of Si and a main component was present in the vicinity of the base metal side interface of the plating / base metal interface, the particle size was large. This is thought to be due to the small cold rolling rate.
また、表2のNo.1のめっき鋼板のSEM画像、EDX点分析結果を図5、図6に示す。
図5および図6より、No.1のめっき鋼板には、めっき/母材界面の母材側の界面近傍に、Si、Al、Mnと主成分をする、微細な内部酸化物が存在していることがわかる。
In Table 2, No. The SEM image and EDX point analysis result of the plated steel sheet 1 are shown in FIGS.
From FIG. 5 and FIG. It can be seen that the plated steel sheet 1 has fine internal oxides containing Si, Al and Mn as main components in the vicinity of the base metal side interface of the plating / base metal interface.
Claims (6)
該熱延鋼板を酸洗する酸洗工程と
該酸洗工程で酸洗された熱延鋼板を圧下率50%以上で冷間圧延する冷間圧延工程と、
該冷間圧延工程を経た冷延鋼板を連続溶融亜鉛めっきラインでの還元焼鈍炉で鋼板表面を還元する際に700℃以上の温度域では水素濃度:1〜30体積%および露点:−30℃〜10℃の窒素―水素雰囲気で焼鈍を行ってから、溶融亜鉛めっきを行い、ついで合金化処理を行う溶融亜鉛めっき工程と
を備えることを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。 In mass%, C: 0.01 to 0.25%, Si: 0.3 to 2.0%, Mn: 0.030 to 3.0%, P: 0.050% or less, S: 0.010 % Or less, N: 0.0060% or less, and sol. A hot rolling step of hot rolling a steel slab having a chemical composition having Al: 0.5% or less and winding the obtained hot rolled steel sheet at a winding temperature of 650 ° C. or less;
A pickling process for pickling the hot-rolled steel sheet; a cold-rolling process for cold-rolling the hot-rolled steel sheet pickled in the pickling process at a reduction rate of 50% or more;
When the cold-rolled steel sheet that has undergone the cold rolling process is reduced on the steel sheet surface in a reduction annealing furnace in a continuous hot-dip galvanizing line, the hydrogen concentration is 1 to 30% by volume and the dew point is −30 ° C. in the temperature range of 700 ° C. or higher. A method for producing an alloyed hot-dip galvanized steel sheet, comprising: a hot-dip galvanizing step in which hot-dip galvanizing is performed after annealing in a nitrogen-hydrogen atmosphere at 10 ° C, followed by alloying treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009275630A JP5521520B2 (en) | 2009-12-03 | 2009-12-03 | Alloyed hot-dip galvanized steel sheet and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009275630A JP5521520B2 (en) | 2009-12-03 | 2009-12-03 | Alloyed hot-dip galvanized steel sheet and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011117040A true JP2011117040A (en) | 2011-06-16 |
JP5521520B2 JP5521520B2 (en) | 2014-06-18 |
Family
ID=44282695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009275630A Active JP5521520B2 (en) | 2009-12-03 | 2009-12-03 | Alloyed hot-dip galvanized steel sheet and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5521520B2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011241414A (en) * | 2010-05-14 | 2011-12-01 | Sumitomo Metal Ind Ltd | Hot dip galvanized steel sheet |
JP2013087314A (en) * | 2011-10-14 | 2013-05-13 | Nippon Steel & Sumitomo Metal Corp | High-strength galvannealed steel sheet excellent in plating adhesion and method for manufacturing the same |
KR101403111B1 (en) | 2012-05-29 | 2014-06-03 | 주식회사 포스코 | Galvanized steel sheet having excellent surface property and method for manufacturing the same |
US20140234658A1 (en) * | 2011-09-30 | 2014-08-21 | Nippon Steel & Sumitomo Metal Corporation | Galvanized steel sheet and method of manufacturing the same |
KR101482335B1 (en) * | 2012-12-21 | 2015-01-13 | 주식회사 포스코 | Ultra-high strenth galvinized steel sheet having galvanizing property and adhesion and method for manufacturing the same |
KR101490563B1 (en) | 2012-12-21 | 2015-02-05 | 주식회사 포스코 | Ultra-high strenth galvinized steel sheet having execellent galvanized properties and method for manufacturing the same |
WO2015015740A1 (en) * | 2013-07-31 | 2015-02-05 | Jfeスチール株式会社 | Steel sheet with excellent cut edge corrosion resistance and manufacturing method therefor |
JP2015504976A (en) * | 2011-12-28 | 2015-02-16 | ポスコ | High-strength hot-dip galvanized steel sheet excellent in plating surface quality and plating adhesion and method for producing the same |
KR101528008B1 (en) * | 2012-10-23 | 2015-06-10 | 주식회사 포스코 | Galvanealed steel sheet with good surface quality and adhesion and method for manufacturing the same |
US9725795B2 (en) | 2012-12-25 | 2017-08-08 | Nippon Steel & Sumitomo Metal Corporation | Galvannealed steel sheet and method of manufacturing the same |
WO2019092467A1 (en) | 2017-11-08 | 2019-05-16 | Arcelormittal | A galvannealed steel sheet |
WO2022230401A1 (en) * | 2021-04-27 | 2022-11-03 | 日本製鉄株式会社 | Steel sheet and plated steel sheet |
WO2022230400A1 (en) * | 2021-04-27 | 2022-11-03 | 日本製鉄株式会社 | Steel sheet and plated steel sheet |
WO2022230399A1 (en) * | 2021-04-27 | 2022-11-03 | 日本製鉄株式会社 | Steel sheet and plated steel sheet |
WO2022244592A1 (en) * | 2021-05-21 | 2022-11-24 | 日本製鉄株式会社 | Alloyed hot-dip galvanized steel sheet |
US11590734B2 (en) | 2017-11-08 | 2023-02-28 | Arcelormittal | Hot-dip coated steel sheet |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001200352A (en) * | 2000-01-20 | 2001-07-24 | Nkk Corp | Galvannealed steel sheet excellent in powdering resistance, and its manufacturing method |
JP2004315960A (en) * | 2003-02-06 | 2004-11-11 | Nippon Steel Corp | Galvannealed steel sheet, and manufacturing method therefor |
JP2006233333A (en) * | 2005-01-31 | 2006-09-07 | Nippon Steel Corp | High-strength galvannealed steel sheet with fine appearance, manufacturing method therefor and manufacturing facility |
JP2007211280A (en) * | 2006-02-08 | 2007-08-23 | Nippon Steel Corp | High strength hot dip galvanized steel sheet and high strength hot dip alloyed galvanized steel sheet having excellent formability and hole expandability, method for producing high strength hot dip galvanized steel sheet and method for producing high strength hot dip alloyed galvanized steel sheet |
-
2009
- 2009-12-03 JP JP2009275630A patent/JP5521520B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001200352A (en) * | 2000-01-20 | 2001-07-24 | Nkk Corp | Galvannealed steel sheet excellent in powdering resistance, and its manufacturing method |
JP2004315960A (en) * | 2003-02-06 | 2004-11-11 | Nippon Steel Corp | Galvannealed steel sheet, and manufacturing method therefor |
JP2006233333A (en) * | 2005-01-31 | 2006-09-07 | Nippon Steel Corp | High-strength galvannealed steel sheet with fine appearance, manufacturing method therefor and manufacturing facility |
JP2007211280A (en) * | 2006-02-08 | 2007-08-23 | Nippon Steel Corp | High strength hot dip galvanized steel sheet and high strength hot dip alloyed galvanized steel sheet having excellent formability and hole expandability, method for producing high strength hot dip galvanized steel sheet and method for producing high strength hot dip alloyed galvanized steel sheet |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011241414A (en) * | 2010-05-14 | 2011-12-01 | Sumitomo Metal Ind Ltd | Hot dip galvanized steel sheet |
US20140234658A1 (en) * | 2011-09-30 | 2014-08-21 | Nippon Steel & Sumitomo Metal Corporation | Galvanized steel sheet and method of manufacturing the same |
US9970092B2 (en) * | 2011-09-30 | 2018-05-15 | Nippon Steel & Sumitomo Metal Corporation | Galvanized steel sheet and method of manufacturing the same |
JP2013087314A (en) * | 2011-10-14 | 2013-05-13 | Nippon Steel & Sumitomo Metal Corp | High-strength galvannealed steel sheet excellent in plating adhesion and method for manufacturing the same |
JP2015504976A (en) * | 2011-12-28 | 2015-02-16 | ポスコ | High-strength hot-dip galvanized steel sheet excellent in plating surface quality and plating adhesion and method for producing the same |
KR101403111B1 (en) | 2012-05-29 | 2014-06-03 | 주식회사 포스코 | Galvanized steel sheet having excellent surface property and method for manufacturing the same |
KR101528008B1 (en) * | 2012-10-23 | 2015-06-10 | 주식회사 포스코 | Galvanealed steel sheet with good surface quality and adhesion and method for manufacturing the same |
KR101490563B1 (en) | 2012-12-21 | 2015-02-05 | 주식회사 포스코 | Ultra-high strenth galvinized steel sheet having execellent galvanized properties and method for manufacturing the same |
KR101482335B1 (en) * | 2012-12-21 | 2015-01-13 | 주식회사 포스코 | Ultra-high strenth galvinized steel sheet having galvanizing property and adhesion and method for manufacturing the same |
US9725795B2 (en) | 2012-12-25 | 2017-08-08 | Nippon Steel & Sumitomo Metal Corporation | Galvannealed steel sheet and method of manufacturing the same |
WO2015015740A1 (en) * | 2013-07-31 | 2015-02-05 | Jfeスチール株式会社 | Steel sheet with excellent cut edge corrosion resistance and manufacturing method therefor |
US11590734B2 (en) | 2017-11-08 | 2023-02-28 | Arcelormittal | Hot-dip coated steel sheet |
WO2019092527A1 (en) | 2017-11-08 | 2019-05-16 | Arcelormittal | A galvannealed steel sheet |
WO2019092467A1 (en) | 2017-11-08 | 2019-05-16 | Arcelormittal | A galvannealed steel sheet |
US11884987B2 (en) | 2017-11-08 | 2024-01-30 | Arcelormittal | Galvannealed steel sheet |
US12011902B2 (en) | 2017-11-08 | 2024-06-18 | Arcelormittal | Hot-dip coated steel sheet |
WO2022230401A1 (en) * | 2021-04-27 | 2022-11-03 | 日本製鉄株式会社 | Steel sheet and plated steel sheet |
WO2022230400A1 (en) * | 2021-04-27 | 2022-11-03 | 日本製鉄株式会社 | Steel sheet and plated steel sheet |
WO2022230399A1 (en) * | 2021-04-27 | 2022-11-03 | 日本製鉄株式会社 | Steel sheet and plated steel sheet |
JP7564491B2 (en) | 2021-04-27 | 2024-10-09 | 日本製鉄株式会社 | Steel sheets and plated steel sheets |
JP7564489B2 (en) | 2021-04-27 | 2024-10-09 | 日本製鉄株式会社 | Steel sheets and plated steel sheets |
JP7564490B2 (en) | 2021-04-27 | 2024-10-09 | 日本製鉄株式会社 | Steel sheets and plated steel sheets |
WO2022244592A1 (en) * | 2021-05-21 | 2022-11-24 | 日本製鉄株式会社 | Alloyed hot-dip galvanized steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP5521520B2 (en) | 2014-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5521520B2 (en) | Alloyed hot-dip galvanized steel sheet and method for producing the same | |
JP6583528B2 (en) | High-strength hot-dip galvanized steel sheet with excellent impact resistance and corrosion resistance | |
JP5879390B2 (en) | Hot-pressed galvanized steel sheet with excellent surface characteristics, hot-press formed parts using the same, and manufacturing method thereof | |
JP4589880B2 (en) | High-strength hot-dip galvanized steel sheet excellent in formability and hole expansibility, high-strength alloyed hot-dip galvanized steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet | |
JP5304966B1 (en) | Alloy hot-dip galvanized steel sheet | |
WO2018001098A1 (en) | Low-density hot-dipped steel and manufacturing method therefor | |
CN111936650B (en) | High-strength galvanized steel sheet, high-strength member, and method for producing same | |
EP3106528B1 (en) | High-strength hot-dip galvanized steel sheet, and method for manufacturing high-strength alloyed hot-dip galvanized steel sheet | |
JP3887308B2 (en) | High strength and high ductility hot dip galvanized steel sheet and its manufacturing method | |
JP3921136B2 (en) | High strength and high ductility hot dip galvanized steel sheet with excellent burring workability and manufacturing method thereof | |
CN108603263B (en) | High yield ratio type high strength galvanized steel sheet and method for producing same | |
KR20140128458A (en) | High-strength hot-dip galvanized steel plate and method for producing same | |
JP4837604B2 (en) | Alloy hot-dip galvanized steel sheet | |
JP5672178B2 (en) | High corrosion resistance hot-dip galvanized steel sheet with excellent appearance uniformity | |
JP2011153349A (en) | Hot-dip galvannealed steel sheet having excellent appearance characteristic, and method for manufacturing the same | |
JP2021508771A (en) | Zinc alloy plated steel with excellent post-processing corrosion resistance and its manufacturing method | |
JP7332967B2 (en) | hot stamping parts | |
CN116694988A (en) | Steel sheet, plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet | |
WO2018142849A1 (en) | High-strength molten zinc plating hot-rolled steel sheet, and production method therefor | |
JPWO2015022778A1 (en) | Method for producing high-strength hot-dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet | |
JP5789208B2 (en) | High-strength galvannealed steel sheet with excellent chemical conversion and ductility and its manufacturing method | |
JP2010116590A (en) | Hot dip galvanized steel sheet and method for producing the same | |
JP2008189979A (en) | Alloyed plated steel sheet and manufacturing method therefor | |
JPWO2018163871A1 (en) | High strength hot rolled galvanized steel sheet | |
JP6436268B1 (en) | Method for producing high-strength hot-dip galvanized steel sheet with excellent plating adhesion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120126 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121011 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20121011 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130710 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130806 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131004 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20131004 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131210 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140203 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140311 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140324 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5521520 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |